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Abstract. A method for detailed evaluation of a new
satellite-derived global 28 yr cloud and radiation climatol-
ogy (Climate Monitoring SAF Clouds, Albedo and Radi-
ation from AVHRR data, named CLARA-A1) from polar-
orbiting NOAA and Metop satellites is presented. The
method combines 1 km and 5 km resolution cloud datasets
from the CALIPSO-CALIOP (Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation – Cloud-Aerosol Li-
dar with Orthogonal Polarization) cloud lidar for estimating
cloud detection limitations and the accuracy of cloud top
height estimations.

Cloud detection is shown to work efficiently for clouds
with optical thicknesses above 0.30 except for at twilight
conditions when this value increases to 0.45. Some misclassi-
fications of cloud-free surfaces during daytime were revealed
for semi-arid land areas in the sub-tropical and tropical re-
gions leading to up to 20 % overestimated cloud amounts.
In addition, a substantial fraction (at least 20–30 %) of all
clouds remains undetected in the polar regions during the po-
lar winter season due to the lack of or an inverted temperature
contrast between Earth surfaces and clouds.

Subsequent cloud top height evaluation took into account
the derived information about the cloud detection limits. It
was shown that this has fundamental importance for the
achieved results. An overall bias of−274 m was achieved
compared to a bias of−2762 m when no measures were
taken to compensate for cloud detection limitations. Despite
this improvement it was concluded that high-level clouds still
suffer from substantial height underestimations, while the
opposite is true for low-level (boundary layer) clouds.

The validation method and the specifically collected satel-
lite dataset with optimal matching in time and space are sug-
gested for a wider use in the future for evaluation of other
cloud retrieval methods based on passive satellite imagery.

1 Introduction

The introduction of the A-Train (i.e. Aqua Train, or some-
times referred to as the Afternoon Train) series of satellites
(Stephens et al., 2002) has been a major milestone for cloud
research and for satellite meteorology in general. For the first
time in history, a series of satellites and sensors are able
to provide not only the global coverage of cloud fields and
aerosols but also the vertical structure of clouds and aerosols
and their respective properties. The vertical probing capabil-
ity was in particular associated with the launch of the Cloud-
Sat (Stephens et al., 2002) and CALIPSO (Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation; Winker et
al., 2009) missions in 2006 where both satellites are carrying
active sensors – a cloud profiling radar (CPR) on CloudSat
and a cloud and aerosol lidar (CALIOP) on CALIPSO. These
satellites have now produced more than six years of data.
This means that, despite the relatively limited spatial sam-
pling capability from the polar orbit (i.e. a consequence of
both active sensors operating exclusively in nadir view), the
long time series now offers enough measurements to become
useful for studying mean conditions (approaching the estima-
tion of climatologies) in parallel to the more obvious use in
case-to-case process-oriented studies. Good examples of this
and of methods and tools aiming at climatological studies
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are given by Stubenrauch et al. (2013), Cesana et al. (2012),
Liu et al. (2012), Devasthale and Thomas (2011), Chepfer
et al. (2010), and Delanoë et al. (2011). In addition, the im-
proved statistical significance of the datasets (i.e. spanning
over many years) now make them very useful as “ground
truth” datasets for training of cloud algorithms (Heidinger
et al., 2012). Similarly, an important application is the use
for more thorough evaluation of cloud products from vari-
ous algorithms based on data from other satellite platforms.
This concerns especially those based on data from wider-
swath scanning sensors measuring in visible, infrared, and
microwave spectral regions (i.e. data from passive imagers)
as demonstrated by Holz et al. (2008), Minnis et al. (2008),
Reuter et al. (2009), Heidinger and Pavolonis (2009), and
Karlsson and Dybbroe (2010).

The information from the CALIPSO-CALIOP lidar is par-
ticularly interesting since this sensor is undoubtedly much
more sensitive to the presence of clouds in the atmosphere
than any other spaceborne sensor at hand. Because of this
it has the potential of being used for establishing a firm
knowledge of the cloud detection limit for other cloud re-
trieval methods based on data from other satellite sensors.
This aspect is of fundamental importance for securing an
optimal and unambiguous use of the information from var-
ious cloud retrieval algorithms. An important application in
this respect is comparing satellite-derived cloud parameters
to information simulated by climate models and numerical
weather prediction (NWP) models. To ensure an appropri-
ate inter-comparison here specific tools have been developed.
The most well-established tool is the Cloud Feedback Model
Inter-comparison Project (CFMIP) Observational Simulation
Package (COSP), which is described by Bodas-Salcedo et
al. (2011). COSP may simulate cloud datasets from various
satellites and sensors from the model state variables. How-
ever, this is done differently depending on the sensor. One
important piece of information here is to simulate each sen-
sor’s ability to detect clouds so that clouds which should
be considered as sub-visible for that particular sensor are
not taking part in the comparison. Thus, information about
cloud detection limits for each sensor needs to be included in
COSP.

This paper focuses on the use of CALIPSO-CALIOP data
for evaluating the cloud detection limitations of the meth-
ods used to derive one particular satellite-derived climate
data record: the CLARA-A1 dataset. The acronym stands for
the Climate Monitoring Satellite Application Facility (CM
SAF – seewww.cmsaf.euand Schulz et al., 2009) Clouds,
Albedo, and Radiation dataset from AVHRR data (Karls-
son et al., 2013). It is based on global historic Advanced
Very High Resolution Radiometer (AVHRR) data from the
polar-orbiting NOAA satellites covering the period 1982 un-
til 2009.

While performing the evaluation, several issues arose re-
lated to the interpretation of the CALIPSO-CALIOP cloud
datasets. This was mainly triggered by the notification of

some differences between CALIOP cloud datasets created at
different spatial resolutions, differences which are directly
related to the applied retrieval methodology. This behaviour
differs to a large extent from the results of methods used
to interpret clouds at different horizontal resolutions in pas-
sive imagery. We claim that these differences have not been
accounted for in some previous studies using CALIPSO
datasets for evaluating cloud datasets from passive imagery.
Also, the philosophical question on how to define the up-
per boundary (cloud top) of a cloud needs specific attention.
These issues may all be critical to the final results and we
want to highlight these aspects in this paper.

Section 2 introduces the two datasets to be inter-compared,
and Sect. 3 elaborates further on the problems associated
with this comparison and suggests a method on how to deal
with them. This is followed in Sect. 4 by the presentation
of results on the performance of cloud detection, its regional
dependency and the apparent cloud detection limit in terms
of the thinnest (in the cloud optical thickness sense) clouds
being detected. Section 5 presents results for the cloud top
height determination, taking into account the deduced cloud
detection limitations. Finally, Sect. 6 concludes and gives
some further discussion on the optimal method to be used
for cloud parameter validation.

2 Data

2.1 The investigated dataset: CLARA-A1

The CLARA-A1 dataset of global cloud products retrieved
by CM SAF cloud retrieval methods is based on reduced
resolution (approximately 4 km) global area coverage (GAC)
AVHRR data spanning the time period 1982–2009. The total
set of cloud products includes cloud fractional cover, cloud
top level, cloud optical thickness, cloud phase, liquid wa-
ter path, ice water path, and joint cloud property histograms.
Here, we will concentrate on the evaluation of the first two
products. For a full description of the dataset the reader is
referred to Karlsson et al. (2013).

The cloud fractional cover (CFC) product is derived di-
rectly from results of a cloud screening, or cloud masking,
method. CFC is defined as the fraction of cloudy pixels per
grid square compared to the total number of analysed pixels
in the grid square. Fractional cloud cover is expressed in per-
cent. The product is calculated using the Nowcasting Satel-
lite Application Facility (NWC SAF) PPS (Polar Platform
System) cloud mask algorithm (seehttp://www.nwcsaf.org/
for details on the NWC-SAF project). The algorithm (de-
tailed by Dybbroe et al., 2005) is based on a multi-spectral
thresholding technique applied to every pixel of the satel-
lite scene. Several threshold tests may be applied (and must
be passed) before a pixel is assigned to be cloudy or cloud
free. Thresholds are determined from present viewing and il-
lumination conditions and from the current atmospheric state
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(prescribed by data assimilation products from numerical
weather prediction models – here, the ERA-Interim dataset;
see Dee et al., 2011, andhttp://www.ecmwf.int/research/era/
do/get/era-interim). Also, ancillary information about sur-
face status (e.g. land use categories and surface emissivities)
is taken into account. Thus, thresholds are dynamically de-
fined and therefore unique for each individual pixel.

The cloud top level (CTO) product is also derived using
NWC SAF PPS algorithms. The product is abbreviated CTO
because it can be expressed in three alternative forms: cloud
top height (in meters), cloud top pressure (in hPa), and cloud
top temperature (in Kelvin). In this paper we concentrate on
the cloud top height version since this quantity is directly
measured by the CALIPSO-CALIOP sensor. Consequently,
we will refer to the product as either CTO or cloud top height.

Cloud top processing is subdivided using two separate al-
gorithms, one for opaque and one for fractional and semi-
transparent clouds, and it is applied to all cloudy pixels
as identified by the PPS cloud mask product. The opaque
algorithm uses simulated cloud-free and cloudy top of at-
mosphere (TOA) 11 µm radiances which are compared and
matched to measured radiances. Cloudy radiances are simu-
lated assuming “black-body” clouds at various levels. The
semi-transparent algorithm (described by Korpela et al.,
2001) is applied to all pixels classified as semi-transparent
cirrus or fractional water cloud. This classification is based
on the analysis of brightness temperature differences of the
11 µm and 12 µm (split window) channels, noting that this
difference is generally small or negligible for opaque clouds.
A histogram technique is applied based on the construction
of two-dimensional histograms using AVHRR 11 and 12 µm
brightness temperatures composed over larger segments (typ-
ically 32×32 pixels). By an iterative procedure a polynomial
curve (simulating the arc shape) is fitted to the histogram-
plotted values from which the cloud top temperature and
pressure (taken from ERA-Interim profiles) are retrieved.

Obviously, only a small fraction of the CLARA-A1 dataset
may be evaluated using CALIPSO-CALIOP data (limited to
years 2006–2009). However, it is believed that results should
largely be valid also for results before these years provided
that a reasonably large number of collocations can be found
and considering that the AVHRR instrument has not under-
gone drastic changes throughout the years. The basis for the
comparison is the use of original PPS cloud mask and cloud
top height products for full orbit swaths (about 13 000 scan
lines) which are collocated with CALIPSO-CALIOP orbits
using specific matching criteria (further described in Sect. 3).

In the remainder of the text we will use the notation
CLARA-A1/PPS to emphasise that we examine the perfor-
mance of the PPS cloud mask and PPS cloud top height prod-
ucts for the PPS version used for defining the CLARA-A1
dataset.

2.2 The reference validation dataset:
CALIPSO-CALIOP cloud products

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) satellite was launched in April 2006
together with CloudSat. The satellite carries the Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) and
the first data became available in August 2006. CALIOP pro-
vides detailed profile information about cloud and aerosol
particles and corresponding physical parameters. CALIOP
measures the backscatter intensity at 1064 nm, while two
other channels measure the orthogonally polarised compo-
nents of the backscattered signal at 532 nm. The horizontal
resolution of each single field of view (FOV) is in practice
333 m (but the true FOV is actually not larger than about
100 m) and the vertical resolution is 30–60 m. The CALIOP
cloud product reports observed cloud layers, i.e. all layers
observed until signal becomes too attenuated. In practice the
instrument can only probe the full geometrical depth of a
cloud if the total optical thickness is not larger than a cer-
tain threshold (somewhere in the range 3–5). For optically
thicker clouds only the upper portion of the cloud is sensed.

CALIOP products have been retrieved from the NASA
Langley Atmospheric Science Data Center (ASDC,http:
//eosweb.larc.nasa.gov/JORDER/ceres.html). We have used
the Lidar Level 2 Cloud and Aerosol Layer Information prod-
uct version 3.01 and the associated information from the Li-
dar Level 2 Vertical Feature Mask product. Regarding the lat-
ter it is important to notice the use here of the categorisation
of low-level, medium-level and high-level clouds introduced
by the International Satellite Cloud Climatology Project (IS-
CCP). This categorisation uses pressure levels of 680 hPa and
440 hPa to separate the three categories. We will use this clas-
sification later for separating results of cloud top height de-
terminations between the three vertical groups of clouds.

The CALIOP products are defined in three different ver-
sions with respect to the along-track resolution ranging from
333 m (individual footprint resolution), 1 km and 5 km. The
two latter resolutions are consequently constructed from sev-
eral original footprints/FOVs. This allows a higher confi-
dence in the correct detection and identification of cloud and
aerosol layers compared to when using the original high-
resolution profiles. For example, the identification of very
thin cirrus clouds is more reliable in the 5 km dataset than in
the 1 km dataset since signal-to-noise levels can be raised by
using a combined dataset of several original profiles. Also to
notice is that in the derivation of the 5 km dataset subsequent
averaging procedures also at coarser resolution (e.g. 20 km
and 80 km) have been made, meaning that the thinnest clouds
are found on these larger scales (20 km or 80 km), although
correctly described in the 5 km resolution representation. For
a full description of the retrieval methodology, see Vaughan
et al. (2009) and Winker et al. (2009).

The natural choice of product resolution for the validation
of 4 km AVHRR GAC products is to use the CALIOP 5 km
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dataset. The CALIOP 5 km dataset also offers estimation of
cloud optical thicknesses of individual layers (not available
for finer resolution FOVs), which is a very attractive feature
since it means that this offers a possibility to analyse cloud
detection limits quantitatively.

3 Methodology

3.1 Concern about differences of CALIOP and AVHRR
1 km and 5 km cloud datasets

One of the central features of CALIOP cloud retrieval al-
gorithms (as outlined by Vaughan et al., 2009) is to take
maximum advantage of the possibility to increase signal-to-
noise levels by averaging results from high-resolution fields
of view into coarse-resolution fields of view. By doing this
it is possible to identify cloud layers which are too thin to
be detected in the original fine FOV resolution of 333 m be-
cause of high noise levels. This means that in theory the
optically thinnest cloud layers will be found from analysis
of CALIOP data averaged even up to 80 km segment reso-
lution. Since a lot of concern in climate research for many
years has been given to the potential impact of thin and sub-
visible cirrus clouds (Stephens et al., 1990), this capability of
the CALIPSO mission has been very much highlighted and
numerous reports have been published on this subject (two
examples are Haladay and Stephens, 2009, and Virts et al.,
2010).

However, it is possible that the focus on the thin cloud
identification may have led to some drawbacks for the
prospect of evaluating the performance of other cloud al-
gorithms, e.g. algorithms based on data from passive im-
agery. At least, it is important to notice that globally re-
trieved cloud results achieved when reducing the CALIOP
horizontal resolution from, e.g., 1 km to 5 km, will behave
very differently compared to the case of using AVHRR-based
datasets with similar resolutions. AVHRR radiances at the
5 km scale (GAC resolution) are composed by linear averag-
ing over several original 1 km FOVs, while the averaging of
CALIOP measurements and the subsequent cloud retrieval
is done in a more complicated manner (see Winker et al.,
2009). For CALIOP the basic aim is to detect more of the re-
ally thin cloud layers when averaging at coarser resolutions.
But during this process, contributions from some highly re-
flective boundary layer clouds at the original FOV resolu-
tion are removed in order to not completely dominate over
weaker signals. Thus, we both add and lose clouds when
shifting from the 1 km CALIOP datasets to the 5 km rep-
resentation. Normally the total cloud fraction (abbreviated
CFC below) summed over a full orbit of the 5 km dataset
is higher than the 1 km dataset, but not for all cases. For
these latter ones it means that the orbit then includes quite
a high fraction of sub-resolution cloudiness detected only at

the finest horizontal resolution. To exemplify, we have the
following three possible cases:

1. CFC1km< CFC5km: several new thin cloud layers are
detected at coarser resolutions with only a small loss of
clouds at finer resolutions.

2. CFC1km = CFC5km: new cloud layers are detected at
coarser resolutions but just balanced by the loss of
clouds at finer resolutions.

3. CFC1km> CFC5km: higher loss of clouds at finer reso-
lutions compared to newly detected thin cloud layers at
coarser resolutions.

Then the question is, will this different behaviour of results
have any consequences for the case of comparing them to re-
trievals from passive imagery, and then in particular to results
in the AVHRR 1 km and 4 km (GAC) resolutions?

In the case of the newly added thin cloud layers at the
CALIOP 5 km resolution it all depends on if the clouds are
thick enough to be detected in the AVHRR GAC resolution.
This can be investigated by comparing the degree of detec-
tion efficiency with the retrieved cloud optical thickness of
those layers (we will do that as outlined in Sect. 3.3).

More serious is the fact that quite a large fraction of the
highly reflective but sub-resolution cloud elements being re-
moved when constructing the 5 km CALIOP dataset might
still be detected at the 4 km AVHRR GAC resolution. This
has to do with non-linear effects in the original 1 km AVHRR
FOVs, meaning that a high total reflectivity can be achieved
for that FOV even if the fractional coverage (i.e. geometric
size) of the cloud element in the FOV is very small. This, in
turn, may also then affect results averaged to the 4 km GAC
resolution. The identification of such partly cloudy FOVs is
important since it may affect the accuracy of, e.g., SST re-
trievals. Thus, the fact that such cloud elements are not in-
cluded in the CALIPSO 5 km dataset might give an unwanted
bias to the results. More clearly, we want to avoid labelling
these cloudy or cloud-contaminated pixels wrongly as cloud-
free pixels, which otherwise easily could be concluded if re-
lying on the CALIOP 5 km dataset.

Because of these differences in how to delineate global
cloudiness by use of data from active and passive sensors,
we suggest that one should try to use the existing informa-
tion from both the 1 km and 5 km CALIOP datasets in a com-
bined way to estimate the cloud situation. Especially, contri-
butions to global cloudiness from highly reflective boundary
layer clouds must be taken into account also at scales com-
patible with the coarse AVHRR GAC resolution. This means
that at least a part of the information about these clouds that
was suppressed or lost when preparing the CALIOP 5 km
resolution datasets needs to be restored. In the next sub-
section we introduce a method which we believe takes the
best from both CALIOP datasets, thereby defining a better
reference dataset for AVHRR GAC data than the nominal
5 km CALIOP dataset.
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3.2 Proposed evaluation of cloud amounts using
combined 1 km and 5 km CALIOP datasets

The principle for constructing an optimal cloud dataset (i.e.
optimal for the inter-comparison with cloud datasets from
passive imagery) from CALIOP 1 km and 5 km datasets is
based on the fact that that thick (opaque) clouds are well de-
scribed by the CALIOP 1 km dataset while thin clouds are
best described by the 5 km dataset. Here, we also assume that
the contribution from highly reflective boundary layer clouds
(as detected at the original FOV resolution of 333 m) is cor-
rectly represented also in the 1 km dataset. In other words,
we think that the potentially “lost” thick clouds in the 5 km
dataset after averaging (as described in the previous section)
are most likely included in the 1 km dataset. Thus, we can
construct a new merged cloud dataset by going through the
following rather simple post-processing steps:

– Step 1: Compute a preliminary cloud fraction (CFC′) at
5 km segment resolution from the 1 km segments.

(Thus, CFC′ can now take the six discrete values of 0 %,
20 %, 40 %, 60 %, 80 % and 100 % for every 5 km seg-
ment.)

– Step 2a: Set 5 km data to CLOUDY if CFC′ > 50 %.

(If a cloud layer was missing in the 5 km dataset but
covered more than 50 % of the involved 1 km segments,
then a new layer will now be added.)

– Step 2b: Set 5 km data to CLOUD-FREE if
CFC′ < 50 %.

(If only a few 1 km columns are cloudy, we should not
consider the full 5 km segment as cloudy.)

– Step 3: If a cloud layer exists at 5 km segment resolution
but NOT at any 1 km segment,

⇒ new thin layer detected!

⇒ set 5 km segment to CLOUDY (or, rather, keep the
5 km dataset unchanged).

By these simple steps we believe that we have achieved
our goals even if steps 2a, 2b and 3 still mean that there are
undetermined retrieved values of both CFC and cloud optical
thickness. For example, in step 2a we might add (or restore) a
new 5 km layer, but we have no way of giving this new layer
a retrieved value of cloud optical thickness (since this quan-
tity is only retrieved for the 5 km segment dataset and not
for the 1 km segment dataset). We have “solved” this by pre-
scribing the new value to optical thickness 1.0. This is just to
show that we believe that this cloud layer should not belong
to the category of very thin cloud layers, thus assuring that
it will not be included in subsequent cloud detection limit
studies focusing on clouds with low optical thickness values.
Furthermore, step 2b means that there could be cases when
at 1 km segment resolution there are only one or two cloudy

columns while at 5 km segment resolution we have a cloud
layer (implying that it covers the entire 5 km segment). This
cloudy 5 km segment will now be removed, which maybe
could be questioned. In some sense, we then say that in this
case we rely more on the 1 km dataset than on the original
5 km dataset. This is at least partly justified for passive im-
agery not being capable of detecting very thin clouds. The
ambiguity comes also from the consideration that it could
theoretically be a cloud layer that is only partly detected in
the 1 km segments within the 5 km segment, while in reality
it is actually covering the entire 5 km segment. We simply
have not enough information here to judge what the truth
is, so we have to stay with the simple interpretation result-
ing from steps 2a and 2b. We actually think this uncertainty
is marginal in comparison with the general uncertainty about
the true CFC within the 5 km segment concerning the entirely
“new” thin cloud layers appearing in the 5 km dataset that
are detected after the averaging procedure for reducing the
signal-to-noise levels. These new cloud layers are assumed
to cover the entire 5 km segment, but there is actually no way
of estimating the true CFC within the 5 km segment resolu-
tion. It is possible that these clouds only cover a fraction of
the 5 km segment. In some sense, it is even possible that these
interpreted thin cloud layers might be just broken cloud lay-
ers which are optically relatively thick but just cover a small
fraction of the 5 km segment (as suggested by Abhay Dev-
asthale, personal communication, 2012).

Despite these remaining ambiguities, we believe that the
proposed approach yields reasonable results which are more
consistent and robust than results based exclusively on either
1 km or 5 km segment data.

3.3 Method for evaluating cloud detection efficiency
and the cloud detection limit

The merged new 5 km CALIOP dataset (compiled accord-
ing to the method described earlier) now includes informa-
tion about cloud layers at each 5 km segment, and for each
cloud layer an estimated cloud optical thickness is given.
However, it is important to remember that for the lowermost
layer it might be only a minimum value since the entire cloud
layer might not be penetrated by the lidar signal. We may
now evaluate the cloud detection efficiency of the methods
used to derive the CLARA-A1 dataset either in a direct inter-
comparison (i.e. using all CALIOP-detected cloud layers) or
by applying a filtering mode where cloudy columns having
an integrated cloud optical thickness below a certain value
are treated as being cloud free. In this way we should be
able to quantify the cloud detection limit of the CLARA-
A1 dataset. For this purpose we have filtered the CALIOP
dataset in cloud optical thickness steps of 0.05 in the range
0.0–0.5 and in steps of 0.1 in the range 0.5–1.0.

For quantifying results we have used the following statis-
tical scores:

1. mean error (Bias),

www.atmos-meas-tech.net/6/1271/2013/ Atmos. Meas. Tech., 6, 1271–1286, 2013
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2. root mean square error (RMS),

3. probability of detection (POD) for both cloudy and
cloud-free conditions,

4. false alarm rate (FAR) for both cloudy and cloud-free
conditions,

5. hit rate (HR), and

6. Kuiper’s skill score (KSS).

For the estimation of cloud occurrence or CFC, we have used
a binary representation of the results (i.e. cloud cover = 1 for
cloudy conditions and cloud cover = 0 for cloud-free condi-
tions) for each individual pixel or FOV. Consequently, re-
sults are accumulated over the full matchup track to get a
mean CFC (according to Eq.1below) and the associated Bias
and RMS values. As a final step, all matchup results for all
matched orbits are accumulated and averaged.

CFC=

∑
cloudy∑

all pixels
(1)

For the remaining four quantities we have used the following
definitions (referring to notations in the contingency matrix
in Table 1):

PODcloudy =
d

c + d
(2)

PODcloud-free=
a

a + b
(3)

FARcloudy =
b

b + d
(4)

FARcloud-free=
c

a + c
(5)

HR =
a + d

a + b + c + d
where 0≤ HR ≤ 1 (6)

KSS=
a · d − c · b

(a + b) · (c + d)
where − 1 ≤ KSS≤ 1 (7)

The POD and FAR quantities estimate how efficient
CLARA-A1/PPS is in determining either cloudy or cloud-
free conditions. Naturally, we want POD values to be as high
as possible and FAR values to be minimised. The HR is
a condensed measure of the overall efficiency of cloud de-
tection. Finally, the KSS quantity is a complementing mea-
sure since the HR can sometimes be misleading because it is

Table 1.Contingency matrix for the two different satellite observa-
tions.

CALIPSO-CALIOP

CLARA-A1/PPS AVHRR

Scenario Cloud-free Cloudy
Cloud-free a b

Cloudy c d

heavily influenced by the results for the most common cate-
gory. For example, if a case is almost totally cloud free but
all the few cloudy portions are misclassified as cloud free
by CLARA-A1/PPS, then the HR score would still be high.
A more reasonable measure in such a condition is the KSS
that at least to some extent punishes misclassifications even
if they are in a small minority of all the studied cases. The
KSS tries to answer the question of how well the estimation
separated the cloudy events from the cloud-free events. A
value of 1.0 in this respect describes the situation of a perfect
discrimination, while the value−1.0 describes a complete
discrimination failure.

The use of a wide range of statistical scores should be seen
in the light of the fact that it is not obvious which of the
scores that best describes the cloud detection limit of a cloud
screening method. We hope that a closer look at the results
would suggest which score or which combinations of scores
are the most optimal for this particular aspect.

In addition, we have also separately studied the cloud de-
tection efficiency over various regions of the Earth and the
performance as a function of time of day. Here, we have used
the twilight category defined as valid for solar zenith angles
between 80 and 95 degrees with day and night categories ei-
ther having lower or higher solar zenith angles, respectively.
Concerning the study of the geographical variation, we have
separated results according to geographical regions defined
in Table 2. These results have also been further separated for
land and ocean conditions using a land mask.

3.4 Method for evaluating accuracy of cloud
top height products

Considering that there is a cloud detection limit (expressed
in terms of minimum cloud optical thickness,τmin), for a
dataset such as CLARA-A1, the evaluation of correspond-
ing cloud top height products must take this into account. It
is of course trivial that clouds which are not detected cannot
be given a valid cloud top height. But also for clouds that
are detected, the effect of cloud detection limitations must be
taken into account in some way. For example, if a very thin
cloud layer (not detectable by CLARA-A1/PPS but present
in the CALIOP dataset) is overlaying a thicker cloud layer
(detected by CLARA-A1/PPS), then one should actually ne-
glect this uppermost layer when doing cloud top height val-
idation. Even in the case when we have just detected one
single cloud layer, the uppermost part of that layer (with
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Table 2.Definition of geographical sub-regions.

Region notation Latitude band

TROPICAL Latitudes (±) 0–15 degrees
MID-LATITUDE Latitudes (±) 15–45 degrees
HIGH-LATITUDE Latitudes (±) 45–75 degrees
POLAR Latitudes (±) 75–90 degrees

integrated optical thickness of the minimum detection value)
should theoretically be discarded. One could actually claim
that a representative cloud top height would be even lower
since the measured radiance for the AVHRR instrument is a
mix of contributions from several altitudes below the cloud
top unless the cloud is optically very thick. In other words,
the AVHRR-representative cloud top is the radiatively effi-
cient cloud top rather than the physical or geometrical cloud
top. Thus, for an AVHRR-detected cloud layer a represen-
tative cloud top height should rather be the mid-layer alti-
tude of the CALIOP-detected layer than the uppermost cloud
layer boundary. This can also be motivated for the clouds that
are not fully penetrated by the CALIOP lidar signal. When
the cloud is optically too thick, the CALIOP cloud layer
will describe only the uppermost part of the cloud, and the
mid-layer value here would then still be representative for
the AVHRR-detected (radiatively efficient) cloud top, in our
opinion.

Taking these aspects into account, we have applied the fol-
lowing criteria for evaluating the cloud top height:

– The uppermost cloud layer (or layers) in the CALIPSO
dataset is disregarded if the cloud optical thickness
(summed if more than one layer) does not exceed the
minimum cloud optical thickness (τmin).

– Cloud top height is interpreted as the mid-level of the
uppermost CALIOP cloud layer assumed to be detected
in CLARA-A1, i.e. the mean of the cloud base and the
cloud top altitude for that layer.

3.5 The collocated NOAA-AVHRR and
CALIPSO-CALIOP dataset

We have adopted the following strategy for collecting the col-
located NOAA-AVHRR and CALIPSO-CALIOP cloud ob-
servations to be inter-compared:

– Select the best complete collocations or matches, i.e.
entire global orbits with minimum observation time dif-
ferences between NOAA-18 and A-Train/CALIPSO for
every month where we have CALIPSO data available
(in practice from October 2006 until December 2009).

Observe that the choice of NOAA-18 is explained by
the fact that this satellite is placed in almost the same or-
bital plane as the Aqua-Train satellites with approximately

Fig. 1. Total global coverage of 99 matched CALIPSO-NOAA-
18 orbits in the period October 2006 to December 2009. Different
colours refer to different years.

the same Equator-crossing time. Thus, if choosing matches
where the orbital tracks cross simultaneously (denoted Si-
multaneous Nadir Observations – SNOs) – in this case lim-
ited to within only 12 s – we can get measurements matched
in near-nadir observation conditions for an entire global or-
bit and with a maximum time difference between observa-
tions of less than approximately 2 min for positions farthest
away from the SNO point. Using this criterion we may the-
oretically get close to 3 such optimal matches each month.
However, due to some losses of data (i.e. cases where we
could not find both 1 km and 5 km CALIOP data) we ended
up with a total of 99 global orbits evenly distributed over
the period (see total coverage in Fig. 1). The geographical
coverage is good, but we can see that for some regions (e.g.
over South America, the North Atlantic Ocean, Africa and
parts of the Pacific Ocean) the orbit coverage is less frequent
than over other regions due to some loss of data. An example
of one of the resulting orbits is shown in Fig. 2. The corre-
sponding plot of CALIOP-observed cloud layers (green) and
CLARA-A1/PPS cloud top height results (blue) is given in
Fig. 3. Only small deviations (less than 10 degrees) from the
nadir view are achieved for the matched AVHRR observa-
tions during such an orbit.

The 99 collocated orbits resulted in a total of 725 900
matched AVHRR/CALIOP observations within a 2 min ob-
servation time difference (valid within each complete orbit)
for the calculation of statistics and scores.

4 Results

4.1 Cloud screening efficiency

4.1.1 Overall results based on all collocations

A way to estimate the cloud detection efficiency is to plot
and analyse various statistical scores as a function of the
CALIOP-filtered cloud optical thickness. For clarity, we re-
peat that the filtering process means that whenever CALIOP-
derived total cloud optical thickness in the column/FOV falls
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Fig. 2. Trajectory for one selected matched CALIPSO-NOAA-
18 orbit from 6 October 2006 with first matched observation at
18:00 UTC (over South America).

below a specific cloud optical thickness threshold we will
treat the observation as being cloud free when calculating the
statistics. Figures 4–6 show the results for all statistical pa-
rameters described in Sect. 3.3 based on all collocated orbits.
The use of a variety of statistical scores will help us later in
deducing an appropriate way of defining the cloud detection
limit (outlined in Sect. 4.1.2).

The basic mean error and RMS error quantities are shown
together with the resulting total cloud fraction (i.e. percent-
age cloudy segments of all segments) in the CALIPSO-
CALIOP dataset in Fig. 4. We notice that after filtering
clouds having optical thicknesses up to 1.0, the total cloud
fraction for CALIOP reduces from approximately 73 % to
50 %. At the same time the mean error changes from−14 %
to +8 % and the RMS changes from 47 % to 50 %. Based on
mean error results alone one might conclude that the opti-
mal agreement is reached after filtering all cloudy columns
with optical thickness values below 0.35. The fact that mean
errors become positive for higher filtered optical thickness
thresholds only means that some cloudy CALIOP columns
are now treated as being cloud free even if they were de-
tected successfully by CLARA-A1/PPS, thus giving a pos-
itive mean error. When comparing with Fig. 6 showing hit
rates and Kuiper’s skill scores, we see that the skill now
peaks at slightly lower values of the filtered cloud optical
thickness threshold, namely at about 0.2 for hit rate and 0.1
for Kuiper’s skill score. This shows that from these differ-
ent statistical measures it is not easy to come to a very clear
conclusion about cloud detection limits.

However, results of POD and FAR in Fig. 5 also reveal
some further features of CLARA-A1/PPS results which are
not evident in Fig. 4 or Fig. 6 and which are not directly
related to how thin or thick clouds are. We first note that
the FAR quantity for clear segments initially reduces rapidly
with increasing values of the filtered cloud optical thickness.
This is what we should expect if very thin cloud layers are
not detected by CLARA-A1/PPS, i.e. scores would improve
if these CALIOP observations were also treated as being
cloud free. Similarly, POD for cloudy conditions improves

Fig. 3. Matched CALIPSO-CALIOP cloud mask (green) and
NOAA-AVHRR cloud top height values (blue, in metres) from
CLARA-A1/PPS for the same global orbit as shown in Fig. 2. Track
position is given in number of AVHRR GAC pixels (to be multiplied
by 4 to get roughly the distance in km). Significant topographic fea-
tures are seen in black at track positions 6000 (Antarctica) and 3000
(Russia/China).

Fig. 4. Mean CALIOP cloud occurrences (CFC), mean error and
RMS error as a function of filtered cloud optical thickness (ex-
plained in text) for CLARA-A1/PPS cloud masks calculated from
99 global matches of NOAA-18 with CALIPSO between Octo-
ber 2006 and December 2009.

with increasing values of filtered optical thickness. How-
ever, more serious is the observation that the FAR quantity
for cloudy conditions amounts to 8 % initially for unfiltered
CLARA-A1/PPS results. Thus, we seem to have a signifi-
cant misclassification of clear segments labelled as cloudy,
which also explains why POD results for clear conditions are
relatively far away from 100 % in the unfiltered mode. This
shows that the cloud detection efficiency cannot be judged
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Fig. 5. Same visualisation as in Fig. 4 but for probability of detec-
tion (POD) and false alarm rates (FAR) for cloudy and clear cate-
gories.

solely from studies of how thin or thick clouds are. It is
clear that there are also Earth surfaces that have appear-
ances that resemble those of clouds regardless of whether
clouds are thin or thick. The most obvious example is the
case when interpreting a cold ground surface at night as be-
ing a cloud when using an inappropriate value of the assumed
ground surface temperature (i.e. being too warm). Another
case is when a bright land surface (e.g. desert) is mistaken
for a cloud because of using inappropriate (i.e. too dark) sur-
face reflectance thresholds. We conclude that some measures
must be taken to try to remove the influence from this lat-
ter type of misclassifications which could be interpreted as a
constant bias in our results not related to the thickness of the
clouds.

4.1.2 Results after excluding misclassified
cloud-free surfaces

The most obvious way of trying to isolate the results depend-
ing mainly on the cloud optical thickness value of clouds
would be to remove or ignore all cases being misclassified
as cloudy in the completely unfiltered mode. In other words,
let us restore the cloudy CLARA-A1/PPS pixels in evidently
cloud-free CALIOP segments to become clear. Thus, these
8 % of the cases in the FAR category for cloudy pixels in the
unfiltered mode are now being correctly classified as clear.
Ideally, we should also try to exclude or ignore the oppo-
sitely misclassified cases, i.e. when clouds are misclassified
as clear regardless of their optical thickness (i.e. for non-
separability reasons meaning that cloud-free surfaces cannot
easily be separated from a cloud). However, these cases are
not as easily identified as the cases of misclassified clear pix-
els. More clearly, they can occur at any cloud optical thick-
ness, meaning that these cases are inherently mixed with all

Fig. 6. Same visualisation as in Fig. 4 but for the hit rate and
Kuiper’s skill scores.

the cases we actually aim at, namely those cases when cloud
detection will clearly depend on the cloud optical thickness
value. In that sense these misclassifications exist as an almost
constant bias in our results. They are best identified in Fig. 5
as explaining why the FARclearvalue is still high (20 %) even
at the maximum filtered cloud optical thickness of 1.0. This
means that in 20 % of all cases in which CLARA-A1/PPS
gives a cloud-free result there are actually clouds in reality
and they have cloud optical thickness values higher than 1.0.
Further details on when these misclassifications occur will be
revealed in forthcoming Sects. 4.1.3 and 4.1.4.

The revised results for the statistical scores (after ignoring
misclassified clear cases labelled as cloudy) are now shown
in Figs. 7–9. We notice in Fig. 7 that now the mean error
quantity does not reach the zero level until a filtered cloud
optical thickness of 0.7. This is a high value and indicates
that the CLARA-A1/PPS cloud screening method is gen-
erally rather cloud conservative. But it doesn’t necessarily
mean that the cloud detection limit is best described by this
value of optical thickness. Rather we should use a quantity
which is more uniquely decided by and dependent on the fil-
tered cloud optical thickness. The two quantities that best fit
this description seem to be POD for cloudy conditions and
FAR for clear conditions. The first quantity improves with
increasing filtered optical thicknesses until “all” clouds are
detected. The fact that the PODcloudy saturation level does
not reach 100 % means that the difference with respect to
the 100 % level represents all those cases where clouds re-
main undetected regardless of their cloud optical thickness.
Similarly, the FAR for clear conditions behaves in the same
way where the apparent convergence level defines the same
misclassified cases (i.e. that portion of the CLARA-A1/PPS
clear cases that actually are undetected clouds even for higher
optical depths).
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Fig. 7.Same as Fig. 4 but after treating CLARA-A1/PPS misclassi-
fied clear pixels as truly clear and not as cloudy (see motivation in
text).

The significant increase at optical thicknesses lower than
0.7 of the POD quantity for cloudy conditions, and the corre-
sponding decrease of the FAR quantity for clear conditions,
in Fig. 8 shows that much thinner clouds than what the mean
error quantity indicates are indeed detected. A better value
of the minimum optical thickness detected could then be sug-
gested to be derived from the rate of change of the mentioned
POD and FAR quantities for cloudy and clear conditions, re-
spectively. The minimum optical thickness to be determined
would then be the value found when the improvement of
these two quantities has slowed down or “saturated” (i.e. ap-
proaching constant or almost constant values). The interpre-
tation of this value would be that at this cloud optical thick-
ness all clouds are detected, unless other problems not related
to how thick clouds are exists. For lower cloud optical thick-
nesses some clouds will be detected, but for very low optical
thicknesses no clouds at all will be detected. Referring to the
lacking clear recommendations on how to define the cloud
detection limit, we suggest the following definition for find-
ing this cloud optical thickness limit based on the principles
outlined above:

(
δPODcloudy

δτ
+

δFARclear

δτ
) < 1 %. (8)

This means that we will interpret the cloud detection limit as
the first (i.e. lowest) cloud optical thickness value where this
inequality is fulfilled while checking for higher and higher
filtered cloud optical thickness values. To repeat, the ambi-
tion is to construct a robust measure that tells us where the
rate of change of the POD and FAR quantities have decreased
to very small values. The value 1 % is perhaps rather arbitrar-
ily chosen, but it was considered reasonable as a value for
representing the case when the two quantities had reached
almost constant values. Consequently, when applying this

Fig. 8.Same as Fig. 5 but after treating CLARA-A1/PPS misclassi-
fied clear pixels as truly clear and not as cloudy (see motivation in
text).

definition we get the overall cloud detection limit at optical
thickness 0.35.

Sensitivity studies testing the effect of using threshold val-
ues in Eq. (8) of 0.5 % and 2 %, respectively, showed that the
deduced limit then varies between 0.25 and 0.5. However,
both these options were found less useful. For the higher
value (2 %) the rate of change is still quite high, indicating
that we are still far from any saturation of the values. As a
contrast, the 0.5 % threshold gives a result (optical thickness
0.5) which is quite far away from the point where the visual
inspection of the figures (e.g. Fig. 8) would suggest that we
have reached a decent saturation. Consequently, we believe
that the 1 % threshold is a reasonable value.

An additional sensitivity test was performed to check the
importance of the cloud fraction limit in tests 2a and 2b as
previously described in Sect. 3.2. This cloud fraction limit
based on the 1 km columns in a 5 km segment was here set to
50 % in deciding whether the 5 km segment should be con-
sidered cloudy or cloud free. We tested using a slightly lower
value (30 % = at least 2 cloudy columns) and a slightly higher
value (70 % = at least 4 cloudy columns). Conclusions from
these tests were that the method is robust in that more or less
the same results were achieved regardless of these applied
thresholds. In practice, this means that individual values of
curves in the figures are raised or lowered when changing this
threshold but that the actual shapes of the curves (in partic-
ular the rate of changes) remains practically the same. Thus,
we consider our results as quite robust.

When comparing with Fig. 9 we see that the optical thick-
ness limit of 0.35 is also relatively close to where the maxi-
mum of the hit rate score occurs (although peaking at slightly
lower optical thickness values). However, the Kuiper’s score
does not really help us here. Remembering that this score
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Fig. 9.Same as Fig. 6 but after treating CLARA-A1/PPS misclassi-
fied clear pixels as truly clear and not as cloudy (see motivation in
text).

is a measure of how well cloudy and cloud-free situations
are separated, it is clear that this will now occur in the unfil-
tered case (after having removed all obviously misclassified
cloudy cases).

4.1.3 Results subdivided into day and night portions

Since the overall results include results from both illumi-
nated and dark conditions, an interesting aspect is to study
what happens if we look at both conditions separately – basi-
cally, looking at the impact of having access to visible spec-
tral channels (i.e. information on reflected sunlight) or not.
Figures 10–12 show corresponding results for all statistical
scores in the day and at night (as defined in Sect. 3.3). All
figures show convincingly how cloud detection efficiency de-
grades for nighttime conditions. For example, in Fig. 10 we
see that, while the mean error reaches the zero level already
at cloud optical thickness 0.2 during the day, it never reaches
this level at night (i.e. remains negative). It is clear that a
large fraction of all clouds are not detected at night, even at
large cloud optical thicknesses. This is also well illustrated in
Fig. 11 with decreasing PODcloudy and increasing FARclearat
night (i.e. FARclear at filtered cloud optical thickness of 1.0
increases from about 10 % during the day to about 25 % dur-
ing the night). Skill scores in Fig. 12 also show significantly
better results during the day compared to during the night.
Thus, the availability of information in the visible and short-
wave infrared AVHRR channels appears to be quite impor-
tant for the success of cloud detection.

Somewhat surprisingly, the derived value of the minimum
cloud detection limit (according to Eq. 9) is found at cloud
optical thickness 0.3 for both day and night conditions. Thus,
the sensitivity to the filtered cloud optical thickness is rel-
atively unchanged even if much fewer clouds are detected
at night. We conclude that this must be explained by the

Fig. 10.Same visualisation as in Fig. 7 but for categories day (top)
and night (bottom).

increase in frequency of cases when clouds are completely
missed at night (as indicated by the high FARclear value at
night). Thus, we are facing more general non-separability
conditions of clouds and Earth surfaces at night, and this has
nothing to do with how thick clouds are. The fact that the
overall cloud detection limit was estimated to be at cloud
optical thickness 0.35 in Sect. 4.1.2 (i.e. higher than the
derived value for either day or night) indicates that condi-
tions must be especially problematic at twilight conditions.
Hence, the cloud detection limit is found to lie at a cloud op-
tical thickness of 0.45 for twilight conditions. From Fig. 13,
showing the POD and FAR quantities at twilight conditions,
we conclude that this is explained by the rather slow in-
crease in PODcloudy and the corresponding slow decrease
of FARclear for increasing filtered cloud optical thicknesses.
Thus, at twilight we still miss a substantial fraction of opti-
cally thick clouds (more or less the same fraction as at night),
but now we also face increasing difficulties in detecting thin-
ner clouds.
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Fig. 11.Same visualisation as in Fig. 8 but for categories day (top)
and night (bottom).

4.1.4 Global results subdivided into regions

Let us now look at the geographical variations of the valida-
tion results. This might shed some further light on where we
encounter the problems of misclassified clear or misclassified
cloudy conditions, i.e. those misclassifications that do not de-
pend on existing clouds’ optical thickness. First considering
the unfiltered CALIPSO results, we will investigate if there
are specific regions where misclassifications of cloud-free ar-
eas occur (i.e. explaining the 8 % of CLARA-A1/PPS mis-
classified clear cases mentioned in Sect. 4.1.2). These results
are summarised for the mean error quantity in Table 3 for lat-
itudinal bands defined in Table 2, for day, twilight and night
categories and for land and ocean surfaces. We restrict the
description to the mean error quantity since by this detailed
subdivision of results the number of samples per category is
sometimes too small to enable a proper estimation of all the
statistical scores. For example, no samples for the twilight
category could be found for tropical and mid-latitude regions.

Fig. 12.Same visualisation as in Fig. 9 but for categories day (top)
and night (bottom).

As expected, for most categories in Table 3 we have a sub-
stantial underestimation of cloudiness explained by the in-
ability to detect very thin cloud layers. However, one of the
categories actually showing some overestimation (+6.2 %)
is the category mid-latitude land. Near-zero results are also
presented for the tropical land category. Further visual in-
spection of results revealed that misclassifications of clear
conditions mainly occur over semi-arid land areas in the sub-
tropical region, i.e. in the zone where desert regions change
from being pure desert to being partly vegetation-covered.
Thus, misclassifications do not occur over pure desert areas
but where we have a seasonal transition from near-desert con-
ditions to tropical vegetated conditions.

Table 4 shows results where we treat all CALIOP-detected
clouds with cloud optical thicknesses lower than 0.35 as
non-existent (i.e. as cloud-free cases). We notice that for the
day category we now get dominantly positive values, i.e. we
normally detect some clouds that are thinner than optical
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Fig. 13.Same visualisation as in Fig. 11 but for category twilight.

thickness 0.35. However, the overestimation is now quite ex-
cessive for categories mid-latitude land and tropical land,
which even further emphasises the misclassification prob-
lems encountered here. Some positive values are also seen
at night over mid-latitude and tropical categories, but other-
wise we have dominantly negative results for night and twi-
light categories which are in line with the results discussed
previously in Sect. 4.1.3. For these categories, we obviously
do not detect a substantial fraction of all clouds regardless
of their optical thickness. This occurs mainly in the polar re-
gions but also during dark and snow-covered periods over
high-latitude regions.

4.2 Cloud top height results

Results from the evaluation of cloud top height retrievals
(following the method described in Sect. 3.4) are presented
in Table 5. Results are compared with cases where we did not
apply any filtering of very thin cloud layers and also where
we compared with the cloud top boundary for the uppermost
CALIOP cloud layer instead of the mid-layer value.

It is obvious from Table 5 that the chosen validation
methodology has a tremendous impact on the achieved re-
sults. When including all thin cloud layers and when com-
paring with uppermost cloud boundary, a substantial under-
estimation of cloud top heights is found (on average more
than 2.5 km). When instead taking into account the cloud
detection limit at optical thickness value 0.35 and trying to
represent clouds with a more radiatively relevant height, re-
sults improve drastically. The overall bias is now−274 m
and the RMS error decreases by almost a factor 2. Even
when filtering with the optical thickness value of 0.5, the
bias almost disappears. However, we notice that the small
total bias is largely a result of the sum of a large underesti-
mation of high-level cloud tops (−1769 m) and a large over-
estimation of low-level cloud tops (+1137 m). Thus, there

Table 3. Mean error (%) of cloud detection separated according to
latitude bands and illumination categories (defined in the text) and
surface conditions (land or ocean). Statistics computed from 99 full
globally matched NOAA-18 and CALIPSO orbits with a total of
725 900 individual pixel matches.

DAY TWILIGHT NIGHT

TROPICAL Ocean −10.0 – −18.1
TROPICAL Land −0.8 – −22.4
MID-LATITUDE Ocean −6.3 – −14.9
MID-LATITUDE Land 6.2 – −13.7
HIGH-LATITUDE Ocean −4.7 −18.7 −18.4
HIGH-LATITUDE Snow-free Land −6.6 −29.4 −27.0
HIGH-LATITUDE Snow-cover Land −16.7 −36.6 −33.7
POLAR Ice-free Ocean −6.0 −25.1 −39.2
POLAR Ice-cover Ocean −13.4 −11.7 −37.5
POLAR Snow-cover Land −16.5 −35.3 −25.0
POLAR Snow-free Land −21.3 −38.9 −32.7

Table 4. Same as Table 3 but now after filtering results with cloud
optical thickness threshold 0.35 (i.e. all CALIOP-detected clouds
with smaller optical thickness are neglected and treated as a cloud-
free observation).

DAY TWILIGHT NIGHT

TROPICAL Ocean 11.2 – 4.8
TROPICAL Land 22.8 – −0.6
MID-LATITUDE Ocean 9.9 – −2.9
MID-LATITUDE Land 22.0 – 0.3
HIGH-LATITUDE Ocean 5.0 −9.0 −12.1
HIGH-LATITUDE Snow-free Land 9.9 −12.4 −11.3
HIGH-LATITUDE Snow-cover Land 0.1 −17.7 −17.5
POLAR Ice-free Ocean 1.9 −12.0 −32.2
POLAR Ice-cover Ocean 1.0 8.3 −21.1
POLAR Snow-cover Land 1.4 −14.5 −4.4
POLAR Snow-free Land −6.0 −13.9 −21.6

seems to be different behaviour of high-level clouds and low-
level clouds. The low-level boundary layer cloud problem is
the same as reported previously for MODIS cloud top prod-
ucts (Menzel et al., 2008). For CLARA-A1/PPS it can be ex-
plained as a problem with the reference atmospheric temper-
ature profile taken from NWP analyses (here, ERA-Interim).
For boundary layer clouds trapped in a temperature inver-
sion, the reference profile is not detailed enough (i.e. too
weak inversion, which is partly due to the mismatch between
pixel and NWP grid resolution), leading to an overestimation
of the cloud top height. A typical example of when this oc-
curs can be seen in Fig. 3 between track positions 7000 and
8000.

The underestimation of high-level clouds reflects the prob-
lem of how to define the radiatively efficient cloud top height
for thin and multiple cloud layers for an infrared channel of
a passive imager. CALIOP measurements have also revealed
the frequent existence of surprisingly thick (geometrically)
single cloud layers which are optically very thin. Good ex-
amples of this are found in Fig. 3 at track positions 2400,
4000 and 6500. The use of a mid-layer representation of
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Table 5. Cloud top height (CTO) results from CLARA-A1/PPS
evaluated using unfiltered and filtered CALIOP results. Mean er-
rors (Bias) and RMS errors are given for unfiltered (column 1) con-
ditions and for two filtered conditions (columns 2 and 3) with two
different cloud optical thickness thresholds. Mean errors are also
given for the three cloud layer groups of low-level, medium-level
and high-level clouds (explained in text).

CTO results CTO results CTO results
Total dataset COT threshold COT threshold
Unfiltered 0.35 0.5

Samples 281 180 254 130 248 398
Bias (m) −2762 −274 −78

(+593 Low (+1097 Low (+1137 Low
−781 Medium +199 Medium +280 Medium
−5339 High) −2028 High −1769 High

RMS (m) 4879 2511 2361

such a cloud layer is apparently still inadequate. Currently,
CLARA-A1/PPS retrievals underestimate the height for all
high-level clouds substantially even if the method of apply-
ing cloud filtering of the thinnest clouds have reduced the dif-
ference. It is clear that there are remaining ambiguities in the
determination of an appropriate radiatively efficient height.
A possible further improvement of the validation methodol-
ogy could be to better try to estimate how deep (in the optical
sense) into cloud layers we need to go to find this efficient
height. The corresponding integrated cloud optical thickness
should obviously be larger than the estimated detection limit
of 0.35. But even if we cannot determine this value exactly,
the systematic use of a stipulated value (e.g. optical thick-
ness 1.0) could be valuable in the evaluation of different and
upgraded cloud height retrieval methods in the future.

As a final remark, one must state that the AVHRR instru-
ment is poorly equipped for detection of very thin cirrus
clouds in comparison to other more advanced sensors (e.g.
MODIS). The lack of spectral channels sensitive to condi-
tions in the upper troposhere (e.g. CO2 bands) means that the
prospect for making accurate cloud height retrievals for thin
cirrus clouds remains very challenging and without much po-
tential to improve.

5 Conclusions

This study investigated the optimal validation methodology
to be used when evaluating cloud retrievals from passive im-
agers to take full advantage of the measurements provided
by the active cloud lidar CALIOP carried by the CALIPSO
satellite. Some problems for adequately using the current
CALIOP datasets for the validation purpose were identified
and a method for mitigating the influence of those was pro-
posed. The method was applied to evaluate a subset (cover-
ing the years 2006–2009) of the CMSAF CLARA-A1 dataset

derived from historical global AVHRR data. It was demon-
strated how the CALIOP-provided information of cloud pres-
ence and cloud optical thickness can be used to delineate the
current cloud detection limitations of the methods used to
compile the CLARA-A1 dataset. Although the cloud detec-
tion capability does vary with time of day and with the geo-
graphical environment, an overall cloud detection limit was
estimated at a cloud optical thickness of 0.35. It means that
at this cloud optical thickness most cloud layers are detected.
Thinner clouds are detected but at decreasing efficiency with
smaller cloud optical thickness. The diurnal variation showed
that the detection limit is close to 0.3 for both day and night,
while conditions deteriorate considerably at twilight condi-
tions when the cloud detection limit is estimated at 0.45.

The study also revealed that there is a substantial frac-
tion of cases where cloud detection results are not depen-
dent at all on the thickness of existing clouds. In other words,
there are cases where clouds are either completely missed or
falsely identified. This explains why the probability of de-
tecting clouds is limited to about 90 % during day but as low
as 75–80 % during night and twilight conditions. Daytime
misclassifications of semi-arid sub-tropical and tropical land
surfaces as clouds were identified, as well as a substantial
amount of missed clouds in the polar regions during the po-
lar winter. Both deficiencies are well understood and reflect
major challenges for most cloud retrieval schemes using data
from passive imagery. The daytime problem is linked to the
fundamental difference in the cloud-free spectral appearance
of desert surfaces and tropical forested surfaces. While cloud
screening seems to work well over both mentioned surfaces,
problems arise in the transition zone between them where
the appearance also changes seasonally. The current method-
ology has an inappropriate description of this transition zone
and the associated temporal changes of its surface appear-
ance (i.e. a static climatology is used). Thus, an improved
methodology must address this limitation in the future.

The underestimation of cloudiness at high latitudes and
especially during winter conditions is linked to another well-
known problem for all cloud screening methods applied to
passive imagery. It occurs when there is no distinct tem-
perature difference between clouds and the underlying sur-
face. The situation becomes even worse if the temperature
difference is also reversed (i.e. if clouds are warmer than
the surface), which is a frequent feature in the polar win-
ter. Also, when ground temperatures become extremely cold
(like over the Antarctic plateau in the polar winter) the radio-
metric accuracy of the AVHRR measurement is no longer ac-
curate enough for estimating the brightness temperature dif-
ference between infrared channels – a quantity that is heav-
ily used by many cloud screening methods. Altogether, this
leads CLARA-A1 to substantially underestimate the cloudi-
ness over polar regions in the polar winter and also during
night and twilight conditions at high latitudes. Notice that
even if this problem is common to most cloud screening
methods applied in the polar region, the achieved results may
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differ depending on the actual method. For some methods
like CLARA-A1/PPS the problems are manifested as missed
clouds, while for other methods it could as well lead to over-
estimated cloudiness (misclassified cold cloud-free surfaces).

Complementary to the study on cloud detection efficiency,
cloud top height assignments have been evaluated. The in-
formation on cloud detection limitations was taken into ac-
count, either by discarding too thin single-layer clouds or too
thin uppermost cloud layers. Results were shown to differ
substantially depending on whether the cloud top boundary
was defined as the uppermost CALIOP-derived cloud layer
boundary or as the mid-level (i.e. the mean of cloud base
and cloud top) of the corresponding CALIOP-observed cloud
layer. The latter definition gives a height that is closer to the
radiatively efficient level of the cloud, which better resembles
the level that is normally retrieved from passive imagery.

When using the latter approach a relatively small total
cloud top height bias of−274 m was found. This can be com-
pared to the cloud top height bias of−2762 m for the default
method based on the uppermost cloud boundary and includ-
ing all thin clouds. However, even after using the more real-
istic radiatively efficient level approximation it is clear that
large underestimations of high-level cloud top heights and
overestimations of low-level cloud top heights exist, which
have to be addressed in a future reprocessing of the dataset.

In conclusion, we have demonstrated how CALIPSO-
CALIOP results can be used to carry out a very detailed
examination of cloud retrieval results from passive imagers.
Results presented here are not entirely surprising or unex-
pected, but they are given with unprecedented detail. Al-
though the current CALIOP datasets, as defined in a partic-
ular horizontal resolution, are not always directly applica-
ble in comparisons with corresponding cloud datasets with
the same resolution from passive sensors, we have shown
how CALIOP datasets from different resolutions can be com-
bined to construct a more reasonable validation reference. As
such, we believe that its value is unprecedented and that it
can be used as an invaluable reference for the evaluation of
any cloud retrieval scheme based on data from passive im-
agers. In particular, we believe that even beyond the lifetime
of the CALIPSO satellite, the extracted subset of collocated
NOAA-18 and CALIPSO-CALIOP observations might serve
as a benchmarking dataset for the testing of various AVHRR-
based cloud retrieval methods. For the planned future up-
grades of the CLARA-A1 dataset, the idea is to use the cur-
rently collected CALIPSO dataset in exactly this way. There
is a limitation in that it is based exclusively on afternoon-
orbit NOAA-18 data, but we believe that it can be comple-
mented with a limited set of morning-orbit data from satel-
lites carrying the modified AVHRR instrument with the ad-
ditional 1.6 µm channel. For the latter the matched datasets
are limited to latitudes near± 70 degrees due to orbital con-
siderations; i.e. this is the only latitude where simultaneous
overpasses with CALIPSO occur for morning orbit satellites.

The next CLARA release (CLARA-A2) is scheduled for
2016, and we will utilise the current validation tool heavily in
the work of upgrading and evaluating the methodology. But
even concerning the current CLARA-A1 results, our findings
should be very important for potential users. One particularly
good example is the provision of essential background infor-
mation for the construction of a CLARA-A1 simulator tool
to be used for evaluation of cloud properties simulated by
climate models.

Regarding the prospect of applying this methodology to
data from other sensors than AVHRR, it is clear (or even
trivial) that the method is directly applicable to data from
the MODIS sensor (already available on the A-Train plat-
form). The method is also directly applicable to data from
the new Visible Infrared Imager Radiometer Suite (VIIRS)
sensor on the Suomi-NPP satellite, also placed in an after-
noon orbit very similar to the orbit of NOAA-18. As for the
aforementioned morning-orbit NOAA and Metop satellites,
the method should also be applicable at high latitudes for
sensors like the Advanced Along-Track Scanning Radiome-
ter (AATSR) and the Medium Resolution Imaging Spectrom-
eter (MERIS) onboard the ENVISAT satellite.
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