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Abstract. Many modern instruments generate more data than
may be fully processed in a timely manner. For some atmo-
spheric sounders, much of the raw data cannot be processed
into meaningful observations due to suboptimal viewing con-
ditions, such as the presence of clouds. Conventional solu-
tions are quick, empirical-threshold filters hand-created by
domain experts to weed out unlikely or unreasonable obser-
vations, coupled with randomized down sampling when the
data volume is still too high. In this paper, we describe a
method for the construction of a subsampling and ordering
solution that maximizes the likelihood that a requested data
subset will be usefully processed. The method can be used
for any metadata-rich source and implicitly discerns informa-
tive vs. non-informative data features while still permitting
user feedback into the final features selected for filter imple-
mentation. We demonstrate the method by creating a selector
for the spectra of the Japanese GOSAT satellite designed to
measure column averaged mixing ratios of greenhouse gases
including carbon dioxide (CO2). This is done within the At-
mospheric CO2 Measurements from Space (ACOS) NASA
project with the intention of eventual use during the early
Orbiting Carbon Observatory-2 (OCO-2) mission. OCO-2
will have a 1.5 orders of magnitude larger data volume than
ACOS, requiring intelligent pre-filtration.

1 Introduction

Atmospheric composition measurement, like so many mod-
ern disciplines, is undergoing a radical transformation due to
new sensors. Ultra-high data rate, computerized instruments
operate at hyper-spectral resolutions from space-borne plat-
forms that operate over land and sea, day and night. Each

data point was once a precious commodity carefully con-
sidered by multiple researchers; now an individual is swiftly
presented with millions of observations and their associated
metadata. A key challenge to handling the increased data vol-
ume is the estimation of data quality, to prevent the waste
of precious human attention. Many remotely sensed atmo-
spheric data suffer from unavoidable confounding aspects
such as cloud cover or aerosols yielding distorted or unus-
able results given current retrieval algorithms. Certain ob-
serving conditions may a priori pose known problems for the
processing algorithm, e.g. bright icy surfaces, dark oceans,
or the complex surfaces of mountains (O’Dell et al., 2012).
The instrumentation also contributes to difficulty in main-
taining data quality, with drifting calibration, reset events,
detector saturation or low-level preprocessor version changes
making evaluation difficult. Poorly modeled physical pro-
cesses also act as confounding forces in the observations
where they dominate over the intended measurement the-
ory during retrieval processing. When the data set is small,
manual filtering of the data based on expert knowledge and
past experience is a time-tested method for evaluation. But
when millions of observations are faced, we must resort to
an automated rules-based filtration without the advantage of
personal interaction with each sounding.

The traditional method for determining such a filter pro-
ceeds by graphing a fully processed subset of the data ver-
sus various data metrics or features from the input metadata
guided by expert experience. For instance, a spectral mea-
surement may be categorized by metrics such as its over-
all intensity, the signal-to-noise ratio observed in a well-
understood region, and known saturation indicators, as well
as associated metadata such as the time, geometry, and vari-
ous system parameters at the moment of measurement. The
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scientist then looks for thresholds in these candidate filtra-
tion features, beyond which the values change from reason-
able to unreasonable based on prior knowledge, and visual
features in the graph of feature versus desired output. A key
question is how one knows the reasonable from the unrea-
sonable, with the answer that only in rather egregious cases
is the answer clear.

The resultant filter, often constructed from the amalgam
of many “reasonability” thresholds, produces a cleansed data
set that has flagged as questionable much of the obviously
flawed data outliers. Some iteration is then performed by
manually modifying the individual “reasonability” thresh-
olds to alter the percentage of data passage to match the
immediate needs of the project. This yields a final “fixed”
filter with a given throughput and performance. The lack of
ability to tune the filter in real time to increase or decrease
throughput is one major shortcoming of such filters, as is the
complexity of decoding why a particular data point has been
excluded given several interacting potential filtration rules.

Generally, few scientific data sets are dominated by data
that is entirely corrupt or acceptable. Instead, shades of ac-
ceptability for any particular data result from varying de-
grees of influence from confounding forces. Instead of con-
structing a binary good/bad filter, we observe the opportu-
nity for a well-constructed data-screening algorithm: the or-
dering of the data by the statistical likelihood of each obser-
vation’s scientific utility. Such an ordering could reproduce
the above fixed filter performance by fixing the percentage
of acceptance; beyond this, it permits the variation of the
data passage rate in real time in a principled manner. In or-
der to construct an estimate of a given observation’s reliabil-
ity, we turn to machine learning to emulate the same manual
filter-construction process researchers traditionally perform
on smaller data sets. By automatically constructing an en-
semble of traditional, fixed filters, we may construct an esti-
mate of the reliability of each data point based on the number
of fixed filters that would reject it. It is important to recall we
are describing a process that provides a robust, tunable filter,
not merely a single static filter suggestion.

The satellite mission driving our development of new data
filtering techniques is the Orbiting Carbon Observatory-2
(OCO-2) set to launch in 2014 with the intention of mak-
ing atmospheric carbon dioxide (CO2) measurements (Crisp
et al., 2004; Connor et al., 2008; Boesch et al., 2011; O’Brien
et al., 2011). OCO-2 will generate 24 soundings per sec-
ond with each sounding comprised of∼ 3000 spectral radi-
ance measurements, placing it soundly in the large data limit.
The sophisticated physics-based retrieval algorithm (O’Dell
et al., 2012) requires approximately 10 CPU minutes (3 GHz
Intel Xeon) to render each spectrum into a single retrieved
Level 2 column CO2 value. This data volume will outpace
real-time processing for anything less than∼ 14 000 CPU
cores, ignoring scaling inefficiencies that would increase the
challenge. Even taking into account progress made to reduce
the runtime of the OCO-2 Level 2 code as well as advances in

hardware capability in advance of the expected 2014 launch
date, selecting the “right” data to process will be critical. To
satisfy the mission requirement that at least 6 % of the sound-
ings be processed in real time, it is likely that we must intel-
ligently pre-select the soundings we attempt to process. This
pre-selection of data with the highest scientific interest and
minimal confounding influence is the definition of the sound-
ing selection problem. We further wish to ensure we provide
sampling criteria that maximize the utility of the OCO-2 data
for estimation of carbon fluxes – the raison d’etre for the
observatory. For instance, it is crucial that we sample CO2
at many atmospheric temperatures, pressures, seasons, and
across many different Earth surface types, even if the cur-
rent retrieval algorithm struggles in a region defined by such
features.

2 Data: GOSAT/ACOS example, pre-processing,
features used

In order to develop and test a method of sounding selector
creation for the future OCO-2 mission, we use measurements
of carbon dioxide taken by the Greenhouse gases Observ-
ing SATelite (GOSAT) provided by a joint effort between the
Japanese Exploration Agency (JAXA), the Japanese National
Institute for Environmental Studies (NIES) and the Japanese
Ministry of the Environment (MOE). GOSAT measures in
the same spectral regions as OCO-2 and provides a test
bed for the OCO-2 retrieval algorithm (Yokota et al., 2004).
The Atmospheric CO2 Observations from Space (ACOS)
project creates a global carbon dioxide data product from the
GOSAT observations. Processing the GOSAT soundings in-
formed OCO-2 software development while the instrument
was being built and integrated onto the spacecraft. We utilize
ACOS/GOSAT soundings taken between 6 April 2009 and
30 September 2010, resulting in a set of 4.8 million sound-
ings. We take only data recorded in the GOSAT “high gain”
mode (Wunch et al., 2011; Crisp et al., 2012), as it is the
dominant data type in number (86 %) and global coverage.

While the OCO-2 Level 2 retrieval software is used on the
GOSAT data to generate the ACOS data set, the GOSAT L1
metadata is utilized directly, consisting of geospatial infor-
mation and estimates of signal-to-noise provided by JAXA.
The L1 radiance spectra are not directly used for developing
a sounding selection scheme, but are used in retrieval pre-
processing routines that then feed into the sounding selector.
The L1 data are used in a cloud detection scheme (Taylor et
al., 2012) and a combination cloud filter and CO2 quick-look
based on a fast non-scattering retrieval algorithm (Franken-
berg et al., 2005). No data rejected by the cloud detection
scheme (Taylor et al., 2012) is retained, forming a pre-screen
to remove the most offending cloud opacities. These two
rapid preprocessing algorithms generate a variety of useful
estimates and diagnostics such as albedo, surface pressure,
temperature, the ratio of CO2 estimates as determined by
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Figure 1. The land and sea data used in the southern hemisphere approximation. This region is 2 

observed to have very low seasonal CO2 fluctuation relative to the north. 3 
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Fig. 1. The land and sea data used in the Southern Hemisphere ap-
proximation. This region is observed to have very low seasonal CO2
fluctuation relative to the north.

independent regions of the radiance spectrum. Finally, some
statistical measurements of the radiance spectra are also cal-
culated such as standard deviation, max, min, and mean. To-
gether, these form the metadata and metric inputs (features)
that we will use to divine a sounding’s likelihood of being
successfully retrieved. Table 1 shows the quantity, type and
origin of the features used.

To guide our filter optimization, we seek to minimize the
scatter in the final retrieved CO2 value produced by the
full physics retrieval algorithm (here version B2.10), after
the official cloud filtration algorithm has been applied (see
Sect. 3.2.2). We focus on the low variation of atmospheric
CO2 in the Southern Hemisphere (20◦ to 60◦ S, see Fig. 1).
Applying these criteria results in 40 000 retrievals over land
and 24 000 over ocean for training purposes.

3 Method: hyper-dimensional filter, goal function, and
genetic algorithm

In this section we provide an overview of the methods to be
used in the general case. We start by defining a large set of
filters similar to those produced by experts. Each of these
filters may use information from sounding metadata (a pri-
ori surface pressure and temperature, etc.) or direct spectral
measurements (e.g. SNR, band ratios, etc.). We then utilize
a genetic algorithm to optimize the thresholds of these fil-
ters, seeking to minimize the scatter in the retrieved CO2 in
the Southern Hemisphere while maximizing the amount of
data passed and minimizing the number of rules required in
each filter. We produce 20 “warn levels” from 19 represen-
tative filters that summarize each sounding’s acceptability to
the larger set of filters, where a high warn level predicts most
filters would reject a given sounding. The warn levels, in ad-
dition to spatial coverage requirements, form the basis of the
sounding selector itself. The specific implementation of these
methods is provided in Sect. 4 for the GOSAT B2.10 data set.
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Figure 2. Two-dimensional feature example. Yellow lines represent the max and min 2 

thresholds for each of the two sub-filters, with only data satisfying the union (green) accepted 3 

by the filter and all other data (red) rejected.  4 
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Fig. 2. Two-dimensional feature example. Yellow lines represent
the max and min thresholds for each of the two subfilters, with only
data satisfying the union (green) accepted by the filter and all other
data (red) rejected.

3.1 Hyper-dimensional filter

Following the “human expert” model of filter construction,
we define afixed filteras the union of a large number of sim-
ple threshold cutoffs (subfilters) each defined by a maximum
and minimumthresholdvalue beyond which data will be re-
jected (Fig. 2). One such subfilter is required for each in-
put feature. Optimizing the high and low threshold for each
subfilter defines the fixed filter creation problem, and the en-
tire list of thresholds (number of input features×2) uniquely
defines a fixed filter and is a high dimensional parameter
space. A human expert generally creates one or two fixed
filters, with the goal of segregating high, medium, and poor
data quality or simply pass and fail. The full sounding selec-
tor will be based on an ensemble of 19 fixed filters, each
with their own optimized subfilters. A guiding diagram is
provided in Fig. 3.

3.2 Genetic algorithm

Genetic algorithms (GA) are methods that mimic natural se-
lection to explore high dimensional parameter spaces (Peri-
aux and Galan, 1995). They do not guarantee a globally op-
timal solution, but given the imprecise definition of perfec-
tion in many real-world optimization problems, such local
minima often suffice or can be easily escaped with random
restarts and well-chosen mutation. GA’s are also quite simple
to create and use, and they lend themselves trivially to highly
parallel processing such as multicore and clustered computer
systems. We will use a GA to optimize the high dimensional
parameter space of the subfilter thresholds that make up each
of our fixed filters. A guiding diagram is provided in Fig. 4.

www.atmos-meas-tech.net/6/2851/2013/ Atmos. Meas. Tech., 6, 2851–2864, 2013



2854 L. Mandrake et al.: Semi-autonomous sounding selection for OCO-2

Table 1.Features considered as input to the GOSAT sounding selector construction.

Quantity Type Example Source

8 Physical Tsurf, Psurf Cloud Filter Pre-process
5 Signal Characteristics SNR Cloud Filter Pre-process
5 Physical CO2 density IMAP-DOAS Pre-process

12 Spectral Stats Stdev(radiance) Spectral math on radiance spectra
30 Signal Characteristics SNR JAXA
43 Geometry Azim, Alt, fractionland JAXA

103 Total
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Figure 3. A guiding diagram for the discussion of filters and the final sounding selector. Note 2 

that the double “Low, High” thresholds in the upper right table show that each of the Warn 3 

Levels is crafted from the combination of more than one Fixed Filter (in this example, two). 4 

Thus, two low and two high thresholds will be required given two input features. The 5 

colorscale in the Desired Spatial Coverage to the lower left indicates the user-specified 6 

sounding density in each bin. 7 
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Fig. 3. A guiding diagram for the discussion of filters and the final
sounding selector. Note that the double “Low, High” thresholds in
the upper right table show that each of the Warn Levels is crafted
from the combination of more than one Fixed Filter (in this exam-
ple, two). Thus, two low and two high thresholds will be required
given two input features. The color scale in the Desired Spatial Cov-
erage to the lower left indicates the user-specified sounding density
in each bin.

3.2.1 Gene

The first step of defining a GA is formulating the parame-
ters (gene) that encapsulate the problem to be solved. In our
case, we use the full list of subfilter high and low thresh-
olds defined in Sect. 3.1 along with a Boolean list of whether
each subfilter is actively being used. This list will permit us
to track and control how many subfilters are actually used
in each fixed filter, with the total number of active subfilters
called a fixed filter’scomplexity. Initially, we start with a fil-
ter that permits all data and uses no active subfilters, thus
complexity= 0. A gene that only had two subfilters switched
on would be complexity 2, and all subfilters active would
result in a complexity equal to the total number of features.
Fixed filters constructed by humans are often highly complex
by this definition, as they can have dozens of active subfilters.
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Figure 4. The genetic algorithm (GA) cycle. A parent is selected from the dominant gene 2 

pool, mutated into thousands of offspring, and any new dominant solutions are added back 3 
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Fig. 4.The genetic algorithm (GA) cycle. A parent is selected from
the dominant gene pool, mutated into thousands of offspring, and
any new dominant solutions are added back into the pool while the
others are discarded. This cycle can be run massively in parallel,
with each process contributing to the same ever-improving gene
pool.

3.2.2 Fitness & goal function

Next we define the fitness by which each proposed genetic
solution is judged. This, coupled with the definition of the
gene in Sect. 3.2.1, fully defines the problem. Optimally, we
would attempt to minimize the RMS difference between our
retrieved L2 CO2 values and the true CO2 value over the en-
tire globe across many years. Global CO2 observations from
satellites exist but are not ideal for comparison to ACOS data
and high quality surface data are spatially sparse (Wunch et
al., 2011; Reuter et al., 2011). Instead, we utilize the South-
ern Hemisphere approximation: the annual CO2 variation of
the Southern Hemisphere appears to be relatively small and
reasonably approximated by a secular trend (linear yearly
increase) with a very small sinusoidal seasonal component
(Wunch et al., 2011). Most of the scatter seen in the South-
ern Hemisphere ACOS data is most likely caused by con-
founding forces negatively affecting the retrieval algorithm
rather than actual CO2 fluctuation (Wunch et al., 2011). This
has been shown to strongly support TCCON comparison on
a global scale, and indeed our own experiments have shown
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Figure 5. A heat map of the retrieved values of CO2 for the entire southern hemisphere over 2 

land is shown. The blue bars identify the monthly bins within which the standard deviation 3 
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Fig. 5. A heat map of the retrieved values of CO2 for the entire
Southern Hemisphere over land is shown. The blue bars identify
the monthly bins within which the standard deviation will be taken.
The MMS is the mean of each of the standard deviations of these
18 bins.

that creating a filter using TCCON comparison or Southern
Hemisphere approximation yields extremely similar results.

We create a metric called mean monthly standard devia-
tion (MMS):

MMS =

∑
monthly_bins

Stdev(CO2)

num_monthly_bins
, (1)

where only monthly bins with more than ten soundings are
admitted into the above average (see Fig. 5 for a graphical
example). Measured in parts per million (PPM), the same
unit as CO2, it represents an overall scatter for the entire set
of xCO2 measurement from ACOS in the Southern Hemi-
sphere. The monthly grouping is to avoid any minor seasonal
oscillations present in the data as well as the increase in CO2.
Reducing the MMS through data filtration will be considered
our primary goal.

The trivial solution to reduce MMS would be to filter all
but a few very consistent soundings in a single monthly bin.
In order to make this trade-off explicit, we will label fixed fil-
ter solutions with the percentage of data passed through the
filter (transparency). Measured to tenths of a percent, this be-
comes a discrete quantity fundamental to the construction of
our ensemble. Another goal will be to reduce the number of
active subfilters necessary to achieve a solution or thecom-
plexity(also a discrete quantity). This allows for the preven-
tion of overly complex fixed filters requiring dozens of subfil-
ters when a very small number might perform almost as well.
GA’s handle multiple goals like these gracefully through the
concept of dominance, as discussed in the next section.

3.2.3 Dominance

When evaluating a new, proposed fixed filter’s fitness, we
compute its MMS, transparency, and complexity. Trans-
parency is resolved to 0.1 % resolution, resulting in 1000 bins
for the full range of 0 to 100 %. We then compare its MMS to
a small population of past most-fit solutions called the Gene
Pool. Within the Gene Pool past solutions are grouped by
the discrete labels of transparency and complexity, ranked by
resulting MMS. Only if the new proposed fixed filter has a
lower MMS for a given complexity and transparency does it
dominate (replace) the prior solution and continue into the
next generation. In this way, we are running thousands of si-
multaneous races, 1000 transparency bins multiplied by the
maximum complexity we will tolerate, that being 10 in the
GOSAT example.

The net result of this process is not to find a single best
fixed filter as a human expert might seek, but to form a pop-
ulation of dominant solutions that cannot be further reduced
without specifying preferences between the three fitness met-
rics of transparency, complexity, and MMS. This population
is known as the Pareto optimal front in machine learning cir-
cles (Jin and Sendhoff, 2008). Instead of seeking to arbitrar-
ily judge between these three conflicting goals, we will pre-
serve the trade-off space of equally fit fixed filters to help
satisfy other requirements of our overall filter solution such
as spatial coverage and tunability.

3.2.4 Reproduction

Reproduction in the GA describes the creation of new candi-
date filters, as shown in Fig. 4. Drawing randomly from the
current gene pool of dominant fixed filters, each with their
own MMS, transparency, and complexity, we propagate the
chosen parent thousands of times. Each propagation is mu-
tated; that is, random, unique changes are made to its subfil-
ter thresholds and list of active subfilters. The fitness of the
new candidate fixed filter is then measured with our three
metrics. Most mutations will result in a less than dominant
solution, and those candidates are discarded. A few will re-
sult in new, dominant candidates that will further fill the pool
of dominant filters and/or replace candidates already within.

Different types of mutations are employed, also randomly.
For instance, the mutation may change many subfilter thresh-
olds at once or just a single entry. The threshold change
may be a minor incremental alteration up or down, a large
change up or down, or a totally random overwrite of the pre-
vious value. Combining many scales of mutations among the
new candidate population permits us to escape local min-
ima through occasional radical mutations while also permit-
ting fine-tuning of nearly optimal filters through small mu-
tations. We did not employ crossover operators (Periaux and
Galan, 1995) as simpler mutations were found sufficient. Af-
ter hundreds of iterations and millions of candidate fixed fil-
ters considered, the gene pool of dominant solutions becomes
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stable, that is minimally changing from cycle to cycle, and
we achieve Pareto optimality.

3.2.5 Termination

The GA is permitted to run until the known dominant filters
in the gene pool do not substantially change, i.e. the MMS for
any particular transparency and complexity reduces by less
than 0.01 % per hundred GA cycles. In practice, this was a
very stringent condition and looser definitions of termination
would have resulted in similarly acceptable filter solutions.

3.3 Feature selection

Feature selection is the process of determining which of the
input features are useful or informative for a given problem
(Guyon and Elisseeff, 2003). In our example, we seek to an-
swer which of the initial features aid us in minimizing the
Southern Hemisphere scatter. The GA has produced several
thousand dominant fixed filters that trade off MMS, trans-
parency, and complexity. By examining the subset of the ini-
tial features selected by the GA in these dominant filters, we
create a list of known informative features. Those not se-
lected are either redundant, containing the same information
as the chosen set, or are uninformative.

As we did not a priori restrict the choice of data features,
each fixed filter might (but likely does not) employ totally
different features in its functioning even for small changes
in performance metric. This is exacerbated by the presence
of highly correlated or equivalent features in our input data,
such as the altitude of a sounding using two differing Earth
spheroid estimates or multiple estimates of surface pressure
using differing assumptions. Though the GA considers such
nearly equivalent features as interchangeable and will flut-
ter between them from fixed filter to fixed filter, some are
often more interpretable than others. For example, two fea-
tures commonly interchanged are the SNR and the standard
deviation of the radiance spectrum. The SNR is straightfor-
ward to interpret, whereas the standard deviation of intensity
convolves the SNR, overall brightness, and other more subtle
quantities. Therefore, the set of informative features resulting
from the GA is a superset that likely contains highly corre-
lated, interchangeable features. We may take advantage of
this apparent nuisance, hand-selecting out features from the
GA-generated list that are (A) highly informative, (B) appear
many times in the dominant fixed filters, and (C) are most
interpretable. A second run of the GA would then be per-
formed using only this fine-tuned list of desirable features,
regenerating the full dominant population with improved in-
terpretability and minimized interchangeable feature oscilla-
tion. As such, this method is semi-autonomous rather than
fully automatic, as human intervention has been permitted
to aid in the fine-tuning and sanity checking of the features
used in the final, dominant fixed filter solutions. However,
the human expert in this case has already been aided by the

GA’s focus on informative features in a data-driven, empiri-
cal manner.

3.4 Warn level

We now need a way to utilize the knowledge contained in
the ensemble of dominant fixed filters. The human expert
standard method would pick a single fixed filter that had
the MMS reduction and transparency desired, using personal
judgment to perform the balance between these goals. We
seek to make a more complex, tunable sounding selector that
benefits from more of the information stored in the ensem-
ble than a single fixed filter instance. One way to encode this
information is to order the data set from first to last rejected
by the ensemble of filters as we sweep from 100 to 0 % trans-
parency. Such an ordering is the very definition of a sounding
selector. Unfortunately, it also requires running several thou-
sand filters on each sounding to generate its rank.

To reduce this computation and complexity load, we can
sample the ensemble of fixed filters uniformly in trans-
parency, say at 5 % resolution. This makes our ordering non-
unique, instead forming groups of equally trusted data. Each
group may be labeled with the total number of the sampled
fixed filters that would block all members within the group.
We call this label thewarn level(WL) of the group and all
the data points within. WL= 0 indicates data that is uncondi-
tionally accepted by all sampled fixed filters, while WL equal
to the number of filter samples (19) indicates data that is least
acceptable. Relatively high WL indicates the data will likely
not process into a useful CO2 value.

The WL values are themselves useful for data investiga-
tion, as with them one could request all the data that is highly
likely or unlikely to process and study the spatial or tempo-
ral distribution, bias with respect to known truths, etc. These
distributions will certainly not all be uniform, given that con-
founding forces are often local. However, the WL’s original
utility is in assisting sounding selection.

3.5 Spatial coverage

A required trait of a successful sounding selector is guaran-
teed spatial coverage. It is generally required that the globe
be populated with representative, reliable data, with the un-
derstanding that certain spatial regions may be more prob-
lematic (e.g. cloud contamination in the tropics limits the
number of successful retrievals). A fixed filter solution will
not itself perform this function; in fact, it is unlikely we wish
this. It is useful information to learn that over the stormy,
shiny ice of Antarctica we always perform poorly relative to
the rest of the planet. At the same time, we do not wish to
require a global filter transparency of 80 % or higher before
we begin to admit Antarctic data.

The OCO-2 project requires that the spatial coverage sys-
tem must operate on a per-granule (continuous fragment of
an orbit) basis for ease of implementation. We segregate
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Figure 6. On the left, a sample GOSAT track, used with permission from the GOSAT path 2 
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Fig. 6. On the left, a sample GOSAT track, used with permission
from the GOSAT path calendar. The sounding selector would be
applied to this track individually, with a user-specified fraction of
the soundings selected for processing. On the right, an example dis-
tribution for the user-specified number of soundings per latitude bin
desired.

these orbital tracks into latitudinal bins of 5 degrees. Within
each of these bins, we may specify how many soundings
we wish to accept (see Fig. 6). Generally, the number of
requested soundings per bin is proportional to the cosine
of latitude to prevent an overabundance of soundings near
the poles. The spatial coverage system fills each latitude bin
starting with the most trusted data as judged by its WL, ac-
cepting less trusted soundings as needed until the bin is filled.
The list of soundings used to fill the bins is the output of the
sounding selector.

4 Results

4.1 Trade off curves (Land & sea)

Employing the above-detailed GA on the GOSAT data in
the Southern Hemisphere resulted in a trade-off curve set for
each of land (nadir mode) and sea (glint mode) data sets as
shown in Figs. 7 and 8. These are the dominant gene pool so-
lutions after extensive GA cycling for the two data sets. Ap-
proximately 1000 CPU-hours were spent on each data set us-
ing 3GHz Intel Xeon processors. Each point on these curves
is an individual, dominant fixed filter. Each is identified by
its transparency (x axis), complexity (color), and the result-
ing MMS of passed data (y axis). The land is seen to have
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Figure 7. The Pareto-optimal trade-off curves for dominant Land fixed filters in the southern 2 
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Fig. 7.The Pareto-optimal trade-off curves for dominant Land fixed
filters in the Southern Hemisphere using all available features. Note
that beyond a complexity of four, there is little filtration improve-
ment. This means that four input features capture all of the filtra-
tion/prediction capability of all provided metadata, and all other
features are either correlated with these four or are not predictive.
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Figure 8. The Pareto optimal trade-off curves for dominant Sea fixed filters in the southern 2 

hemisphere using all available features. Note that beyond a complexity of three, there is little 3 

filtration improvement. 4 

5 

Fig. 8. The Pareto optimal trade-off curves for dominant Sea fixed
filters in the Southern Hemisphere using all available features. Note
that beyond a complexity of three, there is little filtration improve-
ment.

a higher scatter than sea at every transparency, owing to its
more varied and complex surface.

The slope of the trade-off curve is of vital interest to fil-
ter efficiency. Regions of zero MMS vs. transparency slope
would show no effective reduction in southern scatter as we
reduce the amount of data permitted through the fixed filter,
or in other words poor filter performance. Filters with com-
plexity equal to one are seen to possess such regions, whereas
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Table 2.Features chosen by the genetic algorithm to reduce scatter over Land (Nadir mode).

Utility Interpret Restrict Name Source

59 % Med Low CO2 ratio IMAP-DOAS Pre-process
53 % Med Low Delta Pressure Cloud Cloud-filter Pre-process
40 % High Med Solar Zenith JAXA Geometry
9 % Med Low H2O ratio Frankenberg Pre-process
9 % High Med STDEV(Sounding Altitude) JAXA Geometry

Utility measures the % contribution of a given feature to the overall filter performance. Interpret qualitatively measures
how easily interpretable a researcher finds the feature. Restrict captures how restrictive to the resulting database a
subfilter based on this feature would be.

Table 3.Features chosen by the genetic algorithm to reduce scatter over Sea (Glint mode).

Utility Interpret Restrict Name Source

67 % Med Low Delta Pressure Cloud Cloud-filter Pre-process
39 % Med Low CO2 ratio IMAP-DOAS Pre-process
27 % High Med Sounding cross-track angle JAXA Geometry
13 % High Low Min(weak CO2 radiance S-polar) Spectral math

higher complexity filters do not. MMS instability at the low-
est transparencies is normal, as so few soundings are permit-
ted through the filter that low-N statistics begin to dominate
the scatter calculation. High transparency filters are seen to
be extremely efficient by their slope, as it is an easier problem
to eliminate the most egregious outliers initially.

Higher complexity is seen to reduce scatter at a fixed
transparency due to its ability to more precisely fit the data
with more parameters and access additional feature infor-
mation; however, using complexities greater than four for
land and three for sea are seen to have strongly diminish-
ing returns. As we desire to maintain a high degree of in-
terpretability of the sounding selector’s function, we prefer
lower complexity. We choose to limit our complexity to two
at this stage for the GOSAT example, for ease of graphing
our results and interpretability in this example as well as sat-
isfactory filter performance. However, one could in principle
use a complexity four filter with only minor additional ef-
fort. The future OCO-2 mission will likely employ a two-to-
four complexity filter, as prescribed by its empirical trade-
off curves. Note that at this stage, a complexity two filter
might utilize many input features, but no more than two at
any particular transparency. As an example, 60 % of the fil-
ter’s transparency might be comprised of the pairing of sig-
nal to noise ratio and co2_ratio, while the remainder of the
curve might be constructed by the joining of co2_ratio and
h2o_ratio. Three features would then be used, but only two
at a time, thus complexity two. In the next section, we will
impose the constraint of matching the total number of input
features to the filter complexity to remove this detail.

4.2 Feature selection

4.2.1 Interpretability vs. utility

The fixed filters populating Figs. 7 and 8 were constructed
from the entire set of available features provided to the GA.
Features that were selected as most informative in the trade-
off curves are shown in Tables 2 and 3. Several new metrics
are now defined to aid in the human semi-autonomous fea-
ture selection task.Utility is an estimation of the discrimi-
nating power of a feature to reduce scatter. To calculate it,
we examined the subfilter thresholds for all fixed filters of
complexity four. The percentage of all filtered soundings for
which a feature is responsible is its utility. This is an over-
estimate of a feature’s true usefulness, as other features may
also be capable of filtering a particular point even if this
feature were not present. For this reason, the utilities will
sum to greater than 100 % due to feature filter overlap. Only
features with utility greater than 10 % are reported to avoid
large numbers of rarely useful features.Interpretability is
a qualitative measure of the physical meaning of a partic-
ular feature. Deep, internal parameters from a preprocessor
can have very opaque real-world connections resulting in a
low interpretability, whereas physically measurable quanti-
ties are immediately understandable with high interpretabil-
ity. Interpretability is vital for two reasons: it facilitates the
future improvement of the retrieval algorithm by communi-
cating to researchers some areas of potential difficulty, and
it helps explain why some soundings are more challenging
than others to future data users.Restrictionis the qualitative
tendency for a feature to eliminate soundings that are likely
to be interesting to future analysis, or a feature that is com-
monly plotted against. Simple geometric/geographic cut-offs
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1 

 2 

Figure 9. Land/sea sounding distributions for Delta Pressure Cloud (dPc) versus CO2 ratio. 3 Fig. 9. Land/sea sounding distributions for Delta Pressure Cloud
(dPc) versus CO2 ratio.

are less desirable for this reason, as researchers often wish to
observe the dependence of a measurable as a function of vari-
ous angles or altitudes. Also problematic are features that are
highly correlated withxCO2, as these might preclude regions
with true, large fluxes both positive and negative.

Comparing Tables 2 and 3 shows two features as highly
significant (high utility, acceptable interpretability, and low
restriction) in both land and sea cases: the CO2 ratio
(CO2r, unitless) and Delta Cloud Pressure (dPc, in hPa
units). The first feature derives from the Iterative Maxi-
mum A Posteriori Differential Optical Absorption Spec-
troscopy (IMAP-DOAS) preprocessor in which CO2 con-
centration estimates are independently derived for the strong
and weak CO2 bands within the radiance spectrum using a
non-scattering algorithm (Frankenberg et al., 2005). These
estimates are not as robust as the GOSAT full physics re-
trieval algorithm but orders of magnitude faster to compute.
The unitless ratio of CO2 estimates from both the strong
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Figure 10. Using only the two chosen features CO2 ratio (CO2r) and Delta Pressure Cloud 2 

(dPc), the complexity=2 filters for land and sea are re-derived. Performance of the new 2-3 

feature trade-off curves is similar to those using all-features, proving our feature selection was 4 

successful. The small dip observed in the “Sea, All Features” curve near 5% transparency is 5 

merely a sub-region where the cross-track sounding angle paired with CO2r was slightly more 6 

efficient than dPc plus CO2r. 7 

 8 
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Fig. 10. Using only the two chosen features CO2 ratio (CO2r)
and Delta Pressure Cloud (dPc), the complexity= 2 filters for land
and sea are re-derived. Performance of the new 2-feature trade-off
curves is similar to those using all-features, proving our feature se-
lection was successful. The small dip observed in the “Sea, All Fea-
tures” curve near 5 % transparency is merely a subregion where the
cross-track sounding angle paired with CO2r was slightly more ef-
ficient than dPc plus CO2r.
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 1 

Figure 11. Land data sub-filter thresholds for dPc (top) and CO2r (bottom). Black circles 2 

show monotonic, hand-smoothed final sub-filter values. 3 

4 

Fig. 11.Land data subfilter thresholds for dPc (top) and CO2r (bot-
tom). Black circles show monotonic, hand-smoothed final subfilter
values.
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Figure 12. Sea data sub-filter thresholds for dPc (top) and CO2r (bottom). Black circles show 2 

monotonic, hand-smoothed final sub-filter values. Note that the high threshold for dPc was 3 

not needed, as can be explained in Fig. 7, bottom. 4 

5 

Fig. 12.Sea data subfilter thresholds for dPc (top) and CO2r (bot-
tom). Black circles show monotonic, hand-smoothed final subfilter
values. Note that the high threshold for dPc was not needed, as can
be explained in Fig. 7, bottom.

and weak CO2 bands, CO2r, indicates enhanced scattering
within the atmosphere when different from 1.0. It is intu-
itively satisfying that a spectral quality measure was selected
as most useful. The second significant feature derives from
the cloud filter preprocessor (Taylor et al., 2012), using the
Oxygen A-band to derive surface pressure and goodness of
fit assuming a Rayleigh-only atmosphere. The dPc is the dif-
ference between the preprocessor’s quick-look surface pres-
sure retrieved and the a priori surface pressure as given by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) model. This parameter is critical in the determi-
nation of whether a sounding is too cloudy to process, as re-
flective cloud tops will retrieve a substantially lower pressure
than anticipated. Not only is this reasonable as a sounding
selector input, but it speaks to the diffuse boundary between
clear and cloudy sounding determination.

Other features we will not use that still yield insight are
the geometric factors of solar zenith angle (shallow illumi-
nation), cross-track angle (higher air mass), and standard de-
viation of the altitude within the sounding (mountainous or
highly sloped regions with ill-defined ray paths). All of these
are highly interpretable and reasonable inputs for a sounding
selector, lending evidence that the GA did indeed select ap-
propriate features and that our Southern Hemisphere approx-
imation/scatter reduction proxy for the truth is functioning.
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Figure 13. The selector performance for transparency and scatter as a function of inclusive 3 

warn levels. Permitting only warn level = 0 data (left of graph) is the most restrictive mode of 4 

the filter, while accepting everything up through warn level 19 permits all the data to the 5 

right. Note the deviation from original transparency as a function of warn level, caused by 6 

enforcing monotonicity of filter thresholds, is very small. 7 
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Fig. 13. The selector performance for transparency and scatter as
a function of inclusive warn levels. Permitting only warn level= 0
data (left of graph) is the most restrictive mode of the filter, while
accepting everything up through warn level 19 permits all the data
to the right. Note the deviation from original transparency as a func-
tion of warn level, caused by enforcing monotonicity of filter thresh-
olds, is very small.

Examining the distribution of CO2r versus dPc yields the
decision boundary space fundamental to our future sound-
ing selector (Fig. 9). We observe that the land has a much
more dynamic CO2r range, while the sea shows strong bias
in dPc relative to land. The cutoff used to determine cloudi-
ness over the ocean is also observable for values less than
−2600 Pascals.

4.2.2 Targeted rerun

Permitting only CO2r and dPc as input features, the GA is re-
run with results in Fig. 10. The MMS reduction as a function
of transparency remains virtually identical to the full-feature
cases in Figs. 7 and 8, proving the feature selection was suc-
cessful in isolating informative features.
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Figure 14. The definition of warn level as a function of CO2r and dPc. The optimal values of 3 

CO2r ~ 0.99 and dPc ~ 800 hPa are different from 1.0 and 0.0 due to imperfect spectroscopy. 4 
Fig. 14.The definition of warn level as a function of CO2r and dPc.
The optimal values of CO2r∼ 0.99 and dPc∼ 800 hPa are different
from 1.0 and 0.0 due to imperfect spectroscopy.

4.3 Warn levels

To ensure we adequately represent the trade-off curves of
Fig. 10 without having to compute a thousand filters per data
point, we chose to sample the filters every 5 % transparency
yielding 19 uniformly spaced dominant filters corresponding
to the vertical graph lines of the figure. In Figs. 11 and 12 are
shown the matching high and low thresholds for the subfilters
for both CO2r and dPc as a function of transparency. The left-
most region corresponding to low transparency show consid-
erable noise, as the low number of data being accepted re-
sults in low N statistics for the MMS. Noise in the right-most
region of the graphs stems from some filter thresholds not be-
ing actively used, as other thresholds dominate this high pass
rate region such as for CO2r lower boundary for land or sea.
Other more complex features such as near transparency 90 %

in the land case result from the interplay between thresh-
olds. Left of this point, all four thresholds are cooperatively
working to reduce scatter; however, to the right only the low
threshold for dPc significantly contributes. There is nothing
fundamentally inconsistent or problematic with such struc-
ture from the point of view of the GA, as at each step a
filter was generated that satisfied the scatter reduction and
transparency requirements. However, we do require some
additional properties for these threshold curves for a well-
behaved sounding selector.

The uniformly sampled threshold values taken to imple-
ment the warn levels are shown as black circles in Figs. 11
and 12. Note that while following the general trend of the GA
solutions, they have been made monotone as a function of
transparency. This will partially violate the precise relation-
ship of warn level to transparency percentage, but will grant a
very useful property that we will name selectorstability: a se-
lector is stable if for a given transparency all the data passed
at lower transparencies is included. This prevents an indi-
vidual sounding from being included at low transparencies,
excluded at moderate transparencies, then included again at
high transparencies. Such stuttering is admissible to the GA
but makes defining a unique data grouping such as is required
for the warn level impossible.

The final relationship of WL versus MMS and trans-
parency can be found in Fig. 13. The desired transparency as
a function of WL, initially defined as increments of 5 %, is
closely approximated by our monotone filter. The relation-
ship between dPc, CO2r, and WL for all global data (not
merely the southern training data) is made clear in the de-
cision boundary space of Fig. 14. Higher dimensional fil-
ters (complexity> 2) cannot be plotted so easily but are still
quite useful and not significantly harder to derive by this
same procedure.

Now that we have defined our warning levels, we can dis-
card the ensemble of fixed filters and construct our sounding
selector using only desired spatial coverage and the WL la-
bels for each sounding. It should be stated that we make an
assumption at this step that the thresholds we have defined
in the Southern Hemisphere will also apply to the Northern
Hemisphere.

4.4 Spatial coverage

As an example, we test our new sounding selector using a
desired transparency of 20 % in Fig. 15. Shown in color are
the highest (worst) warn levels per regional bin required for
proper filling, where hot colors represent high quality data
and cool suggest troublesome soundings with confounding
factors. Land is shown only as the sea distribution is domi-
nated by the glint geometry and is not insightful. Note that
tropical regions with typically high cloudy scene likelihoods
show high warn levels (Guerlet et al., 2013), while broad flat
regions in the mid latitudes show ease of population with low
warn level data. Shorelines and other highly mixed/complex
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Figure 15. Selector spatial coverage, color-coded by worst selected warn levels required for 2 

each five degree latitude region for an example 20% transparency setting using actual 3 

GOSAT data (full dataset). Note that cloudy regions near the equator and highly mixed terrain 4 

such as shorelines are more problematic than large, flat regions. The unfilled regions in Africa 5 

and the Arabian Desert are due to the omission of M gain data from this analysis. Warn Level 6 

18 & 19 are never permitted to be selected, as they are too confounded to be useful for later 7 

analysis.  8 

9 

Fig. 15. Selector spatial coverage, color-coded by worst selected warn levels required for each five degree latitude region for an example
20 % transparency setting using actual GOSAT data (full data set). Note that cloudy regions near the equator and highly mixed terrain such
as shorelines are more problematic than large, flat regions. The unfilled regions in Africa and the Arabian Desert are due to the omission
of M gain data from this analysis. Warn Level 18 & 19 are never permitted to be selected, as they are too confounded to be useful for later
analysis.
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Figure 16. Using only two weeks of randomly selected training data, at least 85% and up to 2 

96% of the optimal sounding selector was reconstructed. Note that the x-axis has been shifted 3 

by a few days for each successive transparency for readability. The error bars represent the 4 

stddev of the full data match % for the set of subwindows sampled. 5 

Fig. 16.Using only two weeks of randomly selected training data,
at least 85 % and up to 96 % of the optimal sounding selector was
reconstructed. Note that thex axis has been shifted by a few days
for each successive transparency for readability. The error bars rep-
resent the stddev of the full data match % for the set of subwindows
sampled.

terrain also show an increase in warn level. The large unfilled
region in Africa and the Arabian desert is due to the omission
of M-gain data from this analysis, not a failure of the sound-
ing selector. We did not permit the selector to use any warn
level 18 or 19 data, as it was judged of too poor quality to
be desirable in any circumstance. Such soundings typically
occur in the very challenging polar regions where low solar

angle, icy surfaces, and low-lying clouds conspire to prevent
quality retrievals.

The confounding forces of cloud and complex terrain are
well represented by the features we chose of CO2r and dPc.
If we increased the complexity of the fixed filters admitted
into our sounding selector construction above two, we could
also use terrain roughness (filters mountainous regions) and
overall spectral intensity (filters icy regions) as previously
selected by the GA.

4.5 Required data volume, early mission

In this example, we benefitted from several years of ACOS
data with which to construct an optimal sounding selec-
tor. However, when this method is applied to the upcom-
ing OCO-2 mission, little pre-existing data will be available.
Fig. 16 shows the results of constructing sounding selec-
tors deprived of the full ACOS data set. Hundreds of sub-
samples of size two weeks, one month, two months, four
months, or one year were randomly extracted from the data
set, sounding selectors trained on each subset, and compared
with the sounding selector resulting from training on the en-
tire data set. We then compare the resulting sounding selec-
tor to the full data case in terms of percent match for in-
cluded/excluded soundings. This was done repeatedly, for
various selector transparencies. For low-transparency selec-
tors, agreement with the full data set-derived filter was the
most challenging at 85 % using two weeks of data, while
high-transparency filters were comparatively easy to repro-
duce even with only two weeks of data at 96 % agreement.
Additional training days increased the accuracy of match to
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within error. We therefore conclude that a well-functioning
sounding selector can be constructed after fully processing
two weeks of data at the ACOS sampling rate of five sec-
onds. As this sampling rate is sixty times slower than OCO-
2, we should need only initially process 2 % of the incom-
ing OCO-2 data for two weeks before the first-pass sounding
selector can be produced. As we anticipate processing 6 %,
there should be ample data within a few weeks for selector
construction.

5 Summary

We have presented a procedure by which a sounding selec-
tor may be generated using the output of a genetic algorithm
(GA) that seeks to reduce the mean monthly scatter (MMS)
in the Southern Hemisphere. The sounding features selected
as most informative by the GA are hand-reviewed to optimize
interpretability and reject undesired distortion of the data,
making the method semi-autonomous. Any number of infor-
mative features may be selected at this point; in the ACOS
example, more than four was found to add negligible new in-
formation. Adding features (higher complexity) reduces the
simplicity of the sounding selector but can encompass addi-
tional confounding forces and better fit the data. A uniform
selection of fixed filters as a function of filter transparency
(19 in the ACOS example) is then taken, and the thresh-
olds of their subfilters are made monotone in transparency
to preserve selector stability. This ensures that any data point
permitted at a lower transparency will still be permitted at
a higher transparency. The ensemble of uniformly sampled
fixed filters is then used to define a warn level for each sound-
ing equal to the number of filters that would reject it. Finally,
we couple these warning levels to a spatial coverage routine
that fills latitudinal bins with the lowest warn levels avail-
able. The final product is a sounding selector with a tunable
transparency that maximizes the likelihood of valid CO2 re-
trievals from the selected soundings while guaranteeing spa-
tial coverage. As an example point, given a 10 % throughput
(transparency), the Land case’s mean monthly stdev (MMS)
was reduced from 3.25 to 1.4 ppm, while the Sea case’s MMS
was reduced from 3 to 1.2 ppm. However, 10 % is merely for
example, and any requested percentage (rounded to the near-
est 5 %) could be entered, yielding the list of best soundings
to use.

This method is data-driven and agnostic to instrument.
Any data set in which a goal function can be identified (i.e.,
the minimization of southern CO2 scatter in our case) and in-
formative measurement features are present can be addressed
in the same manner, even if the identities of the informative
features are not known beforehand. Further, the execution of
this method has been used to shed light onto the particular
confounding forces acting upon the measurements by exam-
ining the selected most informative features and examining
their spatial and temporal distribution. This same technique

is now also implemented as a sounding quality estimation
using post-retrieval features as well as those included here.
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