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Abstract. An idealized synthetic database loosely resem-
bling 3-channel passive microwave observations of precipi-
tation against a variable background is employed to examine
the performance of a conventional Bayesian retrieval algo-
rithm. For this dataset, algorithm performance is found to be
poor owing to an irreconcilable conflict between the need to
find matches in the dependent database versus the need to ex-
clude inappropriate matches. It is argued that the likelihood
of such conflicts increases sharply with the dimensionality
of the observation space of real satellite sensors, which may
utilize 9 to 13 channels to retrieve precipitation, for example.

An objective method is described for distilling the rele-
vant information content fromN real channels into a much
smaller number (M) of pseudochannels while also regulariz-
ing the background (geophysical plus instrument) noise com-
ponent. The pseudochannels are linear combinations of the
originalN channels obtained via a two-stage principal com-
ponent analysis of the dependent dataset. Bayesian retrievals
based on a single pseudochannel applied to the independent
dataset yield striking improvements in overall performance.

The differences between the conventional Bayesian re-
trieval and reduced-dimensional Bayesian retrieval suggest
that a major potential problem with conventional multichan-
nel retrievals – whether Bayesian or not – lies in the common
but often inappropriate assumption of diagonal error covari-
ance. The dimensional reduction technique described herein
avoids this problem by, in effect, recasting the retrieval prob-
lem in a coordinate system in which the desired covariance
is lower-dimensional, diagonal, and unit magnitude.

1 Introduction

Satellite remote sensing entails the indirect determination of
a property, or set of properties, of the environment based on
measurements of top-of-the-atmosphere radiances at appro-
priate wavelengths. Conceptual frameworks for undertaking
satellite retrievals range from simple ad hoc methods to the
iterative inversion of complex physical models of observed
radiances.

For remote sensing problems involving highly non-linear
and/or difficult-to-model relationships between observation
vectors and environmental states, it is increasingly common
to rely on so-called Bayesian estimation methods. One of the
principal areas of application of Bayesian methods (but by
no means the only one) has been in the area of precipitation
retrieval from passive and/or active microwave observations
(Evans et al., 1995; Olson et al., 1996; Haddad et al., 1997;
Marzano et al., 1999; Bauer et al., 2001; Kummerow et al.,
2001; Tassa et al., 2003; Di Michele et al., 2005; Grecu and
Olson, 2006; Olson et al., 2006; Chiu and Petty, 2006; Viltard
et al., 2006; Seo et al., 2008; Kummerow et al., 2011)

This paper has two purposes: (a) to draw attention to cer-
tain practical limitations of Bayesian algorithms as typically
implemented, and (b) to describe and demonstrate an objec-
tive method of dimensional reduction that substantially im-
proves the robustness of Bayesian retrievals in certain remote
sensing applications.

The Bayesian methodology is examined here in the con-
text of idealized retrievals of surface precipitation rate. How-
ever, the issues raised, and their proposed solution, should
have considerably broader applicability.

1.1 Bayesian estimation

Bayesian retrieval algorithms purport to obtain estimates of
an environmental variable (e.g., rain rate) via application of
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2268 G. W. Petty: Dimensionality reduction in Bayesian estimation algorithms

Bayes’ theorem (Bayes and Price, 1763). In the present con-
text, Bayes’ theorem states that the posterior probability dis-
tribution function (PDF) of a desired variableR conditioned
on an observation vectorx is given by

P(R|x) ∝ P(x|R)P (R), (1)

whereP(R) is the unconditional (prior) probability density
function (PDF) of the scalar variableR to be estimated and
P(x|R) is the multidimensional PDF of the observation vec-
tor x conditioned on a specific value ofR.

With only one known exception (Chiu and Petty, 2006),
the prior joint and marginal PDFs are represented not as
the continuous functions implied by Eq. (1) but rather via
a large database of candidate solutions with associated ob-
served or modeled multichannel radiances. This variation has
been aptly called a Bayesian Monte Carlo method (L’Ecuyer
and Stephens, 2002), although that more precise terminology
does not seem to have achieved wider usage.

Moreover, while a true Bayes’ theorem-based retrieval
should in principle be able to yield a complete posterior PDF
of R as demonstrated byChiu and Petty(2006), it is typical
in practice to extract only an expectation value based on a
weighted average of the small set of discrete solution vectors
in the database that approximately match the observations.
For the conceptual basis and practical implementation of sev-
eral Bayesian cloud and/or precipitation retrieval schemes,
the reader is referred toEvans et al.(1995), Kummerow et al.
(1996), Marzano et al.(1999) and L’Ecuyer and Stephens
(2002).

1.2 Practical limitations

Bayes’ theorem has the advantage of providing a rigorous
and complete statistical basis for optimal satellite retrievals,
provided only that the requisite PDFs are known. However,
this advantage can only be fully realized under fairly restric-
tive conditions:

– The prior joint distribution of environmental variables
must be well characterized over the full spectrum of
possibilities and with adequate sampling density rel-
ative to the assumed observation error (L’Ecuyer and
Stephens, 2002).

– The database must be small enough to be efficiently
searchable, a requirement that stands in conflict with the
previous one.

– The sensor observations attached to each candidate state
must be physically realistic not only on a channel-by-
channel basis but also in terms of its consistency with
the high-dimensional manifold encompassing actual ob-
servations. This consistency can be difficult to achieve
when physical model calculations, rather than actual ob-
servations, supply the radiance vector (Panegrossi et al.,
1998).

– The observation/modeling error covariance must be cor-
rectly specified in order to optimize both the selection
and the weighting of candidate solutions (L’Ecuyer and
Stephens, 2002).

This paper is motivated by the observation that all of the
above challenges increase exponentially as the dimensional-
ity of the search space increases. For example, imagine that
a mere 104 solution vectors evenly distributed throughout a
three-dimensional observation space is minimally adequate
to characterize the prior distribution of environment states
and their associated observation vectors. Depending on in-
terchannel and intervariable correlations, up to 1012 candi-
date solutions might be required to achieve comparable den-
sity when Bayesian retrievals are directly based on the radi-
ance observations of, say, a nine-channel instrument like the
Tropical Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI;Kummerow et al., 1998).

Even if the overall density seems adequate, infrequent
combinations of environmental variables – e.g., those asso-
ciated with a severe storm or hurricane – will still tend to
appear as outliers in an inadequately populated corner of
channel space, in which case either no suitable match may
be found at all or else the match sample may be small and
potentially nonrepresentative.

Moreover, it usually proves difficult to confidently specify
the optimal match or weighting criteria in a high-dimensional
space. Formally, one usually specifies an error covariance
that serves as the basis for assessing consistency between an
observation vectorx and a candidate solution in the database.
In practice, the full covariance is rarely known and only an
assumed per-channel error variance is usually specified. This
is the approach taken by the current version of the Goddard
Profiling (GPROF) algorithm for TRMM (Kummerow et al.,
2011), for example, among many other retrieval and assimi-
lation schemes.

Note further that while the formal error covariance follows
from an analysis of model and/or instrument error alone, this
specification is only useful if the database is densely popu-
lated relative to that expected error. When the density is low,
as is especially the case for less common scenes, one must
often either arbitrarily expand the the search neighborhood
until one or more nominal matches are found or else flag the
retrieval for that observation as “missing” owing to a failure
to find matches within the prescribed tolerance.

Finally, while the neighborhood that constitutes a match
in observation space should in general be an arbitrarily ori-
ented hyperellipsoid with appropriate major and minor axes,
as specified by the true error covariance matrix, the conve-
nient but arbitrary substitution of a diagonal covariance ma-
trix automatically – and usually inappropriately – implies an
ellipsoid or spheroid with principal axes perfectly aligned
with channel coordinate axes. The retrieval algorithm may
thus include inappropriate candidate solutions and/or exclude
appropriate ones, leading to significant retrieval biases under
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some conditions, especially when the correct solutions lie
in close proximity to incorrect solutions. As will be demon-
strated below, the inappropriate assumption of diagonal co-
variance can severely degrade retrieval performance.

1.3 Objectives

In this paper, we demonstrate some important practical limi-
tations of the Bayesian method as typically applied to satel-
lite retrievals. Rather than use real satellite data, we construct
an idealized synthetic database comprising only three simu-
lated “channels” and associated with a single scene variable,
“rain rate”. These channels are subject to considerable vari-
ability due to prescribed background noise. As is character-
istic of passive microwave observations of precipitation over
land, the signal due to rain rate is intentionally weak in ab-
solute magnitude relative to the background noise but with a
spectral component that is distinct from the background vari-
ability.

We first show that conventional Bayesian retrievals in 3-
channel space can lead to nearly useless estimates owing to
match failures and/or over-averaging. We then demonstrate
a technique for reducing the dimensionality of the database
and for obtaining significantly more robust retrievals from
the same data and using the same Bayesian framework. In
effect, we derive a smaller number of “pseudochannels” –
i.e., linear transformations of the original channels or sim-
ple functions thereof – that retain most of the desired signal
while rejecting a large part of the background noise. What
remains of the background noise is decorrelated and scaled
to unit variance.

Note that while the benefits of appropriate dimensional re-
duction should hold in general for any database-type retrieval
problem, the particular dimensional reduction algorithm de-
scribed below is most directly applicable to semi-continuous
variables like rain rate or cloud liquid water path for which
admissible values are either exactly zero or positive.

2 Synthetic database

A Gaussian pseudorandom number generator was used to
create 20 000 vectors of 3-channel “background brightness
temperatures” with prescribed meanx = (220,240,250) and
covariance

S=

 506 81−205
81 173 140

−205 140 269

 . (2)

These statistical properties are arbitrary apart from the desire
that the synthetic data lie on an oblique 3-D plane with added
uncorrelated random noise having unit variance.

For 10 % of these scenes, a non-zero rain rateR was as-
signed. This rain rate obeys a half-Gaussian (positive only)
distribution with unit standard deviation. The unique spec-
tral signature of the rain is described by a unit vectorâ =

(0.366,−0.682,0.633), so that raining scenes are simply
non-raining scenes with an added brightness temperature
perturbation given byR â. This idealized rain signal is of
course considerably cleaner than that encountered in real
satellite observations and serves our purpose of highlighting
retrieval issues associated strictly with the Bayesian frame-
work as opposed to the physics.

This dataset is split evenly into a “training dataset”
(TRAIN) and a “validation dataset” (VAL), each consist-
ing of 10 000 “observations”. Our objective is to utilize the
TRAIN data to implement a Bayesian algorithm capable of
achieving reasonable performance when applied to the inde-
pendent VAL data. Because the two datasets are statistically
identical, problems we identify will be associated exclusively
with issues relating to sampling density and dimensionality,
not to representativeness or modeling error.

Two-dimensional scatter plots for each possible pair of
channels are depicted for the TRAIN data in Fig.1a–c. It
is clear from these plots that no pair of raw channels is suf-
ficient to distinguish “raining” and “non-raining” scenes. It
is not even evident from the 2-D depictions that any useful
radiometric distinction exists.

In fact, the background noise in this demonstration is con-
fined to a three-dimensional plane (apart from 1 K Gaussian
noise), and the subtler rain “signature”â has, by design, a
small component normal to that plane (Fig.1d). It is this very
subtle separation, which only even exists in a 3-D framework,
which we must exploit if we wish to retrieve rainfall against
the very noisy background. This case also illustrates the dan-
ger in relying on 1-D or 2-D projects of multidimensional
observation vectors to assess the retrievability of a particular
variable.

The question addressed in the next section is whether
a conventional Bayesian retrieval algorithm that relies on
“brute force” matching of observations in 3-channel space
and employing the usual assumption of diagonal error co-
variance can successfully pull the relatively weak rain signal
out of the much larger-magnitude background noise.

3 Bayesian retrieval in channel space

3.1 Method

We begin with a straightforward retrieval method concep-
tually similar to that currently used for TMI and envis-
aged as well for the future Global Precipitation Measure-
ment Microwave Imager (GMI). The TRAIN data serves as
a database that is searched for scenes that match a given
observation vector to within a specified tolerance. Specifi-
cally, each prospective match is assigned a weight given by
w = exp(−s), where

s =

∑
i

(
xi − x′

i

σi

)2

, (3)
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2270 G. W. Petty: Dimensionality reduction in Bayesian estimation algorithms

Fig. 1. Scatter plots of an idealized, stochastically generated
database consisting of 3-channel brightness temperatures. Black
markers are used for non-raining scenes; red markers indicate rain-
ing scenes.(a) Channel 1 vs. channel 2.(b) Channel 2 vs. channel 3.
(c) Channel 1 vs. channel 3.(d) A rotated 3-D plot revealing that the
non-raining scenes lie primarily in a 3-channel plane, with raining
pixels exhibiting slight separation.

wherexi is the observation from theith channel,x′

i is the cor-
responding value for the database entry, andσi is a channel-
dependent uncertainty that captures modeling error and/or
observation error. As previously noted, a rigorous calcula-
tion of s should actually be based on a full error covariance
matrix S, of which σ 2

i are the diagonal elements, but this is
typically not done. For the idealized experiments described
herein, we takeσ to have the same value for all channels.

Consistent with the current implementation of the God-
dard Profiling algorithm (Kummerow et al., 2001, 2011) for
the TMI, we admit only matches for whichw > 0.01. The
retrieval for a given observation vector is then given by

R̂ =

∑P
j=1wjR

′

j∑P
j=1wj

, (4)

whereP is the number of qualifying matches.
For a given observation vectorx, we require at leastN = 1

to have any valid retrieval at all; largerN will improve the
statistical representativeness of the retrieval and may permit
error statistics to be derived as well. In principle, we can al-
ways increaseσ until sufficient matches are found, but the
benefits of increased sample size must be weighed against
the loss of retrieval quality that results from treating increas-
ingly dissimilar scenes as “matches”.

As noted earlier, the problem of finding matches within
a sufficiently small neighborhood of the observation is de-
pendent on the local density of the training sample in obser-
vation space. The higher-dimensional the observation space,
the larger the training database must be to ensure adequate
density in any given neighborhood. Moreover, extreme val-
ues of the variable to be retrieved will usually occupy the
most sparsely populated regions in channel space.

3.2 Application to TRAIN data

It is instructive to apply the above algorithm to the same ob-
servations stored in the TRAIN database, not only as a san-
ity check but to illustrate an important consideration in the
choice ofσ . We know that even an arbitrarily small value of
σ will still yield an exact match in every case, because each
observation passed to the algorithm is present in the database.
Of interest here is what happens when the tolerance is loos-
ened so as to find additional matches.

Figure 2 depicts scatter plots of the retrieved versus ac-
tual rain rate for four different choices ofσ . For σ = 0.03
(Fig. 2a), the agreement is essentially perfect, because for
each observation, exactly one match is found, and that match
is the observation itself. But forσ > 0.1 (Fig. 2b–d), there
is an increasing tendency toward underestimation of the true
rain rate, because now dissimilar scenes are being included
in the average, most of which have a significantly differ-
ent (usually zero) rain rate. Forσ = 1.0 (Fig. 2d), the result
is nearly useless on a pixel-by-pixel basis, even though the
mean rain rate for all pixels will still be correct.

The initial conclusion to draw from this comparison is that
even when exact matches to all observations are available in
the database, the use of an inappropriately large value forσ

will seriously degrade the retrievals.

3.3 Application to VAL data

We now apply the same algorithm to the independent VAL
data. Statistically, these data are identical to those in the
TRAIN database, but there are likely to be very few exact
matches. Consequently, whenσ = 0.03, the match failure
rate is an unacceptably large 94 % (Fig.3a). Moreover, the
failure rate is highest by far for the non-zero rain rate scenes,
since these are more thinly spread in channel space.

When σ = 0.1, the match failure rate is still 40 %, but
at least there is some semblance of skill in the retrieval for
those pixels that do have matches (Fig.3b). Again, the fail-
ure rate specifically for precipitating pixels is far higher, so
that an average of only the successfully matched observa-
tions would yield a severe underestimate of the true mean
value of rain rate. Increasingσ further eliminates most of
the match failures but leads to the same collapse of retrieval
skill and systematic low bias previously shown for the depen-
dent (TRAIN) dataset. In summary, there is no single value of
σ that yields an acceptable tradeoff between match rate and

Atmos. Meas. Tech., 6, 2267–2276, 2013 www.atmos-meas-tech.net/6/2267/2013/
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Fig. 2. Results of a Bayesian retrieval algorithm applied to the 3-
channel dependent (TRAIN) dataset for four different values of the
error parameterσ .

algorithm performance, despite our reliance on a database of
10 000 entries populating a mere three-dimensional observa-
tion space.

The GPROF algorithm, to give one example, recognizes
this problem and undertakes multiple passes through the
database. If a match is not found for a given value ofσ , the
value is doubled and the search repeated. In this way, it is
ensured that matches will eventually be found for all obser-
vations, albeit with very loose tolerances for the rarest com-
binations of channel values.

Figure4 illustrates the results of this procedure applied to
our synthetic database. There are now no match failures, but
the quality of the retrieval remains poor, with a great many
underestimated values of larger rain rates and a similar num-
ber of non-zero retrievals where there the true value is zero.
Less apparent is that this procedure does not even conserve
the ensemble averaged rain rate for the entire dataset – the av-
erage for all 10 000 points is only 39 % of the true value. This
is because non-raining scenes typically find matches for low
values ofσ so that only other non-raining (or low-raining)
scenes are included in the retrieval, while high rain rates in
the tail of the distribution typically require largeσ with the
consequent incorporation of poorer matches (typically lower
rain rates) into the retrieval.

Fig. 3. Same as Fig.2, but the Bayesian algorithm is applied to
the independent (VAL) dataset. Also indicated is the percentage of
observations for which no match could be found for the given value
of σ .

3.4 Preliminary assessment

In view of the poor performance of the Bayesian scheme in
the above demonstration, one might reasonably ask whether
the signal-to-noise ratio is simply too poor in the synthetic
dataset for any retrieval method to yield high-quality results,
at least using a solution database comprising only 10 000 en-
tries.

In fact, it will be shown shortly that retrieval performance
is markedly improved simply by first applying an operator
that retains sensitivity to the rain rate signal while rejecting
most of the background noise, and by using the single result-
ing pseudochannel as an index into the TRAIN database.

4 Dimensional reduction

4.1 General goals

In the present context, the process of dimensional reduction
entails the following:

1. Starting with the original set of sensor channels, find lin-
ear transformations that normalize and decorrelate the
temporal and spatial background variability (geophysi-
cal noise). That is, we want our transformed channels to
have unit variance and zero cross-correlation when only
scenes containing no rain are considered.

www.atmos-meas-tech.net/6/2267/2013/ Atmos. Meas. Tech., 6, 2267–2276, 2013



2272 G. W. Petty: Dimensionality reduction in Bayesian estimation algorithms

Fig. 4.Results of the Bayesian algorithm applied to the independent
(VAL) dataset, using iterative doubling ofσ to ensure that matches
are found for all observations.

2. From those first-stage transformed channels, perform a
second linear transformation that collects most of the
sensitivity to the desired variable (e.g., rain or cloud)
into a significantly smaller number of pseudochannels.

3. Utilize those pseudochannels in place of the larger
number of original channels in a lower-dimensional
Bayesian retrieval scheme.

Note that while principal component analysis (PCA) is uti-
lized in the first two steps and is, in general, a common
method for dimensional reduction, a single-stage PCA de-
composition of a dataset does not accomplish either of the
two steps on its own. In particular, ordinary PCA provides
no direct basis for distinguishing between the desired signa-
ture and the undesirable noise. Indeed, in our example, the
desired signature is conventionally associated with theleast
important principal component as measured by its contribu-
tion to the total variance, and would normally be discarded in
the most common approach to dimensional reduction using
PCA.

4.2 Details

4.2.1 Stage 1

The following procedure is applied to pixels for which the
variabley to be retrieved is zero. In the present case, this
condition is satisfied by 90 % of the database, or 9000 obser-
vations.

First, we compute the mean〈X〉 and the covarianceSx for
the rain-free pixels. FromSx , we then compute the eigenvec-
torsEx and eigenvalues3x . We define the first-stage trans-
formed channelsy via

yi = λ
−1/2
x,i [(x − 〈x〉)TEx]i . (5)

That is, we take the projection of(x−〈x〉) onto theith eigen-
vector and then scale by square root of the eigenvalue to ob-
tain unit variance. With appropriate definitions of the coeffi-
cient matrixA, the above operation reduces to

y = A(x − 〈x〉). (6)

〈y〉 = 0 andSy = I for the set of transformed channels when
observing the background only, but they otherwise retain all
of the same information as found in the originalx, Thus, we
may now conveniently treat the total background noise (in-
strument plus geophysical) as having unit variance and zero
correlation between transformed channelsy.

Figure5a depicts the results of the transformation applied
to the synthetic data. The background noise (black markers)
has been sphered and has unit variance.

4.2.2 Stage 2

The first stage PCA alone provides no guidance as to which
components in the transformed space are associated with the
desired signal. We therefore now also apply Eq. (6) to the
10 000 precipitating scenesyr with R > 0 (red markers in
Fig. 5). Unlike the case for rain-free scenes, there is no con-
straint on the variance of the raining scenes, and it is expected
that any existing separation in the original dataset will be
amplified in absolute terms. To objectively isolate the added
variance due to rain, we computeSy,r ≡ 〈yryr

T
〉 and com-

pute eigenvectorsEy,r and eigenvalues3y,r .
We now define the precipitationpseudochannels

z ≡ yTEy,r . (7)

Outside of precipitation, these pseudochannels still have
zero mean and unit uncorrelated variance. For precipitating
scenes, however, the added variability will have been pushed
into the first few eigenvectorsEy,r . In Figs.5 and6, we see
that the first pseudochannelz1 now captures all of the useable
spectral distinction between “rain” and “no rain”.

In the more general case, we might keep the firstM ele-
ments ofz so as to account for at least, say, 95 % of the vari-
ance computed from the sums of the eigenvalues. The rest are
discarded. For the synthetic dataset discussed above,M = 1.
In the paper byPetty and Li(2013), which begins with the 9
channels of the TMI,M = 3.

The first- and second-stage linear transformation may be
combined to give

z1...M = B(x − 〈x〉), (8)

Atmos. Meas. Tech., 6, 2267–2276, 2013 www.atmos-meas-tech.net/6/2267/2013/
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Fig. 5. Results of the two-stage transformation applied to the raw
channel data depicted in Fig.1. (a) The first-stage transformation,
from Eq. (5). (b) The second-stage transformation, from Eq. (7).

whereB is anM × N array of coefficients consistent with
Eqs. (5) and (7). Note, by the way, that for the present dataset,
B is a vector corresponding in direction to the third eigen-
vector of the complete dataset. We could have arrived atB
more directly in this particular case, but the dimensional re-
duction algorithm described above works well for a higher-
dimensional dataset, unlike the case for conventional single-
stage PCA, which, as noted earlier, provides no basis for as-
signing eigenvectors to specific geophysical signatures.

Fig. 6.Histograms of the first pseudochannelz1 for non-raining and
raining scenes.

5 Bayesian retrieval in pseudochannel space

Using the pseudochannel transformations derived above, we
may undertake Bayesian retrievals inM-dimensional space
rather than the originalN -dimensional space. The procedure
is otherwise identical to that described in Sect.3. For our
synthetic database,M = 1.

Figure7 depicts results of the algorithm applied to the de-
pendent (TRAIN) data for selected values ofσ , analogous
to Fig.2 (note that values ofσ here cannot be directly com-
pared with the values ofσ for the 3-D retrievals, owing to
the difference in scaling of the observation vector). We see
an increase in retrieval error with larger values ofσ , but the
degradation is not nearly as severe as was the case for the
original retrieval using three channels.

Figure8 depicts results for the independent (VAL) data,
analogous to Fig.3. The improvement relative to 3-D re-
trieval is striking. The match failure rate is extremely low
for all but the smallest values ofσ , and the errors are gen-
erally small and unbiased. For larger values ofσ , there is a
hint of underestimation at the low end of the scale owing to
inclusion of nearby zero values.

Finally, Fig. 9 depicts the results obtained when an itera-
tive increase inσ is used to ensure that matches are found for
all observations. These results may be directly compared to
the results of the same procedure applied to 3-D Bayesian re-
trievals in Fig.4. The improvement in retrieval performance
is striking.

www.atmos-meas-tech.net/6/2267/2013/ Atmos. Meas. Tech., 6, 2267–2276, 2013



2274 G. W. Petty: Dimensionality reduction in Bayesian estimation algorithms

Fig. 7. Similar to Fig.2, but the Bayesian retrieval applied to the
dependent (TRAIN) dataset is based on a one-dimensional pseu-
dochannel rather than the original three-dimensional brightness
temperatures.

Fig. 8. Same as Fig.7, but the Bayesian 1-D retrieval is applied to
the independent (VAL) data.

Fig. 9. Results of the 1-D Bayesian algorithm applied to the inde-
pendent (VAL) dataset, using iterative doubling ofσ to ensure that
matches are found for all observations. Compare with the 3-D re-
trievals depicted in Fig.4.

6 Conclusions and discussion

Starting with an idealized synthetic database that loosely re-
sembles 3-channel passive microwave observations of pre-
cipitation against a highly variable background (e.g., het-
erogeneous land surfaces and/or land–water mixes), we ex-
amined the performance of a conventional Bayesian re-
trieval algorithm that searched for matches in the full three-
dimensional channel space. First we showed that even when
the algorithm is applied to the dependent (TRAIN) data, per-
formance suffers when the match criterion is too loose (i.e.,
largeσ ). Conversely, when the same algorithm was applied
to the independent (VAL) dataset, the match failure rate was
unacceptably highunlessthe match criterion was loose.

The net result of both effects was that retrievals were quite
poor for the independent dataset, even whenσ was iteratively
adjusted, as shown in Fig.4. Of course, the need to use large
σ to overcome a high match failure rate is a function of the
size of the dependent dataset. In the present demonstration,
the TRAIN dataset consisted of 10 000 unique entries. If we
were to employ a much larger database, the match failure rate
would go down, allowing smallerσ and presumably leading
to improved overall performance.

But as one moves to more realistic retrieval problems em-
ploying more sensor channels – e.g., the nine channels of
the TMI or the 13 channels of the GMI – the “curse of di-
mensionality” (Bellman, 1961) greatly magnifies the size of
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the database required to adequately populate the observa-
tion space and thus to ensure not only the existence of suit-
able matches for any given observation but also, it would
be hoped, a statistically representativedistribution of such
matches.

Of course it might be possible to reduce dimensionality in
some cases by simply throwing out channels that are deemed
to provide little information. As clearly seen in Fig.1, this
would not have been possible in the present demonstration.
With higher-dimensional real satellite data, the decision as
to which channels do or do not contain useful information is
nontrivial and undoubtedly context dependent.

To mitigate the problem of dimensionality in Bayesian re-
trievals, we described an algorithm for objectively distill-
ing the relevant information content fromN channels into
a smaller number (M) of pseudochannels while also regu-
larizing the background (geophysical plus instrument) noise
component. In the present demonstration,N = 3 andM = 1.
In the application of this method to TMI data described by
Petty and Li(2013), N = 9 andM = 3.

Bayesian retrievals based on the single pseudochannel de-
rived for the synthetic dataset were shown to yield striking
improvements in overall performance, as shown in Fig.9.
These empirical results, more than any theoretical arguments,
underline the likely benefits of dimensional reduction in
Bayesian retrievals relying on a database of multichannel ob-
servations as a proxy for the prior joint and marginal PDFs.

It must be reiterated that the details of the particular di-
mensional reduction method given here depend on one being
able to stratify the dependent dataset into two subsets: one
representing the “pure” background (e.g., rain-free or cloud-
free), and the other representing non-zero values of the vari-
able to be retrieved (e.g., raining or cloudy). For variables
where this is not possible, another dimensional reduction al-
gorithm would need to be employed; however, the benefits
for Bayesian retrievals should be similar.

As discussed in the introduction, it might have been pos-
sible in principle to achieve the same results for the 3-
D channel-based retrieval as for the 1-D pseudochannel-
based retrieval, provided that an appropriate covariance ma-
trix were specified for the computation of the weights for
candidate matches. In the present demonstration, the covari-
ance in question would have corresponded to a match zone
shaped like a highly flattened spheroid oriented exactly par-
allel to the plane containing most of the background vari-
ability in Fig. 1. That is, channel variations orthogonal to the
principal plane of background variability would be given far
greater weight than variations spectrally consistent with the
background variability. In short, the appropriate covariance
would be non-diagonal, and retrieval performance would de-
pend strongly on getting it exactly right.

From our results and from the above considerations, we
conjecture that a major potential problem with conven-
tional multichannel retrievals and assimilation schemes –
whether Bayesian or not – lies in the very common but often

inappropriate assumption of diagonal error covariance. The
dimensional reduction technique described herein avoids this
problem by, in effect, recasting the retrieval problem in a co-
ordinate system in which the desired covariance is (a) lower-
dimensional, (b) diagonal, and (c) unit magnitude.
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