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Abstract. We present a validation study of Collection 5
MODIS level 2 Aqua and Terra AOT (aerosol optical thick-
ness) and AE (Ångström exponent) over ocean by compari-
son to coastal and island AERONET (AErosol RObotic NET-
work) sites for the years 2003–2009. We show that MODIS
(MODerate-resolution Imaging Spectroradiometer) AOT ex-
hibits significant biases due to wind speed and cloudiness of
the observed scene, while MODIS AE, although overall un-
biased, exhibits less spatial contrast on global scales than the
AERONET observations. The same behaviour can be seen
when MODIS AOT is compared against Maritime Aerosol
Network (MAN) data, suggesting that the spatial coverage
of our datasets does not preclude global conclusions. Thus,
we develop empirical correction formulae for MODIS AOT
and AE that significantly improve agreement of MODIS and
AERONET observations. We show these correction formu-
lae to be robust. Finally, we study random errors in the cor-
rected MODIS AOT and AE and show that they mainly de-
pend on AOT itself, although small contributions are present
due to wind speed and cloud fraction in AOT random errors
and due to AE and cloud fraction in AE random errors. Our
analysis yields significantly higher random AOT errors than
the official MODIS error estimate (0.03+ 0.05τ ), while ran-
dom AE errors are smaller than might be expected. This new
dataset of bias-corrected MODIS AOT and AE over ocean
is intended for aerosol model validation and assimilation
studies, but also has consequences as a stand-alone obser-
vational product. For instance, the corrected dataset suggests
that much less fine mode aerosol is transported across the
Pacific and Atlantic oceans.

1 Introduction

Aerosols affect the Earth’s radiation budget, either through
scattering and absorption of direct sunlight or through mod-
ification of cloud parameters. At the moment, aerosols are
considered the dominant uncertainty in radiative forcing es-
timates for the Earth’s atmosphere. They are especially in-
teresting because their general impact seems to be a cooling
of the atmosphere and because they may actually slow down
warming by greenhouse gases on regional scales.

To increase our understanding of the aerosol system, ma-
jor efforts to observe it have been launched in the past
two decades. Although our most reliable observations come
from ground-based observing networks (e.g. the AERONET1

sun photometers), substantial spatial coverage can only be
achieved through satellite observations. One of the best
known satellite datasets of aerosol observations are formed
by the observations of the two MODIS2 sensors aboard the
Aqua (local Equator crossing time of 13:30) and Terra (lo-
cal Equator crossing time of 10:30) satellites. These sen-
sors fly at an altitude of 705 km and have a cross-track view
of 2330 km. They observe the earth in 36 different spectral
bands, of which several bands in the visual and near-infrared
are suited to aerosol retrievals.

The MODIS observations of aerosol are based on lookup
tables that allow retrieval of multi-wavelength AOT3 from
measured radiances (Tanre et al., 1997). To produce these
lookup tables, assumptions on e.g. surface reflection and

1AERONET: AErosol RObotic NETwork.
2MODIS: MODerate-resolution Imaging Spectroradiometer.
3AOT: aerosol optical thickness.
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aerosol chemical composition are made. The observations
have been validated through comparison with the AERONET
ground-based network observations (Ichoku et al., 2002,
2005a; Remer et al., 2002, 2005, 2008; Bréon et al., 2011).
Additional products like fine mode fraction (fine mode AOT
divided by total AOT) have been evaluated byAnderson et al.
(2005), Kleidman et al. (2005) andBréon et al.(2011) and
the aerosol effective size byRemer et al.(2002) andRemer
et al.(2005). For a comparison to the Maritime Aerosol Net-
work (MAN) data (seeSmirnov et al., 2011; Adames et al.,
2011). The main conclusion from these papers is that MODIS
level 2 AOT over ocean shows significant correlation with
AERONET observations. Nevertheless, substantial random
errors exist. Also, MODIS AOT seems to be biased high for
low AOT and low for high AOT. Fine mode fraction and ef-
fective particle size generally show lower correlation with
AERONET than AOT.

Although these papers studied MODIS observational bi-
ases and random errors, no attempt was made to develop er-
ror models that would predict such errors as a function of in-
dependent variables like viewing angle, wind speed or cloud
fraction. A single bias and random error were instead speci-
fied for all available data.

However, it is likely that MODIS biases and random er-
rors vary with the observed scene; an example would be
random errors in the fine mode fraction that can be ex-
pected to decrease with increasing AOT. It has been shown
that under cloudy conditions or when wind speeds are high,
MODIS tends to overestimate AOT over ocean compared to
AERONET (Zhang and Reid, 2006; Shi et al., 2011). Quan-
tification and, hopefully, correction of these biases is impor-
tant for data assimilation purposes, where unbiased obser-
vations are used to “nudge” a model closer to the observed
atmospheric state. In addition to assimilation, unbiased ob-
servations serve an obvious purpose in validation efforts of
aerosol transport models.

Zhang and Reid(2006) and Shi et al.(2011) developed
empirical correction formulae for MODIS AOT over ocean
through systematic comparison with AERONET observa-
tions. These formulae use supplementary data on surface
wind fields, cloud coverage and aerosol fine mode fraction.
Hyer et al.(2011) have developed additional screening pro-
cedures and correction formulae that reduce AOT errors over
land.

Previous efforts at correcting MODIS observational biases
have focused on AOT. However, AE4 contains a lot of use-
ful information on the aerosol system as it typically tracks
particle size. Even though this interpretation may be ambigu-
ous in the case of multi-modal aerosol size distributions, the
use of observation operators (functions that map atmospheric
distributions of aerosol to observables like AOT or AE) al-
lows meaningful application of AE observations in the con-
text of either assimilation or model validation. In MODIS

4AE: Ångström exponent.

studies, fine mode fraction is often used instead of AE, but
Anderson et al.(2005) argued that validation of AE is more
straightforward and should therefor be preferred. We see a
few additional advantages of using AE over fine mode AOT
or fraction: AE has a simple definition (see Eq.1 further on)
in contrast to fine mode fraction; AE potentially allows for
AOT errors to balance out, due to the division of AOT at
different wavelengths (again, see Eq.1); and AE errors and
AOT errors are uncorrelated. The last point is very obvious
in the dataset we will work with in this paper, where AOT
errors at different wavelengths are strongly correlated while
AOT errors and AE errors are not. Uncorrelated errors will
simplify the construction of empirical corrections and make
assimilation of the observations easier.

In this paper, we validate Collection (Coll.) 5 MODIS
level 2 AOT and AE observations against AERONET and the
Maritime Aerosol Network. Given the very similar results,
we conclude that AERONET spatial sampling does not sub-
stantially influence the validation of MODIS observations.
Thus, we develop correction formulae for MODIS AOT and
AE by regressing MODIS observations against AERONET
observations. For the corrected MODIS AOT and AE, we
develop simple models that describe the remaining random
errors. In Table1, we present the major differences between
our analysis and the analyses byZhang and Reid(2006) and
Shi et al.(2011). The main differences are that we (1) val-
idate and correct MODIS AE observations (in addition to
AOT); (2) corroborate our analysis with Maritime Aerosol
Network data; and (3) sub-sample our data to create a set
of independentMODIS errors (this will be shown to affect
biases).

In Sect.2, we introduce the three datasets that we will use
in our analysis. Section3 describes how we select the co-
located MODIS–AERONET observations that will be used
for validation of the original MODIS product. This valida-
tion is presented in Sect.4 together with corroborative ev-
idence from the Maritime Aerosol Network. In Sect.5, we
explain how one may derive correction formulae for both
MODIS AOT and AE. The robustness of that correction is
also discussed. The global impact of our correction on AOT
and AE observations over ocean is shown in Sect.6, while
the remaining random errors in AOT and AE are discussed
in Sect.7.

In this paper, we will call the difference between co-
located MODIS and AERONET AOT observations the
MODIS AOT error. We assume that AERONET represents
the truth or at least that its errors are negligible compared to
MODIS. MODIS will experience the same error when ob-
serving under identical circumstances, but any arbitrary set
of MODIS observations will have an error distribution. If this
distribution is Gaussian and perfectly known, we can deter-
mine a bias (the mean of the distribution) and a random error
(the standard deviation). In reality, the distribution is only
near-Gaussian, of finite size, and with many outliers. So we
have chosen to use the median (or the 50 % quantile) to define
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Table 1.Comparison between three relevant studies.

Zhang and Reid(2006) Shi et al.(2011) This paper

Period Aqua: Sep 2004–Aug 2005 Aqua: 2002–2008 Aqua: 2003–2009
Terra: 2004 Terra: 2000–2008 Terra: 2003–2009

Collection 4 5 5

MODIS AOT at 470, 550 and 860 nm AOT at 550 nm AOT at 550 nm
AE at 860/470 nm

AERONET level 1.5 level 2.0 level 2.0

Maritime Aerosol Network no no yes

Co-location 0.3◦, 20m 0.3◦, 30m 50 km, 30m

Wind speeds NOGAPS NOGAPS NCEP-DOE-II

Dataset full dataset full dataset independent sub-sample

bias and half the interquantile range from 15.8 to 84.2 %
to define therandom error(note this is the mean and stan-
dard deviation in case of a Gaussian distribution). Statistical
properties based on quantiles are more robust in the presence
of outliers than the mean and standard deviation (see also
Sect.7). Note, by the way, that the bias can be negative. In
that case, it will be said todecreasewhen it becomes even
more negative.

Several figures in the paper show box–whisker plots that
use a common interpretation. First, the sample was binned
according to some variable, e.g. wind speed. Next, the 10,
25, 50, 75 and 90 % quantiles of the MODIS error were de-
terminedper bin. Finally, this distribution is represented in a
box–whisker plot. The open vertical bar shows the interquan-
tile range (25–75 %) and the vertical lines extending from
this open bar the 10 to 90 % interquantile range. The median
is shown by the horizontal line inside the open bar. This me-
dian is surrounded by a solid bar (narrower than the open bar)
that gives the 5 to 95 % interquantile range of the median es-
timates according to a bootstrap analysis. Finally, on top of
each bar a numerical value gives the number of observations
per bin, either in counts (integers) or percentages (decimals)
of the total.

2 MODIS, AERONET and NCEP-DOE-II data

We will use the following datasets: Coll. 5 MODIS Aqua and
Terra level 2 data, AERONET level 2.0 from the version 2
direct sun algorithm, Maritime Aerosol Network level 2.0
and NCEP-DOE-II5 6-hourly reanalysis of wind speeds, tem-
perature and specific humidity. Data from 2003 (2004 for
maritime AERONET) up to and including 2009 were down-
loaded from their respective websites.

The MODIS Coll. 5 level 2 data were downloaded from
www.modis.gsfc.nasa.gov/. We will use the “average ocean”

5NCEP-DOE: National Centers for Environmental Prediction,
Department Of Energy.

AOT product at 470, 550 and 860 nm (Remer et al., 2005).
AOT at 470 and 860 nm is converted into an Ångström expo-
nent through

α = −
log τ2/τ1

log λ2/λ1
, (1)

whereτ andλ represent AOT and wavelength as usual. In
addition, we will use supplementary data provided in the
MODIS data product such as the observed cloud fraction and
the various scattering geometry angles (viewing zenith angle,
solar zenith angle, etc.). MODIS pixels in the aerosol prod-
uct have a 10 by 10 km size sub-satellite but this increases
to around 40 by 20 km near the edges of the swath. All data
over ocean will be used, irrespectively of QA (quality assur-
ance) flag, as recommended byRemer et al.(2005) (see also
Mishchenko et al., 2010). The MODIS AOT random error
over ocean is often taken to be

1τ = 0.03 + 0.05τ, (2)

see e.g.Remer et al.(2005).
AERONET data (Holben et al., 1998) were downloaded

from www.aeronet.gsfc.nasa.gov/and contain AOT at vari-
ous wavelengths (440, 550, 675 and 870) derived from the
direct sun algorithm. These AOT are converted into AOT at
550 nm (if not directly observed) and AE for 870/440 nm,
in both cases using Eq. (1), for later comparison to MODIS.
AERONET AOT errors are estimated to be∼ 0.01 (Eck et al.,
1999; Schmid et al., 1999) and we will use AERONET as
a reference to which MODIS may be compared. Not all
AERONET sites, however, will be used as some may be
less representative than others for comparison to MODIS
satellite observations (see Sect.5.1 for details). Although
AERONET low level cloud screening is probably very good,
there remain issues with cirrus clouds (Huang et al., 2011).
All AERONET observations were averaged over 1 h, every
hour.

Maritime Aerosol Network data (Smirnov et al., 2011)
were downloaded from www.aeronet.gsfc.nasa.gov/.
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Smirnov et al.(2011) estimate AOT errors to be∼ 0.02. No
further screening was applied to these data, as they were
only used for additional verification.

The NCEP-DOE-II reanalysis data (www.esrl.noaa.gov/)
are the 6-hourly values for surface pressure, air temperature
at 2 m, specific humidity at 2 m as well as wind speeds at
10 m at a global Gaussian T62 grid. This reanalysis (Kana-
mitsu et al., 2002) is an improved version of the original
NCEP reanalysis (Kalnay et al., 1996). The NCEP-DOE-II
data were linearly interpolated to the location and time of the
MODIS pixel.

3 MODIS data screening

3.1 Common sense quality control criteria

We will start by screening the complete MODIS observa-
tional dataset using the same rules of thumb thatZhang and
Reid (2006) proposed andShi et al.(2011) used. The pur-
pose of this screening is to remove observations that are
more error-prone than usual. We will discard any observa-
tion with AOT> 3, as radiances tend to saturate beyond this
value (∼ 0.02 % of data is lost). We will also discard any ob-
servation with a cloud fraction larger than 0.8 (∼ 27 % of data
is discarded).Zhang and Reid(2006) found increased differ-
ences between MODIS and AERONET AOT for large cloud
fractions andLiu and Pinker(2008) found significant less
correlation among MODIS and MISR (Multi-angle Imaging
Spectroradiometer) AOT for cloud fractions above 0.8. We
also discard any observation that is isolated, i.e. does not
have at least one neighbour (∼ 1 % of data is discarded). Fi-
nally, we discard observations that show too much spatial
variation (defined as the standard deviation across a set of
3 by 3 MODIS pixels). Our hope is that the latter two criteria
will eliminate the worst cases of cloud-contaminated obser-
vations, but undoubtably good observations with strong spa-
tial AOT gradients will be removed as well. A typical stan-
dard deviation across a 3 by 3 MODIS pixel is determined
as a function of AOT. Typically, this standard deviation in-
creases as AOT increases (see Fig. 8 inZhang and Reid,
2006, or Fig. 2 inShi et al., 2011). By discarding those pixels
that have a standard deviation larger than 1 times the typical
value, we remove the pixels with the strongest spatial gradi-
ents (∼ 14 % of data is discarded). Note thatZhang and Reid
(2006) andShi et al.(2011) use 1.5 times the typical value
as criterium.Zhang and Reid(2006) and Shi et al.(2011)
allowed some observations observed within the sun glint an-
gle θ > 30◦, but we only allow pixels outside the glint angle
(θ > 40◦).

3.2 Co-location of MODIS and AERONET
observations

After screening the MODIS observations in the man-
ner described above, we co-locate them with AERONET

Fig. 1. Spatial correlations among two arbitrary MODIS obser-
vations (solid blue: AOT, solid red: AE) or their errors (dashed)
as a function of spatial separation. Only MODIS observations co-
located with AERONET were used.

observations. Any MODIS observation within 50 km and
within 30 min of an AERONET observation (1 h averages,
see Sect.2) is considered co-located. We varied these cri-
teria within reasonable bounds and concluded that, for the
above values, correlation among MODIS and AERONET
AOT at 550 nm is maximal. This agrees well with other stud-
ies (Ichoku et al., 2002; Bréon et al., 2011). Because of this
co-location criterium, several individual MODIS observa-
tions will be co-located with the same AERONET observa-
tion. On average, every AERONET observation is co-located
with 10 MODIS observations, although the actual number
varies between 1 and 76.

3.3 Spatial correlations in MODIS observations

Observed aerosol fields are known to exhibit correlations
over tens of kilometres (Anderson et al., 2003; Kovacs, 2006;
Santese et al., 2007), due to the nature of transport of aerosol
particles. We expect to see such long correlation length scales
in our MODIS dataset, also because our common sense qual-
ity control criteria preferentially select homogeneous scenes.
If the MODIS error is dominated by retrieval assumptions,
spatial correlations are likely to exist in those errors as well.
In Fig. 1 we show the spatial correlation for the MODIS ob-
servations and for the errors. From all MODIS observations
co-located with an AERONET observation, pairs of MODIS
observations at different spatial separations were randomly
chosen. By combining the results for all AERONET ob-
servations, the correlation between two MODIS pixels as a
function of distance could be computed. As we constrained
our co-located observations to a distance of 50 km from the
AERONET site, the spatial separation of these MODIS pix-
els can never be more than 100 km. We see that MODIS
observations themselves show strong correlations over these
100 km. This result is similar to that byShinozuka and Re-
demann(2011) (their Fig. 3) for the case of long-range

Atmos. Meas. Tech., 6, 2455–2475, 2013 www.atmos-meas-tech.net/6/2455/2013/
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transport aerosol. The spatial correlations in MODIS errors
are lower than those in AOT itself but still very substantial.

As a matter of fact, both the MODIS observations and
their errors within a 50 km distance are strongly correlated
(r > 0.8). This implies that nothing will be gained by us-
ing all possible co-located MODIS pixels. It will increase
the sample size for the error analysis, but many entries in
that sample are more or less copies. A meaningful statistical
analysis requires either independent error estimates or spe-
cific corrections for the correlations in the dataset.

3.4 Independent sub-samples of MODIS observations

To obtain an independent sample, one only needs to sub-
sample MODIS observations by randomly choosing a single
pixel for each AERONET observation. Different strategies
exist for choosing this single MODIS observation, although
the observation closest to the AERONET observation seems
the most logical. In this sub-section, we will discuss, as an
example, the consequences for the MODIS AOT error for
0.5< AOT < 1.5 for various sampling strategies (see Fig.2).

In Fig. 2 the box and whisker on the far left (all) shows the
error distribution when using all available co-located MODIS
pixels. Next to it is the error distribution for a smaller but
entirely random sub-sample (random). Unsurprisingly, these
distributions are very similar. On the far right of the plot,
MODIS errors for independent sub-samples are shown. Here
we selected for each AERONET observation a single co-
located MODIS pixel, either as close (CLOSEST) or as far
away (FARTHEST, note that it is never more than 50 km
away from the AERONET site) as possible. These two er-
ror distributions are also very similar but distinctly differ-
ent from the distributions on the left side of the plot. The
reason for this becomes clear if we consider independent
sub-samples of only clear or cloudy MODIS pixels (CLEAR
and CLOUDY). The CLEAR sub-sample agrees nicely with
the full dataset (all), while the CLOUDY sub-sample shows
even higher biases than CLOSEST. It seems that when us-
ing the full dataset, one biases the MODIS errors in favour
of clear scenes. This is unsurprising as clear scenes allow
more successful retrievals per AERONET observation (more
co-located pixels) than cloudy scenes. Similarly, we find that
independent sub-samples show smaller MODIS bias at large
wind speeds (>16 m s−1) than the full dataset (not shown).

Summarizing the results from this sub-section and the pre-
vious one, we argue that it is necessary to use an indepen-
dent sub-sample of MODIS–AERONET data pairs for the
error analysis. Including all co-located MODIS pixels does
not add more useful information; it merely increases sam-
ple size by adding copies. On the other hand, it will skew
the estimated biases because depending on the scene some
AERONET observations have many collocated MODIS ob-
servations and others have only a few. We want to stress that
by creating an independent sub-sample, we do not alter the
range over which parameters like AOT, wind speed or cloud
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Fig. 2. MODIS Terra AOT error statistics for
0.5≤ MODIS AOT≤ 2.5 depending on sampling strategies.
The box denotes the 25–75 % interquantile range and the whiskers
the 10–90 % interquantile range. The median is denoted by the
horizontal bar in the box. The number given for each box and
whisker refers to sample size.

fraction vary. We will return to the impact of different sam-
pling strategies on MODIS errors later (in Sects.5.3and5.4).

4 Validation of MODIS AOT and AE

4.1 Comparison against AERONET

In the following, we will use the independent sub-sample
based on the closest MODIS observation to any AERONET
observation. We will now study how AOT and AE er-
ror statistics change as a number of important parameters
change. These parameters include AERONET AOT and AE,
the MODIS scattering geometry angles as well as environ-
mental variables such as wind speed, cloud fraction, temper-
ature and relative humidity.

Figure 3 shows the main four parameters that affect
MODIS AOT error statistics. They are AERONET AOT and
AE themselves, wind speed and cloud fraction. We see that
MODIS biases increase with wind speed and cloud fraction
but decrease with AOT and AE. The influence of wind speed
and cloud fraction on MODIS AOT bias is well known and
due to limitations in the Collection 5 retrieval algorithms.
The variation of the MODIS AOT bias with AE suggest that
there are issues with the assumed scattering properties of the
MODIS aerosol types. Note that the random errors depend
mainly on AOT.

Glint angles, at least down to 40◦ (Fig. 4), have almost no
influence on error statistics, in contrast to what was reported
by Zhang and Reid(2006) and Shi et al.(2011) (who al-
lowed glint angles down to 30◦). Like Ichoku et al.(2005a),
we do not see a clear dependence on scattering angles (see
alsoMishchenko et al., 2009, who compare MODIS AOT to
MISR). We do see, however, a significantly higher bias for
SZA < 20◦. Similarly, we see significantly higher biases for
temperaturesT < 260 K and relative humidities RH< 0.2.

www.atmos-meas-tech.net/6/2455/2013/ Atmos. Meas. Tech., 6, 2455–2475, 2013
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Fig. 3.MODIS AOT error statistics as a function of AERONET AOT, AERONET AE, NCEP-DOE-II wind speed and MODIS cloud fraction
(blue: Aqua; red: Terra). The box–whisker plots are offset from these bin centres to show the two distributions side by side. Numbers above
the box and whisker show the percentage of the total sample used in that bin.

These high biases are robust when we use different sub-
samples and occur only at a small number of sites, for only a
few MODIS observations at each site. The bias for low tem-
peratures may be an issue with the NCEP-DOE-II reanalysis
as it only occurs for a few sites on the east coast of North
America. The bias for the relative humidity may be related to
the MODIS retrieval, as a correction must be made to scatter-
ing properties based on aerosol wet growth. For Aqua there
is a substantial overlap between the cases with low relative
humidity and low solar zenith angle, but not so for Terra.

We also found, unsurprisingly, that MODIS AOT bi-
ases increase significantly with altitude of the AERONET
site (not shown). For AERONET altitudes above 300 m
(on mountains near the coast or on islands), the collocated
MODIS observed air column (over ocean) and AERONET
observed air column differ substantially and the AERONET
site cannot be considered representative for the MODIS
observation.

Figure 5 shows the error statistics of MODIS AE.
AERONET AE has a strong impact on AE biases with AE
error positively biased for low AERONET AE and negatively
biased for high AE (in agreement withKleidman et al., 2005,
who found that the fine mode fraction was overestimated in
dusty conditions and underestimated for smoke and pollution
aerosol). As a result, MODIS AE has no significant bias as a
whole but shows reduced contrast in space or time compared
to AERONET. There is also a negative bias for large wind
speeds. Balancing of errors in AE (see Eq.1) is possibly the

reason that AE bias hardly depends on AOT, cloud fraction or
any other parameter. The random AE error depends strongly
on AOT.

Finally, we point out that the variation of the discussed
parameters is not completely independent. For example,
there is a weak correlation between cloud fraction and wind
speed, maybe because whitecaps are sometimes interpreted
as cloudiness.

4.2 Comparison against Maritime Aerosol Network

MAN data has a substantially different spatial sampling than
AERONET. Not only does MAN contain many observations
over the deep ocean, but is also better balanced as regards
the latitudinal distribution of observations (the majority of
AERONET observations are made in the Northern Hemi-
sphere). Here we will show that MODIS Terra AOT has very
similar biases versus MAN as against the regular AERONET
data, provided independent sub-samples of the full datasets
are used (Sect.3.4).

Figure6 shows Terra error statistics for either AERONET
or MAN using either the full datasets or independent sub-
samples. When using the full datasets (left column), MAN
data suggest MODIS Terra AOT biases are at least 0.01 to
0.02 lower than AERONET data suggest. Note also that
MODIS biases against MAN have a very different depen-
dence on AOT than MODIS biases against AERONET.
For independent sub-samples (right column), however, there
clearly is a large similarity between the AERONET and

Atmos. Meas. Tech., 6, 2455–2475, 2013 www.atmos-meas-tech.net/6/2455/2013/
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Fig. 4. MODIS AOT error statistics as a function of NCEP-DOE-II temperature (2 m) or relative humidity (2 m), MODIS scattering or glint
angle (blue: Aqua; red: Terra). The box–whisker plots are offset from these bin centres to show the two distributions side by side. Numbers
above the box and whisker show the percentage of the total sample used in that bin.

Fig. 5.MODIS AE error statistics as a function of AERONET AOT, AERONET AE, NCEP-DOE-II wind speed and MODIS cloud fraction
(blue: Aqua; red: Terra). The box–whisker plots are offset from these bin centres to show the two distributions side by side. Numbers above
the box and whisker show the percentage of the total sample used in that bin.

www.atmos-meas-tech.net/6/2455/2013/ Atmos. Meas. Tech., 6, 2455–2475, 2013
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Fig. 6.Terra AOT error statistics against the Maritime Aerosol Net-
work (blue) or AERONET for either the full dataset (left column) or
independent sub-samples (right column). When using independent
sub-samples, Maritime Aerosol Network and AERONET data yield
very similar MODIS biases.

MAN comparison. Thus, comparison of MODIS against ei-
ther AERONET or MAN yields similar biases provided in-
dependent sub-samples are used. The consequences are two-
fold: (1) it suggests that AERONET can be used for a glob-
ally representative MODIS error analysis; and (2) it suggests
the importance of the independent sub-samples.

Fig. 7. Terra random AOT errors estimated from the Maritime
Aerosol Network (solid blue) or AERONET (solid red). The blue
dotted lines are MODIS random error estimates from AERONET
data sampled to mimic Maritime Aerosol Network observing
conditions.

Note that the independent sub-samples of MAN obser-
vations have a small size: only 395 (Aqua) or 426 (Terra)
data pairs are available. Similar results can be shown for AE
biases in MODIS Terra although the picture is noisier (the
dataset is even smaller: 283). The comparison with Aqua
yields ambiguous results. In particular, the bias in MODIS
Aqua AOT vs. MAN shows no dependency on either AE or
cloud fraction. Since this dependency has been shown to exist
for MODIS Aqua against AERONET (seeZhang and Reid,
2006; Shi et al., 2011and Sect.4) and MODIS Terra against
MAN, this is a surprising result. What is causing this remark-
able deviation from a clear pattern is far from obvious to us.

Figure6 seems to suggest there are differences in the ran-
dom MODIS errors when using either AERONET or MAN
data. However, MAN tends to observe lower values for AOT
and AE than AERONET. We will later (Sect.7) show that
random MODIS errors depend strongly on AOT. In particu-
lar, AERONET’s median AOT is 0.119 while MAN’s median
AOT is 0.077, 30 % lower. To make a meaningful compar-
ison, Fig.7 shows MODIS Terra random AOT errors esti-
mated from either AERONET or MAN data as a function
of AOT. It would appear the random errors estimated from
AERONET data are somewhat larger than those estimated
from MAN. However, if we sub-sample the AERONET data
to a dataset that is close to MAN in terms of size, observed
AOT, AE, wind speed and cloud fraction it turns out there
is quite some variation in the estimated random error (dotted
blue lines in the figure). Thus AERONET and MAN seem
to suggest similar random MODIS errors, if differences in
the sampling of the datasets are taken into account. Note that
the MAN analysis has its own statistical uncertainty which is
however difficult to assess due to its low sample size.
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5 Empirical correction of MODIS AOT and AE

In this section, we will describe a new method for empirically
correcting MODIS observations through regression onto the
co-located AERONET observations. Before doing this, we
will further screen MODIS data by removing all MODIS ob-
servations forT < 260 K, RH< 0.2 or SZA< 20◦. The pre-
vious section showed that MODIS AOT biases were unusu-
ally large for those parameter values. This leads to a further
reduction of about 3 % in the sample size of our co-located
observations.

5.1 Screening of AERONET sites

So far we have not really considered how appropriate the
AERONET sites are for validation of MODIS observations.
In the previous section we saw that AERONET sites at al-
titudes above 300 m generally show poorer agreement with
MODIS data and this is likely due to the different air columns
observed. Local emission sources or orography can similarly
cause AERONET observations to not be representative of the
larger area sampled by MODIS . By studying the correlation
between MODIS and AERONET AOTper sitewe will try
to remove unrepresentative AERONET sites. Thus we calcu-
late correlation coefficients and linear regression coefficients
for the co-located MODIS and AERONET dataper site. If
the number of co-located data per site is below 11 we discard
that particular site from our analysis. If the correlation coef-
ficient is below 0.5 or the regression coefficient below 0.5
or above 2.0 we also discard that site, because seemingly
these AERONET observations are not representative of the
co-located MODIS observations. The total loss in co-located
data is∼ 4 %, with most due to the minimum requirement for
the number of observations. The number of discarded sites
depends to some extent on the sensor and the chosen sub-
sample, so this selection may be too conservative (i.e. remove
even good data). The purpose of this screening is, however,
to remove potentially unrepresentative sites, and it does no
harm to err on the side of prudence. We have performed a
sensitivity study where the criterium for the correlation coef-
ficient was increased to 0.75 (this causes a∼ 20 % reduction
in available data) with no major impact on the analysis pre-
sented in the following sections.

Sites that are consistently removed, independent of sen-
sor or sub-sample, are Adelaide site 7, CEILAP-RG, Co-
conut Island, Crozet Island and St-Denis, Reunion. These
sites all have sufficient number of observations co-located
with MODIS, even after our screening, but show poor corre-
lation with MODIS (MODIS AOT’s are sufficiently high that
we can ignore a signal-to-noise issue). We contacted their re-
spective PI’s, hoping to understand why there might be a big
discrepancy between MODIS and those sites. Unfortunately,
no obvious reasons could be found. Note that we include in
our analysis several sites thatIchoku et al.(2005b) excluded.

5.2 Methodology of the empirical correction

A correction of MODIS AOT and AE is now developed
as a regression of the MODIS bias unto the predictors of
this bias: AOT, AE, wind speed and cloud fraction. A cor-
rect regression faces several obstacles: the non-Gaussian
distribution of the observations (in particular, the strongly
skewed distribution of AOT itself and the many outliers in
the MODIS errors), the multiple parameters that influence
the MODIS observations (sometimes non-linearly, see pre-
vious sub-section) as well as the (weak) interdependency of
some of these parameters. As robust non-linear multiple re-
gression is a field very much in development and no standard
techniques are yet available, we decided to pursue a common
sense approach.

Looking at Fig.3, it appears rather straightforward to de-
velop corrections for the AOT bias due to wind speed and
cloud fraction. For instance, the wind speed correction could
be based on a linear regression of the bias unto wind speed.
Similarly, a cloud fraction correction may be developed. If
these corrections are developed independently, the combina-
tion of both corrections may actually yield a product that is
less accurate than the standard product. Instead, one could
first develop a correction for wind speed and then correct the
wind-speed correctedMODIS AOT for cloud fraction. Or the
other way around: first correct for cloud fraction and then for
wind speed. This does not automatically lead to an improved
product, but there are now two correction algorithms that are
different and hopefully at least one leads to MODIS AOT
with significantly reduced biases overall.

In practice, we want to correct not only for wind speed and
cloud fraction, but also AOT and AE. As AERONET AOT
and AE are not available for the majority of MODIS obser-
vations, we will use their MODIS observed counterparts as
proxies. As a possible MODIS correction algorithm, we now
define any particular permutation of sequential correction by
AOT, AE, wind speed and cloud fraction (4! = 24 algorithm).
The corrections due to AE, wind speed and cloud fraction
can either be added to or multiplied with the MODIS AOT
(23

× 24 = 192 algorithms). Finally, the AOT bias as a func-
tion of AOT seems to exhibit two regimes: constant for small
AOT and a linear dependence for larger AOT (not shown).
We therefor develop separate correction algorithms for low
and for high AOT. Furthermore, we will optimize the thresh-
old AOT value that distinguishes the regimes by attempting
5 different values (Zhang and Reid, 2006, and Shi et al.,
2011, assumed a threshold of 0.2). All in all, we developed
960 different algorithms per AOT regime.

The actual regression of the MODIS bias unto a single pa-
rameter, say cloud fraction, is performed as follows: first we
divide the cloud-fraction data in 4 bins with equal number of
observations. For each bin, a median cloud fraction, median
MODIS error (i.e. the bias for that bin) and an error estimate
in the later are determined. The linear regression through
these values constitutes one particular correction formula.
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Fig. 8. MODIS Aqua AOT error statistics as a function of AERONET AOT, AERONET AE, NCEP-DOE-II wind speed and MODIS cloud
fraction for the original (blue) and the corrected AOT (red). The box–whisker plots are offset from these bin centres to show the two
distributions side by side. Numbers above the box and whisker show the percentage of the total sample used in that bin.

The optimal algorithm is a sequence of correction formu-
lae that minimize the MODIS bias the most. Since there is
a substantial contribution from random errors in the MODIS
data, a special metric was used to assess that reduction. We
will call this metric thefitted biasand it is determined as
follows. First, we divide the MODIS data (after application
of a correction algorithm) in four bins with equal number of
AOT (or AE) observations. For each AOT bin separate re-
gressions of MODIS error vs. AOT, AE, wind speed or cloud
fraction are made. As an indication of the bias resulting from
e.g. wind speed, we will use the RMS6 value of theregres-
sion against e.g. wind speed in each AOT bin. These RMS
values can be averaged over all AOT bins and all four pa-
rameters AOT, AE, wind speed and cloud fraction to yield a
single representative value, calledfitted bias. Note that this
is a very different value from e.g. the RMS difference of
MODIS and AERONET AOT, as the latter will be dominated
by substantial random errors. The fitted bias will be used to
compare algorithms. In practice, various algorithms will per-
form similarly good or bad and it is not possible to single out
any algorithm astheoptimal algorithm. This is not necessary
anyway. What is important is that there are algorithms that
substantially reduce the fitted bias, while others fail and may
even increase it.

6RMS: root mean square.

Fig. 9.Density plots of MODIS Aqua AOT vs. AERONET AOT for
the original (top) and corrected (bottom) observations.
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Fig. 10.Biases in Aqua AOT as a function of several variables, for both the original (blue) and corrected (red) observations. The numbers
in the plot show sample size per bin. The fatter dots, connected by lines, show the biases for the sub-sample that was used to construct the
correction algorithm (closest). The dots along the vertical bars represent the biases for three sub-samples (closest, random or farthest). The
diamond represents the bias for the full dataset.

5.3 Results for MODIS AOT

We can reduce the fitted bias for AOT by a factor of∼ 3.
In the case of Terra, it is useful to also include a correction
based on scattering angle. The optimal correction algorithms
are presented in Appendix A.

For Aqua, the fitted bias is reduced from 0.018 to 0.007.
Figure 8 shows how the biases change as a function of
AOT, AE, wind speed and cloud fraction. Clearly, Aqua ran-
dom errors hardly change (respectively 0.076 and 0.077).

Correlation coefficients for all MODIS–AERONET AOT
pairs also barely change, from 0.86 to 0.87, but the coeffi-
cient of a robust linear regression experiences a significant
increase (from 0.89 to 0.99). A density plot (Fig.9) of Aqua
AOT vs. AERONET AOT shows a striking improvement in
the agreement with AERONET at low AOT. We also see an
improvement of MODIS AOT per AERONET site. For ex-
ample, the median of the distribution of linear regression co-
efficients per AERONET site changes from 0.90 to 1.00. Due
to the correction, the median value of Aqua AOT changes
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Fig. 11. Bias and correlation of MODIS AE vs. AERONET AE
for Aqua (blue) and Terra (red). Bias and correlation were calcu-
lated for MODIS AOT at 860 nm bins. The horizontal axis shows
the lower AOT value of each bin. Bins contain equal numbers of
observations (per bin 6.25 % of all observations). The vertical lines
are the chosen thresholds.

by −0.013, with 25 % of the data experiencing a reduction of
more than 29 %.

For Terra, the fitted bias is reduced from 0.018 to 0.006.
Neither the Terra random error (from 0.078 to 0.079) nor the
correlation hardly change (from 0.87 to 0.89). A robust lin-
ear regression over all MODIS–AERONET data pairs sees
a small increase in the coefficient (from 0.95 to 1.00). The
median of the regression coefficients per AERONET site
changes from 0.97 to 1.01. In the case of Terra, the me-
dian value of AOT changes by−0.022, with 25 % of the
data experiencing a reduction of more than 36 % due to this
correction.

The correction algorithm seems robust. In Fig.10, we
show remaining biases in Aqua observations when the cor-
rection algorithm from Appendix A is applied to different in-
dependent sub-samples (e.g. farthest co-located pixel) as the
sub-sample for which it was developed (closest co-located
pixel). Although there is scatter, the results for the indepen-
dent sub-samples tend to cluster, while the results for the full
dataset are sometimes rather different. In particular, there is
a big difference for high wind speeds.

For Terra, similar results can be shown.
As a last independent test, we applied the correction algo-

rithm to data for 2011 and 2012. The inspection of graph-
ics, as shown in this section, shows that also for this time
period the correction formula works well. Since there is
less data, results are noisier but overall the fitted bias is re-
duced (from 0.028 to 0.009) and the regression coefficient is
slightly improved (0.87 to 0.87) for Terra AOT. For Aqua, the
fitted bias remains the same (0.018 and 0.017) for and the re-
gression coefficient increases from 0.76 to 0.84. Sample sizes
are less than 2000.

5.4 Results for MODIS AE

Before we discuss the correction of MODIS AE, we will
study MODIS AE derived from Eq. (1) further. Errors in AE
are determined by errors in AOT, so we wonder how well
MODIS and AERONET AE agree depending on MODIS
AOT. Because AOT tends to decrease with wavelength, we
assume that the impact of erroneous surface albedo (due to
whitecaps or cloudiness) on AOT retrievals will be more
felt at, e.g. 860 nm than at 470 nm. Certainly,relative ran-
dom MODIS errors at 860 nm appear to be 20 % larger than
at 470 nm. In Fig.11, we show the correlation and bias of
MODIS AE with respect to AERONET AE as a function of
MODIS AOT at 860 nm. For low AOT at 860 nm, correla-
tions are small and biases are large which suggests it would
be difficult to develop correction algorithms. When one in-
spects scatter plots for individual AOT bins, one sees that
for low AOT, MODIS often has AE> 2. In particular there
appears to be a peak in the AE histogram for AE∼ 2.7.
We therefor choose minimum thresholds (τ860> 0.055) for
MODIS τ860 before we continue our analysis (resulting in a
loss of 31 % of AE data).

The correction of AE proceeds in the same way as that
of AOT. We can reduce the fitted bias for AE by a factor
of 2. The correction includes influences from AE, wind speed
and scattering angle. The optimal correction algorithms are
presented in Appendix A.

For Aqua AE, the fitted bias is reduced from 0.09 to 0.046,
but the RMS component due to AE is reduced from 0.24
to 0.07. Figure12 shows how the biases change as a func-
tion of AOT, AE, wind speed and cloud fraction. As a
consequence of the bias correction, random errors increase
from 0.40 to 0.54 (a consequence of the rescaling of AE).
The correlation coefficient between MODIS and AERONET
AE does not change (0.69) but the linear regression coeffi-
cient changes significantly from 0.58 to 0.94. A density plot
(Fig.13) of Aqua AE vs. AERONET AE shows a striking im-
provement in the agreement with AERONET. The median of
regression coefficient per AERONET site changes from 0.53
to 0.86.

For Terra AE, the fitted bias is reduced from 0.12 to 0.07
while the RMS component due to AE is reduced from 0.24
to 0.11. As a consequence of the bias correction, random er-
rors increase from 0.41 to 0.51. Again, the correlation coeffi-
cient does not change (0.69) but the robust linear regression
coefficient changes from 0.63 to 0.94. The median of the re-
gression coefficients per station changes from 0.58 to 0.83.

As was the case for AOT biases, the AE correction scheme
seems robust. In Fig.14, we show remaining biases in
Aqua observations when the correction algorithm from Ap-
pendix A is applied to different sub-samples (e.g. farthest co-
located pixel) as the sub-sample for which it was developed
(closest co-located pixel). Although there is scatter, the re-
sults for the independent sub-samples tend to cluster, results
for the full dataset are not much different.
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Fig. 12.MODIS Aqua error statistics as a function of AERONET AOT, AERONET AE, NCEP-DOE-II wind speed and MODIS cloud frac-
tion for the original (blue) and the corrected AE (red). The box–whisker plots are offset from these bin centres to show the two distributions
side by side. Numbers above the box and whisker show the percentage of the total sample used in that bin.

Fig. 13.Density plots of MODIS Aqua AE vs. AERONET AE for
the original (top panel) and corrected (bottom panel) observations.

For Terra, similar results can be shown.
As a last independent test, we applied the correction algo-

rithm to data for 2011 and 2012. The inspection of graphics,
as shown in this section, shows that also for this time pe-
riod the correction formula works well. Since there is less
data, results are noisier but overall the fitted bias is reduced
(from −0.1 to −0.02) and the regression coefficient is im-
proved (0.55 to 0.75) for Terra AE. For Aqua, the fitted bias
increases from−0.027 to 0.028 and the regression coefficient
increases from 0.56 to 0.91. Sample sizes are less than 2000.

6 Multi-year averages of MODIS AOT and AE

In this section, we will show the impact of the corrections on
the 2003–2009 averages of MODIS Aqua AOT and AE. We
will show figures of the original MODIS Coll. 5 level 2 prod-
uct, the screened product (Sect.3) and the corrected product
(Sect.5). Only MODIS Aqua will be considered here, Terra
shows very similar results. These multi-year averages should
not be taken as climatologies, as we have not made any ef-
fort to homogenize spatial and temporal sampling. In par-
ticular, the original and the screened product differ simply
because many observations are discarded. The screened and
corrected product have, however, the same spatial and tem-
poral sampling.

In Fig. 15 we show MODIS Aqua AOT. Both the screen-
ing and correction lead to substantial changes in AOT
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Fig. 14. Biases in Aqua AE as a function of several variables, for both the original (blue) and corrected (red) observations. The numbers
in the plot show sample size per bin. The fatter dots, connected by lines, show the biases for the sub-sample that was used to construct the
correction algorithm (closest). The dots along the vertical lines show the biases for three sub-samples (closest, random and farthest). The
diamond represents the bias for the full dataset.

distribution. In particular, over cloudy regions many obser-
vations are discarded. The correction strongly reduces spatial
variation in AOT. Note there is nothing in the correction al-
gorithm that produces such a result a priori. Continental out-
flows extend less far across the oceans, and the elevated band
of AOT at southern midlatitudes has mostly disappeared. It
turns out that the corrections have different causes depend-
ing on the region. First, the large majority of uncorrected
AOT are small and have only a small impact on the correc-
tion (e.g. Fig.3). Secondly, the cloud fraction in the MODIS

aerosol product does not show much spatial variation in a
yearly average (note there is no reason for it to show typical
climatological patterns as high levels of cloudiness pre-empt
aerosol retrievals anyway) and is more or less an offset cor-
rection (about−0.01 in the yearly mean). The spatial varia-
tions in the corrections are then mainly due to (uncorrected)
AE and wind speed, which have very pronounced spatial pat-
terns. Wind speed has a distinctly latitudinal pattern with low
speeds near the Equator and high speeds north of 30◦ N and
between 40–60◦ S, while the spatial pattern of uncorrected
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Fig. 15. Multi-year averages (2003–2009) of MODIS Aqua AOT.
The top panel shows the original MODIS Coll. 5 level 2 product.
The middle panel shows the screened product and the bottom panel
shows the corrected product.

AE is shown in the middle panel in Fig.16. Both can locally
lead to corrections of about−0.02 in the yearly mean.

In Fig. 16 we show MODIS Aqua AE. Again, both the
screening and the corrections lead to significant changes in
AE. The screening removes very high AE values at high
latitudes, while the correction increases AE close to land
and decreases it for the middle of the ocean. As a conse-
quence, land–ocean and north–south gradients become more
pronounced. Due to the correction, regional detail increases:
there is more contrast between the dust and carbon outflows
on the western coast of Africa, and between Indian (pollu-
tion) and Arabian (dust) outflows. The correction of AE is
mainly due to uncorrected AE, which tends to decrease low
AE and increase high AE.

7 Random errors in MODIS AOT and AE

In this section, we will address the random errors in the cor-
rected MODIS AOT and AE. In Figs.8 and12 we indicated

Fig. 16. Multi-year averages (2003–2009) of MODIS Aqua AE.
The top panel shows the original MODIS Coll. 5 level 2 product.
The middle panel shows the screened product and the bottom panel
shows the corrected product.

this error as the interquantile range for various AOT, AE,
wind speed and cloud fraction bins. Both the AOT and AE
random error depend on AOT itself, but there appear to be
dependencies on other parameters as well. This random error
is usually expressed as the standard deviation of a distribu-
tion of errors, but we will use half the quantile range from
15.8 to 84.2 %. Since our error distributions generally have
narrower peaks and wider wings than Gaussian distributions
and may also be skewed, quantiles seem a more appropriate
measure as the common standard deviation tends to overesti-
mate the width of the distribution. In Fig.17 we show actual
Aqua AOT error distributions per AERONET AOT bin, as
well as fitted distributions based on either the standard devi-
ation or our proposed interquantile range. Especially for low
and high AOT, a Gaussian distribution based on an interquan-
tile range appears the better choice.

We now present simple models for the random errors
based on the assumption that the various error sources are
independent. These models were built in a trial and error
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Fig. 17. Aqua AOT error distributions for the corrected observations as a function of AERONET AOT. Also shown are two Gaussian
distributions that where fitted to the data, using two different methods for estimating the standard deviation. One method uses the actual
standard deviation of the sample (blue), the other method uses the random error as defined in this paper (red). The random error leads to a
better agreement with the actual distribution due to the presence of outliers.

manner. In the case of AOT random errors, for instance,
we first considered only observations for low cloudiness and
wind speed. For those observations, a function in AOT was
sought that well described the random errors. Next, all obser-
vations were considered and small corrections due to wind
speed and cloud fraction were added.

Figure18 shows the random errors in AOT for Aqua as a
function of binned AOT, AE, wind speed or cloud fraction.
We also show the estimate from our simple model (see also
Appendix A), which agrees quite nicely. Note that the appar-
ent variation in AOT random error with AE results mostly
from AOT variations (low AE often implies high AOT, which
leads to higher random errors).

The random error in AE as a function of binned AOT, AE,
wind speed or cloud fraction is shown in Fig.19. Again,
our simple error model agrees nicely. As expected, AOT has
a huge impact on AE random error, but its variation with
AE cannot be solely understood due to AOT sampling alone

(i.e. AE influences the AE random error, with larger AE hav-
ing a larger random error).

These random error models use AERONET AOT and AE
as independent variables. Since we removed biases in the
MODIS data, it is also possible to use corrected MODIS AOT
and AE as independent variables. We preferred to derive the
error models for AERONET values, as it turned out difficult
to fit an error model using MODIS values (likely due to the
significant random errors in the independent variable).

Finally, we compare the above random error models with
those found in previous papers. We will limit ourselves to
the AOT dependency only. The top panel of Fig.20 show
random AOT errors. The estimate byRemer et al.(2005) is
clearly lower than estimates byZhang and Reid(2006), Shi
et al.(2011) and this study. The latter studies agree in a gen-
eral way but we find larger errors for large AOT. The bot-
tom panel of the same figure shows AE random errors. The
dashed lines show AE errors predicted from AOT errors. In
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Fig. 18. Random Aqua AOT errors in the corrected observations. In red, the error estimated from binned observations, in blue our error
model.

Fig. 19.Random Aqua AE errors in the corrected observations. In red, the error estimated from binned observations, in blue our error model.

that prediction we assumed identical but uncorrelated errors
at the two wavelengths, in which case (see also Eq.1)

1α =

√
1/τ2

1 + 1/τ2
2

log λ2/λ1
1τ. (3)

As the actual random AE errors (solid line) are often lower
(even lower than AE errors estimated fromRemer et al.
(2005) AOT errors), it would appear that substantial corre-
lations in AOT errors at different wavelengths (that are ob-
vious in our dataset) reduce AE random errors, just as we
hoped (see Sect.1).

8 Conclusions

We have validated Coll. 5 MODIS level 2 AOT and AE
observations over ocean against collocated AERONET and
MAN observations. Based on this study, we propose addi-
tional quality control selection criteria and empirical correc-
tion algorithms to construct a smaller subset of MODIS ob-
servations that agree optimally with AERONET. This subset
has similar spatial and temporal coverage as the full MODIS
dataset but greatly reduced biases. Random errors of the
corrected observations are also evaluated and error models
developed. Random AOT errors forτ > 0.1 are shown to
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Fig. 20. Comparison of random error estimates for MODIS Aqua
AOT and AE. In the top panel, AOT random errors estimated by
Remer et al.(2005) (blue),Zhang and Reid(2006) (light blue),Shi
et al.(2011) (orange) and this study (red). In the bottom panel, AE
random errors estimated in this study (solid red). Also shown are er-
rors predicted from Eq. (3) and AOT random errors estimated either
by Remer et al.(2005) (dashed blue) or this study (dashed red).

be larger than the error estimate often used (0.03+ 0.05τ ).
Random AE errors are shown to besmaller than might be
expected.

Our work is both an extension and a variation of work done
by Zhang and Reid(2006) andShi et al.(2011). The exten-
sion consists of an analysis of MODIS AE observations over
ocean and greater detail in the behaviour of MODIS biases
and random errors as well as corroborative evidence from
the Maritime Aerosol Network. The variation is in a differ-
ent statistical approach (using independent sub-samples) and
a different construction of the correction algorithm (that al-
lows optimization of not only its parameters but also its struc-
tural form). We also use a different reanalysis dataset (NCEP-
DOE-II) to obtain auxiliary data such as wind speeds.

Our study suggests that the choice of using either the
full dataset or an independent sub-sample has an impact on
MODIS biases. In particular, we note a larger (positive) AOT
bias for high AOT (> 0.5) and a lower (positive) AOT bias
for high wind speeds (> 16 m s−1) when using an indepen-
dent sub-sample. Optimization of the structural form of the
bias correction obtains a threshold AOT value (that separates
low and high AOT regimes with different correction algo-
rithms) that is quite different (∼ 0.05) from the value of 0.2

used inZhang and Reid(2006) andShi et al.(2011). Finally,
the use of quantiles as error metrics may explain why we can
treat random errors with a Gaussian distribution and do not
suffer (too much) from skewed error distributions.

Like Zhang and Reid(2006), Shi et al.(2011) and other
authors we note the increase in MODIS AOT bias with in-
creasing wind speed or cloud fraction. This is probably due
to incorrect assumptions for the surface albedo. We note that
in Coll. 6 steps have been taken to represent more different
sea states.

We show that there is a useful signal in MODIS AE, after
proper screening (including a minimum value threshold on
associatedτ860). AE serves a similar role as fine mode frac-
tion (separation of coarse and fine mode aerosol), but has sev-
eral advantages as detailed in this paper (see Sect.1). We pro-
vide a full error analysis (bias and random errors) for MODIS
AE and show that MODIS AE biases depend mostly on AE
itself, suggesting issues with the aerosol scattering models
used in the retrieval (this is also suggested by a random er-
ror in AOT that increases with AOT). To our knowledge, this
is the first paper that discusses a correction to MODIS AE
biases.

As a result of our corrections, MODIS AOT reduces by at
least 30 % for 25 % of the observations and the elevated AOT
over the Southern Ocean have mostly disappeared. MODIS
AE decreases by at least 0.2 for 25 % of the observations
and increases by at least 0.2 for another 25 % of the observa-
tions, leading to increased AE contrasts between the North-
ern and Southern Hemispheres and between coastal areas and
the open ocean.

The bias-corrected MODIS over ocean AOT and AE ob-
servations can be used for model validation or data assimila-
tion. Our own interest is in the estimation of aerosol emis-
sions from remote sensing observations (Schutgens et al.,
2012). This bias correction also has consequences for the
global aerosol distribution. Global maps of multi-year aver-
aged bias-corrected AOT and AE show that far less fine mode
particles are transported across the oceans than the original
MODIS product suggests.

Appendix A

MODIS AOT and AE selection and correction

A1 Data selection for MODIS AOT and AE

– Discard any MODIS pixel with the uncorrected
τ550> 3;

– discard any MODIS pixel with cloud fraction> 0.8;

– discard any MODIS pixel that has no neighbours;
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– discard any MODIS pixel whose standard error is
larger than

– Terra: 0.003+ 0.036τ550+ 0.023τ2
550;

– Aqua: 0.002+ 0.040τ550+ 0.021τ2
550;

– discard any MODIS pixel with SZA< 20◦;

– discard any MODIS pixel for which RH< 0.2 and
T < 260 K.

Hereτ550 is the MODIS AOT at 550 nm and SZA the solar
zenith angle. RH is the relative humidity andT is the tem-
perature, both at 2 m above surface (NCEP-DOE-II).

A2 Correction for MODIS AOT

The following equations should be processed sequentially,
like FORTRAN computer code.

If Terra τ550≤ 0.049 then

τ550 = (1 + 0.181581− 0.0168456w)τ550 (A1)

τ550 = (τ550 − 0.0287665)/0.243752 (A2)

τ550 = τ550 + 0.0207946− 0.0001534992 (A3)

τ550 = (1 − 0.364205− 0.100776fc) τ550 (A4)

τ550 = (1.0 − 0.0822829+ 0.0781099α)τ550. (A5)

If Terra τ550> 0.049 then

τ550 = τ550 − 0.0122103− 0.0358403fc (A6)

τ550 = τ550 + 0.0320079− 0.0002438952 (A7)

τ550 = τ550 − 0.0294600+ 0.0266009α (A8)

τ550 = (τ550 − 0.0142035)/0.898996 (A9)

τ550 = τ550 + 0.00378178− 0.000665484w. (A10)

If Aqua τ550≤ 0.05 then

τ550 = (1 + 0.315863− 0.0306199w)τ550 (A11)

τ550 = (τ550 − 0.0271628)/0.301162 (A12)

τ550 = τ550 + 0.00514700− 0.0274383fc (A13)

τ550 = (1 − 0.350973+ 0.0378387α)τ550. (A14)

If Aqua τ550> 0.05 then

τ550 = (1 − 0.258509+ 0.164087α)τ550 (A15)

τ550 = (τ550 − 0.0328901)/0.760698 (A16)

τ550 = τ550 + 0.00646153− 0.0322341fc (A17)

τ550 = τ550 + 0.0106865− 0.00186725w, (A18)

whereα is the uncorrected MODIS AE,2 the scattering an-
gle,w the NCEP-DOE-II 10 m wind speed andfc the cloud
fraction.

A3 Additional selection criterium for AE

For AE we use an additional selection criterium that op-
timizes the agreement between the original MODIS and
AERONET AE

– Aqua:τ860≥ 0.055;

– Terra:τ860≥ 0.057

whereτ860 is the (uncorrected) MODIS AOT at 860 nm.

A4 Correction for MODIS AE

The following equations should be processed sequentially,
like FORTRAN computer code.

If Terra τ550≤ 0.083 then

α = α + 0.239255+ 0.0181123w (A19)

α = (α − 0.640555)/0.229146 (A20)

α = α + 1.00041− 0.007325442. (A21)

If Terra τ550> 0.083 then

α = α + 0.423368− 0.002798222 (A22)

α = (α − 0.334271)/0.667072 (A23)

α = α − 0.128672+ 0.0246823w. (A24)

If Aqua τ550≤ 0.087 then

α = (α − 0.404072)/0.278597 (A25)

α = (1.0 + 0.200161− 0.005615712)α (A26)

α = α + 0.155928+ 0.0268758w. (A27)

If Aqua τ550> 0.087 then

α = (α − 0.429633)/0.586594 (A28)

α = α − 0.166538+ 0.0317318w (A29)

α = α + 0.101102− 0.0007752332 (A30)

whereτ550 is the uncorrected MODIS AOT,2 the scatter-
ing angle,w the NCEP-DOE-II 10 m wind speed andfc the
cloud fraction.

A5 Random error in MODIS AOT

For Terra, the random error in AOT at 550 nm can be mod-
elled with

ε = 0.045− τ550e
−

τ550
0.045 + 0.24

(
τ2

550 − 0.0452
)

(
1 − e−

τ550
0.045

)
+ 0.0125fc

+

{
0 if w ≤ 8ms−1

0.003(w − 8) if w > 8ms−1 . (A31)
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For Aqua, the random error in AOT at 550 nm can be mod-
elled with

ε = 0.0425− 1.25τ550e
−

τ550
0.0325 +

(
0.25

(
τ2

550 − .03252
))

(
1 − e−

τ550
0.0325

)
+ 0.0125fc

+

{
0 if w ≤ 8ms−1

0.0035(w − 8) if w > 8ms−1,
(A32)

whereτ550 is thecorrectedMODIS AOT (see Sect.7), w the
NCEP-DOE-II 10 m wind speed andfc the cloud fraction.

A6 Random error in MODIS AE

For Terra, the random error in AE is reasonably well de-
scribed by

ε = 0.25 + 0.06α + exp
(
−3.75

√
τ550

)
. (A33)

For Aqua, the random error in AE is reasonably well de-
scribed by

ε = 0.25 + 0.08α + exp
(
−5

√
τ550

)
, (A34)

whereτ550 is thecorrectedMODIS AOT andα thecorrected
MODIS AE (see Sect.7).
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