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Abstract. Retrieving time series of atmospheric constituents
from ground-based spectrometers often requires different
temporal averaging depending on the altitude region in focus.
This can lead to several datasets existing for one instrument,
which complicates validation and comparisons between in-
struments. This paper puts forth a possible solution by incor-
porating the temporal domain into the maximum a posteriori
(MAP) retrieval algorithm. The state vector is increased to
include measurements spanning a time period, and the tem-
poral correlations between the true atmospheric states are ex-
plicitly specified in the a priori uncertainty matrix. This al-
lows the MAP method to effectively select the best temporal
smoothing for each altitude, removing the need for several
datasets to cover different altitudes.

The method is compared to traditional averaging of spec-
tra using a simulated retrieval of water vapour in the meso-
sphere. The simulations show that the method offers a sig-
nificant advantage compared to the traditional method, ex-
tending the sensitivity an additional 10 km upwards with-
out reducing the temporal resolution at lower altitudes. The
method is also tested on the Onsala Space Observatory
(OSO) water vapour microwave radiometer confirming the
advantages found in the simulation. Additionally, it is shown
how the method can interpolate data in time and provide di-
agnostic values to evaluate the interpolated data.

1 Introduction

The maximum a priori method (Rodgers, 2000), or optimal
estimation, is a commonly used method for retrieving atmo-
spheric properties from spectroscopic measurements. Such
measurements will always contain thermal noise, which neg-
atively impacts the retrieval process. In order to overcome
this noise, the measured atmospheric spectra are averaged

over time. This averaging increases the signal to noise ra-
tio, but reduces the temporal resolution of the measurements.
The strength of the measured spectral lines, the required ac-
curacy, and the sensitivity of the instrument determine the
need for temporal averaging. Hence, depending on which at-
mospheric phenomena and altitudes that are investigated in
any single study, a specific compromise must be made be-
tween temporal resolution and noise reduction.

The use of different temporal resolutions is exemplified
by, for example, looking at microwave spectrometers mea-
suring water vapour in the middle atmosphere. One exam-
ple is the theWasserdampf- und Spurengasmessungen in der
Atmospḧare mit Mikrowellen(WASPAM) instrument, which
has used a 6 h averaging time in a case study of sudden strato-
spheric warming (Seele and Hartogh, 2000) as well as a 24 h
averaging time to study the annual variation of water vapour
around the mesopause (Seele and Hartogh, 1999). Different
averaging times are used since retrievals for higher altitudes
require lower thermal noise and thus longer integration times.

The ratio between the required averaging times for high
and low altitudes will in large part be determined by the alti-
tude range of the instrument. As newer instruments, such as
those described inNedoluha et al.(2011) andBleisch et al.
(2011), offer the possibility to increase this range, the differ-
ences in averaging time needed for the upper- and lowermost
altitudes will increase.

Although the use of different averaging times in itself
poses no problems, it does complicate the validation and
cross-comparison of instruments. An example is the water
vapour radiometer at the Onsala Space Observatory (OSO)
(Forkman et al., 2003). This instrument has mainly used one-
day spectra in studies of atmospheric dynamics (Forkman
et al., 2005; Scheiben et al., 2012), whereas only a scheme
with varying averaging time depending on tropospheric
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opacity has been cross-compared with other instruments
(Haefele et al., 2009).

One way to circumvent the problem of multiple averag-
ing times for a single dataset is to incorporate the averag-
ing of spectra directly in the retrieval process. To achieve
this, several measurements are simultaneously inverted us-
ing temporal correlation data of the quantity to be retrieved.
Earlier attempts to use the temporal information in retrievals
have resorted to recursive filtering (Askne and Westwater,
1986), whereas the method presented in this paper uses a
non-recursive approach based on the maximum a posteriori
method (Rodgers, 2000).

The study is described using the following structure. Sec-
tion 2 introduces the retrieval theory, terminology and the
time series inversion technique. In Sect.3 we apply the time
series inversion method on a simulated instrument to show
the advantages of the method. Section4 investigates the prac-
tical use of the method, and Sect.5 discusses the computa-
tional requirements. The conclusion is given in Sect.6.

2 Retrieval methodology

2.1 Terminology

In passive atmospheric remote sensing, properties of the at-
mosphere are determined by analysing the radiation emitted
from, and passing through, the atmosphere. This analysis is
called a retrieval, or inversion, and is done by solving an in-
verse problem. The relationship between the measured ra-
diation, y, and the atmospheric properties is described by
a forward model,y =F (x), wherex, denoted as the state
vector, contains the variables to be retrieved. These can in-
clude atmospheric variables at different altitudes as well as
instrument variables. If the forward model is locally linear,
the measurement can be expressed as

y = F (x0) + K (x − x0) + ε, (1)

wherex0 is the state vector used for linearising the forward
model,K is the Jacobian, or weighting function, matrix, de-
fined as∂y/∂x, andε represents errors in the measurement.

The inverse problem involves findingx for a given y.
In remote sensing, inverse problems can be ill-posed. This
means that several atmospheric states can give rise to the
same measurement. To obtain sensible results, the inversion
must then be constrained through some regularisation algo-
rithm. The regularisation in the time series inversion method
is based on the maximum a posteriori (MAP) method, also
called optimal estimation. It uses statistical properties of the
measurements and the atmosphere to constrain the solutions
(Rodgers, 2000).

Assuming Gaussian statistics, the relationship between a
set of stochastic variables is described by a covariance ma-
trix, S, in which each element,Si,j , is the covariance between
variablesi and j . If the covariance of the a priori state is

given by the matrixSa and the measurement uncertainties
are specified bySε , a cost function can be expressed as

χ2
= (x − xa)

T S−1
a (x − xa) + (y − F (x))T S−1

ε (y − F (x)) , (2)

wherex is the true state vector andxa is the a priori state
vector, which indicates a “best guess” atmosphere. The state
minimising this function is the maximum of the a posteriori
probability density function and is given by

x̂ = xa + G (y − F (xa)) , (3)

whereG, the gain-matrix, is

G = ∂y/∂x =

(
KT S−1

ε K + S−1
a

)−1
KT S−1

ε . (4)

An alternative way of expressing Eq. (3) is by introducing
the averaging kernel (AVK) matrix,A = ∂x̂/∂x = GK . Com-
bining Eqs. (1) and (3) gives

x̂ = xa + A (x − xa) + Gε. (5)

This shows that a retrieved value, in the absence of noise, is
the sum of the corresponding a priori value plus the change
from the a priori state convolved with the matching row of the
AVK matrix. The sum of a row in the AVK matrix is a mea-
sure of the retrieval’s sensitivity to changes in the state vector
and is called measurement response (Baron et al., 2002), or
measurement sensitivity.

2.2 Time series inversion

For ground-based instruments using single spectrum inver-
sions, the measurement vector,y, usually holds the bright-
ness temperature for each channel of the instrument. Thus,
for an instrument withm channels, the length ofy is m, and
similarlyx contains values of the state variables at the time of
the measurement. The time series inversion method proposed
here expands bothy andx to include measurements fromN
different times. This increases the length ofy to m · N , and
the length ofx to n · N , wheren is the length of the single
spectrum state vector. In a similar fashion, the Jacobian ma-
trix, K , becomes a block diagonal matrix with block elements
equal to the Jacobian matrix for each measurement, giving

y =



y1
1

...

y1
m

y2
1

...

y2
m

y3
1

...

yN
m


, K =

K1 0 0

0
. . . 0

0 0 KN

 , and x =



x1
1

...

x1
n

x2
1

...

x2
n

x3
1

...

xN
n


,

where the upper index denotes measurement number.
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Since the state and measurement vectors cover several
measurements, the covariance matrices in Eq. (2) must be
adjusted. Assuming that the measurement uncertainties are
uncorrelated between the measurements (i.e. only thermal
noise) and uncorrelated between the channels,Sε simply be-
comes a diagonal matrix. The uncertainties in the a priori
state are, however,not uncorrelated between the times of the
measurements. To incorporate this temporal correlation, even
the non-diagonal blocks inSa must have non-zero values.
Thus, the covariance matrices become

Sε =

S1
ε 0 0

0
. . . 0

0 0 SN
ε

 , and Sa =


S1,1

a S1,2
a · · · S1,N

a

S2,1
a S2,2

a · · · S2,N
a

...
...

. . .
...

SN,1
a SN,2

a · · · SN,N
a

 ,

whereSi,j
a is the a priori covariance matrix corresponding to

measurementi andj , andSi
ε is the noise covariance matrix

from measurementi.
Introducing correlation between measurements inSa re-

sults in an averaging kernel matrix which contains non-zero
elements in its off-diagonal blocks. The resulting matrix,

A =


A1,1 A1,2

· · · A1,N

A2,1 A2,2
· · · A2,N

...
...

. . .
...

A1,N A2,N
· · · AN,N

 ,

will contain information about how much smoothing occurs
with respect to both altitude and time. Temporal smoothing
occurs because the MAP method uses information from sev-
eral measurements to retrieve a single profile. The amount of
smoothing will partly depend on the setup of the a priori un-
certainty matrix, which will be described in detail in the next
section.

2.3 Specification of the a priori covariance matrix

The specification of the uncertainty matrices is central to
MAP. Since the state vector of the time series inversions
has been extended to include several measurements, both the
temporal and vertical correlation of the state variables need
to be specified inSa, and it is through the latter correlation
that the MAP method can take into account results from ad-
jacent measurement times when retrieving a profile.

The correlation between state variables can be conve-
niently described with a correlation function combined with
a correlation length. We will use an exponential function to
describe correlations. This means that for state vector vari-
ables related in altitude (e.g. species concentration), the cor-
relation coefficient between the variable at altitudezk andzp

for measurementi will be given byρz(x
i
k, xi

p) = exp(−|zk −

zp|/lc), wherelc is denoted as the correlation length, mean-
ing the length at which the correlation has dropped to 1/e.

In a similar fashion the correlation of a variable in time can
be represented byρt (x

i
k, x

j
k) = exp(−|t i − tj |/tc), wheret i

(tj ) is the time of measurementi (j ) and tc is the temporal
correlation length. Assuming that the correlation is indepen-
dent in the two dimensions (separable), the total correlation
is calculated as the product ofρz andρt . In this study we also
assume that the a priori covariance is stationary, so that it can
be described by the same matrix at all measurement times.

The a priori covariance matrix of the investigated vari-
able should represent both the uncertainty arising from natu-
ral variability and the uncertainty of the a priori mean value
(Eriksson, 2000). The latter uncertainty arises from a limited
knowledge of the atmospheric mean state at that particular
altitude and time. These two terms have quite different cor-
relations. In general, the error in the mean value of the state
variable should be characterised by longer vertical correla-
tion length and a smaller standard deviation than the natu-
ral variability. An additional, and more important, feature for
inverting the time series is that errors in the mean will be
correlated over long temporal periods compared to the nat-
ural variability. If, for example, the assumed a priori value
for the concentration of one atmospheric species is too high
with respect to the true mean at one time, it is likely that it
will remain too high for a considerable time (weeks, months,
etc.) thereafter.

We will use the retrieval of water vapour in the mesosphere
as an example of the time series inversion method. Figure1
shows covariance matrices used to describe the a priori water
vapour profile in the retrievals. In Fig.1a and b, the vertical
and temporal covariances of the volume mixing ratio of wa-
ter vapour at 60 km are shown. The dashed green curve rep-
resents the natural variability of water vapour, which is given
a standard deviation of 50 %, a vertical correlation length of
4 km, and a temporal correlation length of 12 h. It should be
noted that since information about the temporal correlation
of water vapour at these altitudes is limited, these covari-
ance matrices are created in a somewhat “ad-hoc” fashion.
As such, the covariance matrices should be viewed as illus-
trative examples rather than a perfect representation of the
atmospheric variability.

As mentioned earlier, the correlation lengths of the uncer-
tainty in the a priori mean are different from the natural vari-
ability. The red dot-dashed curve in Fig.1 shows properties
of a covariance matrix set to represent the uncertainty in the
a priori mean. The matrix has a standard deviation of 20 %
and a correlation length of 8 km in altitude and 7 days in
time. By adding both the natural variability and the a priori
mean uncertainty, the complete covariance matrix, described
by the solid red line (NatMean), is obtained. A selected num-
ber of elements from the completeSa matrix are shown in
Fig. 1c. The block structure, explained in Sect.2.1, is indi-
cated by the green and black squares. The diagonal block
(green square) represents the covariance within a measure-
ment time, whereas the off-diagonal block (black square)

www.atmos-meas-tech.net/6/1597/2013/ Atmos. Meas. Tech., 6, 1597–1609, 2013
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Fig. 1: The covariance matrices used for the a priori information on water vapour. Plot (a) depicts the temporal and (b)
the vertical elements of the covariance matrix. The matrices represent natural variability (Nat), uncertainty in a priori mean
(Mean), the sum of natural variability and uncertainty in mean (NatMean), single spectrum inversions (1D) and an intermediate
covariance matrix (Inter). The structure of the NatMean a priori covariance matrix is shown in plot (c). A diagonal matrix
block is highlighted by the green square and an off-diagonal block is highlighted by the black square. The axis labels are
multiples of n, i.e. the length of the single spectrum state vector.
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Fig. 2: Retrieved concentration of water vapour, relative to a priori, from the simulated retrievals. The true water vapour
concentration is doubled (i.e. set to two) at the 120th hour. Plot (a) is from the single spectrum (1D) inversions, plot (b) from
the retrievals using the time series inversion method with the NatMean covariance matrix, and (c) is from the retrievals using
spectra averaged over 48 h.

Fig. 1. The covariance matrices used for the a priori information on water vapour.(a) depicts the temporal and(b) the vertical elements of
the covariance matrix. The matrices represent natural variability (Nat), uncertainty in a priori mean (Mean), the sum of natural variability
and uncertainty in mean (NatMean), single spectrum inversions (1-D) and an intermediate covariance matrix (Inter). The structure of the
NatMean a priori covariance matrix is shown in(c). A diagonal matrix block is highlighted by the green square and an off-diagonal block is
highlighted by the black square. The axis labels are multiples ofn, i.e. the length of the single spectrum state vector.

represents the variance scaled with the correlation between
measurement times.

The result from the time series retrievals will depend on
the temporal correlation used. To investigate this, a second
covariance matrix is created which assumes that the entire
a priori uncertainty has a temporal correlation of only 12 h,
but with the same standard deviation (54 %) and vertical cor-
relation length as the total covariance matrix. This matrix
is described by the solid-green line (Inter) in Fig.1b. For
comparison, inversions are also performed with zero correla-
tion in time (blue curve) to mimic single spectrum (1-D) re-
trievals. Though these retrievals could be done on each spec-
trum separately, it was chosen, for comparison purposes, to
perform the retrievals simultaneously using the same formal-
ism as the time series inversions. This is achieved by using a
block diagonal a priori covariance matrix in the retrievals.

A retrieval using the traditional method of averaging spec-
tra is also performed by doing a 48 h running mean over
the simulated spectra. However, the expected variance of a
48 h mean is different from that expected in a 3 h mean, so
to correctly specify the covariance of these inversions, the
NatMean covariance matrix is projected onto a 48 h grid fol-
lowing Rodgers(2000, Ch. 10.3.1.1). This results in an a pri-
ori standard deviation of 36 %, which is a decrease from the
54 % for the 3 h measurements.

3 Theoretical test case

3.1 The simulation and retrievals

In order to test the time series inversion method, a model sce-
nario is set up. The simulation and retrievals are done with
the atmospheric radiative transfer simulator (ARTS v.2.0)
and the retrieval toolkit Qpack (Eriksson et al., 2005,
2011). The simulated instrument is designed to mimic the
22 GHz radiometer currently operating at OSO, but some

simplifications are made to illustrate the more general use of
this method. Most notably, the bandwidth is increased from
20 MHz to 1 GHz and the noise temperature is reduced from
170 K to around 100 K. The instrument back end is sim-
ulated using 83 channels, each 25 kHz wide and unevenly
distributed across the bandwidth of the instrument. At the
line-centre, a distance of 25 kHz between the channels is
used. This is increased further away from the centre, reaching
100 MHz at the band edges. The calibration used is a beam
switching method.

Spectra from ground-based radiometers are often cor-
rected for tropospheric loss before retrievals are performed.
To model this, the simulated instrument is located above the
troposphere (15 km) and the thermal noise level is doubled.
This represents a tropospheric transmission of 0.5, which, to-
gether with the loss of observational time due to the beam
switching, leads to an effective noise temperature of 400 K,
which is used to specifySε . Additionally, the thermal noise
in the system is left uncorrelated between the channels, and
the integration time is set to 3 h. Note that no thermal noise
is actually added to the simulated spectra, but only used to
specify the covariance matrix, i.e. the spectra themselves are
noise free.

The simulated atmosphere is created by extracting tem-
perature and water vapour profiles for 25 February from the
Mass Spectrometer and Incoherent Scatter (MSIS) (Hedin,
1991) temperature database and a climatology based on re-
trieved water vapour over OSO from the Microwave Limb
Sounder on the Aura satellite (Aura-MLS). The spectro-
scopic parameters for the water vapour line at 22 GHz
are taken from the JPL-catalogue (Pickett et al., 1998)
(line strength and position) and HITRAN 2004 database
(Rothman et al., 2005) (broadening parameters).

The retrieval of water vapour is done on an altitude grid
ranging from 4 km to 104 km with a grid resolution of 4 km.
The covariance matrices used are the same as specified in

Atmos. Meas. Tech., 6, 1597–1609, 2013 www.atmos-meas-tech.net/6/1597/2013/
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Fig. 1: The covariance matrices used for the a priori information on water vapour. Plot (a) depicts the temporal and (b)
the vertical elements of the covariance matrix. The matrices represent natural variability (Nat), uncertainty in a priori mean
(Mean), the sum of natural variability and uncertainty in mean (NatMean), single spectrum inversions (1D) and an intermediate
covariance matrix (Inter). The structure of the NatMean a priori covariance matrix is shown in plot (c). A diagonal matrix
block is highlighted by the green square and an off-diagonal block is highlighted by the black square. The axis labels are
multiples of n, i.e. the length of the single spectrum state vector.
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Fig. 2: Retrieved concentration of water vapour, relative to a priori, from the simulated retrievals. The true water vapour
concentration is doubled (i.e. set to two) at the 120th hour. Plot (a) is from the single spectrum (1D) inversions, plot (b) from
the retrievals using the time series inversion method with the NatMean covariance matrix, and (c) is from the retrievals using
spectra averaged over 48 h.

Fig. 2. Retrieved concentrations of water vapour, relative to a priori, from the simulated retrievals. The true water vapour concentration is
doubled (i.e. set to two) at the 120th hour.(a) is from the single spectrum (1-D) inversions,(b) from the retrievals using the time series
inversion method with the NatMean covariance matrix, and(c) is from the retrievals using spectra averaged over 48 h.

Sect.2.3, with Sε being a pure diagonal matrix andSa having
a correlation in both altitude and time.

3.2 Response to a sudden doubling of H2O

The time series inversion method combines information from
measurements at several times, this makes the temporal char-
acteristics of the retrieved profiles of particular interest. To
investigate these temporal characteristics, we run a test sce-
nario in which water vapour in the atmosphere is kept con-
stant, equal to the a priori, until the 120th hour and then
instantaneously increased to the double of a priori at the
121st hour.

The results of the retrievals are shown in Fig.2. The re-
sults are shown as water vapour volume mixing ratio relative
to the a priori volume mixing ratio. The single spectrum in-
versions (Fig.2a) have no errors before the increase. This is
because no noise was added to the spectra, and the true at-
mosphere is equal to the a priori. Afterwards, the retrievals
will only change at certain altitudes determined by the mea-
surement response. At the highest levels, the retrieved value
remains 1, i.e. equal to a priori, due to the lack of measure-
ment response, whereas at lower altitudes the retrieved values
reflect the true atmosphere.

The conventional way to increase the measurement re-
sponse at high altitudes is by averaging spectra in order to
reduce the influence of thermal noise. Figure2c shows re-
sults from the 48 h averaging of spectra. An improvement
around 70 km can be seen for measurements later than 24 h
after the sudden increase of water vapour in the atmosphere.
This however, comes at the cost of smoothing out the step
increase in time. Figure2b shows that this smoothing can be
avoided (for low altitudes) by applying the time series inver-
sion method. Just as with the traditional averaging, the re-
sponse around 70 km improves after the increase compared
to the single spectrum inversions. However, the high tempo-
ral resolution is maintained at lower altitudes, and the abrupt
change can clearly be seen in the retrievals. Thus, by invert-
ing the entire time series simultaneously, temporal resolution

12 Christensen and Eriksson: Time series inversions
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matrix (dashed-green), and the inversions using the averaged spectra (black-dashed). Plot (a) is the retrieved profile at the 80th

hour, when the true profile is equal to the a priori. Plot (b) is the retrieved profile at the 160th hour, after the step-increase,
when the true profile is double that of the a priori.

Fig. 3.Retrieved water vapour profiles (relative to the a priori) from
the simulated retrievals. The different curves represent the single
spectrum inversions (blue), the time series inversions using the Nat-
Mean (red line) and the intermediate covariance matrix (dashed
green line), and the inversions using the averaged spectra (black
dashed line).(a) is the retrieved profile at the 80th hour, when the
true profile is equal to the a priori.(b) is the retrieved profile at the
160th hour, after the step-increase, when the true profile is double
that of the a priori.

can be maintained at the lower altitudes while the sensitivity
at higher altitudes is increased.

The increase in sensitivity is seen more clearly in Fig.3b,
which shows the profiles at the 160th hour. Both the tradi-
tional method of averaging spectra (black dashed line) and
the time series inversions (red and dashed green lines) show
a significant improvement above 60 km. The long tempo-
ral correlation in the a priori mean uncertainty does, how-
ever, lead to a large temporal smoothing at high altitudes
seen by the increased water vapour above 70 km in the red
line in Fig. 3a. The time series inversion method also leads
to some oscillatory patterns shown by the negative values
around 60 km in Fig.3a.
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Fig. 4: Selected elements of the averaging kernels for the theoretical test case. The first row (a-c) shows the structure of the
AVK matrices of single spectrum retrieval (left), time series retrieval with the NatMean a priori uncertainty matrix (centre) and
48 h averaging of spectra (right). The axis labels are multiples of n, i.e. the length of single spectrum state vector. The second
row (d-f) shows vertical AVKs for the respective cases and the third row (g-i) temporal AVKs for the respective cases. For the
vertical and temporal averaging kernels each of the curves corresponds to different altitudes.

Fig. 4.Selected elements of the averaging kernels for the theoretical test case. The first row(a–c)shows the structure of the AVK matrices of
single spectrum retrieval (left panel), time series retrieval with the NatMean a priori uncertainty matrix (centre panel) and 48 h averaging of
spectra (right panel). The axis labels are multiples ofn, i.e. the length of a single spectrum state vector. The second row(d–f) shows vertical
AVKs for the respective cases and the third row(g–i) temporal AVKs for the respective cases. For the vertical and temporal averaging kernels,
each of the curves corresponds to different altitudes.

3.3 Retrieval diagnostics

The temporal and vertical resolution of the inversions can
be explored further by analysing the AVK matrices. Selected
elements of the AVK matrices are shown in Fig.4. The sin-
gle spectrum inversions (Fig.4a) give an AVK matrix which
is completely diagonal with respect to time (at 3 h time res-
olution), meaning that the matrix is a block diagonal ma-
trix where the non-zero elements are confined to elements
no further away from the diagonal than the number of el-
ements in the single measurement state vector. This is due
to the fact that the single spectrum retrievals are performed
as 2-D retrievals with no correlation in time in theSa ma-
trix. If correlation between the days is introduced (Fig.4b),
the blocks adjacent to the diagonal block become non-zero
and fall off exponentially from the diagonal. This implies

that a smoothing occurs in the temporal dimension, as al-
ready shown in Sect.3.2. For direct averaging of the spectra
(Fig. 4c), the AVK elements are constant across all blocks
inside the averaging time, albeit reduced with a factor of
roughly 1/16 compared to the single spectrum inversion to
account for the averaging.

The averaging kernels are the rows of the AVK matrix. For
clarity, it is convenient to focus on some particular elements
of the rows. The first are the elements which correspond to
then columns around the diagonal, wheren is the number of
elements in the single spectrum state vector. These represent
the vertical averaging kernel for each altitude. These kernels
are seen in the second row of Fig.4. The vertical averaging
kernels for the three inversions are quite similar. Most no-
table is the reduction of the values that occurs for the 48 h
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averaging, but this is compensated by the kernels spanning a
larger number of measurements. Time series inversion pro-
duces vertical averaging kernels that have smaller negative
values for elements within the same measurement compared
to single spectrum inversions, but it should be noted that ele-
ments corresponding to different altitudes and different times
can be negative (black areas in Fig.4b).

The temporal averaging kernels describe the smoothing in
time and are given by the elements corresponding to the same
altitude for different times. These are shown in the third row
of Fig. 4. The single spectrum inversions are simulated by
performing the retrievals with zero correlation in time, and
thus they have Dirac delta function kernels. The time series
inversions have averaging kernels showing how the retrieval
takes values from adjacent measurements into account. The
lower values at the wings show how the inversions put dimin-
ishing weight measurements further away. For the averaging
of spectra, the temporal AVKs have a constant value over the
averaging time and zero elsewhere.

The full width at half maximum (FWHM) of the AVKs
in the different dimensions can be used to roughly describe
the resolution of the inversion in those dimensions. Figure5a
shows the FWHM of the temporal AVKs. The single spec-
trum inversions (blue curve) and the inversions averaging
over spectra (black dashed curve) have a constant tempo-
ral resolution across all the altitudes corresponding to their
respective averaging times. The red and the dashed green
curves show the FWHM from the time series inversions.
These inversions have a temporal FWHM which varies with
altitude. At lower altitudes the FWHM is close to 3 h, i.e. the
same as the single spectrum inversions. At higher altitudes
the AVKs become wider indicating a reduction of temporal
resolution as more information from adjacent measurements
are used in the retrievals. Also, the larger a priori correlation
between days of the NatMean matrix (red curve) compared to
the intermediate (green curve) matrix results in wider AVKs.
It is this wider averaging time at higher altitudes that allows
the time series inversions to extend the retrievals higher than
the single spectrum inversions.

There is some limitation in using only the FWHM to de-
scribe the resolution, as it does not take into account the full
shape of the AVKs. The FWHM will have a different mean-
ing for different shapes. For example, the FWHM in the tem-
poral dimension of 48 h averaged retrievals will define where
the averaging is cut off. For the exponentially shaped tempo-
ral AVKs of the time series inversions, however, the retrievals
can have significant contributions from measurements be-
yond the FWHM. This explains why the time series inversion
shows more temporal smoothing above 80 km in Fig.2, yet,
it has a smaller temporal FWHM in Fig.5a.

Figure 5b shows the FWHM of the vertical AVKs. The
FWHM is more or less the same for the inversions except
for the 48 h averaging over spectra where the reduced noise
in the measurements results in a better vertical resolution.
Once again, some care should be taken when comparing the
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Fig. 5: Properties of the simulated retrievals at the the 120th hour. Plot (a) is the FWHM of the temporal AVKs, plot (b) is the
FWHM of the vertical AVKs, plot (c) is the measurement response from the retrievals, and plot (d) is the retrieval noise from
the retrievals in units relative to the a priori concentration. The different curves represent the single spectrum inversions (blue),
the time series inversions using the NatMean (red) and the intermediate covariance matrix (dashed-green), and the inversions
using the averaged spectra (black-dashed).

Fig. 5. Properties of the simulated retrievals at the the 120th hour.
(a) is the FWHM of the temporal AVKs,(b) is the FWHM of the
vertical AVKs, (c) is the measurement response from the retrievals,
and(d) is the retrieval noise from the retrievals in units relative to
the a priori concentration. The different curves represent the single
spectrum inversions (blue), the time series inversions using the Nat-
Mean (red) and the intermediate covariance matrix (dashed green),
and the inversions using the averaged spectra (black dashed).

FWHM from the different inversions. In particular, the neg-
ative lobes seen in the 1-D inversions will not be accounted
for, and thus, AVKs with weaker lobes, like those from the
time series inversions, will have a larger FWHM, though this
mainly comes from the removal of the lobes and not a de-
crease in vertical resolution.

The measurement response corresponds, as anticipated, to
the observed changes whenx is doubled (Fig.3b). The mea-
surement response for the different inversions shows once
again that the time series inversion method enables the re-
trieval of atmospheric values up to roughly the same altitude
as the traditional averaging over spectra, actually exceeding
the traditional averaging when using the NatMean covariance
matrix.

Retrieval noise describes the error in the retrieved profiles
from thermal noise, and is calculated asGSε GT (Rodgers,
2000). Figure5d shows the square root of the diagonal el-
ements of the retrieval noise matrix. As anticipated, the re-
duction of thermal noise in the measurements from the tra-
ditional averaging method (black dashed line) will result in
a lower retrieval noise compared to the single spectrum in-
versions (blue line). This is the result of both a reduction
in the thermal noise due to averaging and the change from

www.atmos-meas-tech.net/6/1597/2013/ Atmos. Meas. Tech., 6, 1597–1609, 2013



1604 O. M. Christensen and P. Eriksson: Time series inversion of spectra from ground-based radiometers

using a different a priori uncertainty. The retrieval noise in
the time series inversions ends up a bit below the single
spectrum inversions. This shows that some error reduction is
achieved with the time series method, but that the main im-
provement it offers is the increased measurement response at
high altitudes.

In addition to the diagonal elements, the retrieval noise
covariance matrix will have non-diagonal elements arising
from temporal and vertical correlations. This means that the
retrieval noise for the time series inversions has a correlation
in time even though the underlying thermal noise is uncorre-
lated in time. This correlation is introduced through the tem-
poral correlation in the a priori constraints. The FWHM of
this correlation (not shown) can be different from that of the
AVKs. For the time series inversions (NatMean), it is roughly
15 h up to around 70 km, above this it increases and reaches
50 h at 85 km. For the intermediate a priori covariance matrix
inversions, the temporal FWHM of the retrieval noise stays
at around 15 h for all altitudes.

4 Test using a real instrument

To illustrate the practical use of the time series inversion
method, we invert atmospheric spectra measured from the
water vapour radiometer at OSO. When using real measure-
ments, instrument-related issues might degrade the efficiency
of the retrieval, or introduce biases, which complicates the
retrievals and error analysis.

4.1 OSO radiometer

The radiometer used to test the time series inversion method
is placed at OSO (57.4◦ N, 12◦ E). It measures water vapour
at 22.235 GHz with a resolution of 25 KHz and bandwidth of
20 MHz. The system has an uncooled High-electron-mobility
transistor (HEMT) front end and uses a 800 channel autocor-
relator back end. Receiver temperature is estimated to 170 K
and the calibration is done by a hot-cold calibration and beam
switching. The spectra are also corrected for tropospheric ab-
sorption. Each spectrum consists of 5 min measurements av-
eraged together into six 3 h intervals for each day, 0–3, 4–7,
8–11, 12–15, 16–19 and 20–23. The averaging is done so that
measurements with lower noise values have a larger weight
in the average. This is done since we assume that the ther-
mal noise in the measurements is uncorrelated to the volume
mixing ratio of water vapour during the 3 h interval. The ther-
mal noise of each 3 h spectrum is determined separately by
fitting a 3rd order polynomial to one of the line-wings and
calculating the standard deviation of the residual. For a com-
plete description of the instrument and retrieval parameters,
seeForkman et al.(2003) andHaefele et al.(2009).

When performing the time series inversions over all days
and all channels, the dimension of the matrices in Eqs. (3),
(4) and (5) become quite large. To reduce the size of the

matrices, only a subsample of the channels is selected, as
in the theoretical test case. In the line-centre, all channels
are used, but at the line-wings, the channel separation is in-
creased gradually, reaching 620 kHz at the far ends. In total,
83 of the 800 channels are used. Furthermore, the retrievals
are performed in 30-day intervals. To minimise edge effects
each interval has a 10-day overlap, which allows for 5 days
on each end of the retrieval intervals to be removed. These in-
tervals are then combined to create the complete time series.
Further discussion regarding the computational demands can
be found in Sect.5.

Just as in the theoretical test case, the retrievals are per-
formed on each 3 h spectrum separately, with the time se-
ries inversion method, and a 48 h moving average of spectra.
However, since the thermal noise in the measurements varies
with time, the simple averaging is replaced with a weighted
average giving measurements with lower noise more weight.
This is done to simplify the comparison with the time series
method. In addition, since some gaps exist in the measure-
ments, some 48 h averages have fewer measurements than
the nominal 12.

The inversions are set up as described in Sect.3, except
that since the noise level varies with time, the thermal noise
in each measurement must be estimated from each corre-
sponding spectrum rather than having a constant noise level
as in Sect.3.3. Additionally, an instrumental baseline (5th or-
der polynomial) is added to the state vector and retrieved.
This polynomial fit is given a priori uncertainties from 10 K
(0th order) to 2 K (5th order), and without correlation in time.
Since the atmosphere over OSO changes over time, the a pri-
ori is also set to vary according to the climatologies (temper-
ature and water vapour) in Sect.3, rather than have a constant
value.

4.2 Dealing with measurement gaps

The OSO time series has periods where no measurement data
could be recorded. These periods are mainly caused by rain.
Data gaps create additional problems when handling mea-
surement series. A time interpolation using neighbouring re-
trieved data requires the user to select an interpolation strat-
egy (nearest, linear, spline, etc.), as well as to make subjec-
tive judgements on the validity of these interpolated values
based on experience and knowledge of the atmospheric vari-
ables measured.

The time series inversion method provides an elegant so-
lution to this problem. To obtain values at the gaps,x is
expanded to cover the times where measurements are lack-
ing. This increases the size ofx to n · (N + N ′), whereN ′

is the number of missing measurements, andN the number
of times with measurements.n and laterm are defined as in
Sect.2.2. The expansion ofx allows the MAP algorithm to
retrieve the missing values, maintaining a consistent inver-
sion methodology over the complete time period.
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Fig. 6: H2O retrievals from the summer of 2005 obtained by the OSO radiometer. The results are relative to the a priori
concentration and are shown for 76 km (a), 64 km (b) and 52 km (c). The different curves represent the single spectrum
inversions (blue), the time series inversions using the NatMean (red) and the intermediate covariance matrix (dashed-green),
and the inversions using the averaged spectra (black-dashed).

1. May 15. May 1. Jun 15. Jun

0.05

0.1

0.15

0.2

∆
T

[K
]

Fig. 7: 1σ of the thermal noise from the OSO radiometer from the summer of 2005, estimated as described in the text. The
measurements are performed with 3 h integration time. The circles show the three days selected for further AVK analysis.

Fig. 6.H2O retrievals from the summer of 2005 obtained by the OSO radiometer. The results are relative to the a priori concentration and are
shown for 76 km(a), 64 km(b) and 52 km(c). The different curves represent the single spectrum inversions (blue), the time series inversions
using the NatMean (red) and the intermediate covariance matrix (dashed green), and the inversions using the averaged spectra (black dashed).

Since the size ofx is increased, the number of columns
in K must increase correspondingly. This givesK a size of
N · m × (N + N ′) · n. The elements in theN ′ extra columns
will be zero as no measured spectra exists for this time in
y. Physically this is equivalent to only using a virtual mea-
surement of the a priori atmosphere at the time of the data
gap. However, this does not mean that only a priori informa-
tion is used for the retrieval of the corresponding state. Since
Sa contains information about the temporal correlation of the
atmosphere, the MAP method will automatically use infor-
mation from a neighbouring measurement to “optimally” es-
timatex at the time of the measurement gap.

For an “interpolated” value, the amount of information
taken into account from nearby measurements is given by
the corresponding measurement response. The measurement
response will depend on the a priori uncertainty matrix used
and the amount of noise in the adjacent measurements. For
the single spectrum inversions, the measurement response
will be zero at the interpolated values, whereas for the time
series inversions it will increase with increasing a priori
temporal correlation. The measurement response will pro-
vide a value on which the validity of the interpolated value
can be determined. This value is based on the underlying

statistical properties of the retrievals, and thus a consistent
selection scheme can be applied, for example, by only using
data points above a certain measurement response threshold
(e.g. 0.8). It should, however, be noted that for further data
analysis (e.g. trend estimation), the exact influence that the
a priori and AVKs will have on the analysis must be consid-
ered, just as with data from any other retrieval methods based
on MAP.

4.3 Result from time series inversions

Retrievals from the OSO instrument were done for the entire
measurement period (2002–2012). For comparison of the dif-
ferent inversions methods, an example period from the end
of April to the end of June 2005 was selected for further
study as this period offers a long set of continuous mea-
surements, with few measurement gaps. The results of the
retrievals at three different altitudes are shown in Fig.6 in
units relative to the a priori (i.e. 1 = a priori concentration).
These results include estimated values where data gaps occur
(13 of 368 times), interpolated using the method discussed in
Sect.4.2.
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Fig. 6: H2O retrievals from the summer of 2005 obtained by the OSO radiometer. The results are relative to the a priori
concentration and are shown for 76 km (a), 64 km (b) and 52 km (c). The different curves represent the single spectrum
inversions (blue), the time series inversions using the NatMean (red) and the intermediate covariance matrix (dashed-green),
and the inversions using the averaged spectra (black-dashed).
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Fig. 7: 1σ of the thermal noise from the OSO radiometer from the summer of 2005, estimated as described in the text. The
measurements are performed with 3 h integration time. The circles show the three days selected for further AVK analysis.

Fig. 7. 1σ of the thermal noise from the OSO radiometer from the summer of 2005, estimated as described in the text. The measurements
are performed with 3 h integration time. The circles show the three days selected for further AVK analysis.

By comparing the single spectrum retrievals (blue curve)
to the retrieval of 48 h averaged spectra (black dashed curve),
the effect of the averaging can be seen. The variability is re-
duced from 1σ of ∼ 0.22 in the single spectrum inversions to
1σ of ∼ 0.15 in the averaged ones, with the averaged spec-
tra having a longer temporal correlation. This correlation has
two causes. The first one is the temporal correlation of the
atmospheric changes over the instrument, the other cause is
the thermal noise which, as discussed earlier, will also have
a correlation in time when averaging is performed. In addi-
tion to the change in variability, the averaged spectra show
a clearer deviation from the a priori at higher altitudes. This
shows the effect of the increased measurement response at
these altitudes.

The time series inversions (red and dashed green curves)
show an increased measurement response at higher altitudes
similar to the 48 h averaged inversions, and the variation is
correlated over several days. The more longer-term averages,
over a couple of days, seem to follow the averaged inver-
sions. At 76 km the measured mean volume mixing ratio over
the entire period is actually lower than the a priori mean
volume mixing ratio. This illustrates why it is important to
include the uncertainty in the a priori mean in the inver-
sions. Without this part, the measurement response would be
lower and the inversions would not reveal this information.
At lower altitudes (52 and 64 km), the time series inversions
preserve many of the short-term variations, indicating a high
temporal resolution at these altitudes.

It is hard to distinguish whether the short-term variations
are a result of noise in the instrument or natural variance in
the atmosphere. However, the main point of these retrievals
is not to determine the true water vapour concentration in
the atmosphere, but rather to show that the time series in-
versions produce comparable results to the single spectrum
inversions at lower altitudes while producing results more
similar to those of the averaged inversions higher up.

4.4 Averaging kernels

Since the thermal noise in the real measurements varies with
time, the AVKs vary as well. Thus, to study some typical
AVKs, three dates are selected for further inspection. Fig-
ure7 shows the magnitude of the thermal noise in each of the
measurements from the time series in Fig.6, and the selected

measurements are marked by the three circles. The first mea-
surement (10 May 005, red circle) is from a measurement
with a low noise value. The second (10 May 2005, green cir-
cle) and third measurements (10 May 2005, blue circle) are
separated by only four hours and have a high and intermedi-
ate thermal noise value, respectively.

The measurement response of the three measurements is
shown in the top row of Fig.8. The measurement response
of the low-noise measurement is similar to the theoretical test
case above 60 km. Below 60 km the measurement response
starts declining due to the fitting of the instrumental base-
line polynomials. The similarity above 60 km is not surpris-
ing considering that the noise of the measurement is 0.043 K,
which resembles the noise in the test case of 0.037 K. The
two other cases, however, have much higher noise than the
test case with values of 0.16 and 0.07 K. This results in a
very low measurement response for single spectrum inver-
sions, but the time series inversions and the averaged spec-
tra still have a good measurement response between 55 and
75 km.

The amount of information taken from each measurement
is given by the temporal averaging kernels shown in the sec-
ond row of Fig.8. However, unlike the averaging kernels
from the theoretical test case, the temporal averaging ker-
nels are not smoothly exponentially declining (see Fig.4),
but vary depending on the weight placed on each adjacent
measurement. This variation comes from the fact that the
MAP method puts a lower weight on noisier measurements.
In fact, the temporal averaging kernels from the measure-
ment with intermediate noise (Fig.8f) show that the inver-
sion gives little weight to the noisy measurement from 3 h
earlier. In the high-noise case (Fig.8e), it can be seen that
the adjacent measurement is actually weighted more than the
central measurement, as the AVK has its peak displaced from
the centre.

The last row of Fig.8 shows the FWHM of the temporal
AVKs. For the low-noise measurement (Fig.8g), the FWHM
is similar to the theoretical test case above 60 km having a
minimum width at around 60 km before increasing in width
with increasing altitude. For the measurements with higher
noise, however, the irregular shape of the temporal AVKs
means that the interpretation of the FWHM is not as straight-
forward as in the theoretical case. The maximum might not
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Fig. 8: Properties of the AVKs from three selected measurements from the OSO radiometer. The left column shows the
low noise measurement (10 May 2005), the centre column shows the high noise measurement (21 May 2005), and the right
column shows the intermediate noise measurement (21 May 2005). The first row (a-c) depicts the measurement response of
the respective measurements, the second row (d-f) temporal averaging kernels of different altitudes, and the third row (g-i) the
FWHM of the temporal AVKs. The different curves in the first and last row represent the single spectrum inversions (blue),
the time series inversions using the NatMean (red) and the intermediate covariance matrix (dashed-green), and the inversions
using the averaged spectra (black-dashed).

Fig. 8. Properties of the AVKs from three selected measurements from the OSO radiometer. The left column shows the low-noise measure-
ment (10 May 2005), the centre column shows the high-noise measurement (21 May 2005), and the right column shows the intermediate
noise measurement (21 May 2005). The first row(a–c)depicts the measurement response of the respective measurements, the second row
(d–f) temporal averaging kernels of different altitudes, and the third row(g–i) the FWHM of the temporal AVKs. The different curves in the
first and last rows represent the single spectrum inversions (blue), the time series inversions using the NatMean (red) and the intermediate
covariance matrix (dashed green), and the inversions using the averaged spectra (black dashed).

be centred at zero, and the position of the half-value point
might even be ambiguous. As a result the FWHM of the tem-
poral AVKs from these measurements (Fig.8h and i) differs
quite a lot from the theoretical test case, especially for the
high-noise case where it fluctuates at lower altitudes.

5 Computational demands

Though there are several advantages of expanding the in-
versions into the temporal dimension, a drawback is the in-
creased computational demand. The computational demand
includes both larger memory usage and the increased number

of CPU operations required for the matrix operations. This
paper will not go into detail on optimising the efficiency of
the retrievals, but a discussion of the major issues is required.

Depending on the retrieval setup, eitherK , Sε or Sa will
have the largest memory demand. All three matrices tend
to be diagonal heavy (i.e. highest values around the diago-
nal), thus considerable memory can be saved storing them
as sparse matrices. ForSa, this could require some cut-off
value for the covariance, as the exponential correlation theo-
retically never reaches zero.

Considering CPU cycles, the linear algebra can be opti-
mised for eithern <m (n-form) orn >m (m-form) (Rodgers,
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2000), wheren andm (and laterN ) are defined as in Sect.
2.2. For the retrievals in this papern <m, and the most de-
manding operations are the calculation ofKT S−1

ε K , which
scales asN3n2m, andS−1

a and(KT S−1
ε K + S−1

a )−1, which
both scale asN3n3.

The available computational power limits the size ofN , n,
andm. In the retrievals from the OSO radiometer,N is lim-
ited to measurements from 30 consecutive days (N ∼ 180).
To limit m, we use a simple solution of only selecting a 83-
channel subset of the 800 channels in the spectrometer. Other
methods make it possible to take advantage of all the chan-
nels while keeping down the size ofm. These might be as
straightforward as binning channels at the line wing, i.e. av-
eraging the channels together to reduce the noise, or more
advanced data reduction methods based on eigenvector ex-
pansions (e.g.Eriksson et al., 2002).

In addition to reducing the size of the matrices, the alge-
bra itself can be optimised. In particular, an explicit inver-
sion of (KT S−1

ε K + S−1
a ) can be avoided by instead solv-

ing Eq. (3) using methods such as Cholesky decomposition
(Livesey et al., 2006) or the iterative bi-conjugate gradient
method (Reburn et al., 2000).

Data reduction algorithms and optimisation of the linear
algebra might indeed improve the practical use of the time
series inversion methods, but a thorough discussion of such
optimisation is beyond the scope of this paper as it will be
highly dependent on the specific retrieval setup and needs.

6 Discussion and conclusion

This paper presents a method for inverting time series data
from ground-based instruments by extending the retrieval
method into the temporal dimension. This is done by di-
rectly specifying the correlation of the atmosphere in time
to achieve “optimal averaging” at all altitudes. The implica-
tions and analysis of the temporal averaging kernels are dis-
cussed thoroughly in the paper, including their importance
and limitations in describing the temporal resolutions of the
retrievals.

To investigate the effect of using different temporal cor-
relations, the time series inversions are performed with two
different a priori matrices: one modelled to represent a realis-
tic a priori uncertainty (NatMean), and one intermediate ma-
trix with shorter temporal correlation. Interestingly enough,
in both the simulated retrievals (Fig.5c) and the practical ex-
ample (Fig.8a–c), the retrieval using the intermediate covari-
ance matrix shows almost the same increase in measurement
response between 60 and 80 km as the retrievals using the re-
alistic covariance matrix. This is confirmed as the difference
in the retrieved data from the OSO radiometer between the
two matrices (Fig.6) is minuscule below 80 km.

The similar increase in measurement response for both
matrices shows that the major improvement of the time se-
ries inversions comes from the basic step of extending the

inversions into the temporal dimension rather than to spec-
ify the covariance matrix in detail. This is important for the
practical use of the method since it means that the method
can be applied to cases where the temporal correlation is un-
known, or hard to specify. In these cases care should however
be taken, especially if the atmospheric variable has a system-
atic, e.g. diurnal, variation in time. Such variations might be
hard to specify using a normal distribution described by a
simple covariance matrix, and as such might be unsuited for
MAP retrievals.

The demonstration of the method using real data retrieves
10 yr of water vapour data from the OSO radiometer. Dur-
ing this test case the computation time for the time series
method was less than one order of magnitude larger than
for single spectrum inversions. This shows that the computa-
tional demand, though increased, is not insurmountable. For
large-scale retrievals, however, further optimisation might be
advantageous, in particular, the data reduction method for
reducing the size of the measurement vector can easily be
improved.

The practical demonstration also shows how the time se-
ries method can be used to interpolate data to times where no
measurements are performed. The interpolation is carried out
directly during the retrieval. It is based on the same underly-
ing a priori statistics of the atmosphere, and it automatically
takes into account the quality of the nearby measurements.
By using the measurement response, a selection of the valid
interpolated values can be made. This selection is consistent
with the retrieval, and removes the need for ad hoc, post-
processing selection algorithms to fill data gaps.

Some earlier studies have also used the temporal dimen-
sion in the retrievals; in particular, the Aura-MLS retrieval of
“noisy” products (Livesey et al., 2006) is similar to the time
series method suggested here. The difference is that, whereas
the MLS retrievals invert all spectra simultaneously intoone
mean profile over the entire time period, the time series in-
versions are based on the MAP method and determine the
optimal averaging period at each point and produce a com-
plete time series.

The advantages of using the time series inversion tech-
nique will depend on the instrument and species studied.
This paper has focused on water vapour retrieval from a mi-
crowave radiometer, but the method will similarly benefit in-
struments retrieving other species such as O3, or using other
methods, such as Fourier transform infrared spectroscopy.
Another useful application of the method is the retrieval of
several species, or atmospheric variables requiring different
averaging times.

An additional, interesting aspect of the approach is the
possibility to also consider time correlations of instrument
variables. For example, the practical test case used here in-
cluded the retrieval of polynomial coefficients to describe
the “baseline ripple”. The a priori variability of these coef-
ficients are set to be the same, independent of integration
time, and uncorrelated between measurements. However, if
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the temporal correlation of baseline changes is determined,
it can be incorporated in time series inversion. This would
result in an extension of the measurement response down-
wards compared to retrievals using a single spectrum or 48 h
averaged spectra.

The time series inversion technique offers several advan-
tages over traditional averaging. In particular it offers a way
to produce a single consistent dataset from retrievals that
span a wide set of altitudes, optimising the temporal reso-
lution at each altitude. This removes the need for multiple
datasets for variables requiring different integration times.
However, as the method increases the dimensions of the re-
trieval and resulting averaging kernels, it also increases the
complexity for any end user using the data.
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Eriksson, P., Jiḿenez, C., and Buehler, S. A.: Qpack, a general tool
for instrument simulation and retrieval work, J. Quant. Spectrosc.
Radiat. Transfer, 91, 47–64, doi:10.1016/j.jqsrt.2004.05.050,
2005.

Eriksson, P., Buehler, S., Davis, C., Emde, C., and Lemke,
O.: ARTS, the atmospheric radiative transfer simula-
tor, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558,
doi:10.1016/j.jqsrt.2011.03.001, 2011.

Forkman, P., Eriksson, P., and Winnberg, A.: The 22 GHz radio-
aeronomy receiver at Onsala Space Observatory, J. Quant.
Spectrosc. Ra., 77, 23–42, doi:10.1016/S0022-4073(02)00073-
0, 2003.

Forkman, P., Eriksson, P., and Murtagh, D.: Observing the vertical
branch of the mesospheric circulation at lat N60◦ using ground
based measurements of CO and H2O, J. Geophys. Res., 110,
D05107, doi:10.1029/2004JD004916, 2005.

Haefele, A., Wachter, E. D., Hocke, K., Kämpfer, N., Nedoluha,
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