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Abstract. Hierarchical agglomerative cluster analysis was1 Introduction

performed on single-particle multi-spatial data sets compris-

ing optical diameter, asymmetry and three different fluo- Primary biological aerosol particles (PBAPS) are those which
rescence measurements, gathered using two dual Widebarstte emitted or suspended directly from the biosphere to the
Integrated Bioaerosol Sensors (WIBSs). The technique isstmosphere, and as such are composed of biological matter
demonstrated on measurements of various fluorescent anespés et al.2012. These aerosols can consist of the fol-
non-fluorescent polystyrene latex spheres (PSL) before belowing: viruses (0.01-0.3 pm); bacteria and bacteria agglom-
ing applied to two separate contemporaneous ambient WIB®rates (0.1-10 um); fungal and plant spores (1-30 pm); and
data sets recorded in a forest site in Colorado, USA, as parnpollen (5-100 um), as well as fragments thereof and of plant
of the BEACHON-RoMBAS project. Cluster analysis results or animal matter Despés et al. 2012 Elbert et al, 2007).
between both data sets are consistent. Clusters are tentativeBBAPs can affect human health as allergens or through the
interpreted by comparison of concentration time series andransmission of disease, either naturally or through acts of
cluster average measurement values to the published litebioterrorism Cresti and Linsken2000. There is evidence
ature (of which there is a paucity) to represent the follow- that PBAPs may influence the hydrological cycle and climate
ing: non-fluorescent accumulation mode aerosol; bacteriaby initiating warm ice nucleation processé&hfistner et al.
agglomerates; and fungal spores. To our knowledge, this i2008 Mohler et al, 2007 Pratt et al. 2009 Prenni et al.

the first time cluster analysis has been applied to long-termr2009 or acting as giant cloud condensation nucMifler
online primary biological aerosol particle (PBAP) measure- et al, 2007 Pope 2010.

ments. The novel application of this clustering technique pro- It is clear that the PBAP classification consists of aerosol
vides a means for routinely reducing WIBS data to discretefrom various diverse sources which may have wide reaching
concentration time series which are more easily interpretablegffects in the atmosphere. In order to predict these potential
without the need for any a priori assumptions concerningeffects under future emissions scenarios, it is useful to be able
the expected aerosol types. It can reduce the level of subto identify the group to which a measured PBAP belongs. To
jectivity compared to the more standard analysis approacheslate, this has largely been achieved by the use of off-line
which are typically performed by simple inspection of var- techniques, which, whilst allowing accurate identification of
ious ensemble data products. It also has the advantage afifferent aerosols, are labour-intensive, have poor time reso-
potentially resolving less populous or subtly different par- lution and introduce significant identification biases. Several
ticle types. This technigue is likely to become more robustlight-induced fluorescence techniques have recently been de-
in the future as fluorescence-based aerosol instrumentatioeloped which characterise the auto-fluorescence of parti-
measurement precision, dynamic range and the number dfles, utilizing the presence of certain biofluorophores such as
available metrics are improved. NAD(P)H, riboflavin, and tryptophan as indicators of PBAP
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338 N. H. Robinson et al.: Cluster analysis of WIBS data

material Hill et al., 2001 Huffman et al, 2010 Kaye et al, Previous work has identified different classes of PBAP us-
2005 Pohlker et al, 2012 Sivaprakasam et ak004 2017%; ing the physical properties measured by the WIBS instrument
Pan et al.2007, 2012 Pinnick et al, 2013. (Gabey et a].201Q 2011 Gabey 2011). However, this has

Here we focus upon development of analysis techniqueso far been achieved by inspection of ensemble histograms
for the Wideband Integrated Bioaerosol Sensor (WIBS)which are then compared with particle standard measure-
range of auto-fluorescence detectoFodt et al, 2008 ments. This approach is labour-intensive, vulnerable to error,
Gabey et al.201Q 2011, Kaye et al, 2005. We demonstrate  and may lead to the oversight of minor but important PBAP
the application of a cluster analysis technique to the WIBSsubgroups. It also does not easily lend itself to the production
single-particle data, allowing for robust statistical resolution of concentration time series of PBAP subgroups necessary
of different PBAP subgroups. for more detailed understanding of particle emission sources.

Various cluster analysis techniques have previously been

i ) used to classify single-particle fluorescence d#terfick,
2 The Wideband Integrated Bioaerosol Sensor 2004 Pan et al.2007, 2012 Pinnick et al, 2013 and mass
tw‘s)pectral dataMurphy et al, 2003, as well as back trajecto-
ries (Cox et al, 2005 Kalkstein et al. 1987 Robinson et aJ.
2011). In addition, neural networks have been trained to dy-
namically classify single-particle mass spectral d&ang
et al, 1999. These studies have successfully demonstrated
various approaches for objectively reducing large data sets

tic scattering intensity (at 633 nm) is measured in the for- : .
o so that they become easier to interpret, but have not yet been
ward direction and at an angular range centred &t Bfese ) - . )
applied to data from WIBS or similar commercially avail-

measurements are then used to infer the particle optical- ; . :
: . . able instruments. Previous studies have also focused on rel-
equivalent diametet)o. The forward scattering component

is measured by a quadrant photomultiplier tube that aIIOWSat|vely short monitoring times (several days), in contrast to

L . . the data analysed here which cover several weeks. The fol-
for measurement of the variation in azimuthal scattering from

the particle. This in turn can be related to particle asymme-IOWIng section identifies the most appropriate approach for

iry o shape via an asymmetry factor, AF (eGabey et al. the id_entification of a measur_ed p_ar?icle typ_e. Firstly, sev-
2010. This sizing measurement trigéers subsequent pulsegral dlf_'ferent approaches for |dent|f_y|ng partlcle_g_roups by
from filtered xenon flash-lamps at 280 nm and 370 nm de_analysmg a;ubset of the data.are-d|scussed. This is followed
signed to excite molecules such as tryptophan and n’icoti-by a discussion of partlgle attnbupon approaches, where the
namide adenine dinucleotide phosphate (NAD(P)H) respec_partlcles that were not included in the data subset are com-
. s : . pared to and allocated to the previously identified groups.
tively within the particle. Any resultant fluorescence is mea- This allows for the construction of concentration time series
sured in two wavelength regimes named FL1 and FL2. This ; . )
gives rise to three separate fluorescence channels: in FL?f the dlfferent particle ty!oes forthe ent|_re measurement pe-
. o fiods while only performing time-intensive calculations on
and FL2 following the 280 nm excitation (hamed FR&0 representative subsets of the data
and FL2280) and in FL2 following the 370 nm excitation '
(named FL2370). The FL1 and FL2 fluorescence detection
regimes overlap spectrally in the WIBS3 but have been sep= Analysis techniques

arated in the WIBS4. There is no FL370 channel as the

370nm light pulse lies within the FL1 detection regime, The choice of particle grouping technique depends on the
which leads to saturation. NAD(P)H does not fluoresce ingoals of the analysis and the properties of a given data set. We

the FL1 wavelength regime and riboflavin only weakly, while have chosen the following criteria as fundamental to suitable
proteins and amino acids are more fluorescent in this chanyy|BS single-particle data analysis:

nel. Tablel details the fluorescence excitation and detection
regimes for the two WIBS models. The WIBS4 also incor- 1. It should not require any assumptions about the types
porates additional improvements to the optics configuration, of particles present in the data set as this precludes the
excitation light delivery, sample inlet and logging software. identification of PBAP types that have not previously
A fluorescence baseline is determined from measurements of ~ been characterised using similar measurements.
fluorescence when the xenon sources are fired in the absence

of particles. This baseline has been subtracted from all flu- 2. It should not require any assumptions about relative
orescence measurements presented here. In total, the WIBS ~9roup sizes, as different types of PBAP can be present
provides five different measurements of each particle thatare  in very different concentrations.

used in subsequent analyses herein: optical size, asymmet
factor, and three fluorescence measurements.

The measurements reported here were performed using
individual dual Wideband Integrated Bioaerosol Sensors
(Foot et al, 2008 Gabey et al.201Q Kaye et al, 2005
Stanley et al. 2011 — a model 3 (WIBS3) and a model
4 (WIBS4). In both these variants, the single-particle elas-

Phe technigue also need not be dynamic, as WIBS analysis is
performed offline. Neural network techniques have many at-
tractive qualities such as their dynamic grouping, efficiency
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Table 1. The excitation and detection wavelengths of the two WIBS models.

FL1.280 FL2280 FL2370
Excitation Detection Excitation Detection Excitation Detection
WIBS3 280nm 320-600nm 280nm 410-600nm 370nm  410-600nm
WIBS4 280nm  310-400 nm 280nm 420-650 nm 370nm  420-650nm

and accumulation of skill. However, they need prior training The choice of the optimum number of clusters to retain
with measurements of different particle types, which requiresis a subjective step, but it may be informed by various met-
assumptions about the types of particles present and so caits (Everitt, 1993 Kalkstein et al.1987). In average-linkage
lead to systematic misinterpretation. Cluster analysis is morelustering the suitability of a solution @¥ clusters may be
suitable for WIBS data sets as it requires no such assumpassessed by inspecting the coefficient of determination:
tions. The so-called-means approach is a common, efficient .
cluster analysis technique. However, it tends to produce clusg2 _ q _ 3 sum of squares within groups @)
ters of similar group size and spatial exteBvéritt, 1993, ~ total sum of squares
rendering it unsuitable for grouping PBAP. Hierarchical ag-
glomerative (HA) cluster analysis meets all of the stated cri-Where a sharp decreaseMslecreases is an indicator of the
teria Everitt, 1993. number of clusters to retailalkstein et al.1987 Robinson

In HA cluster analysis each measured particle is initially €t al, 2011). An increase in the root mean squared (RMS)
considered to represent its own Sing|e_membered cluster. Thgistance between clusters is an indication that two dissimilar
algorithm identifies two clusters with the highest degree ofclusters have been agglomeratéhpe et al.2000. Addi-
similarity, which are then agglomerated into a new cluster.tionally, the number of major clusters at each step is defined
This step is repeated until all particles populate a single clus@s being the number of clusters that are greater than half the
ter. The analyst is then required to determine which stepmean cluster group sizéqureiro et al, 2004 Zoubi, 2009.
(number of clusters) most appropriately represents the datal his final metric is useful for assessing statistically insignif-
which is a Subjective process, but may be informed by Sevjcant clusters, but ImpIICItIy assumes that clusters are a sim-
eral statistics. There are several different HA cluster analysidlar size. There is no robust way of determining which clus-
algorithms, each defined by the respective metric used fof€rs are insignificant (i.e. due to rogue measurements) and
comparing the similarity of clusters. which clusters are significant (i.e. due to rare but important

The average-linkage HA cluster analysis algorithm is usedParticle types). Any cluster deemed to be major by this met-
herein as it is regarded as being robust and is conducive t§C should be retained in the subsequent analysis. Ultimately,
groups of different sizeHveritt, 1993 Kalkstein et al.1987). due to the potential for radically different cluster group sizes,
It has the unique quality that it minimises the sum of squareghe analyst must decide which of the most minor clusters are
within (SSW) cluster groups whilst maximising the sum of unlikely to be representative of a physical particle type, and
squares between (SSB) cluster groups. Average-linkage déhUS should be discarded. It should be noted that these statis-
fines the two most similar clusters as those with the smallestics may indicate more than one solution is statistically sig-
distance across anrdimensional space, whendgs the num- nificant. In such a case any indicated solution may be em-
ber of measurements made of each particle (five in the case ¢floyed, with both being physically representative. If the so-
the WIBS). The distance between two clusters is defined adution comprises a greater number of clusters than there are
the average squared Euclidian distance between all possibarticle types, then cluster time series will be split, and con-

pairs of particles, one from each cluster, or versely if the solution comprises fewer clusters than there are
b g particles types,.then cluster ti.me serie; will be c_onflated.
Lag = i Z Z IA; — B, 2, 1) An average-linkage clustering algorithm was incorporated
' pq into the pre-existing suite of WIBS analysis tools, the WIBS

i=1j=1 i ; : ,
. . ) _ AnalysiS Program (WASP). The routine was written using
whereLa g is the distance between clustessis the coordi- 45 prdl, with the numerical routines used to calculate clus-

nate vector of cluster A which contaipsmembers, and is o gistances written in C and compiled as an external opera-
the coordinate vector of cluster B wigtmembers. The use of i, (XOP) library, in order to improve performance. A syn-

Euclidian distances assumes symmetrically distributed datayetic test data set was generated, consisting of three groups
so any variables that appear to be log-normally distributedys vo-dimensional points. Each group consisted of ran-

are handled as their logarithms so as to give a more syMgqmy generated points normally distributed around different
metric distribution. The data set is therscore normalised

before analysis. lwaveMetrics Inc., OR, USA.
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Fig. 2. Average-linkage statistics. The optimum solution as indi-
cated by the statistics is highlighted.

should be noted that clustering will be weighted towards re-
solving particle groups that are separated by size, at the ex-
pense of resolving inherent fluorescent ability.

Additionally, a fluorescence detection channel can be satu-
Fig. 1. Input to cluster analysis routine. Three synthetic, separatelyrated by some very large or very fluorescent particle, usually
generated groups (differentiated by colour) of random, normally pollen or other large PBAPs. Typically around 5 % of ambi-
distributed data of arbitrary units centred around three separatent particles measured saturate at least one of the three fluo-
points. rescence measurements. As the saturating particles are likely
to be associated with a particular PBAP type, they have been
, i , .. included in the cluster analysis. During interpretation of the
centres (Figl). The WASP average-linkage routine Statistics ¢ ,qtering solution, it should be noted that a cluster of saturat-
|nd'|cate that the three-clqster solution is qptlmum (HD ing measurements may conflate different aerosol types (e.g.
This solution correctly attributes 99 % of points to their orig- pollen subtypes) which would have been resolved had the
inal groups (Fig3). The only incorrect determinations are of yetaction range of the instrument been greater. Additionally,
points at the boundary between purple and green points. ooy rating aerosols may be conflated with highly fluorescent,
but not saturating, aerosols, which can appear close in flu-
orescence space despite having relatively different quantum
yields.

The application of this approach to WIBS data presents some Data are assumed to be normally or log-normally dis-
additional issues. Firstly, an implicit assumption of cluster tributed. In reality, the distribution of the data for a given
analysis is that clustered particle types are static, that is thaf'easurement type is a convolution of measurement noise and
they do not evolve in the atmosphere through chemical othe physical distribution of that property, with the relative
physical processing. When this is not the case, one partid@on_trlbgtlon of each to the combined distribution re_Iated to
type may be resolved as two or more clusters which represertheir width. Inspection of the PSL data showed the inherent
different stages in the evolution of the particle. Additionally, méasurement noise of the WIBS to be normally distributed.
the variables used in clustering should ideally not be imer_lr)spectlon of ambient data showed the overall dlstr'lbu.tlon of
dependent, but, for any given particle composition, largerSiZ€ and AF measurements to be log-normally dlstnbuteq,
particles will fluoresce more intensely, despite no increaseS© these measurements were converted to log space prior
in their quantum yield (inherent ability to fluoresce). This to clustering. The distribution of fluorescence data is more
means that WIBS fluorescence measurements are a convol§®mplicated, with measurement values of zero and full satu-
tion of particle size and fluorescence quantum yield. |n3pecration both possible. Given this., flqorescence .measuremt'ants
tion of WIBS measurements of monodisperse polystyrene [a&'€ assumed to be normally distributed. If this assumption
tex spheres(PSLs), which serve as particles of consistent in- IS Wrong, particles of low fluorescence are less likely to be
herent fluorescent ability but different sizes, shows that this"eSolved as separate clusters. .
effect is not compensated for by normalisation to the total 1N€ computer processing time for the cluster analysis of
elastic scattering or side scattering measurements also pré& 9iven data set grows approximately as the square of the
vided by the WIBS. As such, cluster analysis was performedSizé Of the data set. An ambient data set may consist of

using un-normalised WIBS fluorescence measurements. lféasurements of 1 x 10° particles, which is impractically
large for the WASP cluster analysis routine. Instead clus-

2Manufactured by Polysciences Inc., PA, USA. ters are characterised using a randomly chosen subset of

I I I I I
-3 -2 -1 0 1 2 3

4 Cluster analysis of WIBS data
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apop are the standard deviations of each measured variable
across the entire data subset used in the cluster analysis. This
approach does not take into account the spread (instrumental
or physical) in the cluster distributions, but merely compares
a particle measurement to the cluster modal centre.

Secondly, the population normalised distance approach
can be extended by expressing the distance in each dimension
in terms of the number of cluster standard deviations. This is
henceforth referred to as “cluster normalised distance” and is
expressed by

Ci —

di = i— D ’ (4)

o
(]

» °.;‘ :0. o e ° where the symbols have their previous meaning apds

19 : 0e® © '. a vector of the standard deviations of clustdpr each of
o ® the measured variables. This approach is conceptually pleas-

T T — — T T ing in that it accounts for the spread of the variable values

3 2 1 0 1 2 3 within the cluster and so represents the statistical uncertainty

in apportioning a single-particle measurement to one cluster
Fig. 3. Cluster analysis results, three-cluster solution. Each clustery, another. However. this approach relies on the standard de-
indicated by colour. Three separate groups are resolved. viations of the distributions being precise. In practice, some
clusters can display standard deviations that do not reflect
the true spread of variable, which can then lead to system-
a suitable clustering solution has been chosen by inspectioﬁ‘tIC misattribution. This can be the case where less populous

clusters do not form strong modes. It may also occur where

of the statistics, the remaining data are assigned to the dif o .
ferent clusters by comparison to the cluster centroid. MegStandard deviations are estimated for modes that do not fall
tirely within the measurement range of the instrument.

surements are again converted so that they are symmetrical@nTh then t ¢ th f the i
distributed for this assignment. If the data belonging to each . ere are then two ways 1o use erther o pemet-
cluster form a distinct mode, then the mean and standard dé-¢S to apportion t_he particle to a cluster_. Firstly, the parti-
viation are calculated from a Gaussian fit. This has the advangIe may be apportioned to the cluster which has the smallest

tage of accurately identifying the modal centre, even if thed,- value, henceforth referred to as “simple attribution”. Sec-

entire distribution does not fall within the measurement rangeondly’ a fraction of each particle’s count may be apportioned

of the instrument. If a mode is not apparent (for instanceto each cluster that is inversely proportional to the distance
when fluorescence measurements are saturated or zero. 3 the particle from the cluster, such that the total of the frac-
there are a small number of measurements), the mean a;r{bons for any 'parFicIe Is unity. This .iS hengeforth referred to
standard deviation are calculated from the data themselve$™> fuzzy at;rlkl;) ution”, and the fraction atiributed to cluster
Several different attribution algorithms were tested to find IS expressed by

~1x 10* particles, which takes approximately 2 tOnce

the most appropriate. 1\ L

Two metrics can be used to assess the similarity of a par+; = (d,- Z E) , (5)
ticle measurement to a cluster. Firstly, the proximity of an !
individual measurement to the cluster centroid can be calcuwhere the symbols have their previous meanings. Any parti-
lated after normalising each variable by its population stan—les that are further away than a limit distandge,are con-
dard deviation to account for differences in magnitude andsidered insignificant and deemed “unclassifietf’is chosen
variability. This is henceforth referred to as “population nor- as the minimum value, which also results in the unclassified

malised distance” and is expressed by particles being a minor group.
d: = —Ci _p (3) 1
' Opop | 5 Cluster analysis of polystyrene latex spheres

whered; is the distance of the particle measurement fromFive different PSL types were measured sequentially using
clusteri, ¢; is the position vector of clustein n-dimensional  the WIBS4: 099+ 0.01 pm standafy 1+ < 0.1 pm fluo-
space, where is the number of measured variablgss the  rescent; 190+ 0.02 pun?; 3.005+ 0.027 um standafd and
position vector of the particle in-dimensional space, and

4Manufactured by Polysciences Inc., PA, USA.
3Using a 3.4 GHz quad core processer, 8 GB RAM, 64-bit OS. SManufactured by Duke Scientific Corp., CA, USA.
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Table 2. Average modal centres of PSL measurements input to clus-
ter analysis algorithm.

2

3 _45§ 1pm 1pm fl 2um 3um 4.76 pm
E FL1280 89402 14406  377£01 860+£0.1 2083+0.1
- 40 FL2.280 5+18 2038+0.1 10+£12 54437 252402
FL2.370 6422 1543£04 9+17 121404 241403
- 35 Do (um) 118+13 119+13 191+12 349+11 516+11
AF 73+14 71+14 38+16 474+14 58414

20 15 10 5
No. of clusters

Fig. 4. PSL cluster analysis statistics. The 13-cluster solution was

chosen due to the concomitant drop&& and N, and the rise in . . . . I
RMS. The population normalised distance simple attribution ap-

proach appears to represent the data more satisfactorily than

the other attribution algorithms. It generates concentration
4.76+ 0.04 um standard The excitation maxima of the flu- time series reflective of the clustering solution, with the ex-
orescent PSLs are 365 nm, 388 nm and 412 nm, with respeception of very small concentrations of cluster C particles
tive emission maxima at 447 nm, 447 nm and 473 nm. Asduring the introduction of 3 and 4.7 um PSL. The two cluster
such, the fluorescent PSL would be expected to be detectedormalised distance approaches attribute the majority of the
mainly in the FL2370 channel, with potential contributions non-fluorescent PSL to cluster C, presumably because cluster
to the other channels, depending on the width of the excitaC has a greater spread in values than the other clusters. The
tion/emission spectra. It should be noted that standard PSLpopulation normalised distance fuzzy attribution approach,
are also fluorescent but to a lesser extent, with fluorescencenhile correctly attributing the majority of particles to the cor-
occurring due to 280 nm excitation. The modal values andrect clusters, attributes a significant number of the particles
relative standard deviations of the data input to the clustetto other clusters.
analysis algorithm are shown in Tal#e The 13-cluster so- The population normalised distance simple attribution is
lution was chosen due to the observed decreask?iand used for the rest of the presented analysis, given the com-
N, and the concomitant rise in RMS (Fid). Of these 13  bined advantages of transparent methodology, lack of sensi-
clusters, the six major clusters (as defined in Sect. 3) wergivity to potentially spurious distribution widths, and the lack
retained for subsequent analysis (TaB)ldt should be noted  of the need for setting a subjective distance limit.
that, in this instance, the different PSLs are likely to be
present in concentrations of a similar order of magnitude,
meaning that each PSL type is likely to be resolved as a ma- . .
jor cluster. Figuré shows the input single-particle size mea- 6 Cluster analysis of two ambient WIBS data sets

surements as a function of time, coloured by cluster, and .
below that, a comparison of cluster concentration time se—Théa WI?SS aﬂd W.lBtSA' V\t/_ere de}pllzoyed aipart olf thce Bt:o-
ries generated using the attribution methods described abov yoro—gmosp ere 'g ?\lrf"t‘c lons ?Q nergl\%, e;o'so Sé arbon,
Both fuzzy attribution sets used a significant distance limit Aéro,sol g&r:;;spri?ect (EEAQSE_O,\?CQ MB%J; va\lllr?ich '\?vgin'c
f fi hich he mini I which . ' .
() of five, which was set at the minimum value at ¢ performed between 20 June 2011 and 23 August 2011 in

most particles are successfully attributed. X .
: he Manitou Experimental Forest, 35 km west of Colorado
The PSL cluster analysis successfully resolves much of th . L . . .
us y y prings, CO, USA, 2300 ma.s.l. This project aims to inves-

data, with most of the PSL types individually represented by . . o .
i ypes Inavidually rep yt_|gate the effect biogenic aerosol emissions have on regional

a cluster. In particular, the 3 and 4.76 um PSL data are sep iitation in th tral US. and a full ch terisati f
arately resolved as clusters E and F respectively. The 1 urﬁ)rec'p' ation I the centra » and a tull characterisation o

fluorescent PSL data are successfully resolved, although, iﬁ;ar(l)sglogrogl?hrtlﬁlaBrgd?’fluxes W'!i. be %resentzﬂzz%’[gnson
this solution, they are split between clusters A and B, which®' @ (2013. The was posilioned aroun m away

are qualitatively similar. It is not clear if this split is phys- from the main measurement site and sampled frothm

) " ;
ically real (on the basis of different AF modes) or artificial. above the forest floor vie 0.5 m of /4" o.d. stainless steel

: . P

The 1 um non-fluorescent PSL data are represented by clustélf’bmg' T_he WIBS4 sampled viar 0.5m of ?/_4 stainless

C. The majority of 2 um PSL data are resolved as cluster D.Steel tubing as part of an automated profiling system run-
ing up the side of the main site measurement tower. WIBS4

However, a significant amount of these data belong to clustel! il larl ‘ d bet 35 d 20
C, apparently erroneously. This is likely due to the similarity profiles were regufarly performed between s.om an m

of the 1pm and 2 um PSLs, which are very close in WIBS above the forest floor, measuring below, in, and above the
measurement space. forest canopy.

6http://webs.acd.ucar.edu/beachon/
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Table 3. Cluster average values and relative standard deviations of the six major clusters of the 13-cluster solution. Bottom row shows the
number of constituent measurements. Minor clusters have been disregarded.

A B C D E F

FL1.280 12+0.5 11+0.7 229+0.7 373+01 889+0.1 2106+0.0
FL2.280 206G+0.0 2060+0.0 12+4.6 9+1.2 19+16 212+0.2
FL2.370 1859t0.0 1853+0.0 11+53 7+18 15£15 1124+0.6
Do (um) 107+12 110+13 138+15 182+12 343+11 502+11
AF 39+11 72+13 50+16 30+£13 446+12 52+13
# 281 1995 841 288 436 646

Size (um)

O E, Do=343
15 O F,Dg=5.02

population

. Inputdataand
6 3.49 um q o clustering solution
5 1.18 um ‘1.19 um i ‘1.91 pm‘ (3.005 um) d A Doe1.07 1
4 (0.99 pm) (1 um) (1.9 um) N
normed dist.

O B, Dp=1.10, fl
5.16 um O C,Dp=1.38
/\/\,_,\10 |

. N \/\/\/\/\ .

simple att. 'o.
0 L — — 0.
cluster 6 0 — .
normed dist. 44 5 .

1.0 1

0.5
98_7/\%

0 Cluster time series
1.5 after attribution
A
1.0 A
—B
0.5 - —c

0.0 T —————— D

—E
104 1.0 —F
0.5 .
5 4 | 0. 0.5
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Fig. 5. Top plot shows the single-particle data input to the cluster analysis routiB8 ¢ of all the particles that were measured) coloured

by their cluster, as defined in TabB Particle size and fluorescence for each retrieved cluster are detailed in the legend. Measured PSL
optical diameters are detailed in boxes, with the actual PSL physical diameters in brackets. Below are cluster concentration time series aftel
the remaining particles are attributed to the resolved clusters, using four different attribution algorithms, detailed on the left. The x-axis is
discontinuous between the introduction of different PSLs. The y-axes are inconsistent between subplots.

For the WIBS3 data set, the four-cluster solution was sedimpossible: the FL1 and FL2 measurement regimes have
lected based on the sharp drogifiand rise in RMS (Fig6). changed between instruments (Tabjewhich could poten-
All four clusters were retained for attribution (Takle tially lead to measurements of slightly different fluorescence
For the WIBS4 data set, the ten-cluster solution was seproperties of the same aerosol population; the reduced instru-
lected based on the drop iR? and concomitant rise in ment noise in the WIBS4 should generally lead to smaller
RMS distance (Fig7). The six most populous of these clus- standard deviation values; and the improved fluorescence de-
ters were retained for attribution, with the discarded clustergection has led to lower fluorescence baselines, particularly
comprising five measurements or fewer (TabjeNote that  in the FL2280 channel. However, the clustering solutions
the three-cluster solution is also statistically significant, butof the two WIBS models are qualitatively similar. The clus-
it was considered likely that it was conflating particle types. tering statistics indicate that cluster analysis has resolved
There is a paucity of published work characterising thea larger number of clusters using the WIBS4 data set than
measurement response of the WIBS to different aerosol typeasing the WIBS3. This may be due to the greater precision
under controlled laboratory conditions. Tentative physical in-of the WIBS4 allowing the resolution of particle groups that
terpretations are presented here based on the existing literare conflated in analysis of the WIBS3 data. Inspection of
ture; however, interpretation of the results of this clusteringthe WIBS4 clustering solutions shows that clustersahd
technique will be facilitated by further characterisation work. B4 are agglomerated in the nine-cluster solution, and clusters
The refinements made between WIBS models are likelyC, and Dy are agglomerated in the six-cluster solution (with
to make certain quantitative comparisons of measurementstervening solutions agglomerating discarded clusters). This
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Fig. 6. Ambient WIBS3 data set clustering statistics. Four-cluster No- of clusters

solution chosen due concomitant dropiA and rise in RMS. Fig. 7. Ambient WIBS4 data set clustering statistics. Ten-cluster
solution chosen due concomitant dropRﬁ and rise in RMS.

Table 4. Cluster averages and relative standard deviations for the
WIBS3 data set. Bottom row shows the number of constituent mea-

surements.
that these clusters represent some other fungal spare. C

As Bs Cs Ds and & have substantially different FL280 measurements,
which is likely to be due to the stated differences between
WIBS models. Previous work has not yet established if high

FL1280 25+3.1 1725+6.6 87+16 1542+ 0.5
FL2.280 44+14 230+£05 331+04 1475+ 0.2

FL2370 90+16 136401  1224+03 1885+0.1 FL2_280 levels are typical of grass smut fungal spore mea-
Do(um) 16+16 29+16 31+17 44416 surements in the WIBS4.

AF 159+18 212415 1754+22 185+15 Clusters @3 and K are very likely to represent fungal

# 9670 456 243 43 spores, as they are highly fluorescent in all three channels, are

relatively large and asymmetriGabey 2011). While the av-
erage diameter is much smaller than that of pollen, itis likely
that any pollen detected has been conflated with this cluster,
suggests that these clusters are the most statistically similaas it is also highly fluorescent in all channels.
of the six retained clusters, and, as such, their concentrations Population normalised distance simple attribution was
may need to be summed for comparison to the WIBS3 solu-used to generate concentration time series for the clusters re-
tion. solved by each instrument. The time series gradient of scatter
Clusters A, A4 and By are likely to represent the tail end and Pearson’svalues are shown in Tab&with the time se-
of the ambient accumulation mode, being relatively abun-ries for each cluster shown in Fi§. The time series from
dant, small in diameter and non-fluorescent. As such, it iseach instrument compare very well, especially considering
likely to comprise several different non-PBAP sources. that some of the less populous clusters are close to the limit
Clusters B, C4 and DOy show high fluorescence in of detection of the instruments. The time series show clear
FL1.280. The bacterid. syringaeand P. fluorescendave  separation of different factors. The accumulation mode and
previously been shown to fluoresce strongly in E280 us-  smut fungal spore clusters were found to respond to meteoro-
ing the WIBS3 (5abey 2011). Bacteria are often present in logical variables such as precipitation and relative humidity
the atmosphere as bacteria aggregate clumps or as a cofHuffman et al, 2013, while the bacteria and other fungal
stituent part of some other aeros®€spés et al. 2012. spore clusters show a strong nocturnal profile.
Aerosols containing culturable bacteria have been reported to The diurnal profiles are largely consistent with the physi-
have aerodynamic diameters-ef4 um at several continental cal interpretation of the clusters. It should be noted that the
sites Despeés et al. 2012 Tong and Lighthart200Q Wang  extreme upper size range of the accumulation mode, which
et al, 2007, which is similar to the cluster diameters-ef2— these clusters represent, may not have the same source profile
4 um. The relatively high cluster AFs are consistent with bac-as the rest of the accumulation mode. The nocturnal elevation
terial aggregates, which are expected to be highly asymmetsf the concentrations of the other fungal spore clusters is con-
ric. Thus, this literature as it stands suggests these clustersistent with the literature, which reports some kinds of active
may represent bacterial aggregates or some other bacterifingal spore emissions at night when the relative humidity is
containing aerosol. high (Despeés et al. 2012 Elbert et al, 2007 Gabey et al.
Clusters @ and E both show high fluorescence in 2010Q. The nocturnal elevation of the bacteria clusters is in-
FL2_370, which has previously been found to be characteris-consistent with previous bacteria measurements, which tend
tic of grass smut fungal spores such as Bermuda grass smt show peak culturable bacteria concentrations during the
and Johnson grass smubdbey 2011) using the WIBS3. day (Shaffer and Lighthartt997. However, data from com-
However, those species tend to be larger in size thathe parable sites are limited. It is also possible that the WIBS
of ~3um (6—8 um and 6—10 um respectively). It is possibletechnique is more sensitive to non-culturable bacteria that
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Table 5. Cluster averages and standard deviations for the WIBS4 data set. Bottom row shows the number of constituent measurements.

Ay By Cs Dy E4 Fa

FL1280 5438 30421 2087+00 1124+06 86+15  2110+0.0
FL2.280 98+14 702405 1486+03 518+05 1849+0.2 2055+0.0
FL2.370 80+13 620405 492406 119+09  1893+0.1 1822+0.1
Do (um) 16+16 21420 35+14 24415 28+18 49+14
AF 86+20 95+23 206+18 156+19 123435 268+18
# 7934 384 138 92 91 27

Table 6. Gradient,m, of straight line least squares regression fit  Fluorescence scanning electron microscope (SEM) and

through zero of scattered data, and Pearsarfsr cluster time se-  DNA analysis of filter samples were performed as part of

ries from each WIBS instrument. Only profile data from below 5m the same projectHuffman et al, 2013 Prenni et al.2013.

were used to aid comparison. That analysis is consistent with the interpretation of the clus-

ter analysis presented here, with identified species including

Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes,

m 0.92 1.23 218 1.43 Enterobacteriaceae and Pseudomonadaceae bacteria; Basid-

r 0.84 081 073 073 iomycota (club fungi) and Ascomycota (sac fungi) fungal
spores; and smut fungal spores.

WIBS3vs. WIBS4 A, As+Bs B3, C4+Dg C3,Eq4 D3 Ry

O WIBS 3

m or WIBS 4| Az, As+B, - Accumulation mode

400 —

7 Conclusions

200 —

Hierarchical agglomerative cluster analysis was successfully
applied to a subset of WIBS measurements. The remain-
ing measurements were then attributed to the resolved clus-
ters, allowing the generation of respective concentration time
series. The approach was tested and verified on a con-
trolled data set of PSL measurements. Several attribution ap-
proaches were compared, with the most effective being asso-
ciation of each patrticle with the cluster to which it is closest
to inn-dimensional measurement space when normalised for
; . variability and magnitude. The cluster analysis of PSL data,
00:00 1200 0000 1200 0000 1200  00:00 whilst it partially conflated two similar PSLs, successfully

04/08/2011 05/08/2011 06/08/2011 07/08/2011

Time resolved most PSL groups.

Fig. 8. Comparison of cluster time series over an exemplary pe- The technlqut_a was then applied 1o two separate Conte”."
riod. WIBS3 time series shown by red points and WIBS4 time series_por"’me.Ous ‘T’lmb'ent WIBS dat‘?‘ sets. To our kngwledge, this
shown by blue bars. Cluster names and their physical interpretatiots the first time cluster analysis has been applied to a data
detailed in labels. 4 (dark blue) and B (light blue) are stacked ~ S€t of long-term online PBAP measurements. The average
for comparison to A, and G (dark blue) and R (light blue) are ~ measurement values of clusters were qualitatively similar be-
stacked for comparison togBWIBS4 measurements from all pro- tween the two instruments, if differences in instrument de-
file heights are displayed. sign are taken into account. The cluster concentration time
series compare quantitatively well between the two instru-
ments. The ambient cluster results were associated with
are missed by off-line techniques, or insensitive to smalleraerosol types by comparison of the cluster measurement av-
bacteria aerosols which are detected on filters. It is also poserages and time series to the existing literature. It appears
sible that these clusters represent some non-bacteria aerogbhat the cluster analysis resolved the following: accumula-
type which has yet to be characterised using the WIBS. Theaion mode aerosol; bacterial clusters; fungal smut spores; and
nocturnal increase seen in the other fungal spores and bactether fungal spores. It should be noted that there is a paucity
ria clusters may also be due to the collapse of the nocturnabf work characterising the response of the WIBS to different
boundary layer if sources are local . A full interpretation of PBAP types, and, as such, the physical interpretation pre-
the time series of these clusters, plus cluster gradient flux essented here is tentative. Future studies should aim to present
timates, will be presented Robinson et al(2013. systematic laboratory characterisation of PBAP subtypes in

B3, C4+D, - Bacteria

Concentration (L]‘)
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order to allow more rigorous interpretation of WIBS clus-  using a dual channel fluorescence spectrometer, Atmos. Chem.
ter analyses. Future WIBS models are expected to increase Phys., 10, 4453-4466, d&D.5194/acp-10-4453-2012010.
instrument precision and introduce more fluorescence meaGabey, A. M., Stanley, W. R., Gallagher, M. W, and Kaye, P. H.:
surement channels, which will vastly improve the effective- ~ The fluorescence properties of aerosol larger than 0.8 um in ur-
ness of this cluster analysis approach. Future work should ban and tropical rainforest locations, Atmos. Chem. Phys., 11,

. . roadt, TU 5491-5504, dof0.5194/acp-11-5491-2012011.
zg"nti?o‘;’;tge”d this method to real-time discriminatory PBAP . "o "~ "o L "0 "6 Niles, S.. Fell, N, F.. Pan, Y.L, Bot-
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