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Abstract. A current obstacle to the observation system sim-
ulation experiments (OSSEs) used to quantify the poten-
tial performance of future atmospheric composition remote
sensing systems is a computationally efficient method to de-
fine the scene-dependent vertical sensitivity of measurements
as expressed by the retrieval averaging kernels (AKs). We
present a method for the efficient prediction of AKs for mul-
tispectral retrievals of carbon monoxide (CO) and ozone (O3)
based on actual retrievals from MOPITT (Measurements Of
Pollution In The Troposphere) on the Earth Observing Sys-
tem (EOS)-Terra satellite and TES (Tropospheric Emission
Spectrometer) and OMI (Ozone Monitoring Instrument) on
EOS-Aura, respectively. This employs a multiple regression
approach for deriving scene-dependent AKs using predictors
based on state parameters such as the thermal contrast be-
tween the surface and lower atmospheric layers, trace gas
volume mixing ratios (VMRs), solar zenith angle, water va-
por amount, etc. We first compute the singular value decom-
position (SVD) for individual cloud-free AKs and retain the
first three ranked singular vectors in order to fit the most sig-
nificant orthogonal components of the AK in the subsequent
multiple regression on a training set of retrieval cases. The
resulting fit coefficients are applied to the predictors from a
different test set of test retrievals cased to reconstruct pre-
dicted AKs, which can then be evaluated against the true re-
trieval AKs from the test set. By comparing the VMR profile
adjustment resulting from the use of the predicted vs. true
AKs, we quantify the CO and O3 VMR profile errors associ-
ated with the use of the predicted AKs compared to the true

AKs that might be obtained from a computationally expen-
sive full retrieval calculation as part of an OSSE. Similarly,
we estimate the errors in CO and O3 VMRs from using a
single regional average AK to represent all retrievals, which
has been a common approximation in chemical OSSEs per-
formed to date. For both CO and O3 in the lower troposphere,
we find a significant reduction in error when using the pre-
dicted AKs as compared to a single average AK. This study
examined data from the continental United States (CONUS)
for 2006, but the approach could be applied to other regions
and times.

1 Introduction

Atmospheric composition observation system simulation ex-
periments (OSSEs) are valuable for assessing the potential
information that would be provided by future satellite mea-
surements and for quantifying the impact that these have on
air quality characterization and forecasting. These simula-
tions can be used for instrument design and mission planning
in order to achieve an optimal configuration for the avail-
able cost. Chemical OSSEs have proved particularly use-
ful for demonstrating the benefit of increased spatial and
temporal (e.g., hourly) information obtained from geosyn-
chronous Earth orbits (GEOs), as compared to low-Earth or-
bit (LEO) observations that are generally limited to a maxi-
mum of two observations of the same location twice per 24 h.
Claeyman et al. (2011) employed OSSEs to investigate the
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1634 H. M. Worden et al.: Averaging kernel prediction from atmospheric and surface state parameters

relative performance of different instrument options for a po-
tential European GEO mission to characterize trace gas dis-
tributions. Using simulated measurements over North Amer-
ica from a GEO, OSSEs have demonstrated significant added
capability compared to LEO observations for characterizing
tropospheric carbon monoxide (CO) (Edwards et al., 2009)
and ozone (O3) (Zoogman et al., 2011). A goal of this study
is the development of OSSEs for the Geostationary Coastal
and Air Pollution Events (GEO-CAPE) mission (Fishman et
al., 2012, and references therein), which is considering the
use of multispectral measurements for CO and O3, along
with aerosols and other trace gases, for improving air qual-
ity models and understanding the interactions of atmospheric
composition and climate change.

As described by Edwards et al. (2009), chemical OSSEs
provide a way of expanding case-specific sensitivity studies
into a more thorough quantification of the impact of future
measurements in answering a critical science question. The
basic procedure is as follows: (1) a chemical transport model
is chosen that best represents the atmosphere and surface
with the appropriate scales and physical processes relevant to
the science goal. This model is used to perform a nature run
(NR) that will represent the atmosphere true “nature” that we
wish to characterize with the new measurement; (2) an instru-
ment simulator is constructed for the candidate instrument
concept and observing strategy. The instrument simulator is
used to sample the NR to produce simulated retrieval prod-
ucts with associated errors and measurement characteristics;
(3) a control run (CR) is defined to provide an alternative
representation of the atmosphere, usually from a model that
is different from the NR. The difference between the CR and
NR atmospheres should be similar to the physical difference
that might be expected between the prior atmospheric infor-
mation that would be used as input to a retrieval scheme, such
as a climatology, and the actual atmospheric state. (4) An as-
similation run (AR) is performed with the CR as the starting
point, in which the simulated measurements are assimilated.
This mimics the way that future real data and operational
retrievals might be used in a model analysis and forecast;
(5) performance of the AR is evaluated by comparing to the
CR. This provides a quantitative assessment of how well the
assimilation of the simulated product drives the AR toward
the NR.

The development of instrument simulators requires expert
knowledge of measurement and data processing including in-
strument characterization, radiative transfer modeling and re-
trieval methods. Assuming that an inversion method accord-
ing to Rodgers (2000) is used for the retrieval of a trace gas
profile from a satellite measurement, then the vertical sen-
sitivity of the retrieval with respect to the true atmospheric
state is represented by the averaging kernel (AK), which em-
bodies the full physics of the measurement and a description
of the retrieval assumptions.

Following Rodgers (2000), the simulated trace gas mea-
surement profilexsim can be written as

xsim = A xNR + (I − A)xa, (1)

wherexNR is the “true” atmospheric profile as provided by
the NR andxa is the a priori constraint profile. The averaging
kernel matrixA is defined as

A =

(
KT S−1

e K + S−1
a

)−1
KT S−1

e K , (2)

whereSe is the measurement error covariance,Sa the a priori
error covariance constraint used in the retrieval, andK the
Jacobian matrix given by

K =
∂F

∂x
, (3)

which represents the sensitivity (weighting function) of for-
ward model radianceF to physical state parametersx. A use-
ful quantity indicating the information content of the mea-
surement is the degrees of freedom for signal (DFS), given
by trace (A) (Rodgers, 2000).

For accurate measurement simulation in an OSSE, a full
radiative transfer forward model for radiance and Jacobians
would be needed to compute AKs for each atmospheric
and surface scene. Since this presents a computational bur-
den, OSSE studies will often use average representations
for the AK as an approximation (e.g., Edwards et al., 2009;
Zoogman et al., 2011). This can lead to a mischaracterization
of the instrument sensitivity, i.e., overestimation of sensitiv-
ity for some simulated measurements scenes and underesti-
mation for others with the potential for regional biases in the
OSSE results (Sellitto et al., 2013). Therefore, a method for
quickly estimating the expected AK, given scene-dependent
atmospheric and surface parameters for each simulated ob-
servation, is desired. A fast prediction scheme for scene-
dependent AKs has been demonstrated in climate model
evaluation with satellite measurements of deuterated water
vapor (HDO) profiles (Field et al., 2012). However, overly
simplified approximations may be insufficient, as shown by
Sellitto et al. (2013) in their study of the limitations of apply-
ing a look-up-table (LUT) approach for estimating O3 aver-
aging kernels based only on thermal contrast.

Here we use multiple regression analysis of real satel-
lite observations to estimate scene-dependent AKs. Multi-
spectral retrievals of CO using the MOPITT (Measurements
Of Pollution In The Troposphere) 4.6 µm thermal-infrared
(TIR) and 2.3 µm near-infrared (NIR) channels are avail-
able in MOPITT V5 data (Worden et al., 2010; Deeter et
al., 2011, 2012, 2013). Multispectral retrievals of O3 re-
trievals that combine TIR and ultraviolet (UV) radiances
have been shown with simulations (Worden et al., 2007;
Landgraf and Hasekamp, 2007; Natraj et al., 2011) and re-
cently demonstrated by Fu et al. (2013) using radiance mea-
surements from the Tropospheric Emission Spectrometer
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MOPITT sensitivity to near-surface CO 
 

Figure 1. MOPITT V5J sensitivity to near surface CO, given by the trace of the AK for the lowest 
3 layers, in 0.5°x0.5° bins. Only land scenes with surface pressure > 900 hPa are included, with 
higher altitudes, water and missing data indicated by grey or white. 

Fig. 1. MOPITT V5J sensitivity to near-surface CO, given by the
trace of the AK for the lowest 3 layers, in 0.5◦

× 0.5◦ bins. Only
land scenes with surface pressure> 900 hPa are included, with
higher altitudes, water and missing data indicated by grey or white.

(TES) and the Ozone Monitoring Instrument (OMI) and by
Cuesta et al. (2013) with radiance measurements from the In-
frared Atmospheric Sounding Interferometer (IASI) and the
Global Ozone Monitoring Experiment-2 (GOME-2). Using
retrievals of CO and O3 over the continental United States
(hereinafter referred to as CONUS) from 2006 observations,
we divide the data into training and test sets, where the train-
ing sets are used in creating the multiple regression tool and
the test sets are used for evaluation of the resulting AK pre-
diction. This technique is presented as follows: Sect. 2 gives
details of MOPITT and TES/OMI data selection; Sect. 3 de-
scribes the singular value decomposition (SVD) processing
step; Sect. 4 presents the multiple regression fit of the sin-
gular vectors as a function of scene-dependent parameters;
Sect. 5 shows the procedure for reconstructing predicted AKs
from the multiple regression coefficients; Sect. 6 describes
the metrics for evaluating the predicted AKs and the corre-
sponding results, with conclusions given in Sect. 7.

2 Averaging kernel selection

2.1 MOPITT

For the CO AKs, we use measurements from MOPITT on
EOS-Terra, which is in a Sun-synchronous polar low-Earth
orbit (LEO) with∼ 10:30 and∼ 22:30 local time (LT) Equa-
tor crossing. The MOPITT instrument uses correlation ra-
diometry (e.g., Tolton and Drummond, 1997; Drummond et
al., 2010) to detect atmospheric CO absorption. Here we use
multispectral CO retrievals designated as MOPITT V5J data
(Deeter et al., 2012, 2013). The averaging kernels and cor-
responding state data used for the training and test sets are
selected from land-only, day-only observations from 25 to
50◦ N, −125 to−75◦ E in 2006 (representing all months). To
ensure significant measurement information in the retrievals,

Figure 2. MOPITT CO  AKs for 2006 CONUS observations. (a) CONUS average AK, with colors 
corresponding to pressure levels indicated on the left. (b) Individual AK rows for 31904 CONUS observations 
for the surface (red lines) and 500 hPa (blue lines) and average surface AK (black line). 
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Fig. 2. MOPITT CO AKs for 2006 CONUS observations.
(a) CONUS average AK, with colors corresponding to pressure lev-
els indicated on the left.(b) Individual AK rows for 31 904 CONUS
observations for the surface (red lines) and 500 hPa (blue lines) and
average surface AK (black line).

data are filtered for DFS> 1.0, cloud index = 2 (where both
MOPITT and MODIS indicate a clear pixel) and the signal-
to-noise ratio (SNR) for channel 6D> 10. We also select
scenes that were processed with input water vapor profiles
(an interferent gas in the CO retrieval) from NOAA’s Na-
tional Centers for Environmental Prediction (NCEP) opera-
tional analysis meteorological fields and not the backup cli-
matology that is used when NCEP data are not available.
For MOPITT CO we use AKs for parameters in log10(q(z)),
whereq is species abundance andz is the vertical coordinate.

The results shown here are only for MOPITT observations
with surface pressure> 900 hPa. (Lower surface pressures
must be treated separately, which we have also tested with
this method.) MOPITT retrievals of CO profiles are reported
on layers of a vertical pressure grid. For MOPITT data with
surface pressure> 900 hPa, the AK,A, is a 10× 10 matrix
corresponding to 100 hPa layers with lower layer boundaries
from the surface to 100 hPa (listed in Table 4). As an indi-
cation of the measurement sensitivity in the lowermost tro-
posphere (lowest 3 layers), we compute the “surface DFS”
from6 Aii wherei = 1 to 3. Figure 1 shows how this quantity
varies for MOPITT 2006 CONUS observations and Fig. 2
shows the MOPITT 2006 CONUS average AK along with
AK rows for the surface and 500 hPa for individual obser-
vations. The large AK variability shown in Figs. 1 and 2
demonstrates why a single average for the AK would not rep-
resent the range of sensitivity to near-surface CO.

2.2 TES-OMI

TES is a TIR Fourier transform spectrometer (FTS) with
0.1 cm−1 spectral resolution over 650 to 2250 cm−1 for
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operational nadir observations (Beer, 2006). OMI is a nadir-
viewing imaging spectrometer that measures backscattered
solar radiation in the ultraviolet–visible (UV–VIS) wave-
length range from 270–500 nm (Levelt et al., 2006). Both
TES and OMI are on-board the EOS-Aura platform in a
Sun-synchronous LEO with∼ 13:40 ascending node Equator
crossing time. The combined TES/OMI retrieval, described
in Fu et al. (2013), uses O3 absorption around 9.6 µm in the
TIR and 270–330 nm in the UV. Although these retrievals are
not yet performed operationally, beta-version retrievals from
TES and OMI observations taken during August 2006 cov-
ering the CONUS area were available for testing this predic-
tion method. We selected land-only, day-only, cloud-free ob-
servations from 23 to 55◦ N, −128 to−68◦ E. Observations
are considered cloud-free if the TES-only retrieval reported
an effective cloud optical depth< 0.1. For TES-OMI O3, we
use AKs for parameters in ln(q(z)), whereq is species abun-
dance andz is the vertical coordinate.

Although the TES-OMI O3 profiles and AKs are reported
on a 64-level pressure grid from 1000 to 0.1 hPa, we found
that using only the first 10 levels (surface to 421.7 hPa) gave
the most robust performance with a multiple regression fit
(i.e., successful inversions). These lowest levels represent
the vertical range in the troposphere with the most variabil-
ity in retrieval sensitivity and therefore of most interest for
this study. For pressure levels from 383 to 10 hPa, we ap-
ply the average AK for this August 2006 CONUS data in
testing our results. Using only retrievals with surface pres-
sure> 910 hPa, we have 10× 10 matrices for the TES/OMI
AKs corresponding to pressure levels listed in Table 4. The
spatial distribution of TES/OMI sensitivity to O3 in the low-
ermost troposphere from the surface to 600 hPa, computed
with 6 Aii where i = 1 to 6, is shown in Fig. 3. Figure 4
shows the TES/OMI CONUS average AK for pressures from
the surface to 10 hPa and from surface to 421.7 hPa, which
are used for this study. Figure 4 also shows AK rows for
the surface and 510.9 hPa level for individual observations
to demonstrate the variability in TES-OMI sensitivity over
the CONUS scenes.

3 SVD processing of the AK matrix

The number of vertical levels on which tropospheric compo-
sition retrievals are performed varies by instrument and, to
a certain extent, is somewhat arbitrary. For convenience the
retrieval grid may be chosen to match the vertical grid used
by the underlying forward model, as is the case with the TES
retrieval. It should certainly be of sufficient vertical resolu-
tion (i.e., contain sufficient levels) to represent vertical struc-
ture in the background error covariance and retrieved profile.
However, the number of retrieval levels is usually many more
than the DFS of the retrieval, with highly correlated errors as
demonstrated by the broad, overlapping rows of the AK. For
this reason, we apply an SVD to the averaging kernels we

Figure 3. TES-OMI sensitivity to lower tropospheric O3, given by the trace of the AK for the 
lowest 5 layers. Only land scenes with surface pressure > 900 hPa are included; each oval 
represents a single observation. 

Fig. 3.TES-OMI sensitivity to lower tropospheric O3, given by the
trace of the AK for the lowest 5 layers. Only land scenes with sur-
face pressure> 900 hPa are included; each oval represents a single
observation.

use in our training set for the multiple regression. This has
the following advantages for the AK prediction tool: (1) the
complexity of the regression is reduced by considering only
the most significant orthogonal features of the vertical struc-
ture in the AK, and (2) during the OSSE data assimilation
step, the assimilation of the leading components of the SVD
of the AK mitigates the effects of vertical correlation in the
retrieval error covariance. This allows for sequential assim-
ilation of independent retrieval information, without signif-
icant information loss, in addition to significantly reducing
the data volume (e.g., Joiner and da Silva, 1998; Rodgers,
2000; Segers et al., 2005; Arellano and Edwards, 2013).

Given an AK matrixA, we compute the SVD as

A = U3VT , (4)

where the columns ofU andV are the left and right singu-
lar vectors (respectively) and the elements of3 (diagonal
matrix) are the singular values. For this work, we use the
SVDC (SVD in C language) routine from Interactive Data
Language (IDL, 2012). For MOPITT CONUS CO AKs, the
first 2 singular vectors account for 95 % of the variability on
average (with 5 % standard deviation) while the first 3 singu-
lar vectors account for 99.995 %. Similarly, the TES-OMI O3
AKs up to 400 hPa can be reproduced with high accuracy by
the first 3 leading singular vectors. (Note that for TES-OMI
AKs up to 10 hPa, we would need the first 7 leading singu-
lar vectors to reproduce the O3 AK variability through the
stratosphere.)

For eachA, we retain the first 3 ranked singular vectors
for U and V, along with the rotated AK matrix given by
R = UT A. Since the SVD results have a potential sign ambi-
guity (Bro et al., 2007), we also test for negative orientation
in each of the 3 singular vectors forU, V andR. For exam-
ple,pU

i =−1 if the absolute value of the minimum ofUi,k is
larger than the maximum value ofUi,k, wherei = 1, 2 or 3

Atmos. Meas. Tech., 6, 1633–1646, 2013 www.atmos-meas-tech.net/6/1633/2013/
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Fi Figure 4. TES-OMI O3 AKs for August, 2006 CONUS. (a) CONUS average AK from surface to 10 hPa, with 
colors corresponding to pressure levels indicated on the left. (b) CONUS average AK from surface to 421 mb.  
(c) Individual AKs for 906 CONUS observations for the surface (red lines) and 510.9 hPa (blue lines) and 
average surface AK (black line). 
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Fig. 4.TES-OMI O3 AKs for August 2006 CONUS.(a) CONUS average AK from surface to 10 hPa, with colors corresponding to pressure
levels indicated on the left.(b) CONUS average AK from surface to 421 mb.(c) Individual AKs for 906 CONUS observations for the surface
(red lines) and 510.9 hPa (blue lines) and average surface AK (black line).
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Figure 5. (a) Left singular vector (U) from the SVD of the MOPITT 
2006 CONUS average CO AK (1st 3 ranked columns). (b) 1st 3 rows 
of the rotated average AK (R) with corresponding singular values.  
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Figure 5. (a) Left singular vector (U) from the SVD of the MOPITT 
2006 CONUS average CO AK (1st 3 ranked columns). (b) 1st 3 rows 
of the rotated average AK (R) with corresponding singular values.  

(b)

Fig. 5. (a)Left singular vector (U) from the SVD of the MOPITT
2006 CONUS average CO AK (first three ranked columns).(b) first
three rows of the rotated average AK (R) with corresponding sin-
gular values.

andk is the column index; otherwise,pU
i = 1. The sign co-

efficients,pU
i , pV

i , andpR
i , are stored with thei-th singular

vectors for each scene.
The averaging kernel prediction scheme used here uses a

regression function. Similar to artificial neural networks ter-
minology, we call the dataset used to infer the coefficients of
the regression function the “training set” and the dataset that
provides a separate set of predictors and true AKs the “test
set”. The training and test datasets of MOPITT and TES-
OMI AKs are determined by a simple selection of even/odd

Figure 6. same as Figure 5, but for the SVD of the TES-OMI CONUS 
average O3 AK. 
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Fig. 6. Same as Fig. 5, but for the SVD of the TES-OMI CONUS
average O3 AK.

observation indices, and we have confirmed that no spa-
tial bias is introduced. Corresponding state parameters (de-
scribed below) for each MOPITT and TES-OMI retrieval are
also stored with the training and test sets. As a reference case,
we compute the average AK for the region of interest (i.e.,
CONUS for this study). This provides a comparison for eval-
uation of the predicted AK variability, described in Sect. 6,
as well as a mean subtraction reference for the training set
cases. We compute the SVD and sign coefficients for the av-
erage AK, and store the differences of theU, V andR sin-
gular vectors of each observation of the training set with re-
spect to the average AK singular vectors, thereby restricting
our fit algorithm to the vertical structures that are variable

www.atmos-meas-tech.net/6/1633/2013/ Atmos. Meas. Tech., 6, 1633–1646, 2013
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Variability of multiple regression parameters: 
15952 MOPITT observations (CONUS 2006 sample) 

Figure 7. Pressure dependent state parameters for MOPITT CONUS 2006 training set. Black 
lines indicate mean values. Green areas show mean ± standard deviation. 

Fig. 7. Pressure-dependent state parameters for MOPITT CONUS 2006 training set. Black lines indicate mean values. Green areas show
mean± standard deviation.

Table 1.Non-pressure-dependent parameters for MOPITT CO AK
multiple regressionf (2006 CONUS data sample, all seasons, num-
ber of scenes in training set = 15 952).

Parameter Mean Std. Min. Max.
deviation value value

θ sza (deg.) 39.2 13.8 14.5 74.4
SNR (ch. 6D) 88.3 64.7 10.0 767
Emissivity 0.956 0.04 0.78 1.0
Latitude (deg.) 38.1 6.3 25.0 50.0
T srf (K) 287.6 15.3 217.5 334.6
1P srf (hPa) 0.0 31.4 −72.7 59.4
CO column 2.21 0.36 0.95 6.91
(1018molecules cm−2)

from the average AK structure. Figures 5 and 6 show the
leading 3 columns of the left singular vector (U) and rows of
the rotated AK (R) along with singular values for the SVDs
of the average CONUS AKs for MOPITT and TES-OMI,
respectively.

4 The multiple regression AK prediction tool

For the training set of average AK-subtracted, leading 3 sin-
gular vectors ofU, V, and R, at each pressure in the 10-
level grid, we perform a multiple regression (MR) fit with
predictors derived from the corresponding state parameters
included with the retrievals. Here we use the IDL routine

Table 2. Non-pressure-dependent parameters for TES-OMI O3
AK multiple regression fit (August 2006 CONUS data, number of
scenes in training set = 453).

Parameter Mean Std. Min. Max.
deviation value value

θ sza (deg.) 32.3 6.4 20.5 48.1
Albedo (OMI ch.2) 0.050 0.025 5.e-5 0.16
Emissivity 0.986 0.012 0.931 1.0
Latitude (deg.) 41.5 8.6 23.1 55.7
T surface (K) 303.5 9.8 280.0 328.9
1P surface (hPa) 0.0 27.3 −60.8 30.2
Tropopause pressure (hPa) 141.5 45.0 75.0 261.0
Trop. O3 column 1.36 0.25 0.79 3.27
(1018molecules cm−2)

REGRESS (IDL, 2012) to perform the following fit over the
training set for each singular vector at each pressure denoted
by yi :

yi = c + a1xi,1 + a2xi,2 + . . . + aN xi,N (5)

with resulting constantc and N coefficientsa, for N pre-
dictorsx from thei-th observation in the training set. Some
predictors (x) are pressure-dependent and some are inde-
pendent of pressure. In selecting predictors, we first con-
sidered the more important predictors used in the regression
technique for parametrizing MOPITT forward model trans-
mittances (Edwards et al., 1999). Pressure-independent pre-
dictors are listed in Table 1 for MOPITT and Table 2 for

Atmos. Meas. Tech., 6, 1633–1646, 2013 www.atmos-meas-tech.net/6/1633/2013/
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Variability of multiple regression parameters: 
453 TES-OMI observations CONUS, Aug. 2006 

Figure 8. Same as Fig. 7 but for TES-OMI pressure dependent state parameters. 
Fig. 8.Same as Fig. 7 but for TES-OMI pressure-dependent state parameters.

TES-OMI retrievals, with mean, standard deviation, mini-
mum and maximum values given to indicate the ranges of
values covered by the training datasets. Pressure-dependent
predictors, atmospheric temperature (T (z)), thermal contrast
(1T (z) =Tsurface− T (z)), water vapor volume mixing ratio
(VMR) and retrieval species (CO or O3) VMR, are plot-
ted in Fig. 7 for MOPITT and Fig. 8 for TES-OMI. Here
thermal contrast is defined with layer average temperatures,
while temperature profiles correspond to pressure levels. For
MOPITT retrievals, we use the SNR for the difference sig-
nals in the 2.3 µm NIR channel (ch 6D) as a proxy for
albedo. For OSSEs with variable albedo, these could be
scaled to match the range shown for SNR (ch 6D). Along
with the predictors listed in Tables 1 and 2, we also use
MR predictors defined from combined parameters such as
1T 2, cos(θsza)/ log10(CO) and1T/ log10(CO). All predic-
tors were tested individually and all provide improvements
to the fit, but with varying degrees of significance (see be-
low). The resulting coefficients from the training set MR are
stored. These are used below in the evaluation of the tool in
for the test dataset AKs and corresponding predictors derived
from their physical parameters.

4.1 MR predictor significance

The AK, given by Eq. (2), has contributions from instrument
sensitivity through the Jacobian (weighting function) matrix
K and measurement errorSe (Rodgers, 2000). For a constant
a priori error covariance or other constraint,Sa, we expect
the parameters that affect variations in the AK to fall within

two basic categories: weighting functions and SNR. Since
we are considering existing instruments, we are not exam-
ining a wide range in SNR. Therefore, we expect much of
the variation in our regression to be explained by parameters
that affect the weighting functions such asT , 1T , retrieval
species abundance (CO or O3), water vapor, etc. Since MO-
PITT usesx = log10(VMR) in the CO retrieval and TES/OMI
usesx = ln(VMR) for O3, following Eq. (3), both of these
produce weighting functions that have a dependence onq(z)

(i.e., VMR) with increasing magnitude for increasing VMR:

∂F

∂ log10 q(z)
=

(
log10 e

)
q(z)

∂F

∂q(z)

and
∂F

∂ ln q(z)
= q(z)

∂F

∂q(z)
. (6)

Since the MR predictors are not always independent of each
other, we need a method to assess their contributions to the
MR fit. To evaluate whether an individual predictor improves
or degrades the overall performance of the fit, we use the er-
ror metrics described in Sect. 6, applied to the cases where
each predictor is removed, one at a time. For the MOPITT
AKs, the most important predictor for accuracy in the lowest
levels (highest pressures) is1P srf. However, this is an arti-
fact of how we have defined our vertical grid boundaries and
reference to the average CONUS AK. The most significant
physical predictors are CO column andT (temperature pro-
file), followed by CO profile,1T 2 and SNR (ch 6D). Other
predictors such as water vapor VMR and surface emissivity
added almost negligible improvements to the fit, which is to
be expected in the case of MOPITT since these parameters
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Figure 9. Example of a test case to evaluate the prediction for singular vectors (SV) for the rotated AK (R) 
for a single MOPITT observation. Solid lines indicate the true rows of R from the test case observation; 
dotted lines indicate the results of the prediction using MR coefficients from the training set and the state 
parameters from the test case observation as input. 

Fig. 9. Example of a test case to evaluate the prediction for singular vectors (SVs) for the rotated AK (R) for a single MOPITT observation.
Solid lines indicate the true rows ofR from the test case observation; dotted lines indicate the results of the prediction using MR coefficients
from the training set and the state parameters from the test case observation as input.

have little impact on the weighting functions or SNR of a gas
filter correlation radiometer. This is due to the fact that their
radiative effect is uncorrelated with that of CO and, to first
order, cancels from the radiance signals used by the retrieval.

For the TES-OMI retrievals, the most important predictors
(in order) are O3 profile,1P srf and T. As for MOPITT, the
dependence on1P srf is an artifact of how we specify our
grid and reference AK. These are followed by tropospheric
O3 column, surface temperature (Tsrf), tropopause pressure
and 1T 2. We found that including water vapor and solar
zenith angle (sza) actually degraded the fit in the TES-OMI
cases, for reasons we do not fully understand, but possibly
because our training set was limited to 453 observations and
did not have a sufficient range in these parameters.

Table 3 lists the linear Pearson correlation coefficients for
surface DFS (trace of the AK for the 3 lowest layers) with
the predictors that are most important to the MR fit. For both
MOPITT and TES-OMI, we can conclude that MR depen-
dence on either column amount or VMR is more important
than T or1T . For MOPITT TIR-only retrievals, surface DFS
has significantly more correlation with1T 2 than the multi-
spectral cases, but it is still less than the correlation with CO
column. Although TIR-only retrievals rely on sufficient ther-
mal contrast for retrieval sensitivity in the lower troposphere
(Deeter et al., 2007; Clerbaux et al., 2009), by selecting only
retrievals with DFS> 1, we may have limited the range of
thermal contrast such that the correlation with CO column
(due to the use of log(VMR) parameters) is more dominant.

5 Prediction of averaging kernels for the test dataset

Using the coefficients from the MR and predictors from a test
retrieval case, we createUMR and reconstruct the predicted
left singular vectorUpred with

Upred = UMR + pU
avgUavg, (7)

whereUavg is the SVD of the average CONUS AK, with
sign pU

avg stored with the coefficients. Corresponding oper-
ations are performed to obtainVpred andRpred. Since the ac-
tual SVD-transformed AKs for each test case observation are
also available, a direct comparison of the true and predicted
quantities can be made to evaluate the accuracy of the tech-
nique. Figure 9 shows an example of the predicted singular
vectors forR compared to the trueR for a single test case ob-
servation from MOPITT. Reconstructed singular values are
estimated using

3ii = sqrt
(
6k

[
Rpred(i, k)

]2
/6k

[
Upred(i, k)

]2
)
, (8)

wherei = 1, 2 or 3 andk is the column index. Using orig-
inal matricesR andU, the diagonal values of3 are repro-
duced exactly with Eq. (8), whileRpred andUpred produce
reasonable approximations to the singular values in order to
reconstruct a full 10× 10 AK matrix with

Apred = Upred3VT
pred. (9)

The MR coefficients are used to calculateUpred, Vpred and
Rpred for each set of state parameters corresponding to the
AKs in the test data, and Eq. (9) gives a predicted AK that
can be compared to the true AK from the test set. Figure 10
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Original AK Predicted AK Difference (predicted – original) 

Figure 10. Example of original MOPITT test case AK and corresponding predicted AK using 
the results of the MR prediction shown in Fig. 9 to reconstruct the predicted AK. Differences 
between predicted and original AKs are shown on the right. 
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Fig. 10.Example of original MOPITT test case AK and corresponding predicted AK using the results of the MR prediction shown in Fig. 9
to reconstruct the predicted AK. Difference between predicted and original AKs is shown on the right.

shows the predicted AK compared to the true AK for the
same MOPITT test case example shown in Fig. 9. Figures 11
and 12 show a test case example for TES-OMI with predicted
singular vectors forR and reconstructed AK compared to the
true values. We compare the average of test case AKs to the
average of predicted AKs for MOPITT in Fig. 13 and for
TES-OMI in Fig. 14.

6 Evaluation metrics and results

As discussed in Sect. 1, chemical OSSEs to date have usu-
ally only considered a very limited number of AK conditions
(e.g., two representative average AKs for land and ocean
scenes). In order to compare the performance of our indi-
vidual scene-dependent predicted AKs to a single CONUS
average AK, we established a metric for the error in VMR
given by the difference between a reference profile that is
smoothed by either the predicted AK (Apred) or CONUS av-
erage AK (Acavg) and the same reference profile smoothed
by the true AK (Atrue) from each test case. For MOPITT CO,
we compute the following for each test case.

xtrue = log10
(
COapr

)
+ Atrue

[
log10(COref) − log10

(
COapr

)]
(10)

xcavg = log10
(
COapr

)
+ Acavg

[
log10(COref) − log10

(
COapr

)]
(11)

xpred = log10
(
COapr

)
+ Apred

[
log10(COref) − log10

(
COapr

)]
(12)

1COcavg = 10∧
(
xcavg

)
− 10∧ (xtrue) (13)

1COpred = 10∧
(
xpred

)
− 10∧ (xtrue) , (14)

where COapr is a global average profile andCOref is a
CONUS average profile, both from the climatology used in
MOPITT retrievals (Deeter et al., 2010). For TES-OMI O3
test cases, we use equations similar to Eqs. (10)–(14), except
with ln(O3 VMR), and with an a priori profile for the Pacific

Ocean and a reference profile for CONUS, from the climatol-
ogy used in the TES-OMI retrievals (Fu et al., 2013), where
we have added 50 ppb at the lowest 3 levels to approximate a
polluted boundary layer case. Table 4 lists the CO and O3 a
priori and reference profile values.

Histograms of1COcavg for each pressure are shown in
Fig. 15a. These show that using a CONUS average AK ap-
proximation would give small errors in CO for the middle
and upper troposphere (pressures below 600 hPa), but would
not capture the true sensitivity to CO variability (as compared
to the original test case AKs) in the lower troposphere. For
the CONUS average AK approximation, only 49 % of the
test cases have CO values within 5 ppb of the CO values
obtained from using the true AKs in the surface layer. Fig-
ure 15b shows histograms of1COpredwhere we see similar
performance in the middle and upper troposphere and signifi-
cant improvements for the CO error in the lower troposphere.
For the predicted AKs, the number of cases with CO errors
within 5 ppb increases to 82 % in the surface layer.

TES-OMI histograms for1O3 (% errors) are shown in
Fig. 16. We use percent error in order to show the perfor-
mance of the CONUS average and predicted AKs at all pres-
sure levels on the same plot. For the TES-OMI predicted
AKs, performance was somewhat worse at pressures below
600 hPa compared to the CONUS average AK. We therefore
adopted a hybrid approach of using the predicted AK rows
at pressures greater than 600 hPa and the CONUS average
AK rows at all lower pressures. Figure 16a shows a broad
distribution in O3 errors for surface to 681 hPa pressure lev-
els when using a CONUS average AK, while in Fig. 16b
the error histograms at these same pressure levels have much
narrower distributions when using predicted AKs. Figure 17
shows the CONUS average and predicted AK histograms
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Figure 11. Same as Fig. 9 but for TES-OMI test case and prediction.   
Fig. 11.Same as Fig. 9 but for TES-OMI test case and prediction.

Figure 12. Same as Fig. 10 but for TES-OMI test case AK and prediction.   
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Fig. 12.Same as Fig. 10 but for TES-OMI test case AK and prediction.

computed for O3 differences in ppb, for surface to 421 hPa
pressures.

We note that the shape and mean values in the CO or O3
error histograms will partially depend on the choice of ref-
erence and a priori profiles used for computing this met-
ric. However, here we are testing the relative performance
of the predicted AKs compared to the CONUS average AK,
which are evaluated using the same a priori and reference
profiles. Using this metric, we can test the performance of
the predicted AKs when removing predictors from the MR
(as discussed in Sect. 4.1) and also show how the predicted
AKs improve errors in the lower troposphere over the base-
line approximation of using a CONUS average AK in an
OSSE (Figs. 15–17).

7 Summary and conclusions

We have demonstrated a method for predicting scene-
dependent, cloud-free AKs for tropospheric retrievals of CO
and O3 using coefficients from a multiple regression fit of AK
singular vectors and predictors formed from the state param-
eters of multispectral observations. This tool provides a fast
approximation for the instrument simulator component of a
chemical OSSE that could be used for determining how much
information is added from the observational perspective of
GEO compared to existing satellite measurement capabil-
ity from LEO. We used CONUS observations from existing
LEO satellite measurements of CO (from Terra/MOPITT)
and O3 (from Aura/TES and OMI) that have shown increased
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Figure 13. Comparison of the average CO AK for MOPITT test cases and average of 
corresponding predicted AKs. Differences between average predicted and average test case 
AKs are shown on the right. 
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Fig. 13.Comparison of the average CO AK for MOPITT test cases and average of corresponding predicted AKs. Difference between average
predicted and average test case AKs is shown on the right.

Figure 14. Same as Fig. 13 but for TES-OMI test cases.  
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Fig. 14.Same as Fig. 13 but for TES-OMI test cases.

sensitivity to the lower troposphere in some scenes with re-
trievals that combine multispectral radiances. After applying
an SVD to the averaging kernels, we performed a multiple
regression fit on the leading three singular vectors ofU, V
and rotated AKR for our training set of observations. We
then used the coefficients of the MR to create predicted AKs
using predictors derived from the state parameters of our
test observations. By comparing the adjustments to reference
CO and O3 profiles from applying the true, predicted and
CONUS average AKs, we evaluated the relative performance
of the predicted AK in terms of VMR error. We found that
the predictors most important for reproducing the variabil-
ity in the lowermost troposphere for MOPITT and TES-OMI
multispectral AKs were species abundance (column or VMR
profiles) followed by temperature and thermal contrast. We

have shown that using this AK prediction tool in a chemical
OSSE would provide a significant improvement in accuracy
compared to an OSSE that uses a single CONUS average
AK. For our reference CO and O3 profiles, the percentage
of cases that would have VMR errors less than 5 ppb in the
near-surface layer increased from 49 to 82 % for CO and
from 65 to 92 % for O3 from applying the predicted AKs as
compared to the CONUS average AK. The next step in this
work will be the implementation of the AK prediction tool
in the data assimilation environment of chemical OSSEs to
evaluate CO and O3 multispectral retrieval performance for
the Decadal Survey GEO-CAPE mission. Subsequent work
will explore the extension of the method for the measure-
ment simulation of other GEO-CAPE trace gas and aerosol
products.
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Table 3. Linear Pearson correlation coefficients for surface DFS
(lowest 3 layers) vs. state parameters with highest impact to MR fit.
For T atmos,1T 2, and O3 VMR, the average values for the lowest
3 layers are used.

Parameter MOPITT TES-OMI
surface DFS surface DFS

correlation correlation

1P surface 0.37 0.13
CO total column 0.25
T atmos. −0.22 0.27
1T 2 0.03 0.47
Trop. O3 column 0.42
O3 VMR 0.76
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Figure 15  (a) Performance of CONUS average AK compared to true AKs for MOPITT test cases. (b) Performance of 
predicted AKs compared to true AKs for MOPITT test cases. Histograms of error in CO are plotted for each pressure 
(indicated by colors on the right). Listed on the far right, are the percentages of test cases that fall within 5  and 10 ppb CO 
error for each pressure. See text for description of error calculation. 
 

Fig. 15. (a)Performance of CONUS average AK compared to true
AKs for MOPITT test cases.(b) Performance of predicted AKs
compared to true AKs for MOPITT test cases. Histograms of er-
ror in CO are plotted for each pressure (indicated by colors on the
right). Listed on the far right are the percentages of test cases that
fall within 5 and 10 ppb CO error for each pressure. See text for
description of error calculation.

Table 4. A priori and reference profiles for evaluating CO and O3
errors in predicted or CONUS average AKs.

MOPITT A priori Reference TES-OMI A priori Reference
pressure CO profile CO profile pressure O3 profile O3 profile
(hPa) (ppb) (ppb) (hPa) (ppb) (ppb)

Surface 97.0 131.0 Surface 27.3 98.8
900 90.0 122.0 908.51 32.0 100.0
800 89.0 102.0 825.40 37.6 102.2
700 85.0 95.0 749.89 44.1 55.9
600 82.0 91.0 681.29 51.8 60.1
500 80.0 88.0 618.97 55.3 63.5
400 80.0 86.0 562.34 59.0 67.0
300 78.0 82.0 510.90 61.9 70.2
200 70.0 67.0 464.16 65.1 73.7
100 45.0 42.0 421.70 69.4 78.7

Fig. 16. (a)Performance of CONUS average AK compared to true
AKs for TES-OMI test cases.(b) Performance of predicted AKs
compared to true AKs for TES-OMI test cases. For pressures be-
low 600 hPa, the CONUS average AK is applied. Histograms of
error in O3 are plotted for each pressure (indicated by colors on the
right). Listed on the far right are the percentages of test cases that
fall within 2 and 5 % O3 error for each pressure.
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Figure 17 (a) Performance of CONUS average AK compared to true AKs for TES-OMI test cases. (b) Performance of predicted AKs compared to true AKs 
for TES-OMI test cases. For pressures below 600 hPa, the CONUS average AK is applied. Histograms of O3 error in ppb are plotted for each pressure 
(indicated by colors on the right). Listed on the far right are the percentages of test cases that fall within 2 ppb and 5 ppb O3 error for each pressure.  Fig. 17.Same as Fig. 16, but with error expressed in ppb and only
showing pressures higher than 400 hPa.(a) Performance of CONUS
average AK compared to true AKs for TES-OMI test cases.(b) Per-
formance of predicted AKs compared to true AKs for TES-OMI test
cases. For pressures below 600 hPa, the CONUS average AK is ap-
plied. Histograms of O3 error in ppb are plotted for each pressure
(indicated by colors on the right). Listed on the far right are the per-
centages of test cases that fall within 2 and 5 ppb O3 error for each
pressure.
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W. A., Josse, B., Joly, M., Barré, J., Ricaud, P., Massart, S., Pia-
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