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Abstract. The NASA Langley Research Center (LaRC) air- 1  Introduction
borne High Spectral Resolution Lidar (HSRL) on the NASA
B200 aircraft has acquired extensive datasets of aerosol exVe introduce an aerosol classification scheme for airborne
tinction (532nm), aerosol optical depth (AOD) (532 nm), High Spectral Resolution Lidar (HSRL) measurements from
backscatter (532 and 1064 nm), and depolarization (532 anthe NASA Langley HSRL instrument. The ability to ac-
1064 nm) profiles during 18 field missions that have beencurately characterize and discriminate aerosol type can im-
conducted over North America since 2006. The lidar mea-Prove both measurement retrievals and modeling, on both a
surements of aerosol intensive parameters (lidar ratio, depd€gional and global scale. Since 2006, the NASA Langley
larization, backscatter color ratio, and spectral depolarizatioH/SRL has routinely participated in chemistry and radiation-
ratio) are shown to vary with location and aerosol type. A focused field missions throughout North America, where its
methodology based on observations of known aerosol typeBigh accuracy, high resolution, vertically resolved measure-
is used to qualitatively classify the extensive set of HSRL ments of aerosol provide vertical context for ground-based,
aerosol measurements into eight separate types. Several e Situ, and satellite observations of aerosols and clouds
amples are presented showing how the aerosol intensive p4€-9. Molina et al., 2010; Warneke et al., 2010). The HSRL
rameters vary with aerosol type and how these aerosols ar@lso routinely provides validation for the Cloud-Aerosol Li-
classified according to this new methodology. The HSRL-dar with Orthogonal Polarization (CALIOP) lidar instru-
based classification reveals vertical variability of aerosolmentaboard the Cloud-Aerosol Lidar and Infrared Pathfinder
types during the NASA ARCTAS field experiment conducted Satellite Observations (CALIPSO) satellite (Winker et al.,
over Alaska and northwest Canada during 2008. In two ex-2009). The aerosol classification introduced here serves to
amples derived from flights conducted during ARCTAS, the €nhance the input provided by HSRL in both of these roles.
HSRL classification of biomass burning smoke is shown toFurthermore, the HSRL serves as a test-bed for advanced
be consistent with aerosol types derived from coincident air.S&te”ite lidar instruments, and the advanced retrievals re-
borne in situ measurements of particle size and compositionduired for those measurements may benefit from aerosol
The HSRL retrievals of AOD and inferences of aerosol typesclassification like what is described here. For example, ad-
are used to apportion AOD to aerosol type; results of thisvanced lidar retrievals of microphysical properties from ex-
analysis are shown for several experiments. tinction and backscattering coefficients and depolarization at
multiple wavelengths (Mller et al., 1999; Veselovskii et al.,
2002), such as might be part of the future Aerosol Clouds
and Ecosystems (ACE) Decadal Survey mission (National
Research Council, 2007), would benefit from aerosol type in-
formation as a constraint to improve the retrieval efficiency.
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More than two decades ago, Sasano and Browell (1989¢ontext. In contrast, an example of using lidar measurements
characterized different aerosol types using lidar, specificallyto automatically classify aerosol types is given by Shimizu et
a three-wavelength elastic backscatter lidar, with a retrievakl. (2004), who used the lidar depolarization measurements
method that optimizes the match between the shape of theo differentiate spherical from non-spherical aerosol. A more
backscatter profiles at the shorter wavelengths and that agophisticated automated classification scheme is presented
1064 nm, which is relatively less sensitive to lidar ratio. by Omar et al. (2005) who did &{means) cluster anal-
Aerosols of five types were identified and classified. Later,ysis on 26 aerosol intensive variables derived from a com-
the Lidar In-space Technology Experiment (LITE) (Mc- prehensive AERONET dataset to produce and characterize
Cormick et al., 1993; Winker et al., 1996), the precursor toa set of six aerosol types. Measurements of the lidar ratio
CALIPSO, provided the first opportunities to observe ver- from ground-based Raman lidars along with aerosol depolar-
tical distributions of aerosol globally. Kent et al. (1998) ization values were shown to be useful for the separation of
first described the long-range transport of biomass burningaerosol types by GrofR3 et al. (2011), but from a more lim-
aerosols and characterized the optical properties using a sinited set of observations and aerosol types, including pure
ilar lidar retrieval for LITE. Ground- and ship-based mea- dust and biomass burning mixed with dust from the recent
surements by micropulse lidar (Spinhirne, 1993) providedSaharan mineral dust experiment-2 (SAMUM-2) field mis-
case studies of biomass burning (Campbell et al., 2003), marsion. Weinzierl et al. (2011) classify aerosol from the same
itime and polluted maritime (Welton et al., 2002), and dust mission using these two lidar observables and absorption
aerosols (Welton et al., 2000; Powell et al., 2000). Angstiom exponent calculated from in situ data. The classifi-

However, these lidars as well as the CALIOP instrumentcation methodology presented in the current work combines
on the CALIPSO satellite are elastic backscatter lidars, forthe strategies of contextual identification of selected cases
which it is not possible to independently measure the aerosolith automated classification of the bulk of measurements,
extinction and backscatter coefficients. To retrieve both, it isand will be described more fully in Sect. 4.
common to assume that the ratio of the two, the lidar ratio, The sun-photometer measurements used in many of the
is vertically homogeneous throughout the entire column orstudies described above pertain to the entire integrated verti-
layer in question, and the lidar ratio is either prescribed orcal column. Column-only measurements can cause biased
inferred using additional measurements as constraints. Thestimates of lidar properties in situations with inhomoge-
need for more accurate lidar ratios to constrain this type ofneous aerosols. More recently, many additional high qual-
retrieval continues to provide motivation for aerosol classifi- ity case studies characterizing vertically resolved aerosol op-
cation and characterization studies. tical properties of specific aerosol types world-wide have

Examples include in situ nephelometer measurements obeen made with ground-based Raman and HSRL lidars
backscattering plus integrated scattering and absorption mede.g. Miller et al., 2007a and references therein; Amiridis
surements, which were used to calculate lidar ratios for varet al., 2009; Noh et al., 2009; Tesche et al., 2009a,b; Gian-
ious aerosol types (e.g. Anderson et al., 2000). Cattrall ehakaki et al., 2010; Alados-Arboledas et al., 2011) and with
al. (2005) moved beyond case studies using Aerosol Robotiairborne HSRL (Esselborn et al., 2009). The advantage of
Network (AERONET) sun photometer data sets to estimatdidar is the ability to provide vertically resolved measure-
lidar intensive parameters for specified aerosol types for usenents, and Raman lidar (Ansmann et al., 1990) and High
with spaceborne lidar retrievals. They followed Dubovik Spectral Resolution Lidar (Shipley et al., 1983; Grund and
et al. (2002) who identified seasons and locations domi-Eloranta, 1991; She et al., 1992) have the additional key ad-
nated by four key aerosol types and characterized the indexantage over backscatter lidar, in that they measure aerosol
of refraction and particle size distributions for those typesextinction and backscatter coefficients independently without
using quality-controlled AERONET sun photometer data. using models or assumptions about aerosol type. Since ex-
The types identified by Dubovik et al. (2002) were urban- tinction coefficients are measured, they also provide aerosol
industrial from fossil fuels, biomass burning from forest and optical depth (AOD) measurements comparable to passive
grassland fires, wind-blown desert dust, and marine aerosokatellite-based (e.g. the Moderate-Resolution Imaging Spec-
Cattrall et al. (2005) expanded the set of aerosol types byroradiometer — MODIS, Remer et al., 2005 and the Mul-
adding a Southeast Asian type, distinct from urban-industriatiangle Imaging Spectroradiometer — MISR, Kahn et al.,
pollution, exhibiting a greater number of large particles rela-2005) and ground-based (e.g. Aerosol Robotic Network —
tive to fine particles. They also made this method of aerosoAERONET, Holben et al., 1998) observations (Burton et al.,
classification useful for lidar retrievals by calculating lidar 2010).
parameters for these five types from retrievals of sky radiance Along with directly measured backscatter and extinction
and solar transmittance, and compared results to an extensiwmefficients and AOD, the NASA Langley airborne High
set of Raman lidar measurement case studies of particulaBpectral Resolution Lidar provides vertically resolved in-
types (Cattrall et al., 2005 and references therein). formation about aerosol composition in the form of four

The above studies characterize the optical properties oferosol intensive variables that depend only on aerosol type
aerosols from samples of aerosol types that are identified byand not on concentration. This consistent set of four aerosol
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intensive parameters — the lidar ratio, aerosol depolarizatiottechnique in detail. To briefly review, the HSRL technique
at two wavelengths, and the ratio of aerosol backscatter afShipley et al., 1983; Grund and Eloranta, 1991; She et al.,
two wavelengths — provides qualitative information about the1992) measures aerosol extinction and backscatter indepen-
aerosol physical properties. Two channels of depolarizatiordently, using a narrow-band iodine vapor filter to separate
have not been used before for aerosol classification, and wthe broadened spectra of Cabannes scattering by molecules
find that this may help to separate the optically similar pollu- from the more narrowly peaked Mie scattering by aerosols
tion and smoke aerosols, as discussed below in Sect. 4.2. I(8he, 2001). The observed molecular backscattering compo-
this report we describe how these measurements have bea®nt is attenuated by extinction. Therefore, by comparison
used to infer aerosol type. with the molecular backscattering from an atmospheric den-
The HSRL has flown on 18 field missions to date, andsity profile obtained from the NASA Global Modeling and
this has provided an extensive dataset of well-calibrated obAssimilation Office (GMAO) or another source, the aerosol
servations of aerosol types from diverse regions through-extinction coefficient profile is obtained. The LaRC HSRL
out North America. These observations are not limited toemploys the HSRL technique at 532nm and the standard
either day or night, unlike sunphotometer measurementsbackscatter technique (Fernald et al., 1972; Klett, 1981; Fer-
Since the intensive variables do not depend on the amoumald, 1984) at 1064 nm, using an assumed lidar ratio of 35 sr
of aerosol loading, there is a much smaller effective limita- at 1064 nm. The instrument also measures depolarization at
tion on the loading that can be used for classification thanboth wavelengths. The return signal is split into components
what was required for Dubovik et al. (2002) and Cattrall parallel and perpendicular to the polarization of the outgoing
et al. (2005). An approximate minimum required signal beam. The depolarization ratio here is defined as the ratio of
level for this methodology is 0.0003krhsr—! in aerosol  the perpendicular to the parallel component. In contrast to
backscattering, 0.015knt in aerosol extinction, or 0.015 standard backscatter lidars that are empirically calibrated by
in aerosol optical thickness. The airborne HSRL is able toassuming that the aerosol contribution to backscatter is neg-
make aerosol extinction measurements down to within 300 nligible or known at some altitude, the HSRL instrument is
of the ground, thereby normally sampling a significant por- self-calibrating at 532 nm for measurements of aerosol and
tion of the boundary layer where important aerosol types arecloud backscatter and extinction. For the backscatter mea-
located. surement, which derives from a ratio of the two signals, the
This is the first of two companion papers. Here we will assessment of the relative gain ratio between the molecular
describe how measurements acquired by the NASA Langand backscattering channels is performed in flight by remov-
ley Research Center airborne High Spectral Resolution Liing the iodine cell from the optical path and equalizing the
dar have been used to infer aerosol type and apportion AODNput to the two channels. It is similarly self-calibrating at
to aerosol type. In Sect. 2 of this paper, the NASA Lang-both 532 and 1064 nm for measurements of depolarization
ley airborne HSRL system is discussed, followed in Sect. 3by using the procedure given by Alvarez et al. (2006), involv-
by a description of the HSRL measurements and how theséng rotating the half-waveplate to 22.% equalize the input
are used to measure aerosol intensive parameters. In Sect. @ the “perpendicular” and “parallel” detector channels. The
the methodology for using these measurements to classifp32 nm extinction measurement is made from the derivative
aerosol types is described, followed by a discussion of theof the log of the molecular channel signal only, so the cal-
particular aerosol types that are identified from the HSRLibration constants are not required. The calibration of the
data. Examples of the aerosol classification are presented,064 nm aerosol and cloud backscatter measurement takes
followed by a discussion of these results in Sect. 5. Afteradvantage of the internally calibrated HSRL measurement at
discussing the classification methodology and presenting ex532 nm and therefore does not rely on an assumption of neg-
amples of this classification in this paper, Ferrare et al. (2012)igible or constant aerosol scattering in the calibration region.
in the companion paper use the results of this HSRL-basedn contrast to ground-based lidar systems, the calibration re-
aerosol classification to evaluate aerosol classifications degion is close to the aircraft and therefore the attenuation is
rived from CALIPSO measurements and simulated by thesmall. The instrument also features a unique autonomous
GOCART aerosol model (Chin et al., 2002). boresighting system that insures the transmitter and receiver
maintain co-alignment to very high accuracy during flight. A
detailed description of this HSRL system and calibration and
2 NASA langley airborne High Spectral Resolution data retrieval techniques is provided by Hair et al. (2008).
Lidar (HSRL) The vertical resolution of the backscatter coefficients and de-
polarization measurements is 30 m, and the horizontal aver-
The LaRC airborne HSRL (Hair et al., 2008) uses theaging is 10s (about 1 km) (Rogers et al., 2009). The aerosol
HSRL technique to independently retrieve aerosol and tenextinction profiles have a vertical resolution of 300 m, and
uous cloud extinction and backscatter without a priori as-the horizontal averaging is 60s (about 6 km) (Rogers et al.,
sumptions on aerosol type or extinction-to-backscatter ratio2009). The vertical and horizontal resolutions can be varied
Hair et al. (2008) describe the instrument and measuremenb suit varying measurement needs. The extinction and lidar
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ratio profiles extend from approximately 300 m above theHSRL measurements with aerosol extinction derived from
surface, as determined by a digital elevation dataset (GLOBEimultaneous measurements from the NASA Ames Air-
Task Team et al., 1999), to approximately 2500 m below theborne Tracking Sunphotometer (AATS-14) (Redemann et al.,
aircraft. The 300m limit at the low end of the profile is to 2009) and in situ scattering and absorption measurements
avoid ground contamination. The 2500 m near-range limit isfrom the Hawaii Group for Environmental Aerosol Research
to ensure full overlap between the outgoing laser and the re(HIGEAR) in situ instruments (McNaughton et al., 2009).
ceiver field of view. The backscatter coefficient and depolar-They found bias differences between HSRL and these in-
ization profiles extend further in each direction, from 500 m struments to be less than 3% (0.001#hat 532 nm; root-
below the aircraft to 60 m (2 range bins) above the ground.mean-square (rms) differences at 532 nm were less than 50 %
The aerosol backscatter coefficients at the two wavelengthg0.015 knt1).

are combined to give a backscatter-related aerésglstrbm

exponent.

. In (ﬂ532/ﬂ1064)
~ " In (532 nny1064 nm

3 HSRL measurements

(1)  The HSRL data analyzed in this article were acquired be-
tween March 2006 and September 2010. During that time,
where 8. represents the aerosol backscatter coefficient athe airborne LaRC HSRL was deployed on the NASA Lang-
wavelengthi. The subscrip8 on the left-hand side indi- ey B200 King Air aircraft and acquired over 1000 h of data
cates that this is a backscatter-relafetystiom exponent to ~ On over 330 science flights during eighteen field campaigns.
avoid confusion with the more commonly calculated extinc- HSRL continues to participate in field campaigns, but data
tion (or optical-depth) relatedingstm exponent. The ratio Peyond 2010 are not included in the analysis presented here.
B332andBL0%4is the “backscatter color ratio” used through- The campaigns used for this study include many process-
out this study. As stated above, the aerosol backscatter coeffriented field projects for NASA, the Department of En-
cient at 532 nm is a direct measurement made with the HSRI€rgY (DOE), the National Oceanic and Atmospheric Admin-
technique, while the backscatter coefficient at 1064 nm deistration (NOAA), and the Environmental Protection Agency
pends on a retrieval that uses an assumed lidar ratio. HowtEPA), as well as field projects devoted to CALIPSO valida-
ever, the standard backscatter retrievals at 1064 nm are leg9n. These totals include 101 successful validation flights
sensitive to errors in lidar ratio (Sasano and Browell, 1989),for the CALIPSO program. Figure 1 shows the locations
and the systematic error in 1064 nm backscatter is expecte@f these missions and Table 1 lists these field missions and
to be less than 15% at worst due to the uncertainty in thehe science flight hours associated with them. The diverse
choice of lidar ratio. The backscatter ratio used here islocations of these missions have enabled the HSRL to ac-
therefore sufficient for the purpose of empirically separatingguire measurements of several different aerosol types. For
aerosol classes. example, HSRL measurements of smoke during ARCTAS
In short, the HSRL provides vertically resolved mea- Were described by Warneke et al. (2010) and Knobelspiesse
surements of the following extensive and intensive aerosoft &l- (2011); urban and dust aerosols during MILAGRO by
parameters: Molina et al. (2010) and de Foy et al. (2011); and Saharan
dust during TexAQS/GoMACCS by Liu et al. (2008), Parrish
— Extensive parameters: backscatter coefficient at 532 anét al. (2009), and Burton et al. (2010). The HSRL acquired
1064 nm with horizontal resolution of approximately data below the aircraft, which normally flew at 9 km (m.s.l.);
1 km and vertical resolution of approximately 30 m; ex- typical flight duration was 3.5-4 h.
tinction coefficient at 532 nm with horizontal resolution  Figure 2 shows an example of the suite of HSRL mea-
of approximately 6 km and vertical resolution of ap- surements acquired when the King Air flew over Mexico
proximately 300 m; and total column optical depth at City between 17:38 and 17:52 UT on 13 March 2006. These
532 nm derived by integrating the profile of extinction. measurements exhibit variations in aerosol type over Mexico
. ) . City. The data shown in Fig. 2 were collected over a distance
— Intensive parametersi, (aerosol lidar ratio) at 532nm  of ahout 115 km. The aerosol backscatter and extinction co-
with resolutions matching those of the extinction coeffi- efficients are shown along with the four aerosol intensive
cient given above, aerosol depolarization at 532 nm antharameters: aerosol depolarization at 532 nm, extinction-to-
1064 nm with horizontal resolution of approximately packscatter ratio at 532 nm, aerosol depolarization spectral
1km and vertical resolution of approximately 30 m; and ratjo, and backscatter color ratio. The vertical and horizon-
the backscatter-related aerogaigstom exponent (or, 5| resolution and lower and upper altitude limits are as de-
alternately, the backscatter color ratio), with resolution scribed in Sect. 2. These measurements show the variability
matching the backscatter coefficients above. of the various types of aerosols that were measured over the

Validation of HSRL aerosol extinction measurements was' 9 '

performed by Rogers et al. (2009). They compared the
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Table 1. Field campaigns for the NASA Airborne HSRL.

Field Mission Location Dates Number  Flight
Flights Hours
MILAGRO Mexico City 1-31 Mar 2006 22 644
CALIPSO Validation Eastern USA May—Aug 2006 20 56.7
TexAQS/GOMACCS Texas 27 Aug—28 Sep 2006 28 89.0
San Joaquin Valley California 8-20 Feb 2007 15 450
CHAPS/CLASIC Oklahoma City area  3—-29 Jun 2007 22 70.2
CATZ CALIPSO Val. Eastern USA Jan—Aug 2007 20 499
CALIPSO Validation Caribbean Jan—Feb 2008 13 422
ARCTAS Spring Alaska 30 Mar—22 Apr 2008 27 979
ARCTAS Summer Canada 24 Jun—13 Jul 2008 21 715
Birmingham Alabama 12 Sep-15 Oct 2008 11  35.1
CALIPSO Validation Eastern USA Jan—Apr 2009 13 39.7
RACORO Oklahoma 21 May-27 Jun 2009 24 729
Ocean Subsurface Atlantic ocean 14-29 Sep 2009 5 18.6
CALIPSO Validation Eastern USA 8-22 Apr 2010 7 156
CALIPSO Gulf Oil Spill ~ Gulf of Mexico May, July 2010 6 19.7
CalNEX California 11-24 May 2010 13 445
CARES California 3-30Jun 2010 25 80.1
CALIPSO Validation Caribbean 4-27 Aug 2010 9 359

¥ .~

ARCTAS 1 (NASA-DOE-NOAA) Field Campaigns:
April 1-20, 2008 2006 (3), 2007 (3), 2008 (4), 2009 (3), 2010(5)
B\ T —— w;
N W i

a _:‘? CHAPS (DOE-NASA)

3 June 3-29, 2007

: RACORO (DOE-NASA)  CALIPSO/MODIS/CATZ (NASA)
June 3-26, 2009 January 17— Aug 11, 2007

ARCTAS 2 (NASA) b [T %= Ocean Subsurface (NASA-ODU-NYU)
June 25 — July 14, 2008 : : y  September 9-29, 2009
CalNex (NOAA) May 12-25, 2010 : ; ‘

i ] T CALIPSO Validation (NASA)
CARES (DOE) June 3-28, 2010 \ v June 14 - Aug 10, 2006

! s 4 anuary 22 — April 17, 2009
San Joaquin Valley (EPA) [ == Z=n April 8 — 22, 2010
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120°w 1000 W Sept 16-Oct 16, 2008

Fig. 1. Location of airborne HSRL flights and field experiments from 2006 through 2010.

The HSRL measurements of aerosol intensive parameterdepolarization ratio, is recognized as a discriminator of dust
provide information about the particle physical properties. (Shimizu et al., 2004; Omar et al., 2009). High values of
For example, backscatter color ratios typically are inversely30% to 35% depolarization at 532 nm for aerosol are in-
related to aerosol particle sizes (Sasano and Browell, 198%icative of nearly pure dust (Sugimoto and Lee, 2006; Liu
Sugimoto et al.,, 2002). Another intensive parameter, theet al., 2008; Freudenthaler et al., 2009), with smaller values
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Fig. 2. Airborne HSRL measurements when the NASA B200 King Air flew over Mexico City between 17:38—-17:52 UT on 13 March 2006
during the MILAGRO campaign. The aircraft flew from east (right) to west (left). The images cover a horizontal distance of about 115 km.
The gray bars at the bottom of the figure represent the approximate limit of the Mexico City Metropolitar{eggrAarosol backscatter
coefficient (532 nm)(b) aerosol extinction coefficient (532 nm);) aerosol depolarization (532 nm(d) aerosol depolarization spectral

ratio (1064 nm/532 nm)ge) Sa, the lidar ratio (532 nm)(f) aerosol backscatter color ratio (532 nm/1064 nm). Variations in the parameters
measured by the HSRL reflect variability in aerosol type.

that are still elevated above about 8—10 % usually attributedb32-nm lidar ratio §5) and lower values of the 532-nm de-
to a mixture of dust with spherical particles (Murayama et polarization suggest smaller, more spherically shaped parti-
al., 2003; Sugimoto and Lee, 2006; Tesche et al., 2009a)cles (e.g. sulfate drops) more typically associated with ur-
High depolarization can also indicate ice particles, as in cir-ban/industrial pollution. Lowe§, and higher depolarization
rus clouds (e.g. Sassen, 1977; Sakai et al., 2003). Crystalkalues over the eastern part of the city suggest higher con-
lized sea salt (Murayama et al., 1999; Sakai et al., 2010) andentrations of dust. These measurements are consistent with
aged biomass burning and volcanic aerosols (Sassen, 2008YRF-Flexpart model simulations which also indicate urban
can also exhibit some depolarization, but with much smalleremissions dominating in the western part of the city, with a
values. The degree of depolarization also varies with relativemixture of biomass burning, urban emissions and dust in the
humidity, since hygroscopic swelling increases the sphericeast (see de Foy et al., 2011, Fig. 8). These HSRL measure-
ity of particles and decreases their depolarization (Murayamanents also clearly show the vertical and horizontal variabil-
et al., 1996; Sassen, 2000). The spectral dependence of thiy of aerosol intensive properties (e.g. 532-nm depolariza-
depolarization ratio is dependent on particle size in the caséion and backscatter color ratio) associated with thin elevated
of ice clouds (Somekawa et al., 2008) and on mixing ratioaerosol layers over the western section of Mexico City.
and spherical and non-spherical particle sizes in mixtures of Figure 3 shows how the aerosol intensive properties mea-
dust and non-spherical particles (Sugimoto and Lee, 2006sured by the HSRL varied during the various field exper-
Somekawa et al., 2008). Finally, the aerosol extinction-iments from March 2006 through 2010. Note, for exam-
to-backscatter ratio, or lidar ratio, varies with aerosol size,ple, how the aerosols observed over Mexico during the
shape, and composition; tropospheric aerosols typically hav|LAGRO campaign had somewhat different characteris-
low values of approximately 20 to 50 sr at 532 nm for coarsetics than those observed over Houston during GOMACCS
mode particles (i.e. sea salt, dust) and higher values for smalind the eastern US during the CALIPSO validation mis-
and/or highly absorbing accumulation mode particles (Ack-sions. The aerosols observed during MILAGRO typically
ermann, 1998; Cattrall et al., 2005;ulMer et al., 2007a and  had smaller lidar ratio and larger 532-nm depolarization than
references therein). the aerosols observed over the eastern US. This indicates
For the example shown in Fig. 2, over the western partthat the aerosols observed during MILAGRO were somewhat
of the city, higher values of backscatter color ratio and thelarger and more nonspherical and therefore most likely had
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Fig. 3. Distributions of aerosol intensive parameters derived from HSRL measurements during recent field campaigns. Median values of each
of the four intensive variables are shown for each mission (dots) along with the 25-75th percentiles (bars) and 5-95th percentiles (whiskers).
The right-hand axis corresponds to the gray histogram bars, which show the number of observations for each field campaign. Several
CALIPSO validation campaigns in the Eastern US and off the east coast have been grouped together in the single category “CALIPSO” in
this figure. The two different Caribbean campaigns (2008 and 2010) are shown separately.

higher concentrations of dust (Molina et al., 2010; de Foy et4 Aerosol classification

al., 2011); conversely, the aerosols observed over the eastern

and southeastern US typically were smaller and more sphed.1  Methodology

ical, consistent with urban aerosols. The lidar ratio varies as

well, with larger values for the urban aerosols typically seenAs stated above, the four aerosol intensive variables used in
during the CALIPSO validation flights in the eastern US and the aerosol classification are the extinction-to-backscatter ra-
somewhat smaller lidar ratio values seen during MILAGRO 1i0, Sa, at 532nm; the backscatter color ratio, which is the
where more dust was present. As another example, the fird@tio of the backscattering coefficient at 532 nm to 1064 nm;
Caribbean campaign, which made frequent measurements dpe aerosol depolarization at 532 nm (actually the natural log-
maritime aerosol, exhibits much smaller lidar ratio and also@fithm of this quantity, since itis more normally distributed);

a smaller spectral ratio of depolarization. Conversely, dur-2nd the spectral depolarization ratio, which is the ratio of
ing ARCTAS the lidar ratio was large, typical of the smoke the particulate depolarization measured in the two channels,
aerosol frequently seen during that campaign (Warneke et al1064 nm/532 nm. The extensive aerosol parameters — aerosol
2010; Shinozuka et al., 2010), and the backscatter color rati®@ckscattering coefficient, extinction, and optical depth — are
was also high, indicating small particles. During the secondnot used since these parameters can vary with aerosol amount
Caribbean campaign, high values of aerosol depolarizatioS Well as type.

reflect the large amount of Saharan dust observed. These re- Measurements are prepared for classification by clearing
sults indicate that the aerosol intensive variables measure@louds using a convolution of the measured signal at 532 nm
by HSRL vary with location and suggest that this variabil- With @ Haar wavelet to enhance edges (Davis et al., 2000),
ity can be used as an indicator of aerosol type. In the nex€ombined with an algorithm to set a flight-by-flight threshold

section, we describe our methodology for using these HSRLfor separating the generally sharper cloud edges from the less
measurements to infer aerosol types. pronounced aerosol feature boundaries in each lidar profile.

Optional filtering criteria are applied to the HSRL aerosol
measurements at this stage. Typing of outliers or noisy points
with the aerosol classification algorithm will be less reliable
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than fqr ngl-behaved points, t?“t smpe each meqsurement Rable 2. Criteria for filtering aerosol measurements for certain
classified independently, the inclusion or exclusion of OUt-figres.

liers has no effect on the classification of the remainder of
observations, in contrast to global minimization algorithms

. caTE . Aerosol Property Filter criteria
like k-means (MacQueen, 1967). The criteria listed in Ta- Seoolarization al 532 =06

. . - epolarization a nm Yx <0.
ble 2 were applied for the creation of the example figures = . " " @ ecatter ratio at 532 nm ~0 <100

shown in this paper. Generally, the points that fail these crite- gackscatter color ratio, 532 nm:1064 nm Q4<45
ria have only small contributions to the column optical depth. Ratio of aerosol depolarization ratios, 1064 nm:532 nm < x0< 3.5
The HSRL aerosol classification is performed in two parts.
First, specific samples of known aerosol types are combined
to make model distributions. Second, the full dataset of
HSRL measurements are classified by comparison with thesdistance metric, on the other hand, incorporates more infor-
models. The number of classes depends to some extent on timeation about the relative shapes and sizes of the classes, in-
cases where aerosol type is known with high confidence andluding potentially different widths or variances in each di-
should not be considered definitive. The choice of classesnension and covariance between the variables. The assump-
also reflects a desire for the categories to be physically meartion of multi-normal distributions is a much less limiting as-
ingful and suggest possible aerosol sources; to this end, theumption, and is consistent with the presentation of results by
basic classes follow the existing literature (Dubovik et al., Cattrall et al. (2005). The Mahalanobis distance is frequently
2002; Cattrall et al., 2005; Omar et al., 2005). In addition, thethe distance metric of choice for Expectation Maximization
number of classes ideally should maximize the information(EM) clustering (Dempster et al., 1977), which is a general-
content captured by the class identification. A statistic re-ized form ofk-means clustering.
lated to this idea is described in Sect. 4.3. The HSRL aerosol After the class distribution models are calculated, the Ma-
classification described herein uses eight classes, which stanialanobis distance is used to classify aerosol measurements
with labeled samples of known aerosol types. Section 4.2rom all HSRL aerosol observations. Points with a Ma-
describes the eight classes and how the samples were chbalanobis distance greater than a certain threshold from all
sen. Thirty samples of a few hundred to a few thousand dat#he classes are considered outliers and are not classified.
points each, in total comprising about 0.30 % of the data, areThis threshold (Mahalanobis distance =4.3) corresponds to
labeled using a priori knowledge. These samples are comthe 99.9 % cumulative probability contour of the class dis-
bined to estimate multi-normal distributions defined by the tributions, derived by assuming that the Mahalanobis dis-
4-by-4 variance-covariance matrix of the four aerosol inten-tances belong to a chi-square distribution. That is, 0.1 % of
sive variables. Distributions are generated from the samplea random sampling of theoretical points belonging to a class
for each of the eight classes after weighting by the samplevould lie at a distance beyond the threshold and would be
size so that each sample counts equally within a class. Germissed. For points where the Mahalanobis distance to one or
eralized distances are then calculated for each measurememtore classes is within this threshold, the class identification
in the full five-year HSRL record to each of the class distribu- is inferred from the smallest distance.
tions, using the Mahalanobis distance metric (Mahalanobis, Besides providing the most likely class identification for

1936). each measurement, the Mahalanobis metric also gives an es-
timate of the probability for each class. The eight probabil-
M;: = \/(x - X .)T ¢l (x- - X ) 2) ities are normalized to give an estimate of the relative prob-
ij = i J j i J

ability for each class. We require the normalized probabil-
M;; is the Mahalanobis distance between measurement jty to be at least 60 % for an observation to be assigned to a
and classj, wherex; represents the four-dimensional mea- given class. In cases where none of the eight probabilities ex-
surement vector for measureméni ; represent§ the four-  ceeds 60 % because the point is nearly equidistant from two
dimensional model vector for class modelandC; repre-  or more of the nearest classes, the normalized probabilities
sents the variance-covariance matrix for class mgdel are recorded, but no class identification is made.

The Mahalanobis distance is appropriate for quantifying The new classification method described here differs
the distance between a point and a distribution, and is therefrom unsupervised classification schemes likeneans
fore a better metric for this application than the Euclidean(MacQueen, 1967) or expectation maximization clustering
distance between two points. It assumes the aerosol class¢Bempster et al., 1977) primarily in the use of labeled sam-
are represented as multi-normal distributions. When the Euples. This allows us to incorporate additional knowledge
clidean distance is used for classification, as is frequently thebout aerosol type that may be available only in specific
case ink-means clustering (MacQueen, 1967), the measureeases. This method also has the benefit that new data can
ment points tend to be forced into roughly spherical clustersbe easily classified without causing existing classifications
unless the classes are widely spaced out, since each clats be greatly altered. The classification is robust with re-
is identified by only by a single point. The Mahalanobis spect to the inclusion or exclusion of outliers, noisy points,
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Fig. 4. lllustrates the models used in the aerosol classification algorithm in three projections of a space defined by the four aerosol intensive
variables measured by HSRL. Crosshairs indicate data samples of known type as mean and standard deviation of the four variables. The
aerosol type models that are based on these samples are indicated by two-sigma ellipses, calculated using the eigenvectors and eigenvalu
of the model covariance matrices.

or otherwise unreliable measurements, in the sense that there not necessarily zero. The directions of the major and mi-
classification of other points will remain unchanged. Classesor axes are given by the eigenvectors.

can even be added or removed with minimal disruption to  The eight particulate classes in this analysis were chosen
the other classes. This is in sharp contrast to unsupervisetb provide a useful separation of the observations into dis-
clustering methods in which any change has global consetinct types. These classes are: ice, pure dust, dusty mix,
guences, since those algorithms depend on iterative globaharitime, polluted maritime, urban, fresh smoke, and smoke.

minimization of the distance metric. The choice of classes tries to address a balance between too
few classes which would cause important distinctions be-
4.2 Aerosol types tween different observations to be lost, and too many classes

which could make it easy to overlook important similarities
The HSRL aerosol classification has eight types and begingnd prove difficult to interpret. Our choice of eight classes
with thirty samples of labeled data, between two and six samwas based on extensive inspection of the HSRL data. The
ples for each type. Figure 4 shows the characteristics of thdypes used in this study reflect the heritage of previous work
samples in terms of the four intensive variables used for clason classification of lidar measurements (Cattrall et al., 2005;
sification. The samples are shown as cross-hairs represen®mar et al., 2005), with some additions that are described
ing the sample standard deviations in each of the four vari-herein.
ables. All the samples of each type are combined to pro- The strategy of using labeled samples to create “seed”
duce variance/covariance matrices which are used later aserosol class models to classify all other measurements al-
the model distributions. Two-sigma covariance ellipses forlows us to incorporate knowledge based on a relatively lim-
these models are also shown in Fig. 4. The ellipse used tited set of observations where the aerosol type is known or
visualize a covariance matrix is determined by its eigenval-easy to infer. Specifically, we incorporate six samples of ice
ues and eigenvectors (see e.g. Rodgers, 2000). The squanaze (see Sect. 4.2.1) observed during the ARCTAS cam-
roots of the eigenvalues are the major and minor axes (doupaign, identifiable by the signature of fall-streaks in the li-
bled in this figure to represent two-sigma variability). Thesedar measurements. Pure dust is represented by two labeled
are not necessarily aligned with the variable axes or equal teamples. One of these was a plume of Saharan dust tracked
the standard deviations for each variable, since the covariby the CALIPSO lidar instrument as it was advected from
ance terms (off-diagonals) of the variance/covariance matrixAfrica to the Gulf of Mexico, described by Liu et al. (2008).
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CALIPSO and HSRL observed it simultaneously near Hous-and sometimes are precipitating crystals based on evidence
ton, Texas ten days later. The other pure dust labeled san®of fall streaks in the HSRL lidar data. Hoff (1988) observes
ple is from a dust storm on the slope of Pico de Orizabasimilar ice crystal precipitation events that are often obvi-
observed during the MILAGRO field campaign described ous in ground-based lidar records although no visible clouds
by de Foy et al. (2011). Three labeled samples of dustyare evident. Curry et al. (1990) point out that although Hoff
mix include cases of probably locally generated dust withuses the apt term “ground-based cirrus”, these cloud-free ice
intermediate values of depolarization, including two in the crystal hazes are neglected in contemporary cloud classifi-
midwestern United States and one near Mexico City that iscation conventions and in radiation transfer and climate cal-
also discussed by de Foy et al. (2011). Clean air samplesulations. More recently, model parameterizations are avail-
in the Caribbean provided most of five labeled samples forable for ice fog (Girard and Blanchet, 2001). However, ice
the maritime class. Labeling of two samples of polluted crystal hazes observed by HSRL during ARCTAS were not
marine air from the marine boundary layer in the Gulf of cleared as clouds in AERONET observations and frequently
Mexico and near the coast of Virginia was justified by back- contribute significantly to AERONET aerosol optical depth.
trajectory analysis using the online HYSPLIT tool from the Nearby Total Sky Imager camera images also indicated clear
NOAA Air Resources Laboratory READY website (Draxler conditions, but Millimeter Cloud Radar consistently indi-
and Rolph, 2012)http://ready.arl.noaa.gov/HYSPLIT.php cated cloudy conditions. The likely explanation for these
which was used to track the air samples from the marineobservations is the presence of relatively large particles, but
boundary layer a short time backward to urban areas. Fouin low concentrations. Large=(1) Angstiom exponents ob-
urban samples are used where the attribution of elevated levserved by AERONET suggest that the particles are smaller
els of aerosol optical depth to urban sources is fairly straightthan typical cirrus particles. These ice crystal airmasses are
forward, for example near Washington DC or, in one case not cleared from the HSRL measurements as clouds either, so
Mexico City in a region where the WRF-Flexpart model also we need to be able to separate them from aerosol particles.
indicates urban aerosols (de Foy et al., 2011). In the case Ice observed by HSRL during the ARCTAS campaign can
of smoke (five samples) and fresh smoke (three sampleshave particle depolarization of up to 60 % at 532 nm, which
the plume was observed visually from the B200 or was meais greater than that associated with pure dust (Sugimoto and
sured by coincident airborne in situ measurements (Warnekéee, 2006; Liu et al.,, 2008; Freudenthaler et al., 2009).
et al.,, 2010) and/or MODIS images (Saha et al., 2010, sedlishchenko and Sassen (1998) also indicate depolarization
Fig. S7a). Some of the classes, such as pollution, maritimeyalues at 532 nm up to 50-70 % are possible for ice crystals
smoke, and dust, correspond with aerosol types from previwith effective radius on the order of a micrometer. Since the
ous studies (e.g. Dubovik et al., 2002; Omar et al., 2005).depolarization of ice crystals is highly variable (e.g. Sassen
Other categories, pure dust, fresh smoke, and polluted mamand Hsueh, 1998) and can be comparable to that of dust, it
itime, were added based on HSRL measurements, simultds difficult to use particle depolarization alone to separate ice
neous observations from the aircraft, and preliminary find-and dust (Sakai et al., 2003). Based on our HSRL measure-
ings using the fully unsupervised cluster analysis schekaes, ments and from previous ground-based HSRL (e.g. Eloranta,
means and Expectation Maximization, and will be discussed2005) and Raman lidar (e.g. Whiteman et al., 1992) observa-
below. Particular samples were chosen to attempt to providéions, the lidar ratios for ice are lower than for pure dust, less
good coverage of the apparent range of lidar intensive obthan 30 sr (Sakai et al., 2003).

servables for each type, while simultaneously holding back Figure 5 shows an example of HSRL measurements ac-
some known samples to judge the success of the classificayuired over Alaska during the ARCTAS mission. Aerosol
tion. Removing or replacing individual samples can affectdepolarization values were elevated at altitudes above 3 km
a small percentage of measurements on the apparent bounfbr much of this period. The very high (0.5-0.6) 532-nm
aries between classes but does not affect the results overafarticulate depolarization values and low20 sr) 532-nm

We do not have enough labeled samples to perform a statididar ratio values around 23.65UT (23:39) and above 5km
tical assessment of the effect of sample selection; howeveiare associated with ice crystals. At other times and altitudes,
the experiment described later in Sect. 4.3 gives a quantitait is difficult to use depolarization alone to discriminate ice
tive idea of the amount of error due to points being near theand dust; however, the higher values of the 532-nm lidar ra-

boundaries. tio (40-50 sr) strongly suggest that the particles were much
more likely to be dust than ice. The spectral ratio of depolar-
4.2.1 Ice particles ization also appears to help distinguish between ice and dust,

as illustrated by the labeled samples in Fig. 4 and by the con-
Elevated aerosol depolarization values are usually an indicatrast between low ratio for ice and higher ratio for dust in this
tion of dust and/or ice. During the ARCTAS campaign, many example. This case also provides an example indicating the
cases were observed of optically thin ice or ice crystal hazepotential for elevated dust layers to act as ice nuclei (Sassen,
(Saha et al., 2010). These common ice layers have been pr@002).
viously reported extending above 6.5 km (Greenaway, 1950)
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Fig. 5. 3 April 2008 measurements by the NASA Langley airborne HSRL based out of Barrow, Alaska during the ARCTAS campaign.
(a) Aerosol backscatter coefficient (532 nnip) aerosol type inferred by the method described in this pgpgparticle depolarization

(532 nm),(d) particle depolarization spectral ratio (1064/532 ne), Sa, the lidar ratio (532 nm), an{f) aerosol backscatter color ratio
(532nm/1064 nm). The measurements show an elevated layer made up of both ice crystals, in the region characterized by the largest particl
depolarization ratios and smallest lidar ratio, and dust, with somewhat smaller particle depolarization and larger lidar ratio.

4.2.2 Dust and dusty mix (in Mexico), as well as near Houston, Texas, during the
TexAQS/GOMACCS mission (Liu et al., 2008). These val-
Particle depolarization ratios at 532 nm between about 30 %ues of depolarization are consistent with observations of dust
and 35% are characteristic of “pure dust” from Asia mixed with other species (e.g. Heese and Wiegner, 2008)
(Shimizu et al., 2004; Sugimoto and Lee, 2006) or the Saharand are identified by our algorithm as a “dusty mix”. Var-
desert (Liu et al., 2008; Freudenthaler et al., 2009; Esselborious other studies (e.g&on et al., 2003; Sugimoto and Lee,
et al.,, 2009). Figure 6 shows an example of Saharan dus?006; Tesche et al., 2011; Grof} et al., 2011; Weinzierl et al.,
observed during an HSRL flight on 18 August 2010 between2011) have attempted to characterize the optical and micro-
Bermuda and St. Croix, Virgin Islands. The Saharan origin of physical properties of case studies of mixtures of dust with
the dust layer was confirmed using the online HYSPLIT tool other species. In the broad classification methodology pre-
from the NOAA Air Resources Laboratory READY web- sented here, “dusty mix” labels a general category that may
site (ttp://ready.arl.noaa.gov/HYSPLIT.phgDraxler and  include cases of dust mixed with a variety of other species.
Rolph, 2012). Observed values of 532-nm aerosol depo- Motivating and supporting the idea of having two dust cat-
larization for this case are about 33 % and 532-nm lidar ra-egories with different degrees of depolarization was the ob-
tio values are 439 sr. These lidar ratio values are consis- servation that the overall distribution of aerosol depolariza-
tent with lidar ratio values of 53-5b7 given by Tesche et tion from campaigns excluding ARCTAS (that is, excluding
al. (2009b) and also within the range of variability of 38— ice) shows a long tail of large depolarization values which in-
50 sr observed by Esselborn et al. (2009), both for Saharagludes samples known to be dust advected from Africa. Con-
dust nearer to the source during SAMUM (Heintzenberg,sequently, we also included a second dust category (“Pure
2009). Esselborn et al. (2009) show by backtrajectory analdust”) to identify such cases. Including it has the practical
ysis that their observed variability in lidar ratio is primarily advantage of aiding the separation of ice and dust. The depo-
attributable to differences in source regions. larization values of the optically thin ice observed during the
Smaller but still large 532-nm aerosol depolarization val- ARCTAS campaign can be comparable to that of pure dust,
ues, from about 20% to 35%, have been often observednaking it is difficult to use particle depolarization alone to
by HSRL particularly in the CHAPS and RACORO cam- separate ice and dust. As described above, the lidar ratio
paigns (in Oklahoma) and in the MILAGRO campaign tends to be smaller for ice than for dust, but the difference
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Fig. 6. 18 August 2010 airborne HSRL measurements and aerosol classification for a Saharan dust plume observed on a flight between

Bermuda and St. Croix in the US Virgin Island§a) Aerosol backscatter coefficient (532 nnip) aerosol type inferred by the method
described in this pape(c) aerosol depolarization (532 ni({J) aerosol depolarization spectral ratio (1064/532 nf@).Sa, the lidar ratio
(532 nm), andf) aerosol backscatter color ratio (532 nm/1064 nm).

is subtle enough that the separation of types is more reliableampaign (March 2006) and over the Atlantic Ocean east of
when dust is represented as two categories. This is due to théirginia during several campaigns. It was also found ex-
fact that ice can be more “similar” to pure dust than pure dusttensively in the Gulf of Mexico near the location of the BP
is to the remainder of the dust observations, where similarityDeepwater Horizon oil spill on flights in May and July 2010
is judged as distance in the four-dimensional space define@see example in Ottaviani et al., 2012, Fig. 7). The lidar ratio
by the four measured variables. Even with two categories forat 532 nm for this class is about 35-45 sr, intermediate be-
dust, it is still somewhat difficult to separate ice from dust tween the maritime and pollution classes, which is consistent
in certain cases. Misclassified cases are often easy to deteafith observations by NMiler et al. (2007a) of polluted ma-
because the ambient temperatures obtained from the NASAine air over the Maldives during the monsoon season. In our
Global Modeling and Assimilation Office (GMAQO) are well polluted maritime class, backscatter color ratio and spectral
above O°C. Consequently, a simple temperature-based corfatio of aerosol depolarization are also intermediate between
rection is included in the results shown here; any point cat-the maritime and pollution classes. It is a small category that
egorized as ice but having a temperature abo¥€ & re-  contains about 3 % of all the HSRL observations. Most of the
assigned to dust (this is a very conservative cutoff, whichfully automated clustering trials did not distinguish between
potentially can leave some cases incorrectly categorized athis type and clean maritime air; however, an experimen-
ice). tal run of unsupervised expectation maximization clustering
with eleven classes generated a cluster like this. Supporting
the decision to include the class, it was found that many of
these cases would otherwise be labeled an incoherent mix of
Lpollution, smoke and maritime.

4.2.3 Maritime and polluted maritime

Maritime aerosols were observed extensively during HSR
observations over the Caribbean Sea during several flights

in 2008 and 2010. These aerosols were characterized wit#-2-4 Urban and biomass burning

low 532-nm lidar ratios (15-25sr), low 532-nm patrticulate

depolarization £10 %), and low backscatter color and depo- Urban and biomass burning aerosols typically have relatively
larization spectral ratios. The polluted maritime classifica-small, spherical particles that produce low depolarization,
tion is generally seen over water or just inland on the Gulfhigh backscatter color ratios, and high 532-nm lidar ratios
Coast between Houston and Veracruz during the MILAGRO(Cattrall et al., 2005; Mller et al., 2007a). The similarities
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Fig. 7. A B200 flight on the East coast on 2 August 2007 illustrating a smoke layer advected from fires in the northwestern United States and
Canada, overlying mostly pollution aerosol from cities on the eastern sealj@pferosol backscatter coefficient (532 nr{f)) aerosol type

inferred by the method described in this pagey,aerosol depolarization (532 nnfll) aerosol depolarization spectral ratio (1064/532 nm),

(e) Sa, the lidar ratio (532 nm), an(f) aerosol backscatter color ratio (532 nm/1064 nm). Note the contrast in spectral depolarization ratio
between the two aerosol layers.

in the physical characteristics and the resulting optical prop-aerosols in the elevated layer above 5 km are smoke from
erties make these types difficult to distinguish. UiMr et fires in the northwestern US or southwestern Canada, as de-
al. (2007a) have shown that urban and smoke aerosols caermined using the online HYSPLIT tool (Draxler and Rolph,
be distinguished using the wavelength dependence of th€012). The elevated layer of smoke has slightly higher li-
lidar ratio (355-532 nm) computed from ground-based Ra-dar ratio at 532 nm (70-80 sr) than the urban aerosols (50—
man lidar measurements. Noh et al. (2009) observed only &0 sr), consistent with previous Raman lidar measurements
slight difference in lidar ratio at these two wavelengths for of smoke (Wandinger et al., 2002). The elevated smoke layer
smoke and pollution events in Korea, for which carbon par-also has slightly higher particulate depolarization at 532 nm
ticle analyzer data were also available, but found somewha8—10 %) than the lower layer of urban aerosols; this ob-
more variation in retrieved single scattering albedo (SSA).servation of smoke particulate depolarization is consistent
Russell et al. (2010) indicate that absorpti&ngstrdm ex-  with other lidar measurements of long-range smoke trans-
ponents (AAE) derived from AERONET are strongly cor- port (Fiebig et al., 2002; Murayama et al., 2004). Although
related with aerosol type, but display some ambiguity be-there have been few multiple-wavelength lidar particulate de-
tween urban-industrial aerosol and biomass burning aerosopolarization measurements of these aerosols, there have been
They demonstrate that multi-dimensional analysis consistingefforts to use such measurements to help identify and classify
of the combination of AAE and extinctioiingstrbm expo-  polar stratospheric clouds (Toon et al., 2000), examine Saha-
nent (EAE), for example, shows potential to more fully re- ran dust characteristics (Freudenthaler et al., 2009; Grol3 et
solve these types. The depolarization spectral ratio measured., 2011), and infer Angstrom exponents for dust (Sugimoto
ments acquired by HSRL also appear to confer some abilityand Lee, 2006). Somekawa et al. (2008) and Veselovskii et
to discriminate among these and other aerosol types. Thal. (2010) show that multiple wavelength depolarization mea-
HSRL measurements from a flight on 2 August 2007 oversurements may be used to infer some particle properties such
the Atlantic Ocean east of Virginia shown in Fig. 7 illus- as size.

trate the significant differences in the depolarization spectral

ratio, despite the fact that the aerosol depolarization values

are small. The aerosols below 3km are typical of the ur-

ban aerosols seen over the eastern US during summer. The
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Fig. 8. NASA Langley airborne HSRL observations and aerosol classification are shown for a portion of a flight on 30 June 2008 over northern
Alberta, Canada. Multiple passes over a fresh smoke plume are e\idpferosol backscatter coefficient (532 nrfk)) aerosol type inferred

by the method described in this pap) aerosol depolarization (532 nir(Jl) aerosol depolarization spectral ratio (1064/532 n@) Sa,

the lidar ratio (532 nm), an¢f) aerosol backscatter color ratio (532 nm/1064 nm).

4.2.5 Fresh smoke et al., 2002; Amiridis et al.,, 2009; Alados-Arboledas et
al., 2011). The HSRL measurements also showed that the

The category “Fresh Smoke” was included based on 0bs(_:‘rz_ater_osol depolarizatign ratio at 532 nm for fresh smoke was
vations of visible fresh smoke plumes with very different typically low (<2-5%) ?nd aI;o typlce}lly Iowgr than.for
aerosol intensive parameters measured by HSRL. For ex1ore gged smoke .(3_.8. %). Thls_resul_t is consistent with the
ample, samples of fresh smoke in the boundary layer Ob_magnltude and variability of previous lidar measurements of
served on 30 June and 2 July 2008 during ARCTAS hadsm()ke (Sassen, 2000).

a significantly smaller lidar ratio at 532 nm (30-60 sr) than o )

the advected smoke (60-80sr) from Siberian forest fired-3 Sensitivity analysis

seen on other dates during the same campaign, such as 7—

8 July 2008. Figure 8 shows an example of HSRL measureAs described above, the distinctions in the HSRL measure-
ments for the smoke plume observed over northern Albertanents of these four aerosol intensive parameters support the
on 30 June 2008. Fresh smoke plumes observed over fireghoices of these classes. The Wilks’ overall lambda statistic
in North Carolina in March 2008 also had similar smaller (Hill and Lewicki, 2007) gives some indication of how well
532-nm lidar ratios of approximately 50-55sr. In both of the data lend themselves to separation into classes. Wilks’
these cases, the smoke was only a few hours old and odambda varies from 0 to 1, with smaller values indicating
servations were within 10-100km of the fires. The lower significant difference between groups and larger values in-
value of lidar ratios for fresh smoke as compared to ageddicating that the group means are the same. For the HSRL
smoke are consistent with ground-based Raman lidar mezfdata classified into eight classes as described above, Wilks’
surements over Spain (Alados-Arboledas et al., 2011) andambda is 0.083; if outliers are also included, the value
Greece (Amiridis et al., 2009). Although these studies ands 0.137.

Miller et al. (2007b) indicate that particle size is likely to in- ~ Wilks’ partial lambda can be used to indicate the relative
crease with age, there is considerable spread in the observatiscriminatory power of each intensive parameter. This value
backscattel;&ngstrbm exponents (or color ratios). HSRL is the ratio of Wilks’ lambda calculated with and without a
measurements of backscatter color ratio indicate larger valgiven variable. Again, smaller values indicate more impor-
ues (smaller particles) for fresh smoke than aged smoke otance, allowing the values to be ranked in order. Wilks’ par-
average, but without a clear separation (compare Wandingetial lambda is smallest for the 532 nm depolarization, 0.47,
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Table 3. Median uncertainties for intensive parameters used in Monte Carlo cross-classification analysis.

Intensive variable

87

Median uncertainty for HSRL measurements included in aerosol classification study

Aerosol depolarization
Lidar ratio at 532 nm

Backscatter spectral ratio (532/1064 nm)
Depolarization spectral ratio (1064/532 nm)

at 532 nm

0.0074
12.1sr

0.128 (propagated from backscatter uncertainties assuming independence)
0.774 (propagated from aerosol depolarization uncertainties)

Monte Carlo Classification Confidence Test
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Fig. 9. Shows the results of a Monte Carlo experiment in which a cloud of 500 perturbed measurements for each point is classified and the
classification is compared to the classification of the original unperturbed point. The first panel shows the results for all points that were

originally classified ice; the bins along the x-axis show the statistics of how the perturbed points were classified, color coded as shown. The
second panel is for pure dust, etc., as labeled. Perturbed ice measurements are still ice; perturbed pure dust are split among pure dust, dus

mix and ice; dusty mix and maritime are easy to classify. Smoke (especially fresh smoke) is difficult to separate from pollution.

indicating that this variable has the most weight in the classi-llustrates the probability that perturbing each measurement
fication. This is followed closely by depolarization spectral within the uncertainties will change the inferred classifica-
ratio and lidar ratio, with partial lambda values of 0.54 for tion. This is one way to understand the relative difficulty in
each. The backscatter color ratio has the least discriminatorgeparating various pairs of classes. For example, the mar-
power, with a partial lambda of 0.79. itime class is quite easy to infer. Even after perturbation,

Some classes are easier to distinguish than others. Th@ost of the Monte Carlo points are still classified as mar-
potential for misclassification is illustrated in Fig. 9, which itime, with very small percentages cross-classified into the
shows the results of a Monte Carlo study wherein simulatecPther categories. Not surprisingly, smoke and urban are
observations are made by perturbing each point 500 time§arder to separate, and between about 5% and 15 % of the
within the measurement uncertainties of the four intensivePerturbed points are cross-classified. Polluted maritime has
variables; then these simulated points are themselves clagross-classification into the related categories of maritime
sified. Table 3 shows the median measurement uncertaintiednd urban. The pure dust category and the “fresh smoke”
for these variables. For this test, the uncertainty values for th&ategory derived from smoke in the boundary layer have the
two spectral ratios are propagated from the single-channenost cross-classifications with other categories.
values with an assumption of independence between the The Monte Carlo study quantifies only one possible kind
channels, so the uncertainties used here are larger (more coof error in this analysis, essentially the potential for misclas-
servative) than the true measurement uncertainty. Figure Sification due to measurement errors. This experiment does
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Fig. 10. Colored bars and whiskers show the median (dot), 25—75 percentile (box) and 5-95 percentile (whisker) of the four aerosol intensive
parameters, after classifying all HSRL data from all missions into eight types. The gray bars represent the number of points in each class,
using the right-hand data axis. Also shown is the Wilks’ partial lambda statistic illustrating the relative importance of each of the four
variables in the classification. For the case of aerosol depolarization at 532 nm, Wilks’ partial lambda is calculated on the natural log of the
variable. In this figure (and throughout), the backscatter color ratio is defined as 532 nm/1064 nm, while the depolarization spectral ratio is
defined as 1064 nm/532 nm.

not address potential errors from the choice of classes or lawith the Wilks’ partial lambda statistic, described above.
beled samples or the assumption that multi-normal distribu-This statistic reflects the relative spread of the measurements
tions are adequate to represent the classes. These typesaimpared to their standard deviations, and quantifies the rel-
potential systematic errors are of course difficult to quantify. ative power of each variable in discriminating the classes,
Further confidence in the results can be gained by comparwith smaller values indicating more discriminatory power.
isons with other data sets, both comparisons with the prop¥igures 11 and 12 also show the results displayed as a se-
erties of aerosol types already presented in the literatureries of two-dimensional histograms. Points are color coded
and more specific comparisons between coincident measurdsy the aerosol classification derived from this study and with
ments with aerosol in situ composition instruments. Thesehe color saturation for each hue corresponding to point den-
comparisons are begun in the next section and carried forsity. Less populated bins are not shown; the figures show
ward in a future paper (Ferrare et al., 2012). Additional re-approximately 50 % of the points in each class. Figure 11
search on comparisons with aerosol in situ instruments anélso shows the aerosol intensive properties from some other
models is ongoing. lidar measurements (Mler et al., 2007a) and derived from
ground-based AERONET observations of aerosol properties
(Cattrall et al., 2005; Omar et al., 2005) from existing litera-
5 Results of the classification ture. There is general qualitative agreement showing, for ex-

. . . ample, that dust and maritime aerosols typically have lower
The ranges of the intensive parameters applicable t0 each G,y ratios and backscatter color ratios, and smoke and urban

the aeroosol classes are Qisplayedo in Fig' 10, as median, miqype aerosols have higher lidar ratios and backscatter color
die 50 % (boxes) and middle 90 % (whiskers). Also shown 4iins Figure 11 also clearly shows that there can be consid-

are gray bars representing the number of observations Of,ap|e spread in these observations for aerosols observed in
these various aerosol types. The panels are also annotated
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Fig. 11. The results of the classification of HSRL measurements are shown here, projected onto a two-dimensional subset of the four dimen-
sional space. HSRL measurements are color coded by inferred aerosol type, with the saturation in each hue indicating relative population
density. Points are shown for the most populous bins such that about half of the population of each cluster is represented. Also indicated in
this figure are the aerosol types identified by Cattrall et al. (2005), Omar et al. (2005),idled &1 al. (2007a). (Some of these variables

have been inverted to conform to the axes chosen here).
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Fig. 12. Similar to Fig. 11, but showing two-dimensional projections that include the other two aerosol intensive variables that were used for
classification. In this figure, the bins are shown as solid boxes; individual points within the bins are not displayed.

different locations. This figure shows that using lidar ratio the figure, the spectral depolarization ratio helps especially
and backscatter ratio alone would be insufficient to classifyin distinguishing ice from dust and smoke from pollution.

all these aerosol types, as there can be considerable over- Examples of the results of the classifications for some of

lap among some of these classes. However, Fig. 12, whiclthe observed aerosol types described earlier are shown in
shows the additional variables used in the current schemerigs. 5b (ice and dust), 6b (dust), 7b (smoke and urban)
indicates that aerosol depolarization and spectral depolarizaand 8b (fresh smoke). Figure 5 shows the separation of ice
tion ratio can be used to distinguish these types. As seen iand dust in the upper troposphere over Alaska, due primarily
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to the low values of lidar ratio (20-30 sr) and much higher Pure  Dusty Polluted Fresh

Ice Dust Mix" MaritimeMaritime Urban Smoke Smoke

values of 532-nm depolarization-0.4) associated with ice.
Figure 6 shows the presence of pure dust associated with
Saharan dust transported over the western Atlantic Ocean.
The identification of pure dust was driven primarily by the
aerosol depolarization values at 532 nm of 0.3-0.35 located
near the center of the layer. Around the periphery, where
the 532-nm aerosol depolarization was below about 0.3 and
the aerosols were likely mixed with other types, the classi-
fication was a dusty mix. Figure 7 shows the classification
of the elevated smoke layer above the urban aerosols for the
flight over the eastern US on 2 August 2007. Here, separation
between smoke and urban was driven by the differences in
spectral depolarization (lower for smoke) and 532-nm depo-
larization (higher for smoke). Figure 8 shows the classifica-
tion of fresh smoke when the B200 flew over fires in northern
Saskatchewan, Canada. Fresh smoke was classified based
on the lower values of the lidar ratio (40-50sr) combined
with a lack of aerosol depolarization at 532 nm. Figure 13
shows the results of the classification for the HSRL mea-
surements acquired over Mexico City and shown in Fig. 2. E
The classification indicates urban aerosols when the B200 17.85  17.80  17.75  17.70  17.65
flew over the western part of the city between about 17.75— Time (UT)

17.80UT (17:45-17:48), and indicates a dusty mix when the_ N

B200 flew over the eastern part of the city between 17.68—2:%'e ;imze:hug;noifntg?g azer(%shoel gzssg:]zellt's%gvfgJZfOSHOSlEIE)én;;g
1_7'75 Ut (17:4_0_17:45)' As described ea_rlle_r, th? CIaSS'_ﬂca'the flight track as a function of altitude. Urban aerosols dominate
tion of dusty mix vs. urban was due to variations in the lidar

) Mt ) in the western part of Mexico City while dusty aerosol dominates
ratio and depolarization at 532 nm over these locations. AlsQysewhere. An elevated smoke plume is also visible around 4.5 km

visible in Fig. 13 is an elevated fresh smoke plume at aboutytitude in the west part. The bottom panel illustrates the apportion-
4.5 km over the western part of the city. The identification of ing of aerosol optical depth among the types for this flight segment
fresh smoke here is consistent with WRF-Flexpart (de Foy ets stacked histogram bars.

al., 2011, Fig. 8). Figure 13 also illustrates an example of the

apportionment of AOD among these types.

Figure 14 illustrates the apportionment of AOD for two = The HSRL measurements acquired during the spring and
cases, discussed previously, having a significant dust comsummer ARCTAS campaigns have been used to apportion
ponent. These cases are the flight on 13 March 2006 ovethe vertical profile of aerosol extinction to aerosol types. Fig-
Mexico City (as in Figs. 2 and 13) and the Caribbean flight ure 15 reflects the median aerosol extinction profiles mea-
of 18 August 2010 (Fig. 6). The black line shown in Fig. 14 sured during the spring and summer ARCTAS campaigns,
shows the optical depth due to dust computed using theapportioned by aerosol type. B200 flights were conducted in
method of Sugimoto and Lee (2006), which assumes thafpril 2008 over northern Alaska during the spring ARCTAS
the dust mixing ratio scales linearly with the aerosol de-campaign (‘"ARCTAS 1”) and over northern Alberta, north-
polarization. Figure 14b and d illustrate a comparison ofern Saskatchewan, and the southern Northwest Territories
this computed value of dust partial optical depth to the to-Canada in June and July 2008 during the summer ARCTAS
tal AOD associated with the two types “pure dust” and “dusty campaign ("“ARCTAS 2"). Figure 15 shows that, during
mix” in our classification, for the entire MILAGRO (14b)and ARCTAS 1, ice was more pronounced in the mid tropo-
Caribbean 2010 campaigns (14d). In general, the two estisphere between 2-5km, and in the upper troposphere be-
mates are in agreement, but the sum of the AOD for the twaween 6—7 km during ARCTAS 2. The fraction of aerosol
classes exceeds the dust partial optical depth as computed usxtinction contributed by dust was relatively constant with al-
ing the Sugimoto and Lee (2006) algorithm. This is not sur-titude during ARCTAS 1 and decreased with altitude during
prising since most of the aerosol in the “dusty mix” type has ARCTAS 2. During ARCTAS 1, portions of several B200
depolarization less than the assumed depolarization value fdtights were conducted over water and the Arctic Ocean,
pure dust in that calculation. In the MILAGRO campaign, which likely explains the significant fraction of maritime ex-
the dust is mixed with urban and smoke aerosol, while in thetinction observed near the surface. In contrast, very little
Caribbean campaign it is mixed with maritime aerosol. maritime aerosol was observed during ARCTAS 2, which is

not surprising given that the flights were conducted inland

Altitude (km)

Aerosol Optical Depth (532 nm)
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Fig. 14. Time series of AOD apportioned to aerosol types for the flight segments on 13 March 2006 during MIL&p&@ for 18 Au-
gust 2010 during the Caribbean 2010 field misgjon The black trace on these panels shows the optical depth fraction attributed to dust
computed using the method of Sugimoto and Lee (2006). The Sugimoto and Lee (2006) dust partial optical depth and the sum of the AOD

for “Pure Dust” plus “Dusty Mix” are compared for the entire MILAGRO field camp&lighand for the 2010 Caribbean campaigt).
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Fig. 15. Aerosol extinction as a function of altitude is shown here apportioned among the eight aerosol types for the ARCTAS spring and

summer campaigns.
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Fig. 16. Aerosol classification from HSRL measurements for 12 April 2008 B-200 flight near Barrow, Alaska during ARCTAS/ARCPAC
(left panel) and PALMS aerosol composition data from the NOAA P3 from 22:40-22:57 UT (right panel). Both instruments indicate mainly
biomass burning aerosol, consistent with known smoke plumes from fires in Russia (see Warneke et al., 2010). The left panel also shows
coincident portions of the flight track profile of the P3 when it was within 30 km and 1 h of the HSRL flight track.

over Canada. Urban aerosols were most prominently obelassification results are consistent with this, with the ma-
served at the lowest altitudes, especially during ARCTAS 1.jority of the aerosol types classified as smoke and a smaller
Smoke, contributed by both the fresh and aged componentgqortion classified as urban. Figure 17 shows another exam-
was dominant during both ARCTAS 1 and ARCTAS 2. Air- ple comparing the HSRL aerosol classification and volume
borne in situ measurements acquired during the ARCTAS Mdistribution and particle classification distributions from the
mission also found smoke as the dominant component. Th®ALMS for data acquired on 19 April 2008 during ARC-
B200 flights during ARCTAS 2 were designed to sample TAS 1. These data were acquired in the vicinity of Bar-
smoke from biomass burning fires so it is expected thatrow, Alaska, when there was an extensive amount of biomass
smoke would dominate. Note also that the lower altitudesburning smoke over this region (Warneke et al., 2010). This
had higher concentrations of fresh smoke, especially duringgmoke was produced by fires in Russia. Figure 17 shows that
ARCTAS 2. the HSRL aerosol classification indicated that biomass burn-
The ARCTAS mission also provided an opportunity to ing aerosols were present in most of the troposphere over the
compare the classification measurements with airborne iBarrow region during this flight. The PALMS measurements
situ measurements of size and composition. On 12 andilso show that biomass burning smoke was dominant during
19 April 2008, the NASA B200 flew patterns that enabled these flights. Additional investigations comparing the HSRL
HSRL to acquire coincident data with in situ sensors on theaerosol classification results with airborne in situ measure-
NOAA WP-3D aircraft, which was deployed to conduct the ments acquired during ARCTAS and other field campaigns
airborne Aerosol, Radiation, and cloud Processes affectingire ongoing.
Arctic Climate (ARCPAC) field study (Warneke et al., 2010;  The contributions of each type to the total optical depth
Brock et al., 2011). The WP-3D deployed a suite of instru- measured by HSRL during each mission are shown in
ments for measuring gas, aerosol, and radiation properties;ig. 18. Some missions were dominated by a single
including optical particle counters for measuring the aerosoltype; for example, maritime air in the Caribbean cam-
volume distribution and the Particle Analysis by Laser Masspaign, a field mission primarily over water in a location
Spectrometry (PALMS) instrument for size-resolved single- chosen for clean conditions. The urban type dominated the
particle composition (Froyd et al., 2009). Figure 16 showsTexAQS/GoMACCS campaign, which occurred near Hous-
the results of the HSRL aerosol classification and aerosoton, Texas; the Birmingham campaign; the San Joaquin
volume distribution and particle classification distributions Valley (California) campaign (Lewis et al., 2010); and
from the PALMS on 12 April 2008. As described by CALIPSO validation flights, which have primarily occurred
Warneke et al. (2010), the compositional resolved volumeover the East coast of the United States. The urban type was
distributions represent the product of the number fraction ofalso seen in large amounts in the MILAGRO campaign near
each aerosol type in a given size bin and the total aerosol volMexico City, in that case along with large amounts of dust.
ume for that size bin. Figure 16 shows that biomass burningCHAPS and RACORO campaigns near Oklahoma City also
material was the largest component, with other contributionssaw both pollution and dust. The ice classification is present
from sulfate/organic and mineral dust. The HSRL aerosolin significant amounts only in the spring deployment of the
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Fig. 17. Left panel: aerosol classification from HSRL measurements onboard the B200 for 19 April 2008 B-200 flight near Barrow, Alaska
during ARCTAS/ARCPAC, with black trace showing coincident portions of the flight track profile of the NOAA P3 when the two aircraft
were within 30 km and 1 h of each other. The time axis indicates GMT time on 19 April. Times beyond 24 h are used to indicate the early
hours of 20 April GMT. Right panel: PALMS aerosol composition data from the NOAA P3 between 00:03—-00:19 GMT (20 April). The
PALMS instrument indicates a very dense biomass burning plume between 1.5 and 3km, and the HSRL classification also indicates smoke
throughout. These results are consistent with known smoke plumes from fires in Russia (see Warneke et al., 2010).
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ARCTAS campaign (ARCTAS 1), in which biomass burn- the HSRL classification results were shown to be consistent
ing smoke (Warneke et al., 2010) was the other predominantvith aerosol types derived from coincident airborne in situ
component. Smoke also dominated the summer deploymenheasurements.
of ARCTAS (ARCTAS 2) (Jacob et al., 2010). As will be discussed in the companion paper, more aerosol
type information from measurements such as HSRL can po-
tentially be used to improve model inputs and assess the
6 Summary ability of global and regional models to accurately portray
aerosol (Ferrare et al., 2012). Accurate aerosol discrimina-
A method to qualitatively classify aerosol types based on airtion can also improve retrievals of aerosol properties from
borne HSRL measurements of aerosol intensive parameterspace. The CALIPSO aerosol algorithm, for example, re-
has been presented here. Several examples show how thegeires an a priori estimate of the lidar ratio in the retrieval
aerosol parameters vary with different aerosol types and caof aerosol extinction (Omar et al., 2009). The HSRL mea-
therefore be used to discriminate among these types. For exsurements described here show how the lidar ratio varies
ample, the HSRL measurements show that ice and dust cawith these major aerosol types. A technique for classifying
in many cases be distinguished using the lidar ratio, and taerosol from lidar measurements such as the one presented
a lesser extent, particle depolarization at 532 nm. Urban an¢here may be useful as a means of constraining advance multi-
biomass burning smoke aerosols, which typically have somewavelength lidar retrievals such as those using inversion with
what similar lidar ratios (at 532 nm) and backscatter colorregularization (Miller et al., 1999; Veselovskii et al., 2002).
ratios (532/1064 nm), can be difficult to distinguish; how- In such cases, the typing results can essentially serve as a pre-
ever, the HSRL measurements show that urban and biomasaversion classifier to more efficiently and rapidly solve for
burning aerosols can have significant differences in specaerosol microphysical parameters, potentially allowing these
tral particle depolarization and that these differences can badvanced retrievals to become suitable for operational use
used to help distinguish these aerosols. Further improvefrom future spaceborne lidars.
ments in distinguishing urban and biomass burning smoke
could be realized through the use of additional backscatAcknowledgementszunding for this research came from the
ter and extinction measurements at 355 nniiifst et al., NASA HQ Science Mission Directorate Radiation Sciences
2007a). The HSRL measurements also show differences iffrogram; the NASA CALIPSO project; and the US Department

the lidar ratio between fresh and aged smoke. This classi?f EN€rgy's Atmospheric Science Program Atmospheric System

fication method uses HSRL measurements of the lidar raX€S€arch, an Office of Science, Office of Biological and Environ-

tio at 532 backscatt | tio. 532 d lari mental Research program, under Grant No. DE-AI02-05ER63985.
10 & nm, backscatter color rafio, -nm depolanza-r, o thors also acknowledge the NOAA Air Resources Laboratory

tion, and depolarizatio_n spectral ratio to infer the appropriate(ARL) for the provision of the HYSPLIT transport and dispersion
type. The method, which uses a sample set of known aerosghodel and READY websitehgtp://www.arl.noaa.gov/ready.php
cases to help define the set of lidar parameters appropriatgsed for some of the analysis described in this publication. The
for each type, was applied to the extensive set of airborneauthors would also like to thank the NASA Langley B200 King
HSRL observations acquired since 2006. The classificatiorAir flight crew for their outstanding work in support of HSRL
results were used together with the HSRL measurements gheasurements.
aerosol optical depth to apportion the aerosol optical depth
among the various aerosol types. These results show thatdited by: M. Wendisch
the dominant aerosol types in terms of aerosol optical depth
vary significantly with location. Aerosol classification re- R
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