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Abstract. A current obstacle to the observation system sim-AKs that might be obtained from a computationally expen-
ulation experiments (OSSEs) used to quantify the potensive full retrieval calculation as part of an OSSE. Similarly,
tial performance of future atmospheric composition remotewe estimate the errors in CO ands ®MRs from using a
sensing systems is a computationally efficient method to desingle regional average AK to represent all retrievals, which
fine the scene-dependent vertical sensitivity of measurementsas been a common approximation in chemical OSSEs per-
as expressed by the retrieval averaging kernels (AKs). Wdormed to date. For both CO ang @ the lower troposphere,
present a method for the efficient prediction of AKs for mul- we find a significant reduction in error when using the pre-
tispectral retrievals of carbon monoxide (CO) and ozong (O dicted AKs as compared to a single average AK. This study
based on actual retrievals from MOPITT (Measurements Ofexamined data from the continental United States (CONUS)
Pollution In The Troposphere) on the Earth Observing Sys-for 2006, but the approach could be applied to other regions
tem (EOS)-Terra satellite and TES (Tropospheric Emissionand times.
Spectrometer) and OMI (Ozone Monitoring Instrument) on
EOS-Aura, respectively. This employs a multiple regression
approach for deriving scene-dependent AKs using predictors
based on state parameters such as the thermal contrast bk- Introduction
tween the surface and lower atmospheric layers, trace gas
volume mixing ratios (VMRSs), solar zenith angle, water va- Atmospheric composition observation system simulation ex-
por amount, etc. We first compute the singular value decomperiments (OSSEs) are valuable for assessing the potential
position (SVD) for individual cloud-free AKs and retain the information that would be provided by future satellite mea-
first three ranked singular vectors in order to fit the most sig-surements and for quantifying the impact that these have on
nificant orthogonal components of the AK in the subsequentir quality characterization and forecasting. These simula-
multiple regression on a training set of retrieval cases. Thdions can be used for instrument design and mission planning
resulting fit coefficients are applied to the predictors from ain order to achieve an optimal configuration for the avail-
different test set of test retrievals cased to reconstruct preable cost. Chemical OSSEs have proved particularly use-
dicted AKs, which can then be evaluated against the true reful for demonstrating the benefit of increased spatial and
trieval AKs from the test set. By comparing the VMR profile temporal (e.g., hourly) information obtained from geosyn-
adjustment resulting from the use of the predicted vs. truechronous Earth orbits (GEOs), as compared to low-Earth or-
AKs, we quantify the CO and £VMR profile errors associ-  bit (LEO) observations that are generally limited to a maxi-
ated with the use of the predicted AKs compared to the trugmum of two observations of the same location twice per 24 h.
Claeyman et al. (2011) employed OSSEs to investigate the
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relative performance of different instrument options for a po- Following Rodgers (2000), the simulated trace gas mea-
tential European GEO mission to characterize trace gas dissurement profilsim can be written as

tributions. Using simulated measurements over North Amer-

ica from a GEO, OSSEs have demonstrated significant addetsim = AxnR + (I — A) x4, (1)
capability compared to LEO observations for characterizing . - , ! .
tropospheric carbon monoxide (CO) (Edwards et al., 2009)"N€réxnr is the “true” atmospheric profile as provided by
and ozone () (Zoogman et al., 2011). A goal of this study the NR andv_a|s'the apriori constraint profile. The averaging
is the development of OSSESs for the Geostationary Coastaf€Mel matrixA is defined as

and Air Pollution Events (GEO-CAPE) mission (Fishman et T ot N7

al., 2012, and references therein), which is considering thé\ = (K Se K+ S ) K™ S °K, ©
use of multispectral measurements for CO ang &ong ] ) o
with aerosols and other trace gases, for improving air qualWheréSe is the measurement error covarianggthe a priori

ity models and understanding the interactions of atmospheri€'TOr covariance constraint used in the retrieval, Enthe

composition and climate change. Jacobian matrix given by
As described by Edwards et al. (2009), chemical OSSEs 9F
provide a way of expanding case-specific sensitivity studieX = —, 3)

into a more thorough quantification of the impact of future 0x

measurements in answering a critical science question. Thevhich represents the sensitivity (weighting function) of for-
basic procedure is as follows: (1) a chemical transport modelvard model radianc# to physical state parametersA use-

is chosen that best represents the atmosphere and surfafid quantity indicating the information content of the mea-
with the appropriate scales and physical processes relevant gurement is the degrees of freedom for signal (DFS), given
the science goal. This model is used to perform a nature rumy trace A) (Rodgers, 2000).

(NR) that will represent the atmosphere true “nature” that we For accurate measurement simulation in an OSSE, a full
wish to characterize with the new measurement; (2) an instruradiative transfer forward model for radiance and Jacobians
ment simulator is constructed for the candidate instrumentwould be needed to compute AKs for each atmospheric
concept and observing strategy. The instrument simulator i@nd surface scene. Since this presents a computational bur-
used to sample the NR to produce simulated retrieval prodden, OSSE studies will often use average representations
ucts with associated errors and measurement characteristicir the AK as an approximation (e.g., Edwards et al., 2009;
(3) a control run (CR) is defined to provide an alternative Zoogman et al., 2011). This can lead to a mischaracterization
representation of the atmosphere, usually from a model thatf the instrument sensitivity, i.e., overestimation of sensitiv-
is different from the NR. The difference between the CR andity for some simulated measurements scenes and underesti-
NR atmospheres should be similar to the physical differencanation for others with the potential for regional biases in the
that might be expected between the prior atmospheric inforOSSE results (Sellitto et al., 2013). Therefore, a method for
mation that would be used as input to a retrieval scheme, suchuickly estimating the expected AK, given scene-dependent
as a climatology, and the actual atmospheric state. (4) An asatmospheric and surface parameters for each simulated ob-
similation run (AR) is performed with the CR as the starting servation, is desired. A fast prediction scheme for scene-
point, in which the simulated measurements are assimilateddependent AKs has been demonstrated in climate model
This mimics the way that future real data and operationalevaluation with satellite measurements of deuterated water
retrievals might be used in a model analysis and forecastyapor (HDO) profiles (Field et al., 2012). However, overly
(5) performance of the AR is evaluated by comparing to thesimplified approximations may be insufficient, as shown by
CR. This provides a quantitative assessment of how well theSellitto et al. (2013) in their study of the limitations of apply-
assimilation of the simulated product drives the AR towarding a look-up-table (LUT) approach for estimating @ver-

the NR. aging kernels based only on thermal contrast.

The development of instrument simulators requires expert Here we use multiple regression analysis of real satel-
knowledge of measurement and data processing including inlite observations to estimate scene-dependent AKs. Multi-
strument characterization, radiative transfer modeling and respectral retrievals of CO using the MOPITT (Measurements
trieval methods. Assuming that an inversion method accord-Of Pollution In The Troposphere) 4.6 um thermal-infrared
ing to Rodgers (2000) is used for the retrieval of a trace gagTIR) and 2.3 um near-infrared (NIR) channels are avail-
profile from a satellite measurement, then the vertical senable in MOPITT V5 data (Worden et al., 2010; Deeter et
sitivity of the retrieval with respect to the true atmospheric al., 2011, 2012, 2013). Multispectral retrievals of @e-
state is represented by the averaging kernel (AK), which emirievals that combine TIR and ultraviolet (UV) radiances
bodies the full physics of the measurement and a descriptiothave been shown with simulations (Worden et al., 2007;
of the retrieval assumptions. Landgraf and Hasekamp, 2007; Natraj et al., 2011) and re-

cently demonstrated by Fu et al. (2013) using radiance mea-
surements from the Tropospheric Emission Spectrometer
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Fig. 1. MOPITT V5J sensitivity to near-surface CO, given by the 1000 #Aflbuuluiddiubumulussss R
trace of the AK for the lowest 3 layers, in 0.5 0.5 bins. Only Rows of <A> Rows of A
land scenes with surface pressuse€900hPa are included, with
higher altitudes, water and missing data indicated by grey or white Fig. 2. MOPITT CO AKs for 2006 CONUS observations.
(a) CONUS average AK, with colors corresponding to pressure lev-
els indicated on the leftb) Individual AK rows for 31 904 CONUS
(TES) and the Ozone Monitoring Instrument (OMI) and by observations for the surface_ (red lines) and 500 hPa (blue lines) and
Cuesta et al. (2013) with radiance measurements from the In2verage surface AK (black line).
frared Atmospheric Sounding Interferometer (IASI) and the
Global Ozone Monitoring Experiment-2 (GOME-2). Using
retrievals of CO and @over the continental United States data are filtered for DFS 1.0, cloud index=2 (where both
(hereinafter referred to as CONUS) from 2006 observationsMOPITT and MODIS indicate a clear pixel) and the signal-
we divide the data into training and test sets, where the trainfo-noise ratio (SNR) for channel 6910. We also select
ing sets are used in creating the multiple regression tool angcenes that were processed with input water vapor profiles
the test sets are used for evaluation of the resulting AK pre{an interferent gas in the CO retrieval) from NOAAs Na-
diction. This technique is presented as follows: Sect. 2 givedional Centers for Environmental Prediction (NCEP) opera-
details of MOPITT and TES/OMI data selection: Sect. 3 de-tional analysis meteorological fields and not the backup cli-
scribes the singular value decomposition (SVD) processingnatology that is used when NCEP data are not available.
step; Sect. 4 presents the multiple regression fit of the sinfor MOPITT CO we use AKs for parameters in {gg; (z)),
gular vectors as a function of scene-dependent parameter¥/hereg is species abundance ant the vertical coordinate.
Sect. 5 shows the procedure for reconstructing predicted AKs The results shown here are only for MOPITT observations
from the multiple regression coefficients; Sect. 6 describedVith surface pressure 900 hPa. (Lower surface pressures

the metrics for evaluating the predicted AKs and the corre-must be treated separately, which we have also tested with
sponding results, with conclusions given in Sect. 7. this method.) MOPITT retrievals of CO profiles are reported

on layers of a vertical pressure grid. For MOPITT data with
surface pressure 900 hPa, the AKA, is a 10x 10 matrix

2 Averaging kernel selection corresponding to 100 hPa layers with lower layer boundaries
from the surface to 100 hPa (listed in Table 4). As an indi-
2.1 MOPITT cation of the measurement sensitivity in the lowermost tro-

posphere (lowest 3 layers), we compute the “surface DFS”
For the CO AKs, we use measurements from MOPITT onfrom X A;; wherei =1 to 3. Figure 1 shows how this quantity
EOS-Terra, which is in a Sun-synchronous polar low-Earthvaries for MOPITT 2006 CONUS observations and Fig. 2
orbit (LEO) with~ 10:30 and~ 22:30 local time (LT) Equa-  shows the MOPITT 2006 CONUS average AK along with
tor crossing. The MOPITT instrument uses correlation ra-AK rows for the surface and 500 hPa for individual obser-
diometry (e.g., Tolton and Drummond, 1997; Drummond etvations. The large AK variability shown in Figs. 1 and 2
al., 2010) to detect atmospheric CO absorption. Here we uséemonstrates why a single average for the AK would not rep-
multispectral CO retrievals designated as MOPITT V5J dataresent the range of sensitivity to near-surface CO.
(Deeter et al., 2012, 2013). The averaging kernels and cor-
responding state data used for the training and test sets a2 TES-OMI
selected from land-only, day-only observations from 25 to
50° N, —125to—75° E in 2006 (representing all months). To TES is a TIR Fourier transform spectrometer (FTS) with
ensure significant measurement information in the retrievalsp.1cnt! spectral resolution over 650 to 2250thfor
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1.2

operational nadir observations (Beer, 2006). OMlI is a nadir- ===
viewing imaging spectrometer that measures backscattere(Lzo\T. .

solar radiation in the ultraviolet-visible (UV-VIS) wave- %
length range from 270-500 nm (Levelt et al., 2006). Both E
TES and OMI are on-board the EOS-Aura platform in a :
Sun-synchronous LEO witk 13:40 ascending node Equator
crossing time. The combined TES/OMI retrieval, described
in Fu et al. (2013), uses{absorption around 9.6 um in the
TIR and 270-330 nm in the UV. Although these retrievals are
not yet performed operationally, beta-version retrievals from
TES and OMI observations taken during August 2006 cov- s 04
ering the CONUS area were available for testing this predic- I
tion method. We selected land-only, day-only, cloud-free ob- ¢ 02
servations from 23 to 59N, —128 to—68° E. Observations
are considered cloud-free if the TES-only retrieval reportedFi9- 3. TES-OMI sensitivity to lower troposphericiOgiven by the
an effective cloud optical depth0.1. For TES-OMI @, we trace of the AK for the Iowefst 5 layers. Only land scenes with sur-
use AKs for parameters in{f(z)), whereg is species abun- face pressure- 900 hPa are included; each oval represents a single
dance and is the vertical coordinate. observation.

Although the TES-OMI @ profiles and AKs are reported

on a 64-level pressure grid from 1000 to 0.1 hPa, we foundyse in our training set for the multiple regression. This has
that using only the first 10 levels (surface to 421.7 hPa) gavene following advantages for the AK prediction tool: (1) the
the most robust performance with a multiple regression fitcomplexity of the regression is reduced by considering only
(i.e., successful inversions). These lowest levels representhe most significant orthogonal features of the vertical struc-
the vertical range in the troposphere with the most variabil-tyre in the AK, and (2) during the OSSE data assimilation
Ity in retrieval SenSitiVity and therefore of most interest for step, the assimilation of the |eading Components of the SVD
this study. For pressure levels from 383 to 10hPa, we appf the AK mitigates the effects of vertical correlation in the
ply the average AK for this August 2006 CONUS data in retrieval error covariance. This allows for sequential assim-
testing our results. Using only retrievals with surface pres-jjation of independent retrieval information, without signif-
sure> 910 hPa, we have 1010 matrices for the TES/OMI jcant information loss, in addition to significantly reducing
AKs Corresponding to pressure IeVelS ||Sted in Table 4. Thethe data V0|ume (e_g_, Joiner and da S”\/a, 1998, RodgerS,
Spatia| distribution of TES/OMI SensitiVity toﬁn the low- 20001 Segers et a|_, 2005, Arellano and Edwards7 2013)
ermost troposphere from the surface to 600 hPa, computed Gjven an AK matrixA, we compute the SVD as
with X A;; wherei=1 to 6, is shown in Fig. 3. Figure 4
shows the TES/OMI CONUS average AK for pressures froma = UA VT, 4)
the surface to 10 hPa and from surface to 421.7 hPa, which
are used for this study. Figure 4 also shows AK rows forwhere the columns dfl andV are the left and right singu-
the surface and 510.9 hPa level for individual observationdar vectors (respectively) and the elementsAofdiagonal
to demonstrate the variability in TES-OMI sensitivity over matrix) are the singular values. For this work, we use the
the CONUS scenes. SVDC (SVD in C language) routine from Interactive Data
Language (IDL, 2012). For MOPITT CONUS CO AKs, the
first 2 singular vectors account for 95 % of the variability on
3 SVD processing of the AK matrix average (with 5% standard deviation) while the first 3 singu-
lar vectors account for 99.995 %. Similarly, the TES-OMI O
The number of vertical levels on which tropospheric compo-AKs up to 400 hPa can be reproduced with high accuracy by
sition retrievals are performed varies by instrument and, tothe first 3 leading singular vectors. (Note that for TES-OMI
a certain extent, is somewhat arbitrary. For convenience théKs up to 10 hPa, we would need the first 7 leading singu-
retrieval grid may be chosen to match the vertical grid usedar vectors to reproduce thes\K variability through the
by the underlying forward model, as is the case with the TESstratosphere.)
retrieval. It should certainly be of sufficient vertical resolu-  For eachA, we retain the first 3 ranked singular vectors
tion (i.e., contain sufficient levels) to represent vertical struc-for U and V, along with the rotated AK matrix given by
ture in the background error covariance and retrieved profileR =U” A. Since the SVD results have a potential sign ambi-
However, the number of retrieval levels is usually many moreguity (Bro et al., 2007), we also test for negative orientation
than the DFS of the retrieval, with highly correlated errors asin each of the 3 singular vectors fok, V andR. For exam-
demonstrated by the broad, overlapping rows of the AK. Forple, piU = —1 if the absolute value of the minimum bf ; is
this reason, we apply an SVD to the averaging kernels wdarger than the maximum value &f; ;, wherei =1, 2 or 3

o

o
®

OMI-TES DFS (surf to 600 hPa)
o
o

Atmos. Meas. Tech., 6, 1633t646 2013 www.atmos-meas-tech.net/6/1633/2013/



H. M. Worden et al.: Averaging kernel prediction from atmospheric and surface state parameters 1637

400 T
421.69800

4Q0 [T BRRAARRLI RAASERRER: T

! LR

21543000 15
713600

01700

464.16000

. 510.9 hPa
[\ Surface

b\

100

681.29100

Pressure (hPa)

825.40200

089800
Syreed

908.51400

82540200 970.72844 /N
1000 [ 85758, | | Ll 1000 Levilini. 1000 Lo i o b,

= 1 P P R
-0.10-0.05 0.00 0.05 0.10 0.15 0.20 -0.10-0.05 0.00 0.05 0.10 0.15 0.20 -0.1 0.0 0.1 0.2 0.3 0.4

Rows of <A> Rows of <A> Rows of A

Fig. 4. TES-OMI Oz AKs for August 2006 CONUS(a) CONUS average AK from surface to 10 hPa, with colors corresponding to pressure
levels indicated on the leffb) CONUS average AK from surface to 421 nft) Individual AKs for 906 CONUS observations for the surface
(red lines) and 510.9 hPa (blue lines) and average surface AK (black line).

'IOO"_'I"'I"'"'I"'I"' 4qo0[TrrrTTTTTTITTTTTTITTT O T E I L TR
100 singular a) singular (®)
Values values
0.9556 0.8916
0.5893 0.1598
0.0656 = 0.0203
e o
< g
< o
g 2
2 8
3 o
a
1 1000 Lt b b b a b 1000 Lo bn by [ B
10000 PP P OOOO e ~0.6-0.4-0.2 0.0 0.2 0.4 0.6 ~0.6-0.4-0.20.0 0.2 0.4 0.6
R Co T e e Columns of U Rows of UTA

Columns of U (€) Rows of UTA (b)

Fig. 6. Same as Fig. 5, but for the SVD of the TES-OMI CONUS

Fig. 5. (a) Left singular vector¢) from the SVD of the MOPITT average @ AK.

2006 CONUS average CO AK (first three ranked columgim)first
three rows of the rotated average AR)(with corresponding sin-
gular values. observation indices, and we have confirmed that no spa-

tial bias is introduced. Corresponding state parameters (de-
scribed below) for each MOPITT and TES-OMI retrieval are
andk is the column index; otherwisg,” =1. The sign co-  also stored with the training and test sets. As a reference case,
efficients,piU, in, andpiR, are stored with theé-th singular ~ we compute the average AK for the region of interest (i.e.,
vectors for each scene. CONUS for this study). This provides a comparison for eval-
The averaging kernel prediction scheme used here usesation of the predicted AK variability, described in Sect. 6,
regression function. Similar to artificial neural networks ter- as well as a mean subtraction reference for the training set
minology, we call the dataset used to infer the coefficients ofcases. We compute the SVD and sign coefficients for the av-
the regression function the “training set” and the dataset thaerage AK, and store the differences of tdeV andR sin-
provides a separate set of predictors and true AKs the “testjular vectors of each observation of the training set with re-
set”. The training and test datasets of MOPITT and TES-spect to the average AK singular vectors, thereby restricting
OMI AKs are determined by a simple selection of even/oddour fit algorithm to the vertical structures that are variable
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Fig. 7. Pressure-dependent state parameters for MOPITT CONUS 2006 training set. Black lines indicate mean values. Green areas show
mean+ standard deviation.

Table 1. Non-pressure-dependent parameters for MOPITT CO AK Table 2. Non-pressure-dependent parameters for TES-OMI O
multiple regressiorf (2006 CONUS data sample, all seasons, num- AK multiple regression fit (August 2006 CONUS data, number of

ber of scenes in training set= 15 952). scenes in training set=453).

Parameter Mean Std. Min. Max. Parameter Mean  Std. Min. Max.
deviation value value deviation value value

0 _sza (deg.) 39.2 13.8 14.5 74.4 ¢_sza (deg.) 323 64 205 48.1

SNR (ch. 6D) 88.3 64.7 10.0 767 Albedo (OMI ch.2) 0.050 0.025 5.e-5 0.16

Emissivity 0.956 0.04 078 1.0 Emissivity 0.986 0.012 0931 10

Latitude (deg.) 38.1 6.3 250 50.0 Latitude (deg.) 41.5 8.6 23.1 55.7

AP_srf (hPa) 0.0 314 _72.7 594 AP_surface (hPa) 0.0 27.3 -60.8 30.2

CO column 2921 036 0.95 6.91 Tropopause pressure (hPa) 1415 45.0 75.0 261.0

Trop. O3 column 1.36 0.25 0.79 3.27

108 molecules crmi?
( ) (108 molecules cm?)

from the average AK structure. Figures 5 and 6 show thereGRESS (IDL, 2012) to perform the following fit over the
leading 3 columns of the left singular vecttf)(@and rows of  yining set for each singular vector at each pressure denoted

the rotated AK R) along with singular values for the SVDs by y;:
of the average CONUS AKs for MOPITT and TES-OMI,
respectively. yi=c+aixi1+azxxi2+ ... +anxin )

with resulting constant and N coefficientsa, for N pre-
4 The multiple regression AK prediction tool dictorsx from thei-th observation in the training set. Some

predictors £) are pressure-dependent and some are inde-
For the training set of average AK-subtracted, leading 3 sinpendent of pressure. In selecting predictors, we first con-
gular vectors ofU, V, andR, at each pressure in the 10- sidered the more important predictors used in the regression
level grid, we perform a multiple regression (MR) fit with technique for parametrizing MOPITT forward model trans-
predictors derived from the corresponding state parametermittances (Edwards et al., 1999). Pressure-independent pre-
included with the retrievals. Here we use the IDL routine dictors are listed in Table 1 for MOPITT and Table 2 for
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Fig. 8. Same as Fig. 7 but for TES-OMI pressure-dependent state parameters.

TES-OMI retrievals, with mean, standard deviation, mini- two basic categories: weighting functions and SNR. Since
mum and maximum values given to indicate the ranges ofwe are considering existing instruments, we are not exam-
values covered by the training datasets. Pressure-dependeining a wide range in SNR. Therefore, we expect much of
predictors, atmospheric temperaturfgy)), thermal contrast  the variation in our regression to be explained by parameters
(AT (z) = Tsurface— T (z)), Water vapor volume mixing ratio that affect the weighting functions such As AT, retrieval
(VMR) and retrieval species (CO orspVMR, are plot-  species abundance (CO og)Pwater vapor, etc. Since MO-
ted in Fig. 7 for MOPITT and Fig. 8 for TES-OMI. Here PITT usesx =l0g,o(VMR) in the CO retrieval and TES/OMI
thermal contrast is defined with layer average temperaturegjsesx =In(VMR) for Os, following Eqg. (3), both of these
while temperature profiles correspond to pressure levels. Foproduce weighting functions that have a dependenag(on
MOPITT retrievals, we use the SNR for the difference sig- (i.e., VMR) with increasing magnitude for increasing VMR:

nals in the 2.3um NIR channel (ch 6D) as a proxy for oF ( ) oF
albedo. For OSSEs with variable albedo, these could beyj— " = logipe) q(2) ——
o] d
scaled to match the range shown for SNR (ch 6D). Along 9109 (2) - 9(2) .
with the predictors listed in Tables 1 and 2, we also use and =q(z) —. (6)
MR predictors defined from combined parameters such as dIng(2) 9q(2)

AT?, cos(6sza/10910(CO) andAT/log,;o(CO). All predic-  Since the MR predictors are not always independent of each
tors were tested individually and all provide improvements other, we need a method to assess their contributions to the
to the fit, but with varying degrees of significance (see be-MR fit. To evaluate whether an individual predictor improves
low). The resulting coefficients from the training set MR are or degrades the overall performance of the fit, we use the er-
stored. These are used below in the evaluation of the tool irfor metrics described in Sect. 6, applied to the cases where
for the test dataset AKs and corresponding predictors derive@ach predictor is removed, one at a time. For the MOPITT

from their physical parameters. AKs, the most important predictor for accuracy in the lowest
levels (highest pressures)AsP_srf. However, this is an arti-
4.1 MR predictor significance fact of how we have defined our vertical grid boundaries and

reference to the average CONUS AK. The most significant
The AK, given by Eq. (2), has contributions from instrument physical predictors are CO column afidtemperature pro-
sensitivity through the Jacobian (weighting function) matrix file), followed by CO profile AT2 and SNR (ch 6D). Other
K and measurement err§g (Rodgers, 2000). For a constant predictors such as water vapor VMR and surface emissivity
a priori error covariance or other constraif, we expect added almost negligible improvements to the fit, which is to
the parameters that affect variations in the AK to fall within be expected in the case of MOPITT since these parameters
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Fig. 9. Example of a test case to evaluate the prediction for singular vectors (SVs) for the rotat&d) A & single MOPITT observation.
Solid lines indicate the true rows & from the test case observation; dotted lines indicate the results of the prediction using MR coefficients
from the training set and the state parameters from the test case observation as input.

have little impact on the weighting functions or SNR of agas5 Prediction of averaging kernels for the test dataset

filter correlation radiometer. This is due to the fact that their o _

radiative effect is uncorrelated with that of CO and, to first Using the coefficients from the MR and predictors from a test

order, cancels from the radiance signals used by the retrievalétrieval case, we creatévr and reconstruct the predicted
For the TES-OMI retrievals, the most important predictors left singular vectotpreq with

(in order) are Q@ profile, AP_srf and T. As for MOPITT, the U

dependence onP_srf is an artifact of how we specify our Upred = UMR + PaygUavg: (M

G e o PO Cuare oy i the SVD o he sverage CONUS Ak, it
3 1 = y . U . . - - _

and AT2. We found that including water vapor and solar sign paq stored with the coefficients. Corresponding oper

. o [ i i R i h -
zenith angle (sza) actually degraded the fit in the TES—OMIatIonS are performed to obtaWfpred aNdRpreq Since the ac
. tual SVD-transformed AKs for each test case observation are
cases, for reasons we do not fully understand, but possibl

because our training set was limited to 453 observations an Iso available, a direct comparison of the true and predicted
did not have a sufficgi]ent range in these parameters gquantities can be made to evaluate the accuracy of the tech-

Table 3 lists the linear Pearson correlation coefficients formque' Figure 9 shows an example of the predicted singular

... vectors forR compared to the true for a single test case ob-
surface PFS (trace of the A.K for the 3 lowest Ia_yers) with servation from MpOPITT. Reconstructed sgi]ngular values are
the predictors that are most important to the MR fit. For bOthestimated using
MOPITT and TES-OMI, we can conclude that MR depen-
dence on either column amount or VMR is more important . 2 . 2
than T orAT. For MOPITT TIR-only retrievals, surfacepDFS Aii = sqrt(Ek [Reredi- 0]/ i [Upredi. ] ) ®)
has significantly more co_rrelatlon with7? than th_e mu_|t|- wherei =1, 2 or 3 andk is the column index. Using orig-
spectral cases, but it is still Iess_, than the correlat_lo_n with CO, -1 matricesR andU, the diagonal values ok are repro-
column. Although T!R—only ret.r!e_val_s rely on sufficient ther- duced exactly with Eq. (8), whil&preq and Upreq produce
mal contrast for retrieval sensitivity in the lower troposphere reasonable approximations to the singular values in order to
(Deeter et al., 2007; Clerbaux et al., 2009), by selecting onIyreconstruct a full 16« 10 AK matrix with
retrievals with DFS> 1, we may have limited the range of
thermal contrast such that the correlation with CO cqumnApred = Upred AVEre ¢ (9)
(due to the use of log(VMR) parameters) is more dominant.

The MR coefficients are used to calculddgred, Vpred and
Rpred for each set of state parameters corresponding to the
AKs in the test data, and Eq. (9) gives a predicted AK that
can be compared to the true AK from the test set. Figure 10
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Fig. 10.Example of original MOPITT test case AK and corresponding predicted AK using the results of the MR prediction shown in Fig. 9
to reconstruct the predicted AK. Difference between predicted and original AKs is shown on the right.

shows the predicted AK compared to the true AK for the Ocean and a reference profile for CONUS, from the climatol-
same MOPITT test case example shown in Fig. 9. Figures 1bgy used in the TES-OMI retrievals (Fu et al., 2013), where
and 12 show a test case example for TES-OMI with predictedve have added 50 ppb at the lowest 3 levels to approximate a
singular vectors foR and reconstructed AK compared to the polluted boundary layer case. Table 4 lists the CO ap& O
true values. We compare the average of test case AKs to theriori and reference profile values.
average of predicted AKs for MOPITT in Fig. 13 and for  Histograms ofAC Ocayg for each pressure are shown in
TES-OMI in Fig. 14. Fig. 15a. These show that using a CONUS average AK ap-
proximation would give small errors in CO for the middle
and upper troposphere (pressures below 600 hPa), but would
6 Evaluation metrics and results not capture the true sensitivity to CO variability (as compared
to the original test case AKS) in the lower troposphere. For
As discussed in Sect. 1, chemical OSSEs to date have usyhe CONUS average AK approximation, only 49% of the
ally only considered a very limited number of AK conditions test cases have CO values within 5ppb of the CO values
(e.g., two representative average AKs for land and oceamptained from using the true AKs in the surface layer. Fig-
scenes). In order to compare the performance of our indiyre 15b shows histograms afC O preq Where we see similar
vidual scene-dependent predicted AKs to a single CONUSyerformance in the middle and upper troposphere and signifi-
average AK, we established a metric for the error in VMR cant improvements for the CO error in the lower troposphere.
given by the difference between a reference profile that isFor the predicted AKs, the number of cases with CO errors
smoothed by either the predicted AK{red or CONUS av-  wjithin 5 ppb increases to 82 % in the surface layer.
erage AK fcavg and the same reference profile smoothed TES-OMI histograms forAO3 (% errors) are shown in
by the true AK Aque) from each test case. For MOPITT CO, Fig. 16. We use percent error in order to show the perfor-
we compute the following for each test case. mance of the CONUS average and predicted AKs at all pres-
sure levels on the same plot. For the TES-OMI predicted
¥uue = 10G10(C Oap) + Auue [10010(C Orer) — 10810 (COapr)] (10) Ak performance was somewhat worse at pressures below
Xcavg = 10010 (C Oapr) + Acavg[10910(C Ore) — 10910(C Oapr)[(11) 600 hPa compared to the CONUS average AK. We therefore
Xpred = 10010 (C Oapr) + Aprea[10010(C Ore) — 10910 (C 0ap)](12)  adopted a hybrid approach of using the predicted AK rows
ACOcavg = 10" (xeavg) — 10" (x1rue) (13) at pressures greater than 600 hPa_l and the CONUS average
AK rows at all lower pressures. Figure 16a shows a broad
distribution in G errors for surface to 681 hPa pressure lev-
where C 04y is a global average profile anflOyf is a els when using a CONUS average AK, while in Fig. 16b
CONUS average profile, both from the climatology used in the error h|§tograms at these same pressure levels have much
MOPITT retrievals (Deeter et al., 2010). For TES-OMy O Narrower distributions when using predicted AKs. Figure 17

test cases, we use equations similar to Egs. (10)—(14), excephoWs the CONUS average and predicted AK histograms
with In(O3 VMR), and with an a priori profile for the Pacific

ACOpred = 10" (xpred) — 10" (xtrue) » (14)
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Fig. 11.Same as Fig. 9 but for TES-OMI test case and prediction.
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Fig. 12.Same as Fig. 10 but for TES-OMI test case AK and prediction.

computed for @ differences in ppb, for surface to 421 hPa 7 Summary and conclusions
pressures.
We note that the shape and mean values in the COzor O
error histograms will partially depend on the choice of ref- We have demonstrated a method for predicting scene-
erence and a priori profiies used for Computing this met-dependent, cloud-free AKs for tropospheric retrievals of CO
ric. However, here we are testing the relative performanceand Q using coefficients from a multiple regression fit of AK
of the predicted AKs compared to the CONUS average AK,singular vectors and predictors formed from the state param-
which are evaluated using the same a priori and referencé&ters of multispectral observations. This tool provides a fast
profiles. Using this metric, we can test the performance ofapproximation for the instrument simulator component of a
the predicted AKs when removing predictors from the MR chemical OSSE that could be used for determining how much
(as discussed in Sect. 4.1) and also show how the predictetfformation is added from the observational perspective of
AKs improve errors in the lower troposphere over the base-GEO compared to existing satellite measurement capabil-
line approximation of using a CONUS average AK in an ity from LEO. We used CONUS observations from existing
OSSE (Figs. 15-17). LEO satellite measurements of CO (from Terra/MOPITT)
and G (from Aura/TES and OMI) that have shown increased

Atmos. Meas. Tech., 6, 1633t646 2013 www.atmos-meas-tech.net/6/1633/2013/



H. M. Worden et al.: Averaging kernel prediction from atmospheric and surface state parameters 1643

100 § T [T 100 UL L L | 100

Pressure (hPa)

1000 L. Ll 1000 L $ [P 1000

T, ettt oA AN M GO A
-0.1 0.0 0.1 0.2 0.3 0.4 —-0.1 0.0 0.1 0.2 0.3 0.4 —0.03 -0.02 —-0.01 0.00 0.01

Avg. of test case AKs Avg. of predicted AKs Difference

Fig. 13.Comparison of the average CO AK for MOPITT test cases and average of corresponding predicted AKs. Difference between average
predicted and average test case AKs is shown on the right.
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Fig. 14.Same as Fig. 13 but for TES-OMI test cases.

sensitivity to the lower troposphere in some scenes with rehave shown that using this AK prediction tool in a chemical
trievals that combine multispectral radiances. After applyingOSSE would provide a significant improvement in accuracy
an SVD to the averaging kernels, we performed a multiplecompared to an OSSE that uses a single CONUS average
regression fit on the leading three singular vector) p¥ AK. For our reference CO and{profiles, the percentage
and rotated AKR for our training set of observations. We of cases that would have VMR errors less than 5ppb in the
then used the coefficients of the MR to create predicted AKsnear-surface layer increased from 49 to 82% for CO and
using predictors derived from the state parameters of oufrom 65 to 92 % for @Q from applying the predicted AKs as
test observations. By comparing the adjustments to referenceompared to the CONUS average AK. The next step in this
CO and Q@ profiles from applying the true, predicted and work will be the implementation of the AK prediction tool
CONUS average AKs, we evaluated the relative performancén the data assimilation environment of chemical OSSEs to
of the predicted AK in terms of VMR error. We found that evaluate CO and 9multispectral retrieval performance for
the predictors most important for reproducing the variabil- the Decadal Survey GEO-CAPE mission. Subsequent work
ity in the lowermost troposphere for MOPITT and TES-OMI will explore the extension of the method for the measure-
multispectral AKs were species abundance (column or VMRment simulation of other GEO-CAPE trace gas and aerosol
profiles) followed by temperature and thermal contrast. Weproducts.
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Table 3. Linear Pearson correlation coefficients for surface DFS Table 4. A priori and reference profiles for evaluating CO ang O
(lowest 3 layers) vs. state parameters with highest impact to MR fit.errors in predicted or CONUS average AKs.
For T.atmos,AT2, and QG VMR, the average values for the lowest

3 layers are used. MOPITT  Apriori  Reference TES-OMI  Apriori  Reference
pressure  CO profile CO profile  pressure 3 @ofile Oz profile
(hPa) (ppb) (bpb)  (hPa)  (ppb) (ppb)
Parameter MOPITT  TES-OMI
surface DES  surface DES Surface 97.0 131.0 Surface 27.3 98.8
lati lati 900 90.0 122.0 908.51 32.0 100.0
correlation  correlaton 800 89.0 1020  825.40 37.6 102.2
700 85.0 95.0 749.89 44.1 55.9
AP.surface 0.37 0.13 600 82.0 91.0  681.29 51.8 60.1
CO total column 0.25 500 80.0 88.0  618.97 55.3 63.5
T_atmos. —-0.22 0.27 400 80.0 86.0 562.34 59.0 67.0
AT 003 047 200 700 670 4sa16 651 77
-(groE)/‘MOF% column 00-7462 100 45.0 420 42170 69.4 78.7
3 .
250 T F Nl
8000 ' — (a) % °w.thm -
(a) — 10 mb 100.000 100.000
— 17 mb 100.000 100.000
200 — — 31 mb 95.3642 100.000 |
w000 [ : :;‘;‘i" 10 ppb ] @ IC ___56mb 852097 100.000 |
2 100 mb  100.000 100.000 _g 100 mb 825607  98.8962
% 99.8119 100.000 g 150 I 63.5762 96.0265
QE, 99.7430 100.000 § 53.4216  94.4812
3 99.9122 100.000 O 68.8742 97.3510
§ 4000 o 988215 99.9875 "é 348786  72.1854
8 L 600 mb  96.5459 99.8997 | g 100 is2sih  anzen
@ 93.5870 99.8057 E
_g 800 mb 84.0333 99.4483 5 [ — 749 mb 13.4658 33.7748 |
3 —— 900 mb  65.0013 97.2292 = — 825 mb 21.1921 56.9536
z 2000 __ surface  48.7274 85.2620 50 — 908 mb 24.2826  59.1611
I 25.3863 63.7969
1 o= ‘ “/—\- x
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250] % within
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g —— 100 mb  100.000 100.000 é — 100 mb 82.5607 98.8962
= 200 mb 98.1758 99.9624
g 95.2044 99.4860 g 150 63.5762 96.0265
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8 4000 — 97.9188 99.4734 (@] 68.8742 97.3510
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Fig. 15. (a)Performance of CONUS average AK compared to true Fig. 16. (a)Performance of CONUS average AK compared to true
AKs for MOPITT test cases(b) Performance of predicted AKs AKs for TES-OMI test casegb) Performance of predicted AKs
compared to true AKs for MOPITT test cases. Histograms of er-compared to true AKs for TES-OMI test cases. For pressures be-
ror in CO are plotted for each pressure (indicated by colors on thdow 600 hPa, the CONUS average AK is applied. Histograms of
right). Listed on the far right are the percentages of test cases thagrror in O; are plotted for each pressure (indicated by colors on the
fall within 5 and 10 ppb CO error for each pressure. See text forright). Listed on the far right are the percentages of test cases that
description of error calculation. fall within 2 and 5% Q@ error for each pressure.
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