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Abstract. We present a new retrieval of stratospheric
BrO (bromine monoxide) from channel 2 SCIAMACHY
(SCanning Imaging Absorption spectrometer for Atmo-
spheric CHartographY) limb observations. Retrievals are
shown to agree with independent balloon observations to
within one standard deviation of the retrieval noise. We re-
trieve BrO profiles for all of April 2008, and apply sim-
ulated [BrO]/[Bry] (bromine monoxide : stratospheric inor-
ganic bromine) ratios to estimate the stratospheric Bry load-
ing. We find 23.5±6 ppt Br, suggesting 7 ppt Br from
short-lived bromocarbons to be at the high end of the cur-
rent best estimate (3–8 ppt). The 6 ppt Br uncertainty es-
timate is dominated by the 21 % uncertainty in the simu-
lated [BrO] / [Bry] ratio due to propagation of errors from the
underlying chemical kinetics.

1 Introduction

Bromine radicals (BrOx ≡ Br+BrO) are important catalysts
for ozone destruction in the stratosphere (Montzka et al.,
2011). Through synergistic catalytic cycles with ClO and
HO2, bromine contributes roughly 30 to 50 % of the seasonal
ozone loss in the polar stratosphere (Anderson et al., 1989;
Frieler et al., 2006) and between 10–50 % of the ozone loss
in the midlatitude lower stratosphere (Garcia and Solomon,
1994; Wennberg et al., 1994; Salawitch et al., 2005). Strato-
spheric total inorganic bromine, Bry (Bry ≡ Br + BrO +

Br2 + BrCl+ HBr+ HOBr+ BrNO3), originates from pho-
tochemical destruction of brominated organic source gases
(Montzka et al., 2011) and possibly through the direct trans-
port of Bry from the troposphere (Laube et al., 2008). The ac-
curate characterization of the stratospheric Bry loading is im-
portant to understanding stratospheric ozone chemistry and
trends (Salawitch et al., 1993, 2005; Wennberg et al., 1994;
Gao et al., 1997), as well as to interpreting nadir BrO satellite
observations (Salawitch et al., 2010; Theys et al., 2011; Choi
et al., 2012).

However, quantifying the bromine budget remains diffi-
cult due to uncertainties in measurements of BrO (bromine
monoxide) and organic bromine source gases, as well as
an incomplete understanding of the transport to the strato-
sphere of bromine source gases (Salawitch et al., 2010;
Montzka et al., 2011). Limb geometry satellite observa-
tions of BrO serve as important constraints on Bry in the
middle and upper stratosphere, but yield a large range of
estimates, between 16.5–29 ppt for Bry (Sinnhuber et al.,
2005; Sioris et al., 2006; Kovalenko et al., 2007; McLin-
den et al., 2010; Montzka et al., 2011). Here, we retrieve
stratospheric profiles of BrO for April 2008 from near-UV
SCIAMACHY (SCanning Imaging Absorption spectrometer
for Atmospheric CHartographY) limb observations and es-
timate stratospheric Bry using a photochemical model to in-
fer Bry from BrO. April 2008 was chosen to make use of
detailed information on stratospheric meteorology and com-
position in the Northern Hemisphere available through the

Published by Copernicus Publications on behalf of the European Geosciences Union.



2550 J. P. Parrella et al.: New retrieval of BrO from SCIAMACHY limb

START08 (Stratosphere–Troposphere Analyses of Regional
Transport) and ARCTAS (Arctic Research of the Composi-
tion of the Troposphere from Aircraft and Satellites) field
campaigns, important for modeling the [BrO] / [Bry] ratios
(Salawitch et al., 2010).

The organic source gases for stratospheric Bry include
CH3Br (atmospheric methyl bromide) and halons (bromoflu-
orocarbons), which have photochemical lifetimes between 8
months and 65 yr (Wamsley et al., 1998), and the bromi-
nated organics commonly referred to as very short-lived sub-
stances (VSLS), which have photochemical lifetimes< 6
months (Montzka et al., 2011). CH3Br and halons contribute
∼16.5 ppt of Bry to the stratosphere (Montzka et al., 2011).
CH3Br has many natural and anthropogenic sources, the
largest of which are the ocean and fumigation, respectively.
Halons have anthropogenic origin, and are most widely used
as fire retardants (Montzka et al., 2011). The contribution
from VSLS to stratospheric Bry is less well-known. The
VSLS are of marine biogenic origin and most VSLS bromine
is in the form of CHBr3 and CH2Br2, with smaller contribu-
tions from other species, including CHBrCl2, CHBr2Cl, and
CH2BrCl (Carpenter and Liss, 2000; Hossaini et al., 2012).
Best estimates from observations and modeling suggest an
additional 2–8 ppt Bry is present in the stratosphere beyond
the contributions from CH3Br and halons (Montzka et al.,
2011; Brinckmann et al., 2012). VSLS are thought to close
this budget, possibly with contributions from the direct trans-
port of tropospheric Bry.

Here, we present a new retrieval algorithm for BrO profile
inversion from SCIAMACHY limb near-UV measurements.
We compare our results with several independent balloon ob-
servations and characterize our retrieval process. The algo-
rithm is then used to retrieve BrO from all available SCIA-
MACHY limb data in April 2008. Bry estimates are made
for each retrieved profile by applying [BrO] / [Bry] ratios
that are simulated with a stratospheric chemistry model for
SCIAMACHY overpass conditions.

2 SCIAMACHY

The SCanning Imaging Absorption spectrometer for Atmo-
spheric CHartographY (SCIAMACHY) is a passive remote
sensing spectrometer mounted on the starboard side of the
European Space Agency (ESA) Envisat satellite. It has 8
spectral channels with coverage from near ultraviolet (UV) to
near infrared (IR) (213–2386 nm). Observations are taken in
alternating viewing geometries, limb and nadir, as the satel-
lite travels in a low-earth polar orbit at∼800 km in alti-
tude, with a local overpass time of∼10:30 LT in the de-
scending node. We use level 1 data from channel 2, which
covers 300–412 nm, where BrO has well-defined vibrational
band structure in the A253/2← X253/2 electronic transition
(Wilmouth et al., 1999).
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Fig. 1. Illustration of SCIAMACHY operations and spatial resolu-
tion. Plot printed with permission of S. Noël, University of Bremen,
Germany; figure from Rozanov et al. (2011).

Figure 1 illustrates the typical operation and spatial resolu-
tion of SCIAMACHY, which covers 14.3 orbits per day and
achieves global coverage for both limb and nadir in 6 days
(Gottwald et al., 2011). Each orbit contains about 30 limb
scans, during which the instrument registers spectra scan-
ning sequentially from Earth’s surface up to∼100 km in al-
titude. Vertical stepping is performed at 3.3 km resolution,
with a 2.5 km vertical field of view (FOV). For each tangent
height (TH), the instrument records between 1 and 4 adja-
cent azimuthal scenes, depending on the planned signal in-
tegration time. This results in a horizontal pixel resolution
between 240 and 960 km. In this work, we average the spec-
tra along the azimuthal direction to improve the observation
signal-to-noise ratio (Sioris et al., 2006). Thus, the horizontal
resolution of each retrieved profile in our work is 960 km.

SCIAMACHY data must first be converted from detector
units into absolute radiances using a standard tool provided
by ESA (Gottwald et al., 2011). This tool calibrates the ob-
servations for instrumental effects such as the memory effect,
leakage current, pixel-to-pixel gain, etalon, and stray light.
Beyond the standard processing, several additional calibra-
tions must be performed to properly deconvolve overlapping
spectral features within the observed radiances. One cali-
bration step is shifting in wavelength registration, which is
mostly due to the Doppler effect but also to the instrument’s
sensitivity to temperature (Caspar and Chance, 1997). Sec-
ond, the instrument slit function must be accurately charac-
terized. In channel 2, the slit function can be accurately rep-
resented as Gaussian, typically with a full width at half the
maximum (FWHM) of∼0.2 nm (Sioris et al., 2006). The
sampling frequency in this channel is∼0.11 nm, and so the
signal is undersampled, requiring that aliasing be taken into
account. Sampling a Gaussian signal at twice the FWHM
amounts to 1.5 % error (Chance et al., 2005), significantly
larger than the typical 10−4 to 10−3 slant optical depths
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observed for BrO. We correct for this aliasing error by cal-
culating the difference between fully sampled and undersam-
pled versions of a high resolution Fraunhoffer spectrum, and
including these error spectra as basis functions during spec-
tral fitting of the earthshine radiances (Chance et al., 2005).
All calibrations used in this work are described in Sects. 3
and 3.1.

3 Methods

We use version 7.04 of SCIAMACHY level 1 limb data, and
apply all available calibrations, 0–7, as well as the M-factor
corrections that account for the wavelength-dependent pixel
degradation the instrument has undergone since 2002 (http://
www.iup.uni-bremen.de/sciamachy/mfactors/). Calibrations
6 and 7 deal with polarization and absolute radiance cor-
rections respectively, and have been excluded from previ-
ous SCIAMACHY BrO retrievals due to the potential for
introducing artificial polarization features (G. Brizzi and A.
Rozanov, personal communication, 2012). However, com-
paring the residuals obtained by fitting spectra treated with
all calibrations against the fitting residuals from spectra ex-
cluding calibrations 6 and 7, we find no statistical difference
in our results. This is likely due to the effectiveness of our
low tangent height common mode basis function and upper
tangent height basis functions, described in Sect. 3.1, at re-
moving instrumental artifacts from the residuals. We note
that these two basis functions were important for improv-
ing our fitting statistics regardless of the set of calibrations
treated. Chanel 2 is processed for BrO spectral information.
Channels 4 and 6 are processed for cloud flagging follow-
ing methods described by von Savigny et al. (2005). For all
spectral data used in this work, the azimuthal pixels for each
tangent height in a limb scan are averaged to improve signal-
to-noise.

The retrieval algorithm that we developed can be sepa-
rated into two main parts: (1) a spectral fitting step, where
slant column densities (SCD) of BrO are determined from
the level 1 SCIAMACHY data, and (2) an inversion step
where a radiative transfer model is used to fit profiles of
BrO number density to the slant columns by Gauss–Newton
optimal estimation (Rodgers, 2000). This two-step strategy
is similar to that used by Kühl et al. (2008), using SCIA-
MACHY, and McLinden et al. (2010), using OSIRIS, for
BrO limb observations.

All spectra with tangent heights (TH) between 6 km and
42 km are considered for use within each profile retrieval.
Cloudy pixels are first identified within this altitude range
by calculating the color index ratio described by von Sav-
igny et al. (2005). In this approach, radiances are first in-
tegrated in 10 nm bands centered aboutλ1= 1090 nm and
λ2= 750 nm, and the ratio of these two radiances,R(THi)=

I (λ1, THi)/I (λ2, THi), is calculated for each tangent height.

The color index ratio is then

2(THi)= R(THi)/R (THi+1), (1)

where THi+1 is the observation directly above THi in that
limb scan. Clouds are identified where2(THi) > 1.3 (von
Savigny et al., 2005). All tangent height spectra above the
highest registered cloudy scene in the 6–42 km retrieval
range are passed to the spectral fitting routine. The lowest
TH cloud-free spectrum is used for calculating a pseudo-
absorber that accounts for instrumental artifacts following
Sioris et al. (2006). We describe this in Sect. 3.1. The re-
maining cloud-free spectra are fit for BrO SCDs. Fitted slant
columns are excluded from the inversion step if the spectrum
is fit to a root mean square (RMS) of greater than 10−3, when
noise often exceeds the BrO signal.

Spectral fitting is performed for each tangent height sepa-
rately in a given limb scan using the ELSUNC nonlinear least
squares algorithm (Lindström and Wedin, 1988), the same
fitting used in the operational BrO and H2CO retrievals for
the NASA Ozone Monitoring Instrument (OMI). The least
squares routine uses a basic Gauss–Newton method to search
the solution space, but speeds convergence by implement-
ing a truncated QR-method when far from the minimum and
an undamped Newton method when the solution is highly
curved close to the minimum (Lindström and Wedin, 1988).
Each radiance spectrum is fit against an observed radiance
reference,I0, in a modified Beer’s law framework. The ra-
diance reference must represent local conditions and is typ-
ically taken as a high tangent height (> 30 km) spectrum in
that limb scan (Haley et al., 2004; Rozanov et al., 2005, 2011;
Sioris et al., 2006; McLinden et al., 2010).

We generate radiance references for each limb scan by
summing tangent height spectra between 42 and 70 km fol-
lowing Sioris et al. (2006). Before applyingI0 in Beer’s law
fitting, the width of the instrument slit function and shift-
ing in the wavelength registration must first be character-
ized. We find these parameters to be stable over the period of
one SCIAMACHY orbit. Thus, we select one radiance refer-
ence spectrum from the middle of each orbit and fit against
a high-resolution synthetic solar spectrum (Chance and Ku-
rucz, 2010) for the instrument slit width and shift parameters
(Caspar and Chance, 1997). These correction parameters are
then applied in all of the fitting procedures for each respec-
tive orbit.

3.1 Fitting BrO slant columns

After identifying cloud-free spectra and determining the in-
strument slit width and wavelength shift, we then fit each
tangent height spectrum in a limb scan independently against
its radiance reference. We find an optimal wavelength fitting
window of 338–356.2 nm for BrO from SCIAMACHY limb,
consistent with Rozanov et al. (2011). This yielded minimum
fitting residuals and cross-correlations between the overlap-
ping spectral absorbers and other basis functions. Residuals
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were comparable for the 344–360 nm fitting window used
by Sioris et al. (2006) for SCIAMACHY limb BrO obser-
vations; however, we found that slant column amounts of
BrO to be unstable through orbits when applying the latter
window. This may be due to instrumental artifacts in SCIA-
MACHY channel 2 observations (De Smedt et al., 2004).
More work is necessary to fully resolve this discrepancy.
Here, we apply the 338–356.2 nm fitting window in all re-
trievals.

Tangent height spectra are modeled for nonlinear least
squares fitting with the modified Beer’s law approximation
shown in Eq. (2). The fitting method follows Chance (1998)
with several modifications for SCIAMACHY limb described
by Sioris et al. (2006). The nonlinear least squares is per-
formed using ELSUNC (Sect. 3) and involves simulating the
radiance vector,I sym, and iteratively adjusting each param-
eter until the residuals are minimized, assuming Gaussian
statistics.I sym is written as

I sym=
[
A1× I0×exp(B)+A2

]
×P1+P2, (2)

A1= c+ cUS1σUS1+ cUS2σUS2+ cRingσRing, (3)

A2= clowσlow+ chighσhigh, (4)

B =−
(
cBrOσBrO+ cO3,T1σO3,T1+ cO3,T2σO3,T2+ cNO2σNO2

)
, (5)

P1= 1+ cP1,1λ0+ cP1,2λ
2
0+ cP1,3λ

3
0, (6)

P2= cP2,0+ cP2,1λ0+ cP2,2λ
2
0+ cP2,3λ

3
0, (7)

λ0= λ− λ̄. (8)

Here,A1 represents a group of additive correction terms that
include a 0th order albedo term (albedo), two phases of un-
dersampling basis functions (US1 and US2) to correct for
spectral aliasing (Chance et al., 2005), and the Ring effect
(ring) (Chance and Spurr, 1997), which is spectral structure
due to rotational Raman scattering predominantly by atmo-
spheric O2 and N2. Shifting error is accounted for by first
interpolatingI0 from the registered engineering grid to the
true, shift-corrected, wavelength grid. During the fitting of
tangent height spectra, the shift is allowed to optimize further
so as not to reduce the degrees of freedom in the fit; adjust-
ments are typically< 10 % of the original shift parameter.

A2 is a second group of additive pseudo-absorbers de-
scribed by Sioris et al. (2006), which deal with additional
instrumental artifacts, such as polarization features and dark
current, that have not been completely corrected for.σlow rep-
resents the low tangent height common mode correction, and
σhigh is a high tangent height pseudo-absorber (Sioris et al.,
2006). The low tangent height common mode is taken as
the residuals from fitting the lowest cloud-free tangent height
spectrum in the scan, with all other basis functions applied.
The high tangent height basis function is the ratio of the low-
est tangent spectrum included in the radiance reference, di-
vided by the sum of the rest. TheseA2 basis functions are not
significantly correlated with BrO, improving the fitting resid-
uals without affecting the fitted BrO slant column amounts
(Sioris et al., 2006). Of the two corrections, the low tangent

basis function has the largest impact, whileσhigh only im-
proves residuals for spectra at tangent heights> 25 km.

B represents the series of Beer’s law absorbers. We treat
two temperatures of ozone absorption, 203 and 243 K. The
ozone cross sections are generated from a quadratic temper-
ature parameterization by Liu et al. (2007) based on labora-
tory data (Daumont et al., 1992; Brion et al., 1993; Malicet
et al., 1995). The two temperatures of ozone are chosen to ac-
count for the temperature dependence of ozone absorption in
the Huggins bands. We use NO2 cross sections at 220 K from
Vandaele et al. (1998) and BrO cross sections at 228 K from
Wilmouth et al. (1999). All references are stored at high-
resolution on vacuum wavelength grids. For fitting, the cross
sections are first brought to observational resolution by con-
volution with the fitted Gaussian slit function for the respec-
tive orbit of data. These references are then sampled on the
shift-corrected wavelength grid of the observations (Chance,
1998). The chosen set of cross sections was found to min-
imize the fitting RMS in our work. Tests were conducted
including cross sections for the O2–O2 collision complex,
OClO, and additional temperatures of ozone. These did not
improve the fitting RMS, as concentrations of these species
were at noise level (fitted uncertainties were greater than the
column amounts) and occasionally caused strong correlation
with BrO SCDs.

P1 andP2 are 3rd order scaling and baseline polynomials
that we apply to account for the gradual spectral structures
from Rayleigh and Mie scattering in the observations. The
0th order term of the scaling polynomial is fixed to 1 due
to high correlation with theA1 albedo term. The polynomial
abscissas,λ0, are the shift-corrected observed wavelengths,
centered about the mean to reduce the dynamic range of the
polynomials.

3.2 Radiative transfer model description

After fitting the BrO SCDs and determining standard er-
rors, we use a forward model to translate these column
amounts into vertical profiles of BrO number density. We
use the VECTOR multiple scattering limb radiative trans-
fer model (RTM), as described by McLinden et al. (2006)
and Sioris et al. (2006). VECTOR is a 2-D pseudo-spherical
model that applies successive orders of scattering to solve the
Schwartzchild equation (McLinden et al., 2002). Variation
in the solar zenith angle (SZA) along the limb line-of-sight
is discretized into 21 segments for accuracy (Sioris et al.,
2006). Refraction of tangent rays is neglected, which leads
to < 0.5 % error (Sioris et al., 2006). The surface albedo is
assumed to be 0.3 for all modeling applications in our work;
however, our limb retrievals of BrO are insensitive to this
choice.

The model atmosphere used in VECTOR is taken from the
climatological lookup table generated with the University of
California, Irvine (UCI) photochemical box model (Prather,
1992; McLinden et al., 2000), as described by McLinden
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et al. (2006). NO2 and BrO are stored as functions of lati-
tude (2.5◦ resolution), Julian day (2 week resolution), alti-
tude (2 km resolution), and SZA (34 per day). Profiles are in-
terpolated onto the VECTOR vertical grid (1 km resolution)
for the appropriate SZA to match observational conditions.
The total loading of Bry to the stratosphere is assumed to be
22 ppt (∼5 ppt of Bry from VSLS). Temperature and ozone
for the box model and RTM are taken from zonal, monthly-
mean climatologies derived from sonde observations (Tarp-
ley, 1994; McPeters et al., 2007) and air density is found as-
suming hydrostatic equilibrium. Though VECTOR can treat
diurnal variation of BrO and NO2 along the line of sight
(McLinden et al., 2006; Sioris et al., 2006), we neglect this
to save computation time and restrict our retrievals to obser-
vations with SZA< 85◦, where the effect is less significant
(McLinden et al., 2010).

For our work, VECTOR simulations are purely Rayleigh-
scattering, with no polarization and no aerosol scattering
and absorption. O3, BrO, and NO2 cross-sections are pre-
convolved with the fitted instrument slit function to simulate
the observation spectral resolution. Cross section data are the
same as applied in the spectral fitting stage of our retrieval,
and ozone absorption is fully temperature dependent, based
on fitting against laboratory measurements (Liu et al., 2007).
Radiance calculations used for the Jacobian,K , and modeled
BrO slant columns,F (xi), are all simulated on 1 km tangent
height resolution between 3 and 76 km tangent heights, and
then are convolved in altitude with a Gaussian of 2.5 km full
width at half-maximum to approximate the instrument field-
of-view (FOV). These spectra are interpolated to the obser-
vation TH grid, and a simulated radiance reference,I0, is ob-
tained by summing the spectra between 42 and 70 km, con-
sistent with our observed radiance reference. The modeling
of K andF (xi) is discussed further in Sect. 3.3. The sensi-
tivity of our retrievals to model assumptions and parameter
error is discussed in Sect. 4.

3.3 Inversion

The inversion estimates BrO number density from fitted BrO
slant columns following optimal estimation (OE), which we
solve by Gauss–Newton iteration (Rodgers, 2000):

xi+1= xa+Gi[y−F (xi)+K ixi − xa], (9)

Gi = SaKT
i (K iSaKT

i +Sε)
−1, (10)

Si+1= Si −Gi(K iSa). (11)

xi is the state vector of BrO number density (molecules
cm−3) at iterationi, xa is the a priori profile of BrO taken
from the UCI stratospheric model,y is the vector of fitted
BrO slant columns (molecules cm−2), G is the gain matrix,
K is the Jacobian, andF (xi) is the vector of modeled BrO
slant columns givenxi as the BrO number density profile.
The gain matrix,G, represents the sensitivity of the inversion
to the observation. The measurement error covariance ma-
trix, Sε, is assumed to be diagonal, with diagonal elements

taken as the estimated variances for the corresponding fit-
ted BrO slant columns. Since the standard deviation of BrO
profiles in the stratosphere is not well-known, we use an ad
hoc regularization following McLinden et al. (2010), assum-
ing 100 % error and a correlation length of 4 km. This allows
freedom to deviate away from the a priori while suppressing
wide oscillations in the non-unique solution space.

Iteration over Eq. (9) minimizes the difference between
measured and modeled BrO slant columns and the retrieved
and a priori states, assuming Gaussian error statistics. The
cost function can be written as

χ2
=

∣∣∣∣∣∣∣∣S− 1
2

ε (K i(xi+1− xi)− (y−F (xi)))

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣S− 1
2

a (xi+1− xa)

∣∣∣∣∣∣∣∣2
2
, (12)

where ||r||2=
(
r2
1 + r2

2 + . . .+ r2
n

) 1
2 is the L2-norm of

a residual vectorr of length n. Convergence is met when
the change inχ2 is less than 1 %. If convergence is not met
within 8 iterations, the inversion is terminated.

Calculations ofK andF (xi) follow the methods of Haley
et al. (2004) and McLinden et al. (2010) with several mi-
nor differences. In this approach,K is a slant column Jaco-
bian and is approximated using radiative transfer calculations
at two wavelengths,λon= 349.01 nm andλoff = 346.74 nm,
that correspond to a peak and trough of BrO absorption in the
middle of our spectral fitting window. First, VECTOR is used
to calculate line-of-sight radiances, assuming single scatter-
ing. Then, we apply Beer’s law to approximate the BrO slant
column for thei tangent height:

SCDBrO
i =

ln
(

I0(λoff)
Ii (λoff)

)
− ln

(
I0(λon)
Ii (λon)

)
σBrO (λoff)− σBrO (λon)

, (13)

whereσBrO are the BrO cross sections (Haley et al., 2004;
McLinden et al., 2010).K is then the sensitivity of SCDBrO

i

to BrO number densities in the retrieved profile

K =
∂F (x)

∂x
. (14)

It is calculated by finite differencing:

K (i,j)≈
SCDBrO

i

(
x′

)
−SCDBrO

i (x)

x′
(
zj

)
− x

(
zj

) . (15)

x(zj ) is the number density of BrO at altitudezj , andx′(zj )

is that concentration perturbed by 5 %. For each limb scan re-
trieved, we calculateK for the a priori profile only and apply
it for all OE iterations to save computation time. Recalculat-
ing K at each iteration was found to change the a posteriori,
x̂, by < 1 %.

Since the two-wavelength approximation is inadequate for
calculatingF (xi) (Haley et al., 2004), we generate the mod-
eled BrO slant columns by fitting simulated radiance spec-
tra generated by VECTOR for each tangent height. Spec-
tra spanning 338–356.2 nm are simulated with 6 orders of
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Figure	   1.	   Illustration	   of	   SCIAMACHY	   operations	   and	   spatial	   resolution.	   Plot	   by	   S.	  2	  
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Fig. 2. Retrieved mixing ratios of BrO from SCIAMACHY limb observations (blue) and balloon DOAS observations (black) at Kiruna
(67.9◦ N, 22.1◦ E) and Aire sur l’Adour (43.7◦ N, 0.3◦W) (Dorf et al., 2006; Rozanov et al., 2011). Horizontal bars are standard deviations;
SCIAMACHY error bars do not include model and model parameter errors (see Sect. 5 for details on model and model parameter errors).
SCIAMACHY comparison profiles are selected following Rozanov et al. (2011). Degrees of freedom (DOF) for SCIAMACHY retrievals are
shown in each panel. Grey shading indicates the tangent height range of observed SCIAMACHY BrO slant columns used for corresponding
retrievals.

(b)

Fig. 3. (a)Fitting residuals for the six BrO slant columns shown in(b). Tangent heights (km) are shown in the key.(b) Retrieved BrO slant
columns (left), averaging kernels (middle), and vertical resolution of the retrieval (right) for a SCIAMACHY scan at 09:01 UT, 24 March 2003
(orbit 05558). Standard deviations of the BrO slant column fits are shown with horizontal bars. The columns of the averaging kernel are shown
at 3 km resolution; symbols denote the altitudes corresponding to elements of the state.
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Figure	  4.	  Error	  budget	  for	  UT	  09:01,	  March	  23,	  2003	  SCIAMACHY	  profile	  retrieval.	  2	  

Random	  model	  parameter	  errors	  (solid	  symbols)	  and	  systematic	  model	  error	  (open	  3	  

symbols)	  characterized	  for	  our	  retrieval	  are	  shown	  in	  black.	  The	  total	  random	  (filled	  4	  

star)	   and	   total	   systematic	   errors	   (open	   star),	   summed	   in	   quadrature,	   are	   both	  5	  

shown	  in	  blue.	  The	  total	  model	  and	  model	  parameter	  error	  is	  shown	  in	  green.	  The	  6	  

dashed	  yellow	   line	  represents	   the	  measurement	  error,	  and	   the	  solid	  yellow	   line	   is	  7	  

total	  error.	  8	  

	  9	  

	  10	  

	  11	  

Fig. 4. Error budget for 09:01 UT, 23 March 2003 SCIAMACHY
profile retrieval. Random model parameter errors (solid symbols)
and systematic model error (open symbols) characterized for our
retrieval are shown in black. The total random (filled star) and total
systematic errors (open star), summed in quadrature, are both shown
in blue. The total model and model parameter error is shown in
green. The dashed yellow line represents the measurement error,
and the solid yellow line is total error.

Rayleigh scattering at lower spectral resolution (0.5 nm) than
the SCIAMACHY observations (∼0.11 nm) to improve the
retrieval speed. After the spectra have been convolved to in-
strument vertical resolution and sampled on the observation
TH-grid (Sect. 3.2), they are then fitted against the same ba-
sis functions that were applied to the observations, but on
the simulated, low resolution, wavelength grid. We exclude
the instrumental corrections (US1, US2, low, high, andλshift)
and Ring effect in these fits, as they are not treated in the
RTM. For simplicity, we perform the fitting of modeled radi-
ances as ln(I0/I ) in a DOAS linear least squares framework
(Platt and Stutz, 2008), asλshift and other nonlinear terms
are unnecessary. Fitting the modeled radiances instead with
nonlinear least squares had no significant impact on retrieval
results.

4 Retrieval characterization and comparison to balloon
observations

Figure 2 compares our SCIAMACHY limb retrieval with
several independent balloon observations from Kiruna,
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Figure	  5.	  BrO	  cross	  sections	  from	  Wilmouth	  et	  al.	  (1998)	  (black)	  and	  Fleischmann	  et	  2	  

al.	  (2004)	  (orange).	  3	  

	  4	  

	  5	  

	  6	  

	  7	  

	  8	  

	  9	  

Fig. 5. BrO cross sections from Wilmouth et al. (1998) (black) and
Fleischmann et al. (2004) (orange).

Sweden (67.9◦ N, 22.1◦ E), and Aire sur l’Adour, France
(43.7◦N, 0.3◦W) (Dorf et al., 2006). SCIAMACHY limb
scans were chosen based on trajectory model calculations
performed by Dorf et al. (2006) to match air masses ob-
served by balloon with SCIAMACHY observations, forward
or backward in time. The balloon BrO observations have
been translated to the SCIAMACHY overpass times using
a photochemical box model (Dorf et al., 2006). The grey
shaded area shows the range of SCIAMACHY tangent points
included in each inversion (i.e., slant columns that passed
data quality filters). The shading only extends to the tan-
gent points of the upper and lower SCDs, with no adjust-
ment for the FOV or the 4 km correlation length assump-
tion in the a priori. As can be seen from this small set of
data, the number of SCDs included in each inversion varies
significantly between profiles. Observations between 6 km
and 42 km tangent points are all considered for each profile
inversion, so long as spectra are cloud-free and the fitting
RMS is< 10−3 (Sect. 3.2). Uncertainty for both balloon and
SCIAMACHY observations are shown as one standard devi-
ation. SCIAMACHY uncertainties do not include modeling
and model parameter errors, which are evaluated in Sect. 5.
The BrO profiles agree within the respective estimated one-
sigma uncertainties, providing confidence in the validity of
our retrieved profiles.

Figure 3a shows example spectral fitting residuals for the
24 March 2003, 09:01 UT retrieval shown in Fig. 2, and
Fig. 3b further characterizes the retrieval. The mean fitting
RMS is 6.3×10−4. From left to right in Fig. 3b, we show
the fitted BrO slant columns with standard errors, averaging
kernels (at 3 km resolution), and the vertical resolution of the
inversion. The averaging kernel,A, provides information on
the sensitivity of the a posteriori,̂x, to the true atmospheric

www.atmos-meas-tech.net/6/2549/2013/ Atmos. Meas. Tech., 6, 2549–2561, 2013



2556 J. P. Parrella et al.: New retrieval of BrO from SCIAMACHY limb

	   34	  

	  1	  

Figure	  6.	  3-‐day	  zonal	  mean	  BrO	  (ppt)	  throughout	  April	  2008.	  Retrieved	  profiles	  with	  2	  
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χ 2 >1.4 	  were	  removed.	  	  3	  

	  4	  

	  5	  

	  6	  

	  7	  

Fig. 6. 3-day zonal mean BrO (ppt) throughout April 2008. Re-
trieved profiles withχ2 > 1.4 were removed.

BrO number density profile (Rodgers, 2000):

A =
∂x̂

∂x
= ĜK , (16)

whereĜ is the final iteration of the gain matrix. We calculate
the vertical resolution of the retrieval as the FWHM of the
averaging kernel profile for each altitude of the state vector
to avoid biasing from negative lobes (Rodgers, 2000). The
retrieval resolution is between 4 and 6 km across the mea-
surement range, in good agreement with theoretical expecta-
tions for SCIAMACHY (Kaiser, 2001) and other operational
retrieval algorithms (Rozanov et al., 2011).

5 Model error and model parameter error

Figure 4 shows the sensitivity of retrieved BrO number den-
sity to random error from model parameter selection and
systematic error from model assumptions for the 24 March
2003, 09:01 UT retrieval as an example. The SZA and so-
lar azimuth angle (SAA) for this scene are 57.6◦ and 39.7◦

at 20 km in altitude. To estimate total model error, we fol-
low an approach similar to that outlined in previous work
(Dudhia et al., 2002; Haley et al., 2004; McLinden et al.,
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Figure	  7.	  Histogram	  of	  tangent	  heights	  for	  the	  observations	  that	  passed	  our	  spectral	  2	  

fitting	   quality	   checks,	   and	  were	   included	   in	   our	   April	   2008	   BrO	   inversions.	  More	  3	  

observations	  do	  not	   pass	   quality	   checks	   above	  25	   km	   in	  TH	  due	   to	   the	  decline	   in	  4	  

light	  intensity,	  and	  thus	  signal-‐to-‐noise,	  at	  these	  higher	  altitudes.	  Above	  30	  km,	  the	  5	  

low-‐light	  conditions	  make	  for	  a	  smaller	  population	  of	  useful	  observations.	  6	  
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Fig. 7. Histogram of tangent heights for the observations that
passed our spectral fitting quality checks and were included in our
April 2008 BrO inversions. More observations do not pass qual-
ity checks above 25 km in TH due to the decline in light intensity,
and thus signal-to-noise, at these higher altitudes. Above 30 km, the
low-light conditions make for a smaller population of useful obser-
vations.

2010), where the individual sources of error are treated as
independent with an assumed Gaussian uncertainty. Random
and systematic errors are shown with open and closed sym-
bols, respectively.

SCIAMACHY engineering tangent heights, provided with
Level 1 data, register with±220 m uncertainty (von Savigny
et al., 2005). Subtracting 220 m from the tangent heights re-
sults in < 5 % error in retrieved BrO. Sensitivity to ozone
and NO2 number density is similarly small. Both profiles
were perturbed by 40 % independently, which is within the
observed range of standard deviations found in ozonesonde
data (Eriksson and Chen, 2002) and limb satellite observa-
tions of NO2 (Brohede et al., 2007). The low sensitivity re-
flects lack of correlation between the modeled BrO slant col-
umn fits,F (xi), and simultaneously fitted ozone and NO2.
The sensitivity increases significantly when decreasing the
modeled spectral resolution forF (xi) from 0.5 nm to 1 nm,
consistent with McLinden et al. (2010). Sensitivities to the
surface albedo (0.3), full polarization, and additional orders
of scattering in bothF (xi) and K were found to have in-
significant impact, and are not shown in the figure. Uncer-
tainty in air density climatologies is roughly 4 % for these
altitudes (Sofieva et al., 2006), and contributes to retrieval
error below 23 km due to enhanced multiple scattering and
a greater Rayleigh optical thickness.

Systematic model errors contribute significantly to the to-
tal retrieval error. Below 23 km, these errors are dominated
by the assumption that aerosols are not present, affecting
the retrieved BrO number densities by 10–20 %. With in-
creasing altitude, the error incurred by 10 % uncertainty in
BrO cross section data (see below) becomes the dominant
model uncertainty. The aerosol sensitivity is estimated by
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Figure	  8.	  Zonal	  mean	  Bry	  retrieved	   from	  SCIAMACHY	  for	  April	  2008,	  with	  

€ 

χ 2 >1.4 	  2	  

retrievals	   removed	   (left).	   To	   the	   right,	   a	   histogram	  of	   all	   retrieved	  Bry	   from	  April	  3	  

2008,	  for	  state	  vector	  elements	  between	  25	  –	  36	  km	  in	  altitude,	  with	  DOF>0.1	  and	  4	  

€ 

χ 2 <1.4 .	  5	  

	  6	  

Fig. 8. Zonal mean Bry retrieved from SCIAMACHY for April 2008, withχ2 > 1.4 retrievals removed (left). Right panel represents a his-
togram of all retrieved Bry from April 2008, for state vector elements between 25–36 km in altitude, with DOF> 0.1 andχ2 < 1.4.

including aerosol scattering and absorption in all RTM cal-
culations for bothF (xi) andK , and assuming a background
aerosol climatology for the stratosphere from McCormick
et al. (1996). BrO cross section error was evaluated by ap-
plying Fleischmann et al. (2004) cross sections at 228 K in-
stead of Wilmouth et al. (1999) at 223 K for all stages of
the inversion algorithm. Both are shown in Fig. 5. Extending
the spectral resolution forF (xi) modeling from 0.5 nm to the
instrument sampling resolution (∼0.11 nm) has insignificant
impact on retrieved BrO.

The model and model parameter errors summed in quadra-
ture yield our estimate of total model error for retrieved BrO
within the observation altitude range (grey shading in Fig. 4)
as between 10 % and 25 %. These are comparable in magni-
tude to the retrieval noise derived from the OE step. The total
error of the retrieval thus spans 20–50 %, contingent on the
quality of observations included in the inversion.

6 SCIAMACHY limb BrO observations for April 2008
and implied Bry

We applied our retrieval algorithm to all available SCIA-
MACHY data for April 2008. Figure 6 shows 3-day zonal
means of retrieved BrO mixing ratio from morning observa-
tions (i.e., the descending node) only. Profile inversions with
χ2 > 1.4 are excluded; these account for 0.1 % of the total
number of limb scans retrieved, and have no impact on the
bulk statistics of our results. Cloud filtering and removal of
slant columns with RMS> 10−3 generates the variability in
the number of tangent heights included in each profile inver-
sion. Figure 7 shows a histogram of the observation tangent
heights used in the retrievals. Most measurement information
comes from 15–30 km, with only 9 % of the profile inversions
containing information above 30 km. This is due to the lower
intensity of light available at tangent heights above 30 km,
leaving less signal in these observations.

Our retrievals (Fig. 6) show increasing BrO mixing ra-
tios with altitude. This mostly reflects the long photochem-
ical lifetimes of the halon and CH3Br source gases (Wams-

ley et al., 1998). Our retrieved BrO mixing ratios demon-
strate greatest variability close to 30 km in altitude, resulting
from poorer signal to noise at the higher tangent points in
SCIAMACHY limb scans (e.g., Rozanov et al., 2011).

We estimate stratospheric Bry by applying vertical profiles
of the simulated [BrO] / [Bry] ratio to our retrieved BrO pro-
files. The [BrO] / [Bry] ratios are simulated as described in
Salawitch et al. (2010). In this approach, assimilated CFC–
12 fields are used to determine a baseline stratospheric Bry
loading, sourced from halons, CH3Br, and CH2Br2 (Wams-
ley et al., 1998). The contribution of Bry from VSLS source
gases (excluding CH2Br2) was assumed to be an additional
10 ppt (Salawitch et al., 2010), yielding a total mean of 29
ppt stratospheric Bry. With Bry specified, the Whole Atmo-
sphere Community Climate Model (WACCM) is then used
to determine the [BrO] / [Bry] profiles, which are output to
specific times and locations corresponding to our April 2008
SCIAMACHY limb scans. This simulation is driven with
START08 (Stratosphere-Troposphere Analysis of Regional
Transport 2008) meteorology, which is specific to spring
2008 in the Northern Hemisphere. The modeled [BrO] / [Bry]
ratio is nearly independent of Bry; it depends on the valid-
ity of modeled [O3], [NO2], and chemical kinetic parame-
ters (Salawitch et al., 2010). Uncertainty in simulated BrO
due to chemical kinetics is 30 % globally (Salawitch et al.,
2010) and is 21 % for altitudes between 25–36 km, which
applies to the Bry estimate we present here. This is similar
to the 18 % uncertainty estimate for [BrO] / [Bry] from Hen-
drick et al. (2008) and is larger than the∼11 % estimate from
McLinden et al. (2010).

The left-most panel of Fig. 8 shows a zonal monthly mean
and histogram of our April 2008 Bry estimates, derived by
applying modeled [BrO] / [Bry] to the BrO profile retrievals.
The model estimates of the [BrO] / [Bry] ratio were only
available for the Northern Hemisphere. The zonal mean ex-
cludes retrievals withχ2 > 1.4 (0.1 % of the retrieved scans).
The right-most panel of Fig. 8 shows a histogram of retrieved
Bry concentrations where the degrees of rreedom (DOF) of
the retrieval are greater than 0.1 the retrieval> χ2 < 1.4, and
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the altitude is between 25 and 36 km, where most Bry source
gases have released their bromine. The DOF threshold was
applied to reduce a priori biasing; increasing the threshold
yielded no significant difference in our results. The variance-
weighted mean Bry between 25 and 36 km is 23.5 ppt, with
a standard deviation in the histogram of 10 ppt (43 %). This
is representative of our total retrieval error, assuming the er-
rors add in quadrature: 30 % mean retrieval noise, 12 % error
from forward model error and parameter error (Fig. 4), and
21 % error in the modeled [BrO] / [Bry] ratios yield a total of
39 % uncertainty.

The retrieval noise becomes negligible (0.15 %) after tak-
ing the variance-weighted mean of all Bry estimates in the
Fig. 8 histogram. The error for our Bry estimate is then dom-
inated by the forward model errors (Fig. 4) and [BrO] / [Bry]
modeling errors. These sources of error sum to 24 % in
quadrature. Thus, we estimate 23.5±6 ppt Br in the strato-
sphere for April 2008, implying a contribution of 7±6 ppt
to stratospheric Bry from brominated VSLS, and possibly
from direct transport of tropospheric Bry to the stratosphere.
Montzka et al. (2011) recently reviewed the available ob-
servational estimates of the stratospheric Bry loading, and
concluded the central value of contribution from VSLS was
6 ppt, with a range of 3–8 ppt. Our estimate of 7±6 ppt is
at the high end of this range. The 6 ppt uncertainty is domi-
nated by the chemical kinetics underlying [BrO] / [Bry] cal-
culations.

7 Conclusions

We present a new algorithm for retrieval of BrO from SCIA-
MACHY limb radiances, which we characterize and com-
pare to independent balloon observations. Our objective was
to use the SCIAMACHY BrO with simulated [BrO] / [Bry]
to estimate the stratospheric Bry loading.

We find reasonable agreement between our SCIAMACHY
BrO retrievals and a small set of independent balloon DOAS
measurements (Dorf et al., 2006). Our April 2008 retrievals
show increasing BrO mixing ratio with altitude, consistent
with expectations from stratospheric dynamics and photo-
chemistry. Retrieval noise is minimum (∼15 %) between 15
and 25 km, where the signal to noise ratio in spectral observa-
tions and the optical sensitivity to the tangent point are both
strong. Below this range, the retrieval noise increases due
to reduced sensitivity to the greater Rayleigh optical depths.
Above, the signal to noise degrades with limb dimming. For-
ward model and model parameter error is dominated below
23 km by neglecting stratospheric aerosols in the RTM cal-
culations (∼20 %). Above 23 km, it is dominated by 10 %
uncertainty in the BrO cross sections, with smaller contribu-
tions from tangent height pointing uncertainty.

Applying simulated [BrO] / [Bry] ratios to the re-
trieved BrO profiles yields a stratospheric Bry loading of
23.5±6 ppt Br for April 2008. The estimated contribution

to stratospheric bromine from CH3Br and halons is 16.5 ppt
for April 2008 (Montzka et al., 2011). Hence, our observa-
tions suggest that 7±6 ppt of stratospheric Bry is supplied
by VSLS bromocarbons (or their decomposition products),
which is on the high end of the 3 to 8 ppt value suggested by
Montzka et al. (2011). The±6 ppt error estimate is mostly
due to uncertainty in the chemical kinetics used to model the
[BrO] / [Bry] ratio.
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