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Abstract. The NASA Langley Research Center (LaRC) air-
borne High Spectral Resolution Lidar (HSRL) on the NASA
B200 aircraft has acquired extensive datasets of aerosol ex-
tinction (532 nm), aerosol optical depth (AOD) (532 nm),
backscatter (532 and 1064 nm), and depolarization (532 and
1064 nm) profiles during 18 field missions that have been
conducted over North America since 2006. The lidar mea-
surements of aerosol intensive parameters (lidar ratio, depo-
larization, backscatter color ratio, and spectral depolarization
ratio) are shown to vary with location and aerosol type. A
methodology based on observations of known aerosol types
is used to qualitatively classify the extensive set of HSRL
aerosol measurements into eight separate types. Several ex-
amples are presented showing how the aerosol intensive pa-
rameters vary with aerosol type and how these aerosols are
classified according to this new methodology. The HSRL-
based classification reveals vertical variability of aerosol
types during the NASA ARCTAS field experiment conducted
over Alaska and northwest Canada during 2008. In two ex-
amples derived from flights conducted during ARCTAS, the
HSRL classification of biomass burning smoke is shown to
be consistent with aerosol types derived from coincident air-
borne in situ measurements of particle size and composition.
The HSRL retrievals of AOD and inferences of aerosol types
are used to apportion AOD to aerosol type; results of this
analysis are shown for several experiments.

1 Introduction

We introduce an aerosol classification scheme for airborne
High Spectral Resolution Lidar (HSRL) measurements from
the NASA Langley HSRL instrument. The ability to ac-
curately characterize and discriminate aerosol type can im-
prove both measurement retrievals and modeling, on both a
regional and global scale. Since 2006, the NASA Langley
HSRL has routinely participated in chemistry and radiation-
focused field missions throughout North America, where its
high accuracy, high resolution, vertically resolved measure-
ments of aerosol provide vertical context for ground-based,
in situ, and satellite observations of aerosols and clouds
(e.g. Molina et al., 2010; Warneke et al., 2010). The HSRL
also routinely provides validation for the Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) lidar instru-
ment aboard the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) satellite (Winker et al.,
2009). The aerosol classification introduced here serves to
enhance the input provided by HSRL in both of these roles.
Furthermore, the HSRL serves as a test-bed for advanced
satellite lidar instruments, and the advanced retrievals re-
quired for those measurements may benefit from aerosol
classification like what is described here. For example, ad-
vanced lidar retrievals of microphysical properties from ex-
tinction and backscattering coefficients and depolarization at
multiple wavelengths (M̈uller et al., 1999; Veselovskii et al.,
2002), such as might be part of the future Aerosol Clouds
and Ecosystems (ACE) Decadal Survey mission (National
Research Council, 2007), would benefit from aerosol type in-
formation as a constraint to improve the retrieval efficiency.

Published by Copernicus Publications on behalf of the European Geosciences Union.



74 S. P. Burton et al.: Aerosol classification using airborne High Spectral Resolution Lidar measurements

More than two decades ago, Sasano and Browell (1989)
characterized different aerosol types using lidar, specifically
a three-wavelength elastic backscatter lidar, with a retrieval
method that optimizes the match between the shape of the
backscatter profiles at the shorter wavelengths and that at
1064 nm, which is relatively less sensitive to lidar ratio.
Aerosols of five types were identified and classified. Later,
the Lidar In-space Technology Experiment (LITE) (Mc-
Cormick et al., 1993; Winker et al., 1996), the precursor to
CALIPSO, provided the first opportunities to observe ver-
tical distributions of aerosol globally. Kent et al. (1998)
first described the long-range transport of biomass burning
aerosols and characterized the optical properties using a sim-
ilar lidar retrieval for LITE. Ground- and ship-based mea-
surements by micropulse lidar (Spinhirne, 1993) provided
case studies of biomass burning (Campbell et al., 2003), mar-
itime and polluted maritime (Welton et al., 2002), and dust
aerosols (Welton et al., 2000; Powell et al., 2000).

However, these lidars as well as the CALIOP instrument
on the CALIPSO satellite are elastic backscatter lidars, for
which it is not possible to independently measure the aerosol
extinction and backscatter coefficients. To retrieve both, it is
common to assume that the ratio of the two, the lidar ratio,
is vertically homogeneous throughout the entire column or
layer in question, and the lidar ratio is either prescribed or
inferred using additional measurements as constraints. The
need for more accurate lidar ratios to constrain this type of
retrieval continues to provide motivation for aerosol classifi-
cation and characterization studies.

Examples include in situ nephelometer measurements of
backscattering plus integrated scattering and absorption mea-
surements, which were used to calculate lidar ratios for var-
ious aerosol types (e.g. Anderson et al., 2000). Cattrall et
al. (2005) moved beyond case studies using Aerosol Robotic
Network (AERONET) sun photometer data sets to estimate
lidar intensive parameters for specified aerosol types for use
with spaceborne lidar retrievals. They followed Dubovik
et al. (2002) who identified seasons and locations domi-
nated by four key aerosol types and characterized the index
of refraction and particle size distributions for those types
using quality-controlled AERONET sun photometer data.
The types identified by Dubovik et al. (2002) were urban-
industrial from fossil fuels, biomass burning from forest and
grassland fires, wind-blown desert dust, and marine aerosol.
Cattrall et al. (2005) expanded the set of aerosol types by
adding a Southeast Asian type, distinct from urban-industrial
pollution, exhibiting a greater number of large particles rela-
tive to fine particles. They also made this method of aerosol
classification useful for lidar retrievals by calculating lidar
parameters for these five types from retrievals of sky radiance
and solar transmittance, and compared results to an extensive
set of Raman lidar measurement case studies of particular
types (Cattrall et al., 2005 and references therein).

The above studies characterize the optical properties of
aerosols from samples of aerosol types that are identified by

context. In contrast, an example of using lidar measurements
to automatically classify aerosol types is given by Shimizu et
al. (2004), who used the lidar depolarization measurements
to differentiate spherical from non-spherical aerosol. A more
sophisticated automated classification scheme is presented
by Omar et al. (2005) who did a (k-means) cluster anal-
ysis on 26 aerosol intensive variables derived from a com-
prehensive AERONET dataset to produce and characterize
a set of six aerosol types. Measurements of the lidar ratio
from ground-based Raman lidars along with aerosol depolar-
ization values were shown to be useful for the separation of
aerosol types by Groß et al. (2011), but from a more lim-
ited set of observations and aerosol types, including pure
dust and biomass burning mixed with dust from the recent
Saharan mineral dust experiment-2 (SAMUM-2) field mis-
sion. Weinzierl et al. (2011) classify aerosol from the same
mission using these two lidar observables and absorption
Ångstr̈om exponent calculated from in situ data. The classifi-
cation methodology presented in the current work combines
the strategies of contextual identification of selected cases
with automated classification of the bulk of measurements,
and will be described more fully in Sect. 4.

The sun-photometer measurements used in many of the
studies described above pertain to the entire integrated verti-
cal column. Column-only measurements can cause biased
estimates of lidar properties in situations with inhomoge-
neous aerosols. More recently, many additional high qual-
ity case studies characterizing vertically resolved aerosol op-
tical properties of specific aerosol types world-wide have
been made with ground-based Raman and HSRL lidars
(e.g. Müller et al., 2007a and references therein; Amiridis
et al., 2009; Noh et al., 2009; Tesche et al., 2009a,b; Gian-
nakaki et al., 2010; Alados-Arboledas et al., 2011) and with
airborne HSRL (Esselborn et al., 2009). The advantage of
lidar is the ability to provide vertically resolved measure-
ments, and Raman lidar (Ansmann et al., 1990) and High
Spectral Resolution Lidar (Shipley et al., 1983; Grund and
Eloranta, 1991; She et al., 1992) have the additional key ad-
vantage over backscatter lidar, in that they measure aerosol
extinction and backscatter coefficients independently without
using models or assumptions about aerosol type. Since ex-
tinction coefficients are measured, they also provide aerosol
optical depth (AOD) measurements comparable to passive
satellite-based (e.g. the Moderate-Resolution Imaging Spec-
troradiometer – MODIS, Remer et al., 2005 and the Mul-
tiangle Imaging Spectroradiometer – MISR, Kahn et al.,
2005) and ground-based (e.g. Aerosol Robotic Network –
AERONET, Holben et al., 1998) observations (Burton et al.,
2010).

Along with directly measured backscatter and extinction
coefficients and AOD, the NASA Langley airborne High
Spectral Resolution Lidar provides vertically resolved in-
formation about aerosol composition in the form of four
aerosol intensive variables that depend only on aerosol type
and not on concentration. This consistent set of four aerosol
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intensive parameters – the lidar ratio, aerosol depolarization
at two wavelengths, and the ratio of aerosol backscatter at
two wavelengths – provides qualitative information about the
aerosol physical properties. Two channels of depolarization
have not been used before for aerosol classification, and we
find that this may help to separate the optically similar pollu-
tion and smoke aerosols, as discussed below in Sect. 4.2. In
this report we describe how these measurements have been
used to infer aerosol type.

The HSRL has flown on 18 field missions to date, and
this has provided an extensive dataset of well-calibrated ob-
servations of aerosol types from diverse regions through-
out North America. These observations are not limited to
either day or night, unlike sunphotometer measurements.
Since the intensive variables do not depend on the amount
of aerosol loading, there is a much smaller effective limita-
tion on the loading that can be used for classification than
what was required for Dubovik et al. (2002) and Cattrall
et al. (2005). An approximate minimum required signal
level for this methodology is 0.0003 km−1 sr−1 in aerosol
backscattering, 0.015 km−1 in aerosol extinction, or 0.015
in aerosol optical thickness. The airborne HSRL is able to
make aerosol extinction measurements down to within 300 m
of the ground, thereby normally sampling a significant por-
tion of the boundary layer where important aerosol types are
located.

This is the first of two companion papers. Here we will
describe how measurements acquired by the NASA Lang-
ley Research Center airborne High Spectral Resolution Li-
dar have been used to infer aerosol type and apportion AOD
to aerosol type. In Sect. 2 of this paper, the NASA Lang-
ley airborne HSRL system is discussed, followed in Sect. 3
by a description of the HSRL measurements and how these
are used to measure aerosol intensive parameters. In Sect. 4,
the methodology for using these measurements to classify
aerosol types is described, followed by a discussion of the
particular aerosol types that are identified from the HSRL
data. Examples of the aerosol classification are presented,
followed by a discussion of these results in Sect. 5. After
discussing the classification methodology and presenting ex-
amples of this classification in this paper, Ferrare et al. (2012)
in the companion paper use the results of this HSRL-based
aerosol classification to evaluate aerosol classifications de-
rived from CALIPSO measurements and simulated by the
GOCART aerosol model (Chin et al., 2002).

2 NASA langley airborne High Spectral Resolution
Lidar (HSRL)

The LaRC airborne HSRL (Hair et al., 2008) uses the
HSRL technique to independently retrieve aerosol and ten-
uous cloud extinction and backscatter without a priori as-
sumptions on aerosol type or extinction-to-backscatter ratio.
Hair et al. (2008) describe the instrument and measurement

technique in detail. To briefly review, the HSRL technique
(Shipley et al., 1983; Grund and Eloranta, 1991; She et al.,
1992) measures aerosol extinction and backscatter indepen-
dently, using a narrow-band iodine vapor filter to separate
the broadened spectra of Cabannes scattering by molecules
from the more narrowly peaked Mie scattering by aerosols
(She, 2001). The observed molecular backscattering compo-
nent is attenuated by extinction. Therefore, by comparison
with the molecular backscattering from an atmospheric den-
sity profile obtained from the NASA Global Modeling and
Assimilation Office (GMAO) or another source, the aerosol
extinction coefficient profile is obtained. The LaRC HSRL
employs the HSRL technique at 532 nm and the standard
backscatter technique (Fernald et al., 1972; Klett, 1981; Fer-
nald, 1984) at 1064 nm, using an assumed lidar ratio of 35 sr
at 1064 nm. The instrument also measures depolarization at
both wavelengths. The return signal is split into components
parallel and perpendicular to the polarization of the outgoing
beam. The depolarization ratio here is defined as the ratio of
the perpendicular to the parallel component. In contrast to
standard backscatter lidars that are empirically calibrated by
assuming that the aerosol contribution to backscatter is neg-
ligible or known at some altitude, the HSRL instrument is
self-calibrating at 532 nm for measurements of aerosol and
cloud backscatter and extinction. For the backscatter mea-
surement, which derives from a ratio of the two signals, the
assessment of the relative gain ratio between the molecular
and backscattering channels is performed in flight by remov-
ing the iodine cell from the optical path and equalizing the
input to the two channels. It is similarly self-calibrating at
both 532 and 1064 nm for measurements of depolarization
by using the procedure given by Alvarez et al. (2006), involv-
ing rotating the half-waveplate to 22.5◦ to equalize the input
to the “perpendicular” and “parallel” detector channels. The
532 nm extinction measurement is made from the derivative
of the log of the molecular channel signal only, so the cal-
ibration constants are not required. The calibration of the
1064 nm aerosol and cloud backscatter measurement takes
advantage of the internally calibrated HSRL measurement at
532 nm and therefore does not rely on an assumption of neg-
ligible or constant aerosol scattering in the calibration region.
In contrast to ground-based lidar systems, the calibration re-
gion is close to the aircraft and therefore the attenuation is
small. The instrument also features a unique autonomous
boresighting system that insures the transmitter and receiver
maintain co-alignment to very high accuracy during flight. A
detailed description of this HSRL system and calibration and
data retrieval techniques is provided by Hair et al. (2008).
The vertical resolution of the backscatter coefficients and de-
polarization measurements is 30 m, and the horizontal aver-
aging is 10 s (about 1 km) (Rogers et al., 2009). The aerosol
extinction profiles have a vertical resolution of 300 m, and
the horizontal averaging is 60 s (about 6 km) (Rogers et al.,
2009). The vertical and horizontal resolutions can be varied
to suit varying measurement needs. The extinction and lidar
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ratio profiles extend from approximately 300 m above the
surface, as determined by a digital elevation dataset (GLOBE
Task Team et al., 1999), to approximately 2500 m below the
aircraft. The 300 m limit at the low end of the profile is to
avoid ground contamination. The 2500 m near-range limit is
to ensure full overlap between the outgoing laser and the re-
ceiver field of view. The backscatter coefficient and depolar-
ization profiles extend further in each direction, from 500 m
below the aircraft to 60 m (2 range bins) above the ground.
The aerosol backscatter coefficients at the two wavelengths
are combined to give a backscatter-related aerosolÅngstr̈om
exponent.

åβ = −
ln

(
β532

α

/
β1064

α

)
ln (532 nm/1064 nm)

(1)

where βi
α represents the aerosol backscatter coefficient at

wavelengthi. The subscriptβ on the left-hand side indi-
cates that this is a backscatter-relatedÅngstr̈om exponent to
avoid confusion with the more commonly calculated extinc-
tion (or optical-depth) related̊Angstr̈om exponent. The ratio
β532

α andβ1064
α is the “backscatter color ratio” used through-

out this study. As stated above, the aerosol backscatter coeffi-
cient at 532 nm is a direct measurement made with the HSRL
technique, while the backscatter coefficient at 1064 nm de-
pends on a retrieval that uses an assumed lidar ratio. How-
ever, the standard backscatter retrievals at 1064 nm are less
sensitive to errors in lidar ratio (Sasano and Browell, 1989),
and the systematic error in 1064 nm backscatter is expected
to be less than 15 % at worst due to the uncertainty in the
choice of lidar ratio. The backscatter ratio used here is
therefore sufficient for the purpose of empirically separating
aerosol classes.

In short, the HSRL provides vertically resolved mea-
surements of the following extensive and intensive aerosol
parameters:

– Extensive parameters: backscatter coefficient at 532 and
1064 nm with horizontal resolution of approximately
1 km and vertical resolution of approximately 30 m; ex-
tinction coefficient at 532 nm with horizontal resolution
of approximately 6 km and vertical resolution of ap-
proximately 300 m; and total column optical depth at
532 nm derived by integrating the profile of extinction.

– Intensive parameters:Sa (aerosol lidar ratio) at 532 nm
with resolutions matching those of the extinction coeffi-
cient given above, aerosol depolarization at 532 nm and
1064 nm with horizontal resolution of approximately
1 km and vertical resolution of approximately 30 m; and
the backscatter-related aerosolÅngstr̈om exponent (or,
alternately, the backscatter color ratio), with resolution
matching the backscatter coefficients above.

Validation of HSRL aerosol extinction measurements was
performed by Rogers et al. (2009). They compared the

HSRL measurements with aerosol extinction derived from
simultaneous measurements from the NASA Ames Air-
borne Tracking Sunphotometer (AATS-14) (Redemann et al.,
2009) and in situ scattering and absorption measurements
from the Hawaii Group for Environmental Aerosol Research
(HiGEAR) in situ instruments (McNaughton et al., 2009).
They found bias differences between HSRL and these in-
struments to be less than 3 % (0.001 km−1) at 532 nm; root-
mean-square (rms) differences at 532 nm were less than 50 %
(0.015 km−1).

3 HSRL measurements

The HSRL data analyzed in this article were acquired be-
tween March 2006 and September 2010. During that time,
the airborne LaRC HSRL was deployed on the NASA Lang-
ley B200 King Air aircraft and acquired over 1000 h of data
on over 330 science flights during eighteen field campaigns.
HSRL continues to participate in field campaigns, but data
beyond 2010 are not included in the analysis presented here.
The campaigns used for this study include many process-
oriented field projects for NASA, the Department of En-
ergy (DOE), the National Oceanic and Atmospheric Admin-
istration (NOAA), and the Environmental Protection Agency
(EPA), as well as field projects devoted to CALIPSO valida-
tion. These totals include 101 successful validation flights
for the CALIPSO program. Figure 1 shows the locations
of these missions and Table 1 lists these field missions and
the science flight hours associated with them. The diverse
locations of these missions have enabled the HSRL to ac-
quire measurements of several different aerosol types. For
example, HSRL measurements of smoke during ARCTAS
were described by Warneke et al. (2010) and Knobelspiesse
et al. (2011); urban and dust aerosols during MILAGRO by
Molina et al. (2010) and de Foy et al. (2011); and Saharan
dust during TexAQS/GoMACCS by Liu et al. (2008), Parrish
et al. (2009), and Burton et al. (2010). The HSRL acquired
data below the aircraft, which normally flew at 9 km (m.s.l.);
typical flight duration was 3.5–4 h.

Figure 2 shows an example of the suite of HSRL mea-
surements acquired when the King Air flew over Mexico
City between 17:38 and 17:52 UT on 13 March 2006. These
measurements exhibit variations in aerosol type over Mexico
City. The data shown in Fig. 2 were collected over a distance
of about 115 km. The aerosol backscatter and extinction co-
efficients are shown along with the four aerosol intensive
parameters: aerosol depolarization at 532 nm, extinction-to-
backscatter ratio at 532 nm, aerosol depolarization spectral
ratio, and backscatter color ratio. The vertical and horizon-
tal resolution and lower and upper altitude limits are as de-
scribed in Sect. 2. These measurements show the variability
of the various types of aerosols that were measured over the
region.
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Table 1. Field campaigns for the NASA Airborne HSRL.

Field Mission Location Dates Number Flight
Flights Hours

MILAGRO Mexico City 1–31 Mar 2006 22 64.4
CALIPSO Validation Eastern USA May–Aug 2006 20 56.7
TexAQS/GOMACCS Texas 27 Aug–28 Sep 2006 28 89.0
San Joaquin Valley California 8–20 Feb 2007 15 45.0
CHAPS/CLASIC Oklahoma City area 3–29 Jun 2007 22 70.2
CATZ CALIPSO Val. Eastern USA Jan–Aug 2007 20 49.9
CALIPSO Validation Caribbean Jan–Feb 2008 13 42.2
ARCTAS Spring Alaska 30 Mar–22 Apr 2008 27 97.9
ARCTAS Summer Canada 24 Jun–13 Jul 2008 21 71.5
Birmingham Alabama 12 Sep–15 Oct 2008 11 35.1
CALIPSO Validation Eastern USA Jan–Apr 2009 13 39.7
RACORO Oklahoma 21 May–27 Jun 2009 24 72.9
Ocean Subsurface Atlantic ocean 14–29 Sep 2009 5 18.6
CALIPSO Validation Eastern USA 8–22 Apr 2010 7 15.6
CALIPSO Gulf Oil Spill Gulf of Mexico May, July 2010 6 19.7
CalNEX California 11–24 May 2010 13 44.5
CARES California 3–30 Jun 2010 25 80.1
CALIPSO Validation Caribbean 4–27 Aug 2010 9 35.9

CALIPSO/MODIS/CATZ (NASA) 
January 17– Aug 11, 2007 

Ocean Subsurface (NASA-ODU-NYU) 
September 9-29, 2009 

TexAQS II/GoMACCS 
NOAA-DOE-NASA 

Aug 27 – Sep 29, 2006 

ARCTAS 1 (NASA-DOE-NOAA) 
April 1-20, 2008 

Caribbean CALIPSO Val. (NASA) 
Jan. 22 – Feb. 3, 2008 

ARCTAS 2 (NASA) 
June 25 – July 14, 2008 

CALIPSO Validation (NASA) 
June 14 – Aug 10, 2006 

January 22 – April 17, 2009 
April 8 – 22, 2010 

MAXMex/MILAGRO/INTEX-B 
DOE-NSF-NASA-Mexico 

March 1-30, 2006 

San Joaquin Valley (EPA) 
February 8-21, 2007 

Field Campaigns:  

2006 (3), 2007 (3), 2008 (4), 2009 (3), 2010(5) 

CHAPS (DOE-NASA) 
June 3-29, 2007 

RACORO (DOE-NASA) 
June 3-26, 2009 

Birmingham (EPA) 
Sept 16-Oct 16, 2008 

CalNex (NOAA)  May 12-25, 2010 
CARES (DOE)  June 3-28, 2010 

Bermuda/Caribbean 
August 11-28, 2010 

Gulf Oil Spill / CALIPSO validation (NASA) 
May 10-11 and July 9-11, 2010 

Fig. 1. Location of airborne HSRL flights and field experiments from 2006 through 2010.

The HSRL measurements of aerosol intensive parameters
provide information about the particle physical properties.
For example, backscatter color ratios typically are inversely
related to aerosol particle sizes (Sasano and Browell, 1989;
Sugimoto et al., 2002). Another intensive parameter, the

depolarization ratio, is recognized as a discriminator of dust
(Shimizu et al., 2004; Omar et al., 2009). High values of
30 % to 35 % depolarization at 532 nm for aerosol are in-
dicative of nearly pure dust (Sugimoto and Lee, 2006; Liu
et al., 2008; Freudenthaler et al., 2009), with smaller values
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Fig. 2. Airborne HSRL measurements when the NASA B200 King Air flew over Mexico City between 17:38–17:52 UT on 13 March 2006
during the MILAGRO campaign. The aircraft flew from east (right) to west (left). The images cover a horizontal distance of about 115 km.
The gray bars at the bottom of the figure represent the approximate limit of the Mexico City Metropolitan area.(a) Aerosol backscatter
coefficient (532 nm),(b) aerosol extinction coefficient (532 nm),(c) aerosol depolarization (532 nm),(d) aerosol depolarization spectral
ratio (1064 nm/532 nm),(e) Sa, the lidar ratio (532 nm),(f) aerosol backscatter color ratio (532 nm/1064 nm). Variations in the parameters
measured by the HSRL reflect variability in aerosol type.

that are still elevated above about 8–10 % usually attributed
to a mixture of dust with spherical particles (Murayama et
al., 2003; Sugimoto and Lee, 2006; Tesche et al., 2009a).
High depolarization can also indicate ice particles, as in cir-
rus clouds (e.g. Sassen, 1977; Sakai et al., 2003). Crystal-
lized sea salt (Murayama et al., 1999; Sakai et al., 2010) and
aged biomass burning and volcanic aerosols (Sassen, 2008)
can also exhibit some depolarization, but with much smaller
values. The degree of depolarization also varies with relative
humidity, since hygroscopic swelling increases the spheric-
ity of particles and decreases their depolarization (Murayama
et al., 1996; Sassen, 2000). The spectral dependence of the
depolarization ratio is dependent on particle size in the case
of ice clouds (Somekawa et al., 2008) and on mixing ratio
and spherical and non-spherical particle sizes in mixtures of
dust and non-spherical particles (Sugimoto and Lee, 2006;
Somekawa et al., 2008). Finally, the aerosol extinction-
to-backscatter ratio, or lidar ratio, varies with aerosol size,
shape, and composition; tropospheric aerosols typically have
low values of approximately 20 to 50 sr at 532 nm for coarse
mode particles (i.e. sea salt, dust) and higher values for small
and/or highly absorbing accumulation mode particles (Ack-
ermann, 1998; Cattrall et al., 2005; Müller et al., 2007a and
references therein).

For the example shown in Fig. 2, over the western part
of the city, higher values of backscatter color ratio and the

532-nm lidar ratio (Sa) and lower values of the 532-nm de-
polarization suggest smaller, more spherically shaped parti-
cles (e.g. sulfate drops) more typically associated with ur-
ban/industrial pollution. LowerSa and higher depolarization
values over the eastern part of the city suggest higher con-
centrations of dust. These measurements are consistent with
WRF-Flexpart model simulations which also indicate urban
emissions dominating in the western part of the city, with a
mixture of biomass burning, urban emissions and dust in the
east (see de Foy et al., 2011, Fig. 8). These HSRL measure-
ments also clearly show the vertical and horizontal variabil-
ity of aerosol intensive properties (e.g. 532-nm depolariza-
tion and backscatter color ratio) associated with thin elevated
aerosol layers over the western section of Mexico City.

Figure 3 shows how the aerosol intensive properties mea-
sured by the HSRL varied during the various field exper-
iments from March 2006 through 2010. Note, for exam-
ple, how the aerosols observed over Mexico during the
MILAGRO campaign had somewhat different characteris-
tics than those observed over Houston during GOMACCS
and the eastern US during the CALIPSO validation mis-
sions. The aerosols observed during MILAGRO typically
had smaller lidar ratio and larger 532-nm depolarization than
the aerosols observed over the eastern US. This indicates
that the aerosols observed during MILAGRO were somewhat
larger and more nonspherical and therefore most likely had
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532 nm Aerosol Depolarization
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Fig. 3. Distributions of aerosol intensive parameters derived from HSRL measurements during recent field campaigns. Median values of each
of the four intensive variables are shown for each mission (dots) along with the 25–75th percentiles (bars) and 5–95th percentiles (whiskers).
The right-hand axis corresponds to the gray histogram bars, which show the number of observations for each field campaign. Several
CALIPSO validation campaigns in the Eastern US and off the east coast have been grouped together in the single category “CALIPSO” in
this figure. The two different Caribbean campaigns (2008 and 2010) are shown separately.

higher concentrations of dust (Molina et al., 2010; de Foy et
al., 2011); conversely, the aerosols observed over the eastern
and southeastern US typically were smaller and more spher-
ical, consistent with urban aerosols. The lidar ratio varies as
well, with larger values for the urban aerosols typically seen
during the CALIPSO validation flights in the eastern US and
somewhat smaller lidar ratio values seen during MILAGRO
where more dust was present. As another example, the first
Caribbean campaign, which made frequent measurements of
maritime aerosol, exhibits much smaller lidar ratio and also
a smaller spectral ratio of depolarization. Conversely, dur-
ing ARCTAS the lidar ratio was large, typical of the smoke
aerosol frequently seen during that campaign (Warneke et al.,
2010; Shinozuka et al., 2010), and the backscatter color ratio
was also high, indicating small particles. During the second
Caribbean campaign, high values of aerosol depolarization
reflect the large amount of Saharan dust observed. These re-
sults indicate that the aerosol intensive variables measured
by HSRL vary with location and suggest that this variabil-
ity can be used as an indicator of aerosol type. In the next
section, we describe our methodology for using these HSRL
measurements to infer aerosol types.

4 Aerosol classification

4.1 Methodology

As stated above, the four aerosol intensive variables used in
the aerosol classification are the extinction-to-backscatter ra-
tio, Sa, at 532 nm; the backscatter color ratio, which is the
ratio of the backscattering coefficient at 532 nm to 1064 nm;
the aerosol depolarization at 532 nm (actually the natural log-
arithm of this quantity, since it is more normally distributed);
and the spectral depolarization ratio, which is the ratio of
the particulate depolarization measured in the two channels,
1064 nm/532 nm. The extensive aerosol parameters – aerosol
backscattering coefficient, extinction, and optical depth – are
not used since these parameters can vary with aerosol amount
as well as type.

Measurements are prepared for classification by clearing
clouds using a convolution of the measured signal at 532 nm
with a Haar wavelet to enhance edges (Davis et al., 2000),
combined with an algorithm to set a flight-by-flight threshold
for separating the generally sharper cloud edges from the less
pronounced aerosol feature boundaries in each lidar profile.
Optional filtering criteria are applied to the HSRL aerosol
measurements at this stage. Typing of outliers or noisy points
with the aerosol classification algorithm will be less reliable
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than for well-behaved points, but since each measurement is
classified independently, the inclusion or exclusion of out-
liers has no effect on the classification of the remainder of
observations, in contrast to global minimization algorithms
like k-means (MacQueen, 1967). The criteria listed in Ta-
ble 2 were applied for the creation of the example figures
shown in this paper. Generally, the points that fail these crite-
ria have only small contributions to the column optical depth.

The HSRL aerosol classification is performed in two parts.
First, specific samples of known aerosol types are combined
to make model distributions. Second, the full dataset of
HSRL measurements are classified by comparison with these
models. The number of classes depends to some extent on the
cases where aerosol type is known with high confidence and
should not be considered definitive. The choice of classes
also reflects a desire for the categories to be physically mean-
ingful and suggest possible aerosol sources; to this end, the
basic classes follow the existing literature (Dubovik et al.,
2002; Cattrall et al., 2005; Omar et al., 2005). In addition, the
number of classes ideally should maximize the information
content captured by the class identification. A statistic re-
lated to this idea is described in Sect. 4.3. The HSRL aerosol
classification described herein uses eight classes, which start
with labeled samples of known aerosol types. Section 4.2
describes the eight classes and how the samples were cho-
sen. Thirty samples of a few hundred to a few thousand data
points each, in total comprising about 0.30 % of the data, are
labeled using a priori knowledge. These samples are com-
bined to estimate multi-normal distributions defined by the
4-by-4 variance-covariance matrix of the four aerosol inten-
sive variables. Distributions are generated from the samples
for each of the eight classes after weighting by the sample
size so that each sample counts equally within a class. Gen-
eralized distances are then calculated for each measurement
in the full five-year HSRL record to each of the class distribu-
tions, using the Mahalanobis distance metric (Mahalanobis,
1936).

Mij =

√(
xi − Xj

)T Ĉ−1
j

(
xi − Xj

)
(2)

Mij is the Mahalanobis distance between measurementi

and classj , wherexi represents the four-dimensional mea-
surement vector for measurementi, Xj represents the four-
dimensional model vector for class modelj , andĈj repre-
sents the variance-covariance matrix for class modelj .

The Mahalanobis distance is appropriate for quantifying
the distance between a point and a distribution, and is there-
fore a better metric for this application than the Euclidean
distance between two points. It assumes the aerosol classes
are represented as multi-normal distributions. When the Eu-
clidean distance is used for classification, as is frequently the
case ink-means clustering (MacQueen, 1967), the measure-
ment points tend to be forced into roughly spherical clusters
unless the classes are widely spaced out, since each class
is identified by only by a single point. The Mahalanobis

Table 2. Criteria for filtering aerosol measurements for certain
figures.

Aerosol Property Filter criteria

Depolarization at 532 nm 0≤ x ≤ 0.6
Extinction-to-backscatter ratio at 532 nm 0≤ x ≤ 100
Backscatter color ratio, 532 nm:1064 nm 0.4≤ x ≤ 4.5
Ratio of aerosol depolarization ratios, 1064 nm:532 nm 0≤ x ≤ 3.5

distance metric, on the other hand, incorporates more infor-
mation about the relative shapes and sizes of the classes, in-
cluding potentially different widths or variances in each di-
mension and covariance between the variables. The assump-
tion of multi-normal distributions is a much less limiting as-
sumption, and is consistent with the presentation of results by
Cattrall et al. (2005). The Mahalanobis distance is frequently
the distance metric of choice for Expectation Maximization
(EM) clustering (Dempster et al., 1977), which is a general-
ized form ofk-means clustering.

After the class distribution models are calculated, the Ma-
halanobis distance is used to classify aerosol measurements
from all HSRL aerosol observations. Points with a Ma-
halanobis distance greater than a certain threshold from all
the classes are considered outliers and are not classified.
This threshold (Mahalanobis distance = 4.3) corresponds to
the 99.9 % cumulative probability contour of the class dis-
tributions, derived by assuming that the Mahalanobis dis-
tances belong to a chi-square distribution. That is, 0.1 % of
a random sampling of theoretical points belonging to a class
would lie at a distance beyond the threshold and would be
missed. For points where the Mahalanobis distance to one or
more classes is within this threshold, the class identification
is inferred from the smallest distance.

Besides providing the most likely class identification for
each measurement, the Mahalanobis metric also gives an es-
timate of the probability for each class. The eight probabil-
ities are normalized to give an estimate of the relative prob-
ability for each class. We require the normalized probabil-
ity to be at least 60 % for an observation to be assigned to a
given class. In cases where none of the eight probabilities ex-
ceeds 60 % because the point is nearly equidistant from two
or more of the nearest classes, the normalized probabilities
are recorded, but no class identification is made.

The new classification method described here differs
from unsupervised classification schemes likek-means
(MacQueen, 1967) or expectation maximization clustering
(Dempster et al., 1977) primarily in the use of labeled sam-
ples. This allows us to incorporate additional knowledge
about aerosol type that may be available only in specific
cases. This method also has the benefit that new data can
be easily classified without causing existing classifications
to be greatly altered. The classification is robust with re-
spect to the inclusion or exclusion of outliers, noisy points,

Atmos. Meas. Tech., 5, 73–98, 2012 www.atmos-meas-tech.net/5/73/2012/



S. P. Burton et al.: Aerosol classification using airborne High Spectral Resolution Lidar measurements 81

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Backscatter Color Ratio

0

20

40

60

80

100

5
3
2
 n

m
 L

id
a
r 

R
a
ti

o

0.01 0.10
532 nm Aerosol Depolarization

0

20

40

60

80

100

5
3
2
 n

m
 L

id
a
r 

R
a
ti

o
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Spectral Depolarization Ratio

0

20

40

60

80

100

5
3
2
 n

m
 L

id
a
r 

ra
ti

o

Ice

Pure Dust

Dusty Mix

Maritime

Polluted Maritime

Urban

Fresh Smoke

Smoke

Fig. 4. Illustrates the models used in the aerosol classification algorithm in three projections of a space defined by the four aerosol intensive
variables measured by HSRL. Crosshairs indicate data samples of known type as mean and standard deviation of the four variables. The
aerosol type models that are based on these samples are indicated by two-sigma ellipses, calculated using the eigenvectors and eigenvalues
of the model covariance matrices.

or otherwise unreliable measurements, in the sense that the
classification of other points will remain unchanged. Classes
can even be added or removed with minimal disruption to
the other classes. This is in sharp contrast to unsupervised
clustering methods in which any change has global conse-
quences, since those algorithms depend on iterative global
minimization of the distance metric.

4.2 Aerosol types

The HSRL aerosol classification has eight types and begins
with thirty samples of labeled data, between two and six sam-
ples for each type. Figure 4 shows the characteristics of the
samples in terms of the four intensive variables used for clas-
sification. The samples are shown as cross-hairs represent-
ing the sample standard deviations in each of the four vari-
ables. All the samples of each type are combined to pro-
duce variance/covariance matrices which are used later as
the model distributions. Two-sigma covariance ellipses for
these models are also shown in Fig. 4. The ellipse used to
visualize a covariance matrix is determined by its eigenval-
ues and eigenvectors (see e.g. Rodgers, 2000). The square
roots of the eigenvalues are the major and minor axes (dou-
bled in this figure to represent two-sigma variability). These
are not necessarily aligned with the variable axes or equal to
the standard deviations for each variable, since the covari-
ance terms (off-diagonals) of the variance/covariance matrix

are not necessarily zero. The directions of the major and mi-
nor axes are given by the eigenvectors.

The eight particulate classes in this analysis were chosen
to provide a useful separation of the observations into dis-
tinct types. These classes are: ice, pure dust, dusty mix,
maritime, polluted maritime, urban, fresh smoke, and smoke.
The choice of classes tries to address a balance between too
few classes which would cause important distinctions be-
tween different observations to be lost, and too many classes
which could make it easy to overlook important similarities
and prove difficult to interpret. Our choice of eight classes
was based on extensive inspection of the HSRL data. The
types used in this study reflect the heritage of previous work
on classification of lidar measurements (Cattrall et al., 2005;
Omar et al., 2005), with some additions that are described
herein.

The strategy of using labeled samples to create “seed”
aerosol class models to classify all other measurements al-
lows us to incorporate knowledge based on a relatively lim-
ited set of observations where the aerosol type is known or
easy to infer. Specifically, we incorporate six samples of ice
haze (see Sect. 4.2.1) observed during the ARCTAS cam-
paign, identifiable by the signature of fall-streaks in the li-
dar measurements. Pure dust is represented by two labeled
samples. One of these was a plume of Saharan dust tracked
by the CALIPSO lidar instrument as it was advected from
Africa to the Gulf of Mexico, described by Liu et al. (2008).
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CALIPSO and HSRL observed it simultaneously near Hous-
ton, Texas ten days later. The other pure dust labeled sam-
ple is from a dust storm on the slope of Pico de Orizaba
observed during the MILAGRO field campaign described
by de Foy et al. (2011). Three labeled samples of dusty
mix include cases of probably locally generated dust with
intermediate values of depolarization, including two in the
midwestern United States and one near Mexico City that is
also discussed by de Foy et al. (2011). Clean air samples
in the Caribbean provided most of five labeled samples for
the maritime class. Labeling of two samples of polluted
marine air from the marine boundary layer in the Gulf of
Mexico and near the coast of Virginia was justified by back-
trajectory analysis using the online HYSPLIT tool from the
NOAA Air Resources Laboratory READY website (Draxler
and Rolph, 2012) (http://ready.arl.noaa.gov/HYSPLIT.php)
which was used to track the air samples from the marine
boundary layer a short time backward to urban areas. Four
urban samples are used where the attribution of elevated lev-
els of aerosol optical depth to urban sources is fairly straight-
forward, for example near Washington DC or, in one case,
Mexico City in a region where the WRF-Flexpart model also
indicates urban aerosols (de Foy et al., 2011). In the case
of smoke (five samples) and fresh smoke (three samples),
the plume was observed visually from the B200 or was mea-
sured by coincident airborne in situ measurements (Warneke
et al., 2010) and/or MODIS images (Saha et al., 2010, see
Fig. S7a). Some of the classes, such as pollution, maritime,
smoke, and dust, correspond with aerosol types from previ-
ous studies (e.g. Dubovik et al., 2002; Omar et al., 2005).
Other categories, pure dust, fresh smoke, and polluted mar-
itime, were added based on HSRL measurements, simulta-
neous observations from the aircraft, and preliminary find-
ings using the fully unsupervised cluster analysis schemes,k-
means and Expectation Maximization, and will be discussed
below. Particular samples were chosen to attempt to provide
good coverage of the apparent range of lidar intensive ob-
servables for each type, while simultaneously holding back
some known samples to judge the success of the classifica-
tion. Removing or replacing individual samples can affect
a small percentage of measurements on the apparent bound-
aries between classes but does not affect the results overall.
We do not have enough labeled samples to perform a statis-
tical assessment of the effect of sample selection; however,
the experiment described later in Sect. 4.3 gives a quantita-
tive idea of the amount of error due to points being near the
boundaries.

4.2.1 Ice particles

Elevated aerosol depolarization values are usually an indica-
tion of dust and/or ice. During the ARCTAS campaign, many
cases were observed of optically thin ice or ice crystal haze
(Saha et al., 2010). These common ice layers have been pre-
viously reported extending above 6.5 km (Greenaway, 1950)

and sometimes are precipitating crystals based on evidence
of fall streaks in the HSRL lidar data. Hoff (1988) observes
similar ice crystal precipitation events that are often obvi-
ous in ground-based lidar records although no visible clouds
are evident. Curry et al. (1990) point out that although Hoff
uses the apt term “ground-based cirrus”, these cloud-free ice
crystal hazes are neglected in contemporary cloud classifi-
cation conventions and in radiation transfer and climate cal-
culations. More recently, model parameterizations are avail-
able for ice fog (Girard and Blanchet, 2001). However, ice
crystal hazes observed by HSRL during ARCTAS were not
cleared as clouds in AERONET observations and frequently
contribute significantly to AERONET aerosol optical depth.
Nearby Total Sky Imager camera images also indicated clear
conditions, but Millimeter Cloud Radar consistently indi-
cated cloudy conditions. The likely explanation for these
observations is the presence of relatively large particles, but
in low concentrations. Large (>1) Ångstr̈om exponents ob-
served by AERONET suggest that the particles are smaller
than typical cirrus particles. These ice crystal airmasses are
not cleared from the HSRL measurements as clouds either, so
we need to be able to separate them from aerosol particles.

Ice observed by HSRL during the ARCTAS campaign can
have particle depolarization of up to 60 % at 532 nm, which
is greater than that associated with pure dust (Sugimoto and
Lee, 2006; Liu et al., 2008; Freudenthaler et al., 2009).
Mishchenko and Sassen (1998) also indicate depolarization
values at 532 nm up to 50–70 % are possible for ice crystals
with effective radius on the order of a micrometer. Since the
depolarization of ice crystals is highly variable (e.g. Sassen
and Hsueh, 1998) and can be comparable to that of dust, it
is difficult to use particle depolarization alone to separate ice
and dust (Sakai et al., 2003). Based on our HSRL measure-
ments and from previous ground-based HSRL (e.g. Eloranta,
2005) and Raman lidar (e.g. Whiteman et al., 1992) observa-
tions, the lidar ratios for ice are lower than for pure dust, less
than 30 sr (Sakai et al., 2003).

Figure 5 shows an example of HSRL measurements ac-
quired over Alaska during the ARCTAS mission. Aerosol
depolarization values were elevated at altitudes above 3 km
for much of this period. The very high (0.5–0.6) 532-nm
particulate depolarization values and low (∼20 sr) 532-nm
lidar ratio values around 23.65 UT (23:39) and above 5 km
are associated with ice crystals. At other times and altitudes,
it is difficult to use depolarization alone to discriminate ice
and dust; however, the higher values of the 532-nm lidar ra-
tio (40–50 sr) strongly suggest that the particles were much
more likely to be dust than ice. The spectral ratio of depolar-
ization also appears to help distinguish between ice and dust,
as illustrated by the labeled samples in Fig. 4 and by the con-
trast between low ratio for ice and higher ratio for dust in this
example. This case also provides an example indicating the
potential for elevated dust layers to act as ice nuclei (Sassen,
2002).
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Fig. 5. 3 April 2008 measurements by the NASA Langley airborne HSRL based out of Barrow, Alaska during the ARCTAS campaign.
(a) Aerosol backscatter coefficient (532 nm),(b) aerosol type inferred by the method described in this paper,(c) particle depolarization
(532 nm),(d) particle depolarization spectral ratio (1064/532 nm),(e) Sa, the lidar ratio (532 nm), and(f) aerosol backscatter color ratio
(532 nm/1064 nm). The measurements show an elevated layer made up of both ice crystals, in the region characterized by the largest particle
depolarization ratios and smallest lidar ratio, and dust, with somewhat smaller particle depolarization and larger lidar ratio.

4.2.2 Dust and dusty mix

Particle depolarization ratios at 532 nm between about 30 %
and 35 % are characteristic of “pure dust” from Asia
(Shimizu et al., 2004; Sugimoto and Lee, 2006) or the Sahara
desert (Liu et al., 2008; Freudenthaler et al., 2009; Esselborn
et al., 2009). Figure 6 shows an example of Saharan dust
observed during an HSRL flight on 18 August 2010 between
Bermuda and St. Croix, Virgin Islands. The Saharan origin of
the dust layer was confirmed using the online HYSPLIT tool
from the NOAA Air Resources Laboratory READY web-
site (http://ready.arl.noaa.gov/HYSPLIT.php) (Draxler and
Rolph, 2012). Observed values of 532-nm aerosol depo-
larization for this case are about 33 % and 532-nm lidar ra-
tio values are 49± 9 sr. These lidar ratio values are consis-
tent with lidar ratio values of 53–55± 7 given by Tesche et
al. (2009b) and also within the range of variability of 38–
50 sr observed by Esselborn et al. (2009), both for Saharan
dust nearer to the source during SAMUM (Heintzenberg,
2009). Esselborn et al. (2009) show by backtrajectory anal-
ysis that their observed variability in lidar ratio is primarily
attributable to differences in source regions.

Smaller but still large 532-nm aerosol depolarization val-
ues, from about 20 % to 35 %, have been often observed
by HSRL particularly in the CHAPS and RACORO cam-
paigns (in Oklahoma) and in the MILAGRO campaign

(in Mexico), as well as near Houston, Texas, during the
TexAQS/GoMACCS mission (Liu et al., 2008). These val-
ues of depolarization are consistent with observations of dust
mixed with other species (e.g. Heese and Wiegner, 2008)
and are identified by our algorithm as a “dusty mix”. Var-
ious other studies (e.g. Léon et al., 2003; Sugimoto and Lee,
2006; Tesche et al., 2011; Groß et al., 2011; Weinzierl et al.,
2011) have attempted to characterize the optical and micro-
physical properties of case studies of mixtures of dust with
other species. In the broad classification methodology pre-
sented here, “dusty mix” labels a general category that may
include cases of dust mixed with a variety of other species.

Motivating and supporting the idea of having two dust cat-
egories with different degrees of depolarization was the ob-
servation that the overall distribution of aerosol depolariza-
tion from campaigns excluding ARCTAS (that is, excluding
ice) shows a long tail of large depolarization values which in-
cludes samples known to be dust advected from Africa. Con-
sequently, we also included a second dust category (“Pure
dust”) to identify such cases. Including it has the practical
advantage of aiding the separation of ice and dust. The depo-
larization values of the optically thin ice observed during the
ARCTAS campaign can be comparable to that of pure dust,
making it is difficult to use particle depolarization alone to
separate ice and dust. As described above, the lidar ratio
tends to be smaller for ice than for dust, but the difference
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Fig. 6. 18 August 2010 airborne HSRL measurements and aerosol classification for a Saharan dust plume observed on a flight between
Bermuda and St. Croix in the US Virgin Islands.(a) Aerosol backscatter coefficient (532 nm),(b) aerosol type inferred by the method
described in this paper,(c) aerosol depolarization (532 nm),(d) aerosol depolarization spectral ratio (1064/532 nm),(e) Sa, the lidar ratio
(532 nm), and(f) aerosol backscatter color ratio (532 nm/1064 nm).

is subtle enough that the separation of types is more reliable
when dust is represented as two categories. This is due to the
fact that ice can be more “similar” to pure dust than pure dust
is to the remainder of the dust observations, where similarity
is judged as distance in the four-dimensional space defined
by the four measured variables. Even with two categories for
dust, it is still somewhat difficult to separate ice from dust
in certain cases. Misclassified cases are often easy to detect
because the ambient temperatures obtained from the NASA
Global Modeling and Assimilation Office (GMAO) are well
above 0◦C. Consequently, a simple temperature-based cor-
rection is included in the results shown here; any point cat-
egorized as ice but having a temperature above 0◦C is re-
assigned to dust (this is a very conservative cutoff, which
potentially can leave some cases incorrectly categorized as
ice).

4.2.3 Maritime and polluted maritime

Maritime aerosols were observed extensively during HSRL
observations over the Caribbean Sea during several flights
in 2008 and 2010. These aerosols were characterized with
low 532-nm lidar ratios (15–25 sr), low 532-nm particulate
depolarization (<10 %), and low backscatter color and depo-
larization spectral ratios. The polluted maritime classifica-
tion is generally seen over water or just inland on the Gulf
Coast between Houston and Veracruz during the MILAGRO

campaign (March 2006) and over the Atlantic Ocean east of
Virginia during several campaigns. It was also found ex-
tensively in the Gulf of Mexico near the location of the BP
Deepwater Horizon oil spill on flights in May and July 2010
(see example in Ottaviani et al., 2012, Fig. 7). The lidar ratio
at 532 nm for this class is about 35–45 sr, intermediate be-
tween the maritime and pollution classes, which is consistent
with observations by M̈uller et al. (2007a) of polluted ma-
rine air over the Maldives during the monsoon season. In our
polluted maritime class, backscatter color ratio and spectral
ratio of aerosol depolarization are also intermediate between
the maritime and pollution classes. It is a small category that
contains about 3 % of all the HSRL observations. Most of the
fully automated clustering trials did not distinguish between
this type and clean maritime air; however, an experimen-
tal run of unsupervised expectation maximization clustering
with eleven classes generated a cluster like this. Supporting
the decision to include the class, it was found that many of
these cases would otherwise be labeled an incoherent mix of
pollution, smoke and maritime.

4.2.4 Urban and biomass burning

Urban and biomass burning aerosols typically have relatively
small, spherical particles that produce low depolarization,
high backscatter color ratios, and high 532-nm lidar ratios
(Cattrall et al., 2005; M̈uller et al., 2007a). The similarities
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Fig. 7. A B200 flight on the East coast on 2 August 2007 illustrating a smoke layer advected from fires in the northwestern United States and
Canada, overlying mostly pollution aerosol from cities on the eastern seaboard.(a) Aerosol backscatter coefficient (532 nm),(b) aerosol type
inferred by the method described in this paper,(c) aerosol depolarization (532 nm),(d) aerosol depolarization spectral ratio (1064/532 nm),
(e) Sa, the lidar ratio (532 nm), and(f) aerosol backscatter color ratio (532 nm/1064 nm). Note the contrast in spectral depolarization ratio
between the two aerosol layers.

in the physical characteristics and the resulting optical prop-
erties make these types difficult to distinguish. Müller et
al. (2007a) have shown that urban and smoke aerosols can
be distinguished using the wavelength dependence of the
lidar ratio (355–532 nm) computed from ground-based Ra-
man lidar measurements. Noh et al. (2009) observed only a
slight difference in lidar ratio at these two wavelengths for
smoke and pollution events in Korea, for which carbon par-
ticle analyzer data were also available, but found somewhat
more variation in retrieved single scattering albedo (SSA).
Russell et al. (2010) indicate that absorptionÅngstr̈om ex-
ponents (AAE) derived from AERONET are strongly cor-
related with aerosol type, but display some ambiguity be-
tween urban-industrial aerosol and biomass burning aerosol.
They demonstrate that multi-dimensional analysis consisting
of the combination of AAE and extinction̊Angstr̈om expo-
nent (EAE), for example, shows potential to more fully re-
solve these types. The depolarization spectral ratio measure-
ments acquired by HSRL also appear to confer some ability
to discriminate among these and other aerosol types. The
HSRL measurements from a flight on 2 August 2007 over
the Atlantic Ocean east of Virginia shown in Fig. 7 illus-
trate the significant differences in the depolarization spectral
ratio, despite the fact that the aerosol depolarization values
are small. The aerosols below 3 km are typical of the ur-
ban aerosols seen over the eastern US during summer. The

aerosols in the elevated layer above 5 km are smoke from
fires in the northwestern US or southwestern Canada, as de-
termined using the online HYSPLIT tool (Draxler and Rolph,
2012). The elevated layer of smoke has slightly higher li-
dar ratio at 532 nm (70–80 sr) than the urban aerosols (50–
70 sr), consistent with previous Raman lidar measurements
of smoke (Wandinger et al., 2002). The elevated smoke layer
also has slightly higher particulate depolarization at 532 nm
(8–10 %) than the lower layer of urban aerosols; this ob-
servation of smoke particulate depolarization is consistent
with other lidar measurements of long-range smoke trans-
port (Fiebig et al., 2002; Murayama et al., 2004). Although
there have been few multiple-wavelength lidar particulate de-
polarization measurements of these aerosols, there have been
efforts to use such measurements to help identify and classify
polar stratospheric clouds (Toon et al., 2000), examine Saha-
ran dust characteristics (Freudenthaler et al., 2009; Groß et
al., 2011), and infer Angstrom exponents for dust (Sugimoto
and Lee, 2006). Somekawa et al. (2008) and Veselovskii et
al. (2010) show that multiple wavelength depolarization mea-
surements may be used to infer some particle properties such
as size.
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Fig. 8. NASA Langley airborne HSRL observations and aerosol classification are shown for a portion of a flight on 30 June 2008 over northern
Alberta, Canada. Multiple passes over a fresh smoke plume are evident.(a)Aerosol backscatter coefficient (532 nm),(b) aerosol type inferred
by the method described in this paper,(c) aerosol depolarization (532 nm),(d) aerosol depolarization spectral ratio (1064/532 nm),(e) Sa,
the lidar ratio (532 nm), and(f) aerosol backscatter color ratio (532 nm/1064 nm).

4.2.5 Fresh smoke

The category “Fresh Smoke” was included based on obser-
vations of visible fresh smoke plumes with very different
aerosol intensive parameters measured by HSRL. For ex-
ample, samples of fresh smoke in the boundary layer ob-
served on 30 June and 2 July 2008 during ARCTAS had
a significantly smaller lidar ratio at 532 nm (30–60 sr) than
the advected smoke (60–80 sr) from Siberian forest fires
seen on other dates during the same campaign, such as 7–
8 July 2008. Figure 8 shows an example of HSRL measure-
ments for the smoke plume observed over northern Alberta
on 30 June 2008. Fresh smoke plumes observed over fires
in North Carolina in March 2008 also had similar smaller
532-nm lidar ratios of approximately 50–55 sr. In both of
these cases, the smoke was only a few hours old and ob-
servations were within 10–100 km of the fires. The lower
value of lidar ratios for fresh smoke as compared to aged
smoke are consistent with ground-based Raman lidar mea-
surements over Spain (Alados-Arboledas et al., 2011) and
Greece (Amiridis et al., 2009). Although these studies and
Müller et al. (2007b) indicate that particle size is likely to in-
crease with age, there is considerable spread in the observed
backscatterÅngstr̈om exponents (or color ratios). HSRL
measurements of backscatter color ratio indicate larger val-
ues (smaller particles) for fresh smoke than aged smoke on
average, but without a clear separation (compare Wandinger

et al., 2002; Amiridis et al., 2009; Alados-Arboledas et
al., 2011). The HSRL measurements also showed that the
aerosol depolarization ratio at 532 nm for fresh smoke was
typically low (<2–5 %) and also typically lower than for
more aged smoke (3–8 %). This result is consistent with the
magnitude and variability of previous lidar measurements of
smoke (Sassen, 2000).

4.3 Sensitivity analysis

As described above, the distinctions in the HSRL measure-
ments of these four aerosol intensive parameters support the
choices of these classes. The Wilks’ overall lambda statistic
(Hill and Lewicki, 2007) gives some indication of how well
the data lend themselves to separation into classes. Wilks’
lambda varies from 0 to 1, with smaller values indicating
significant difference between groups and larger values in-
dicating that the group means are the same. For the HSRL
data classified into eight classes as described above, Wilks’
lambda is 0.083; if outliers are also included, the value
is 0.137.

Wilks’ partial lambda can be used to indicate the relative
discriminatory power of each intensive parameter. This value
is the ratio of Wilks’ lambda calculated with and without a
given variable. Again, smaller values indicate more impor-
tance, allowing the values to be ranked in order. Wilks’ par-
tial lambda is smallest for the 532 nm depolarization, 0.47,
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Table 3. Median uncertainties for intensive parameters used in Monte Carlo cross-classification analysis.

Intensive variable Median uncertainty for HSRL measurements included in aerosol classification study

Aerosol depolarization at 532 nm 0.0074
Lidar ratio at 532 nm 12.1 sr
Backscatter spectral ratio (532/1064 nm) 0.128 (propagated from backscatter uncertainties assuming independence)
Depolarization spectral ratio (1064/532 nm) 0.774 (propagated from aerosol depolarization uncertainties)

             

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y

Monte Carlo Classification Confidence Test

Ice
9818 cases

             

 

 

 

 

 

 

Monte Carlo Classification Confidence Test

Pure Dust
1013 cases

             

 

 

 

 

 

 

Monte Carlo Classification Confidence Test

Dusty Mix
64470 cases

             

 

 

 

 

 

 

Monte Carlo Classification Confidence Test

Maritime
9748 cases

             

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y

Monte Carlo Classification Confidence Test

Polluted Maritime
8768 cases

             

 

 

 

 

 

 

Monte Carlo Classification Confidence Test

Urban
82648 cases

             

 

 

 

 

 

 

Monte Carlo Classification Confidence Test

Fresh Smoke
16585 cases

             

 

 

 

 

 

 

Monte Carlo Classification Confidence Test

Smoke
36805 cases

Ice

Pure
Dust

Dusty
Mix

Maritime

Polluted
Maritime

Urban

Fresh
Smoke

Smoke

Fig. 9. Shows the results of a Monte Carlo experiment in which a cloud of 500 perturbed measurements for each point is classified and the
classification is compared to the classification of the original unperturbed point. The first panel shows the results for all points that were
originally classified ice; the bins along the x-axis show the statistics of how the perturbed points were classified, color coded as shown. The
second panel is for pure dust, etc., as labeled. Perturbed ice measurements are still ice; perturbed pure dust are split among pure dust, dusty
mix and ice; dusty mix and maritime are easy to classify. Smoke (especially fresh smoke) is difficult to separate from pollution.

indicating that this variable has the most weight in the classi-
fication. This is followed closely by depolarization spectral
ratio and lidar ratio, with partial lambda values of 0.54 for
each. The backscatter color ratio has the least discriminatory
power, with a partial lambda of 0.79.

Some classes are easier to distinguish than others. The
potential for misclassification is illustrated in Fig. 9, which
shows the results of a Monte Carlo study wherein simulated
observations are made by perturbing each point 500 times
within the measurement uncertainties of the four intensive
variables; then these simulated points are themselves clas-
sified. Table 3 shows the median measurement uncertainties
for these variables. For this test, the uncertainty values for the
two spectral ratios are propagated from the single-channel
values with an assumption of independence between the
channels, so the uncertainties used here are larger (more con-
servative) than the true measurement uncertainty. Figure 9

illustrates the probability that perturbing each measurement
within the uncertainties will change the inferred classifica-
tion. This is one way to understand the relative difficulty in
separating various pairs of classes. For example, the mar-
itime class is quite easy to infer. Even after perturbation,
most of the Monte Carlo points are still classified as mar-
itime, with very small percentages cross-classified into the
other categories. Not surprisingly, smoke and urban are
harder to separate, and between about 5 % and 15 % of the
perturbed points are cross-classified. Polluted maritime has
cross-classification into the related categories of maritime
and urban. The pure dust category and the “fresh smoke”
category derived from smoke in the boundary layer have the
most cross-classifications with other categories.

The Monte Carlo study quantifies only one possible kind
of error in this analysis, essentially the potential for misclas-
sification due to measurement errors. This experiment does
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Fig. 10.Colored bars and whiskers show the median (dot), 25–75 percentile (box) and 5–95 percentile (whisker) of the four aerosol intensive
parameters, after classifying all HSRL data from all missions into eight types. The gray bars represent the number of points in each class,
using the right-hand data axis. Also shown is the Wilks’ partial lambda statistic illustrating the relative importance of each of the four
variables in the classification. For the case of aerosol depolarization at 532 nm, Wilks’ partial lambda is calculated on the natural log of the
variable. In this figure (and throughout), the backscatter color ratio is defined as 532 nm/1064 nm, while the depolarization spectral ratio is
defined as 1064 nm/532 nm.

not address potential errors from the choice of classes or la-
beled samples or the assumption that multi-normal distribu-
tions are adequate to represent the classes. These types of
potential systematic errors are of course difficult to quantify.
Further confidence in the results can be gained by compar-
isons with other data sets, both comparisons with the prop-
erties of aerosol types already presented in the literature,
and more specific comparisons between coincident measure-
ments with aerosol in situ composition instruments. These
comparisons are begun in the next section and carried for-
ward in a future paper (Ferrare et al., 2012). Additional re-
search on comparisons with aerosol in situ instruments and
models is ongoing.

5 Results of the classification

The ranges of the intensive parameters applicable to each of
the aerosol classes are displayed in Fig. 10, as median, mid-
dle 50 % (boxes) and middle 90 % (whiskers). Also shown
are gray bars representing the number of observations of
these various aerosol types. The panels are also annotated

with the Wilks’ partial lambda statistic, described above.
This statistic reflects the relative spread of the measurements
compared to their standard deviations, and quantifies the rel-
ative power of each variable in discriminating the classes,
with smaller values indicating more discriminatory power.
Figures 11 and 12 also show the results displayed as a se-
ries of two-dimensional histograms. Points are color coded
by the aerosol classification derived from this study and with
the color saturation for each hue corresponding to point den-
sity. Less populated bins are not shown; the figures show
approximately 50 % of the points in each class. Figure 11
also shows the aerosol intensive properties from some other
lidar measurements (M̈uller et al., 2007a) and derived from
ground-based AERONET observations of aerosol properties
(Cattrall et al., 2005; Omar et al., 2005) from existing litera-
ture. There is general qualitative agreement showing, for ex-
ample, that dust and maritime aerosols typically have lower
lidar ratios and backscatter color ratios, and smoke and urban
type aerosols have higher lidar ratios and backscatter color
ratios. Figure 11 also clearly shows that there can be consid-
erable spread in these observations for aerosols observed in
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Fig. 11.The results of the classification of HSRL measurements are shown here, projected onto a two-dimensional subset of the four dimen-
sional space. HSRL measurements are color coded by inferred aerosol type, with the saturation in each hue indicating relative population
density. Points are shown for the most populous bins such that about half of the population of each cluster is represented. Also indicated in
this figure are the aerosol types identified by Cattrall et al. (2005), Omar et al. (2005), and Müller et al. (2007a). (Some of these variables
have been inverted to conform to the axes chosen here).

Fig. 12.Similar to Fig. 11, but showing two-dimensional projections that include the other two aerosol intensive variables that were used for
classification. In this figure, the bins are shown as solid boxes; individual points within the bins are not displayed.

different locations. This figure shows that using lidar ratio
and backscatter ratio alone would be insufficient to classify
all these aerosol types, as there can be considerable over-
lap among some of these classes. However, Fig. 12, which
shows the additional variables used in the current scheme,
indicates that aerosol depolarization and spectral depolariza-
tion ratio can be used to distinguish these types. As seen in

the figure, the spectral depolarization ratio helps especially
in distinguishing ice from dust and smoke from pollution.

Examples of the results of the classifications for some of
the observed aerosol types described earlier are shown in
Figs. 5b (ice and dust), 6b (dust), 7b (smoke and urban)
and 8b (fresh smoke). Figure 5 shows the separation of ice
and dust in the upper troposphere over Alaska, due primarily
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to the low values of lidar ratio (20–30 sr) and much higher
values of 532-nm depolarization (>0.4) associated with ice.
Figure 6 shows the presence of pure dust associated with
Saharan dust transported over the western Atlantic Ocean.
The identification of pure dust was driven primarily by the
aerosol depolarization values at 532 nm of 0.3–0.35 located
near the center of the layer. Around the periphery, where
the 532-nm aerosol depolarization was below about 0.3 and
the aerosols were likely mixed with other types, the classi-
fication was a dusty mix. Figure 7 shows the classification
of the elevated smoke layer above the urban aerosols for the
flight over the eastern US on 2 August 2007. Here, separation
between smoke and urban was driven by the differences in
spectral depolarization (lower for smoke) and 532-nm depo-
larization (higher for smoke). Figure 8 shows the classifica-
tion of fresh smoke when the B200 flew over fires in northern
Saskatchewan, Canada. Fresh smoke was classified based
on the lower values of the lidar ratio (40–50 sr) combined
with a lack of aerosol depolarization at 532 nm. Figure 13
shows the results of the classification for the HSRL mea-
surements acquired over Mexico City and shown in Fig. 2.
The classification indicates urban aerosols when the B200
flew over the western part of the city between about 17.75–
17.80 UT (17:45–17:48), and indicates a dusty mix when the
B200 flew over the eastern part of the city between 17.68–
17.75 UT (17:40–17:45). As described earlier, the classifica-
tion of dusty mix vs. urban was due to variations in the lidar
ratio and depolarization at 532 nm over these locations. Also
visible in Fig. 13 is an elevated fresh smoke plume at about
4.5 km over the western part of the city. The identification of
fresh smoke here is consistent with WRF-Flexpart (de Foy et
al., 2011, Fig. 8). Figure 13 also illustrates an example of the
apportionment of AOD among these types.

Figure 14 illustrates the apportionment of AOD for two
cases, discussed previously, having a significant dust com-
ponent. These cases are the flight on 13 March 2006 over
Mexico City (as in Figs. 2 and 13) and the Caribbean flight
of 18 August 2010 (Fig. 6). The black line shown in Fig. 14
shows the optical depth due to dust computed using the
method of Sugimoto and Lee (2006), which assumes that
the dust mixing ratio scales linearly with the aerosol de-
polarization. Figure 14b and d illustrate a comparison of
this computed value of dust partial optical depth to the to-
tal AOD associated with the two types “pure dust” and “dusty
mix” in our classification, for the entire MILAGRO (14b)and
Caribbean 2010 campaigns (14d). In general, the two esti-
mates are in agreement, but the sum of the AOD for the two
classes exceeds the dust partial optical depth as computed us-
ing the Sugimoto and Lee (2006) algorithm. This is not sur-
prising since most of the aerosol in the “dusty mix” type has
depolarization less than the assumed depolarization value for
pure dust in that calculation. In the MILAGRO campaign,
the dust is mixed with urban and smoke aerosol, while in the
Caribbean campaign it is mixed with maritime aerosol.
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Fig. 13. Results of the aerosol classification for the HSRL mea-
surements shown in Fig. 2. The top panel shows aerosol type along
the flight track as a function of altitude. Urban aerosols dominate
in the western part of Mexico City while dusty aerosol dominates
elsewhere. An elevated smoke plume is also visible around 4.5 km
altitude in the west part. The bottom panel illustrates the apportion-
ing of aerosol optical depth among the types for this flight segment
as stacked histogram bars.

The HSRL measurements acquired during the spring and
summer ARCTAS campaigns have been used to apportion
the vertical profile of aerosol extinction to aerosol types. Fig-
ure 15 reflects the median aerosol extinction profiles mea-
sured during the spring and summer ARCTAS campaigns,
apportioned by aerosol type. B200 flights were conducted in
April 2008 over northern Alaska during the spring ARCTAS
campaign (“ARCTAS 1”) and over northern Alberta, north-
ern Saskatchewan, and the southern Northwest Territories
Canada in June and July 2008 during the summer ARCTAS
campaign (“ARCTAS 2”). Figure 15 shows that, during
ARCTAS 1, ice was more pronounced in the mid tropo-
sphere between 2–5 km, and in the upper troposphere be-
tween 6–7 km during ARCTAS 2. The fraction of aerosol
extinction contributed by dust was relatively constant with al-
titude during ARCTAS 1 and decreased with altitude during
ARCTAS 2. During ARCTAS 1, portions of several B200
flights were conducted over water and the Arctic Ocean,
which likely explains the significant fraction of maritime ex-
tinction observed near the surface. In contrast, very little
maritime aerosol was observed during ARCTAS 2, which is
not surprising given that the flights were conducted inland
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Fig. 14. Time series of AOD apportioned to aerosol types for the flight segments on 13 March 2006 during MILAGRO(a) and for 18 Au-
gust 2010 during the Caribbean 2010 field mission(c). The black trace on these panels shows the optical depth fraction attributed to dust
computed using the method of Sugimoto and Lee (2006). The Sugimoto and Lee (2006) dust partial optical depth and the sum of the AOD
for “Pure Dust” plus “Dusty Mix” are compared for the entire MILAGRO field campaign(b) and for the 2010 Caribbean campaign(d).
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Fig. 15. Aerosol extinction as a function of altitude is shown here apportioned among the eight aerosol types for the ARCTAS spring and
summer campaigns.
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Fig. 16. Aerosol classification from HSRL measurements for 12 April 2008 B-200 flight near Barrow, Alaska during ARCTAS/ARCPAC
(left panel) and PALMS aerosol composition data from the NOAA P3 from 22:40–22:57 UT (right panel). Both instruments indicate mainly
biomass burning aerosol, consistent with known smoke plumes from fires in Russia (see Warneke et al., 2010). The left panel also shows
coincident portions of the flight track profile of the P3 when it was within 30 km and 1 h of the HSRL flight track.

over Canada. Urban aerosols were most prominently ob-
served at the lowest altitudes, especially during ARCTAS 1.
Smoke, contributed by both the fresh and aged components,
was dominant during both ARCTAS 1 and ARCTAS 2. Air-
borne in situ measurements acquired during the ARCTAS 1
mission also found smoke as the dominant component. The
B200 flights during ARCTAS 2 were designed to sample
smoke from biomass burning fires so it is expected that
smoke would dominate. Note also that the lower altitudes
had higher concentrations of fresh smoke, especially during
ARCTAS 2.

The ARCTAS mission also provided an opportunity to
compare the classification measurements with airborne in
situ measurements of size and composition. On 12 and
19 April 2008, the NASA B200 flew patterns that enabled
HSRL to acquire coincident data with in situ sensors on the
NOAA WP-3D aircraft, which was deployed to conduct the
airborne Aerosol, Radiation, and cloud Processes affecting
Arctic Climate (ARCPAC) field study (Warneke et al., 2010;
Brock et al., 2011). The WP-3D deployed a suite of instru-
ments for measuring gas, aerosol, and radiation properties,
including optical particle counters for measuring the aerosol
volume distribution and the Particle Analysis by Laser Mass
Spectrometry (PALMS) instrument for size-resolved single-
particle composition (Froyd et al., 2009). Figure 16 shows
the results of the HSRL aerosol classification and aerosol
volume distribution and particle classification distributions
from the PALMS on 12 April 2008. As described by
Warneke et al. (2010), the compositional resolved volume
distributions represent the product of the number fraction of
each aerosol type in a given size bin and the total aerosol vol-
ume for that size bin. Figure 16 shows that biomass burning
material was the largest component, with other contributions
from sulfate/organic and mineral dust. The HSRL aerosol

classification results are consistent with this, with the ma-
jority of the aerosol types classified as smoke and a smaller
portion classified as urban. Figure 17 shows another exam-
ple comparing the HSRL aerosol classification and volume
distribution and particle classification distributions from the
PALMS for data acquired on 19 April 2008 during ARC-
TAS 1. These data were acquired in the vicinity of Bar-
row, Alaska, when there was an extensive amount of biomass
burning smoke over this region (Warneke et al., 2010). This
smoke was produced by fires in Russia. Figure 17 shows that
the HSRL aerosol classification indicated that biomass burn-
ing aerosols were present in most of the troposphere over the
Barrow region during this flight. The PALMS measurements
also show that biomass burning smoke was dominant during
these flights. Additional investigations comparing the HSRL
aerosol classification results with airborne in situ measure-
ments acquired during ARCTAS and other field campaigns
are ongoing.

The contributions of each type to the total optical depth
measured by HSRL during each mission are shown in
Fig. 18. Some missions were dominated by a single
type; for example, maritime air in the Caribbean cam-
paign, a field mission primarily over water in a location
chosen for clean conditions. The urban type dominated the
TexAQS/GoMACCS campaign, which occurred near Hous-
ton, Texas; the Birmingham campaign; the San Joaquin
Valley (California) campaign (Lewis et al., 2010); and
CALIPSO validation flights, which have primarily occurred
over the East coast of the United States. The urban type was
also seen in large amounts in the MILAGRO campaign near
Mexico City, in that case along with large amounts of dust.
CHAPS and RACORO campaigns near Oklahoma City also
saw both pollution and dust. The ice classification is present
in significant amounts only in the spring deployment of the
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Fig. 17. Left panel: aerosol classification from HSRL measurements onboard the B200 for 19 April 2008 B-200 flight near Barrow, Alaska
during ARCTAS/ARCPAC, with black trace showing coincident portions of the flight track profile of the NOAA P3 when the two aircraft
were within 30 km and 1 h of each other. The time axis indicates GMT time on 19 April. Times beyond 24 h are used to indicate the early
hours of 20 April GMT. Right panel: PALMS aerosol composition data from the NOAA P3 between 00:03–00:19 GMT (20 April). The
PALMS instrument indicates a very dense biomass burning plume between 1.5 and 3 km, and the HSRL classification also indicates smoke
throughout. These results are consistent with known smoke plumes from fires in Russia (see Warneke et al., 2010).

ARCTAS 1 ARCTAS 2 

CalNex 

CARES 

San Joaquin  
Valley 

Gulf Oil Spill 
TexAQS II/GoMACCS 

MILAGRO Birmingham 

2008 Caribbean CAL Val 

CALIPSO Validation 
2006-2010 

RACORO CHAPS 

2010 Caribbean CAL Val. 

Fig. 18. All HSRL missions through 2010 are shown, along with the partitioning of total optical depth among the eight aerosol types for
each of these missions. Several CALIPSO validation campaigns in the Eastern US and off the east coast have been grouped together in the
single category “CALIPSO Validation” in this figure.
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ARCTAS campaign (ARCTAS 1), in which biomass burn-
ing smoke (Warneke et al., 2010) was the other predominant
component. Smoke also dominated the summer deployment
of ARCTAS (ARCTAS 2) (Jacob et al., 2010).

6 Summary

A method to qualitatively classify aerosol types based on air-
borne HSRL measurements of aerosol intensive parameters
has been presented here. Several examples show how these
aerosol parameters vary with different aerosol types and can
therefore be used to discriminate among these types. For ex-
ample, the HSRL measurements show that ice and dust can
in many cases be distinguished using the lidar ratio, and to
a lesser extent, particle depolarization at 532 nm. Urban and
biomass burning smoke aerosols, which typically have some-
what similar lidar ratios (at 532 nm) and backscatter color
ratios (532/1064 nm), can be difficult to distinguish; how-
ever, the HSRL measurements show that urban and biomass
burning aerosols can have significant differences in spec-
tral particle depolarization and that these differences can be
used to help distinguish these aerosols. Further improve-
ments in distinguishing urban and biomass burning smoke
could be realized through the use of additional backscat-
ter and extinction measurements at 355 nm (Müller et al.,
2007a). The HSRL measurements also show differences in
the lidar ratio between fresh and aged smoke. This classi-
fication method uses HSRL measurements of the lidar ra-
tio at 532 nm, backscatter color ratio, 532-nm depolariza-
tion, and depolarization spectral ratio to infer the appropriate
type. The method, which uses a sample set of known aerosol
cases to help define the set of lidar parameters appropriate
for each type, was applied to the extensive set of airborne
HSRL observations acquired since 2006. The classification
results were used together with the HSRL measurements of
aerosol optical depth to apportion the aerosol optical depth
among the various aerosol types. These results show that
the dominant aerosol types in terms of aerosol optical depth
vary significantly with location. Aerosol classification re-
sults using HSRL measurements have already been useful in
field campaigns, as evidenced by published examples of the
identification of smoke aerosols during the NASA Arctic Re-
search of the Composition of the Troposphere from Aircraft
and Satellites (ARCTAS) mission (Warneke et al., 2010) and
urban aerosols during the MILAGRO campaign (Molina et
al., 2010).

The HSRL classification results were used to examine
the vertical variability of aerosol types observed during the
NASA ARCTAS mission that was conducted during the
spring and summer 2008. The results show that biomass
burning aerosol was the dominant aerosol type for both the
spring and summer deployments, which is consistent with
other measurements (Jacob et al., 2010; Warneke et al., 2010;
Brock et al., 2011; Shinozuka et al., 2010). In two cases,

the HSRL classification results were shown to be consistent
with aerosol types derived from coincident airborne in situ
measurements.

As will be discussed in the companion paper, more aerosol
type information from measurements such as HSRL can po-
tentially be used to improve model inputs and assess the
ability of global and regional models to accurately portray
aerosol (Ferrare et al., 2012). Accurate aerosol discrimina-
tion can also improve retrievals of aerosol properties from
space. The CALIPSO aerosol algorithm, for example, re-
quires an a priori estimate of the lidar ratio in the retrieval
of aerosol extinction (Omar et al., 2009). The HSRL mea-
surements described here show how the lidar ratio varies
with these major aerosol types. A technique for classifying
aerosol from lidar measurements such as the one presented
here may be useful as a means of constraining advance multi-
wavelength lidar retrievals such as those using inversion with
regularization (M̈uller et al., 1999; Veselovskii et al., 2002).
In such cases, the typing results can essentially serve as a pre-
inversion classifier to more efficiently and rapidly solve for
aerosol microphysical parameters, potentially allowing these
advanced retrievals to become suitable for operational use
from future spaceborne lidars.
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