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Abstract. Hierarchical agglomerative cluster analysis was
performed on single-particle multi-spatial data sets compris-
ing optical diameter, asymmetry and three different fluo-
rescence measurements, gathered using two dual Wideband
Integrated Bioaerosol Sensors (WIBSs). The technique is
demonstrated on measurements of various fluorescent and
non-fluorescent polystyrene latex spheres (PSL) before be-
ing applied to two separate contemporaneous ambient WIBS
data sets recorded in a forest site in Colorado, USA, as part
of the BEACHON-RoMBAS project. Cluster analysis results
between both data sets are consistent. Clusters are tentatively
interpreted by comparison of concentration time series and
cluster average measurement values to the published liter-
ature (of which there is a paucity) to represent the follow-
ing: non-fluorescent accumulation mode aerosol; bacterial
agglomerates; and fungal spores. To our knowledge, this is
the first time cluster analysis has been applied to long-term
online primary biological aerosol particle (PBAP) measure-
ments. The novel application of this clustering technique pro-
vides a means for routinely reducing WIBS data to discrete
concentration time series which are more easily interpretable,
without the need for any a priori assumptions concerning
the expected aerosol types. It can reduce the level of sub-
jectivity compared to the more standard analysis approaches,
which are typically performed by simple inspection of var-
ious ensemble data products. It also has the advantage of
potentially resolving less populous or subtly different par-
ticle types. This technique is likely to become more robust
in the future as fluorescence-based aerosol instrumentation
measurement precision, dynamic range and the number of
available metrics are improved.

1 Introduction

Primary biological aerosol particles (PBAPs) are those which
are emitted or suspended directly from the biosphere to the
atmosphere, and as such are composed of biological matter
(Despŕes et al., 2012). These aerosols can consist of the fol-
lowing: viruses (0.01–0.3 µm); bacteria and bacteria agglom-
erates (0.1–10 µm); fungal and plant spores (1–30 µm); and
pollen (5–100 µm), as well as fragments thereof and of plant
or animal matter (Despŕes et al., 2012; Elbert et al., 2007).
PBAPs can affect human health as allergens or through the
transmission of disease, either naturally or through acts of
bioterrorism (Cresti and Linskens, 2000). There is evidence
that PBAPs may influence the hydrological cycle and climate
by initiating warm ice nucleation processes (Christner et al.,
2008; Möhler et al., 2007; Pratt et al., 2009; Prenni et al.,
2009) or acting as giant cloud condensation nuclei (Möhler
et al., 2007; Pope, 2010).

It is clear that the PBAP classification consists of aerosol
from various diverse sources which may have wide reaching
effects in the atmosphere. In order to predict these potential
effects under future emissions scenarios, it is useful to be able
to identify the group to which a measured PBAP belongs. To
date, this has largely been achieved by the use of off-line
techniques, which, whilst allowing accurate identification of
different aerosols, are labour-intensive, have poor time reso-
lution and introduce significant identification biases. Several
light-induced fluorescence techniques have recently been de-
veloped which characterise the auto-fluorescence of parti-
cles, utilizing the presence of certain biofluorophores such as
NAD(P)H, riboflavin, and tryptophan as indicators of PBAP
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material (Hill et al., 2001; Huffman et al., 2010; Kaye et al.,
2005; Pöhlker et al., 2012; Sivaprakasam et al., 2004, 2011;
Pan et al., 2007, 2012; Pinnick et al., 2013).

Here we focus upon development of analysis techniques
for the Wideband Integrated Bioaerosol Sensor (WIBS)
range of auto-fluorescence detectors (Foot et al., 2008;
Gabey et al., 2010, 2011; Kaye et al., 2005). We demonstrate
the application of a cluster analysis technique to the WIBS
single-particle data, allowing for robust statistical resolution
of different PBAP subgroups.

2 The Wideband Integrated Bioaerosol Sensor

The measurements reported here were performed using two
individual dual Wideband Integrated Bioaerosol Sensors
(Foot et al., 2008; Gabey et al., 2010; Kaye et al., 2005;
Stanley et al., 2011) – a model 3 (WIBS3) and a model
4 (WIBS4). In both these variants, the single-particle elas-
tic scattering intensity (at 633 nm) is measured in the for-
ward direction and at an angular range centred at 90◦. These
measurements are then used to infer the particle optical-
equivalent diameter,DO. The forward scattering component
is measured by a quadrant photomultiplier tube that allows
for measurement of the variation in azimuthal scattering from
the particle. This in turn can be related to particle asymme-
try or shape via an asymmetry factor, AF (e.g.Gabey et al.,
2010). This sizing measurement triggers subsequent pulses
from filtered xenon flash-lamps at 280 nm and 370 nm, de-
signed to excite molecules such as tryptophan and nicoti-
namide adenine dinucleotide phosphate (NAD(P)H) respec-
tively within the particle. Any resultant fluorescence is mea-
sured in two wavelength regimes named FL1 and FL2. This
gives rise to three separate fluorescence channels: in FL1
and FL2 following the 280 nm excitation (named FL1280
and FL2280) and in FL2 following the 370 nm excitation
(named FL2370). The FL1 and FL2 fluorescence detection
regimes overlap spectrally in the WIBS3 but have been sep-
arated in the WIBS4. There is no FL1370 channel as the
370 nm light pulse lies within the FL1 detection regime,
which leads to saturation. NAD(P)H does not fluoresce in
the FL1 wavelength regime and riboflavin only weakly, while
proteins and amino acids are more fluorescent in this chan-
nel. Table1 details the fluorescence excitation and detection
regimes for the two WIBS models. The WIBS4 also incor-
porates additional improvements to the optics configuration,
excitation light delivery, sample inlet and logging software.
A fluorescence baseline is determined from measurements of
fluorescence when the xenon sources are fired in the absence
of particles. This baseline has been subtracted from all flu-
orescence measurements presented here. In total, the WIBS
provides five different measurements of each particle that are
used in subsequent analyses herein: optical size, asymmetry
factor, and three fluorescence measurements.

Previous work has identified different classes of PBAP us-
ing the physical properties measured by the WIBS instrument
(Gabey et al., 2010, 2011; Gabey, 2011). However, this has
so far been achieved by inspection of ensemble histograms
which are then compared with particle standard measure-
ments. This approach is labour-intensive, vulnerable to error,
and may lead to the oversight of minor but important PBAP
subgroups. It also does not easily lend itself to the production
of concentration time series of PBAP subgroups necessary
for more detailed understanding of particle emission sources.

Various cluster analysis techniques have previously been
used to classify single-particle fluorescence data (Pinnick,
2004; Pan et al., 2007, 2012; Pinnick et al., 2013) and mass
spectral data (Murphy et al., 2003), as well as back trajecto-
ries (Cox et al., 2005; Kalkstein et al., 1987; Robinson et al.,
2011). In addition, neural networks have been trained to dy-
namically classify single-particle mass spectral data (Song
et al., 1999). These studies have successfully demonstrated
various approaches for objectively reducing large data sets
so that they become easier to interpret, but have not yet been
applied to data from WIBS or similar commercially avail-
able instruments. Previous studies have also focused on rel-
atively short monitoring times (several days), in contrast to
the data analysed here which cover several weeks. The fol-
lowing section identifies the most appropriate approach for
the identification of a measured particle type. Firstly, sev-
eral different approaches for identifying particle groups by
analysing a subset of the data are discussed. This is followed
by a discussion of particle attribution approaches, where the
particles that were not included in the data subset are com-
pared to and allocated to the previously identified groups.
This allows for the construction of concentration time series
of the different particle types for the entire measurement pe-
riods while only performing time-intensive calculations on
representative subsets of the data.

3 Analysis techniques

The choice of particle grouping technique depends on the
goals of the analysis and the properties of a given data set. We
have chosen the following criteria as fundamental to suitable
WIBS single-particle data analysis:

1. It should not require any assumptions about the types
of particles present in the data set as this precludes the
identification of PBAP types that have not previously
been characterised using similar measurements.

2. It should not require any assumptions about relative
group sizes, as different types of PBAP can be present
in very different concentrations.

The technique also need not be dynamic, as WIBS analysis is
performed offline. Neural network techniques have many at-
tractive qualities such as their dynamic grouping, efficiency
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Table 1.The excitation and detection wavelengths of the two WIBS models.

FL1 280 FL2280 FL2370

Excitation Detection Excitation Detection Excitation Detection

WIBS3 280 nm 320–600 nm 280 nm 410–600 nm 370 nm 410–600 nm
WIBS4 280 nm 310–400 nm 280 nm 420–650 nm 370 nm 420–650 nm

and accumulation of skill. However, they need prior training
with measurements of different particle types, which requires
assumptions about the types of particles present and so can
lead to systematic misinterpretation. Cluster analysis is more
suitable for WIBS data sets as it requires no such assump-
tions. The so-calledk-means approach is a common, efficient
cluster analysis technique. However, it tends to produce clus-
ters of similar group size and spatial extent (Everitt, 1993),
rendering it unsuitable for grouping PBAP. Hierarchical ag-
glomerative (HA) cluster analysis meets all of the stated cri-
teria (Everitt, 1993).

In HA cluster analysis each measured particle is initially
considered to represent its own single-membered cluster. The
algorithm identifies two clusters with the highest degree of
similarity, which are then agglomerated into a new cluster.
This step is repeated until all particles populate a single clus-
ter. The analyst is then required to determine which step
(number of clusters) most appropriately represents the data,
which is a subjective process, but may be informed by sev-
eral statistics. There are several different HA cluster analysis
algorithms, each defined by the respective metric used for
comparing the similarity of clusters.

The average-linkage HA cluster analysis algorithm is used
herein as it is regarded as being robust and is conducive to
groups of different size (Everitt, 1993; Kalkstein et al., 1987).
It has the unique quality that it minimises the sum of squares
within (SSW) cluster groups whilst maximising the sum of
squares between (SSB) cluster groups. Average-linkage de-
fines the two most similar clusters as those with the smallest
distance across ann-dimensional space, wheren is the num-
ber of measurements made of each particle (five in the case of
the WIBS). The distance between two clusters is defined as
the average squared Euclidian distance between all possible
pairs of particles, one from each cluster, or

LA,B =
1

pq

p∑
i=1

q∑
j=1

‖Ai − Bj‖
2, (1)

whereLA,B is the distance between clusters,A is the coordi-
nate vector of cluster A which containsp members, andB is
the coordinate vector of cluster B withq members. The use of
Euclidian distances assumes symmetrically distributed data,
so any variables that appear to be log-normally distributed
are handled as their logarithms so as to give a more sym-
metric distribution. The data set is thenz-score normalised
before analysis.

The choice of the optimum number of clusters to retain
is a subjective step, but it may be informed by various met-
rics (Everitt, 1993; Kalkstein et al., 1987). In average-linkage
clustering the suitability of a solution ofN clusters may be
assessed by inspecting the coefficient of determination:

R2
= 1−

∑
N

sum of squares within groups

total sum of squares
(2)

where a sharp decrease asN decreases is an indicator of the
number of clusters to retain (Kalkstein et al., 1987; Robinson
et al., 2011). An increase in the root mean squared (RMS)
distance between clusters is an indication that two dissimilar
clusters have been agglomerated (Cape et al., 2000). Addi-
tionally, the number of major clusters at each step is defined
as being the number of clusters that are greater than half the
mean cluster group size (Loureiro et al., 2004; Zoubi, 2009).
This final metric is useful for assessing statistically insignif-
icant clusters, but implicitly assumes that clusters are a sim-
ilar size. There is no robust way of determining which clus-
ters are insignificant (i.e. due to rogue measurements) and
which clusters are significant (i.e. due to rare but important
particle types). Any cluster deemed to be major by this met-
ric should be retained in the subsequent analysis. Ultimately,
due to the potential for radically different cluster group sizes,
the analyst must decide which of the most minor clusters are
unlikely to be representative of a physical particle type, and
thus should be discarded. It should be noted that these statis-
tics may indicate more than one solution is statistically sig-
nificant. In such a case any indicated solution may be em-
ployed, with both being physically representative. If the so-
lution comprises a greater number of clusters than there are
particle types, then cluster time series will be split, and con-
versely if the solution comprises fewer clusters than there are
particles types, then cluster time series will be conflated.

An average-linkage clustering algorithm was incorporated
into the pre-existing suite of WIBS analysis tools, the WIBS
AnalysiS Program (WASP). The routine was written using
Igor Pro1, with the numerical routines used to calculate clus-
ter distances written in C and compiled as an external opera-
tion (XOP) library, in order to improve performance. A syn-
thetic test data set was generated, consisting of three groups
of two-dimensional points. Each group consisted of ran-
domly generated points normally distributed around different

1WaveMetrics Inc., OR, USA.
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Fig. 1. Input to cluster analysis routine. Three synthetic separately generated groups (differentiated by
colour) of random, normally distributed data of arbitrary units centred around three separate points.
figure
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Fig. 1. Input to cluster analysis routine. Three synthetic, separately
generated groups (differentiated by colour) of random, normally
distributed data of arbitrary units centred around three separate
points.

centres (Fig.1). The WASP average-linkage routine statistics
indicate that the three-cluster solution is optimum (Fig.2).
This solution correctly attributes 99 % of points to their orig-
inal groups (Fig.3). The only incorrect determinations are of
points at the boundary between purple and green points.

4 Cluster analysis of WIBS data

The application of this approach to WIBS data presents some
additional issues. Firstly, an implicit assumption of cluster
analysis is that clustered particle types are static, that is that
they do not evolve in the atmosphere through chemical or
physical processing. When this is not the case, one particle
type may be resolved as two or more clusters which represent
different stages in the evolution of the particle. Additionally,
the variables used in clustering should ideally not be inter-
dependent, but, for any given particle composition, larger
particles will fluoresce more intensely, despite no increase
in their quantum yield (inherent ability to fluoresce). This
means that WIBS fluorescence measurements are a convolu-
tion of particle size and fluorescence quantum yield. Inspec-
tion of WIBS measurements of monodisperse polystyrene la-
tex spheres2 (PSLs), which serve as particles of consistent in-
herent fluorescent ability but different sizes, shows that this
effect is not compensated for by normalisation to the total
elastic scattering or side scattering measurements also pro-
vided by the WIBS. As such, cluster analysis was performed
using un-normalised WIBS fluorescence measurements. It

2Manufactured by Polysciences Inc., PA, USA.
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Fig. 2. Average-linkage statistics. The optimum solution as indi-
cated by the statistics is highlighted.

should be noted that clustering will be weighted towards re-
solving particle groups that are separated by size, at the ex-
pense of resolving inherent fluorescent ability.

Additionally, a fluorescence detection channel can be satu-
rated by some very large or very fluorescent particle, usually
pollen or other large PBAPs. Typically around 5 % of ambi-
ent particles measured saturate at least one of the three fluo-
rescence measurements. As the saturating particles are likely
to be associated with a particular PBAP type, they have been
included in the cluster analysis. During interpretation of the
clustering solution, it should be noted that a cluster of saturat-
ing measurements may conflate different aerosol types (e.g.
pollen subtypes) which would have been resolved had the
detection range of the instrument been greater. Additionally,
saturating aerosols may be conflated with highly fluorescent,
but not saturating, aerosols, which can appear close in flu-
orescence space despite having relatively different quantum
yields.

Data are assumed to be normally or log-normally dis-
tributed. In reality, the distribution of the data for a given
measurement type is a convolution of measurement noise and
the physical distribution of that property, with the relative
contribution of each to the combined distribution related to
their width. Inspection of the PSL data showed the inherent
measurement noise of the WIBS to be normally distributed.
Inspection of ambient data showed the overall distribution of
size and AF measurements to be log-normally distributed,
so these measurements were converted to log space prior
to clustering. The distribution of fluorescence data is more
complicated, with measurement values of zero and full satu-
ration both possible. Given this, fluorescence measurements
are assumed to be normally distributed. If this assumption
is wrong, particles of low fluorescence are less likely to be
resolved as separate clusters.

The computer processing time for the cluster analysis of
a given data set grows approximately as the square of the
size of the data set. An ambient data set may consist of
measurements of∼ 1× 106 particles, which is impractically
large for the WASP cluster analysis routine. Instead clus-
ters are characterised using a randomly chosen subset of

Atmos. Meas. Tech., 6, 337–347, 2013 www.atmos-meas-tech.net/6/337/2013/
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Fig. 3. Cluster analysis results, three-cluster solution. Each cluster indicated by colour. Three separate
groups are resolved.
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Fig. 3. Cluster analysis results, three-cluster solution. Each cluster
indicated by colour. Three separate groups are resolved.

∼ 1× 104 particles, which takes approximately 4 h3. Once
a suitable clustering solution has been chosen by inspection
of the statistics, the remaining data are assigned to the dif-
ferent clusters by comparison to the cluster centroid. Mea-
surements are again converted so that they are symmetrically
distributed for this assignment. If the data belonging to each
cluster form a distinct mode, then the mean and standard de-
viation are calculated from a Gaussian fit. This has the advan-
tage of accurately identifying the modal centre, even if the
entire distribution does not fall within the measurement range
of the instrument. If a mode is not apparent (for instance
when fluorescence measurements are saturated or zero, or
there are a small number of measurements), the mean and
standard deviation are calculated from the data themselves.
Several different attribution algorithms were tested to find
the most appropriate.

Two metrics can be used to assess the similarity of a par-
ticle measurement to a cluster. Firstly, the proximity of an
individual measurement to the cluster centroid can be calcu-
lated after normalising each variable by its population stan-
dard deviation to account for differences in magnitude and
variability. This is henceforth referred to as “population nor-
malised distance” and is expressed by

di =

∣∣∣∣ci − p

σ pop

∣∣∣∣ , (3)

wheredi is the distance of the particle measurement from
clusteri, ci is the position vector of clusteri in n-dimensional
space, wheren is the number of measured variables,p is the
position vector of the particle inn-dimensional space, and

3Using a 3.4 GHz quad core processer, 8 GB RAM, 64-bit OS.

σ pop are the standard deviations of each measured variable
across the entire data subset used in the cluster analysis. This
approach does not take into account the spread (instrumental
or physical) in the cluster distributions, but merely compares
a particle measurement to the cluster modal centre.

Secondly, the population normalised distance approach
can be extended by expressing the distance in each dimension
in terms of the number of cluster standard deviations. This is
henceforth referred to as “cluster normalised distance” and is
expressed by

di =

∣∣∣∣ci − p

σ i

∣∣∣∣ , (4)

where the symbols have their previous meaning andσ i is
a vector of the standard deviations of clusteri for each of
the measured variables. This approach is conceptually pleas-
ing in that it accounts for the spread of the variable values
within the cluster and so represents the statistical uncertainty
in apportioning a single-particle measurement to one cluster
or another. However, this approach relies on the standard de-
viations of the distributions being precise. In practice, some
clusters can display standard deviations that do not reflect
the true spread of variable, which can then lead to system-
atic misattribution. This can be the case where less populous
clusters do not form strong modes. It may also occur where
standard deviations are estimated for modes that do not fall
entirely within the measurement range of the instrument.

There are then two ways to use either of thesedi met-
rics to apportion the particle to a cluster. Firstly, the parti-
cle may be apportioned to the cluster which has the smallest
di value, henceforth referred to as “simple attribution”. Sec-
ondly, a fraction of each particle’s count may be apportioned
to each cluster that is inversely proportional to the distance
of the particle from the cluster, such that the total of the frac-
tions for any particle is unity. This is henceforth referred to
as “fuzzy attribution”, and the fraction attributed to clusteri

is expressed by

Fi =

(
di

∑ 1

di

)−1

, (5)

where the symbols have their previous meanings. Any parti-
cles that are further away than a limit distance,dl , are con-
sidered insignificant and deemed “unclassified”.dl is chosen
as the minimum value, which also results in the unclassified
particles being a minor group.

5 Cluster analysis of polystyrene latex spheres

Five different PSL types were measured sequentially using
the WIBS4: 0.99± 0.01 µm standard4; 1± < 0.1 µm fluo-
rescent; 1.90± 0.02 µm5; 3.005± 0.027 µm standard4; and

4Manufactured by Polysciences Inc., PA, USA.
5Manufactured by Duke Scientific Corp., CA, USA.
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342 N. H. Robinson et al.: Cluster analysis of WIBS data

AMTD
5, 1–36, 2012

Cluster analysis of
WIBS data

N. H. Robinson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0.8

0.6

0.4

0.2

0.0

n
o

rm
ed

 R
2

20 15 10 5
No. of clusters

5.5

5.0

4.5

4.0

3.5

R
M

S

7

6

5

4

3

2

1

N

 R
2

 RMS
 N

Fig. 4. PSL cluster analysis statistics. The 13 cluster solution was chosen due to the concomittant drop in R2

and N , and the rise in RMS.

1 µm 1 µm fl 2µm 3 µm 4.76 µm
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Table 2. Average modal centres of PSL data input to cluster analysis algorithm.
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Fig. 4. PSL cluster analysis statistics. The 13 cluster solution was chosen due to the concomit-
tant drop in R2 and N, and the rise in RMS.

32

Fig. 4. PSL cluster analysis statistics. The 13-cluster solution was
chosen due to the concomitant drop inR2 andN , and the rise in
RMS.

4.76± 0.04 µm standard4. The excitation maxima of the flu-
orescent PSLs are 365 nm, 388 nm and 412 nm, with respec-
tive emission maxima at 447 nm, 447 nm and 473 nm. As
such, the fluorescent PSL would be expected to be detected
mainly in the FL2370 channel, with potential contributions
to the other channels, depending on the width of the excita-
tion/emission spectra. It should be noted that standard PSLs
are also fluorescent but to a lesser extent, with fluorescence
occurring due to 280 nm excitation. The modal values and
relative standard deviations of the data input to the cluster
analysis algorithm are shown in Table2. The 13-cluster so-
lution was chosen due to the observed decrease inR2 and
N , and the concomitant rise in RMS (Fig.4). Of these 13
clusters, the six major clusters (as defined in Sect. 3) were
retained for subsequent analysis (Table3). It should be noted
that, in this instance, the different PSLs are likely to be
present in concentrations of a similar order of magnitude,
meaning that each PSL type is likely to be resolved as a ma-
jor cluster. Figure5 shows the input single-particle size mea-
surements as a function of time, coloured by cluster, and,
below that, a comparison of cluster concentration time se-
ries generated using the attribution methods described above.
Both fuzzy attribution sets used a significant distance limit
(dl) of five, which was set at the minimum value at which
most particles are successfully attributed.

The PSL cluster analysis successfully resolves much of the
data, with most of the PSL types individually represented by
a cluster. In particular, the 3 and 4.76 µm PSL data are sep-
arately resolved as clusters E and F respectively. The 1 µm
fluorescent PSL data are successfully resolved, although, in
this solution, they are split between clusters A and B, which
are qualitatively similar. It is not clear if this split is phys-
ically real (on the basis of different AF modes) or artificial.
The 1 µm non-fluorescent PSL data are represented by cluster
C. The majority of 2 µm PSL data are resolved as cluster D.
However, a significant amount of these data belong to cluster
C, apparently erroneously. This is likely due to the similarity
of the 1 µm and 2 µm PSLs, which are very close in WIBS
measurement space.

Table 2.Average modal centres of PSL measurements input to clus-
ter analysis algorithm.

1 µm 1 µm fl 2 µm 3 µm 4.76 µm

FL1 280 89± 0.2 14± 0.6 377± 0.1 860± 0.1 2083± 0.1
FL2 280 5± 1.8 2038± 0.1 10± 1.2 54± 3.7 252± 0.2
FL2 370 6± 2.2 1543± 0.4 9± 1.7 121± 0.4 241± 0.3
DO (µm) 1.18± 1.3 1.19± 1.3 1.91± 1.2 3.49± 1.1 5.16± 1.1
AF 7.3± 1.4 7.1± 1.4 3.8± 1.6 4.7± 1.4 5.8± 1.4

The population normalised distance simple attribution ap-
proach appears to represent the data more satisfactorily than
the other attribution algorithms. It generates concentration
time series reflective of the clustering solution, with the ex-
ception of very small concentrations of cluster C particles
during the introduction of 3 and 4.7 µm PSL. The two cluster
normalised distance approaches attribute the majority of the
non-fluorescent PSL to cluster C, presumably because cluster
C has a greater spread in values than the other clusters. The
population normalised distance fuzzy attribution approach,
while correctly attributing the majority of particles to the cor-
rect clusters, attributes a significant number of the particles
to other clusters.

The population normalised distance simple attribution is
used for the rest of the presented analysis, given the com-
bined advantages of transparent methodology, lack of sensi-
tivity to potentially spurious distribution widths, and the lack
of the need for setting a subjective distance limit.

6 Cluster analysis of two ambient WIBS data sets

The WIBS3 and WIBS4 were deployed as part of the Bio-
hydro-atmosphere interactions of Energy, Aerosols, Carbon,
H2O, Organics and Nitrogen–Rocky Mountain Biogenic
Aerosol Study project (BEACHON-RoMBAS6), which was
performed between 20 June 2011 and 23 August 2011 in
the Manitou Experimental Forest, 35 km west of Colorado
Springs, CO, USA, 2300 m a.s.l. This project aims to inves-
tigate the effect biogenic aerosol emissions have on regional
precipitation in the central US, and a full characterisation of
aerosol properties and fluxes will be presented inRobinson
et al.(2013). The WIBS3 was positioned around 200 m away
from the main measurement site and sampled from∼ 1 m
above the forest floor via∼ 0.5 m of 1/4′′ o.d. stainless steel
tubing. The WIBS4 sampled via∼ 0.5 m of 1/4′′ stainless
steel tubing as part of an automated profiling system run-
ning up the side of the main site measurement tower. WIBS4
profiles were regularly performed between 3.5 m and 20 m
above the forest floor, measuring below, in, and above the
forest canopy.

6http://web3.acd.ucar.edu/beachon/.
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Table 3. Cluster average values and relative standard deviations of the six major clusters of the 13-cluster solution. Bottom row shows the
number of constituent measurements. Minor clusters have been disregarded.

A B C D E F

FL1 280 12± 0.5 11± 0.7 229± 0.7 373± 0.1 889± 0.1 2106± 0.0
FL2 280 2060± 0.0 2060± 0.0 12± 4.6 9± 1.2 19± 1.6 212± 0.2
FL2 370 1859± 0.0 1853± 0.0 11± 5.3 7± 1.8 15± 1.5 112± 0.6
DO (µm) 1.07± 1.2 1.10± 1.3 1.38± 1.5 1.82± 1.2 3.43± 1.1 5.02± 1.1
AF 3.9± 1.1 7.2± 1.3 5.0± 1.6 3.0± 1.3 4.46± 1.2 5.2± 1.3
# 281 1995 841 288 436 646

Fig. 4. PSL cluster analysis statistics. The 13 cluster solution was chosen due to the concomittant drop
in R2 and N , and the rise in RMS.
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Fig. 5. Top plot shows the single particle data input to the cluster analysis routine (∼ 30 % of all the
particles that were measured) coloured by their cluster, as defined in Table 3. Particle size and fluores-
cence for each retrieved cluster are detailed in the legend. Measured PSL optical diameters are detailed
in boxes, with the actual PSL physical diameters in brackets. Below are cluster concentration time series
after the remaining particles are attributed to the resolved clusters, using four different attribution algo-
rithms, detailed on the left. The x-axis is discontinuous between the introduction of different PSLs. The
y-axes are inconsistent between subplots.
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Fig. 5. Top plot shows the single-particle data input to the cluster analysis routine (∼ 30 % of all the particles that were measured) coloured
by their cluster, as defined in Table3. Particle size and fluorescence for each retrieved cluster are detailed in the legend. Measured PSL
optical diameters are detailed in boxes, with the actual PSL physical diameters in brackets. Below are cluster concentration time series after
the remaining particles are attributed to the resolved clusters, using four different attribution algorithms, detailed on the left. The x-axis is
discontinuous between the introduction of different PSLs. The y-axes are inconsistent between subplots.

For the WIBS3 data set, the four-cluster solution was se-
lected based on the sharp drop inR2 and rise in RMS (Fig.6).
All four clusters were retained for attribution (Table4).

For the WIBS4 data set, the ten-cluster solution was se-
lected based on the drop inR2 and concomitant rise in
RMS distance (Fig.7). The six most populous of these clus-
ters were retained for attribution, with the discarded clusters
comprising five measurements or fewer (Table5). Note that
the three-cluster solution is also statistically significant, but
it was considered likely that it was conflating particle types.

There is a paucity of published work characterising the
measurement response of the WIBS to different aerosol types
under controlled laboratory conditions. Tentative physical in-
terpretations are presented here based on the existing litera-
ture; however, interpretation of the results of this clustering
technique will be facilitated by further characterisation work.

The refinements made between WIBS models are likely
to make certain quantitative comparisons of measurements

impossible: the FL1 and FL2 measurement regimes have
changed between instruments (Table1), which could poten-
tially lead to measurements of slightly different fluorescence
properties of the same aerosol population; the reduced instru-
ment noise in the WIBS4 should generally lead to smaller
standard deviation values; and the improved fluorescence de-
tection has led to lower fluorescence baselines, particularly
in the FL2280 channel. However, the clustering solutions
of the two WIBS models are qualitatively similar. The clus-
tering statistics indicate that cluster analysis has resolved
a larger number of clusters using the WIBS4 data set than
using the WIBS3. This may be due to the greater precision
of the WIBS4 allowing the resolution of particle groups that
are conflated in analysis of the WIBS3 data. Inspection of
the WIBS4 clustering solutions shows that clusters A4 and
B4 are agglomerated in the nine-cluster solution, and clusters
C4 and D4 are agglomerated in the six-cluster solution (with
intervening solutions agglomerating discarded clusters). This

www.atmos-meas-tech.net/6/337/2013/ Atmos. Meas. Tech., 6, 337–347, 2013
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Fig. 6. Ambient WIBS3 data set clustering statistics. Four cluster solution chosen due concomittent drop
in R2 and rise in RMS.
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Fig. 6. Ambient WIBS3 data set clustering statistics. Four-cluster
solution chosen due concomitant drop inR2 and rise in RMS.

Table 4. Cluster averages and relative standard deviations for the
WIBS3 data set. Bottom row shows the number of constituent mea-
surements.

A3 B3 C3 D3

FL1 280 25± 3.1 1725± 6.6 87± 1.6 1542± 0.5
FL2 280 44± 1.4 230± 0.5 331± 0.4 1475± 0.2
FL2 370 90± 1.6 136± 0.1 1224± 0.3 1885± 0.1
DO (µm) 1.6± 1.6 2.9± 1.6 3.1± 1.7 4.4± 1.6
AF 15.9± 1.8 21.2± 1.5 17.5± 2.2 18.5± 1.5
# 9670 456 243 43

suggests that these clusters are the most statistically similar
of the six retained clusters, and, as such, their concentrations
may need to be summed for comparison to the WIBS3 solu-
tion.

Clusters A3, A4 and B4 are likely to represent the tail end
of the ambient accumulation mode, being relatively abun-
dant, small in diameter and non-fluorescent. As such, it is
likely to comprise several different non-PBAP sources.

Clusters B3, C4 and D4 show high fluorescence in
FL1 280. The bacteriaP. syringaeand P. fluorescenshave
previously been shown to fluoresce strongly in FL1280 us-
ing the WIBS3 (Gabey, 2011). Bacteria are often present in
the atmosphere as bacteria aggregate clumps or as a con-
stituent part of some other aerosol (Despŕes et al., 2012).
Aerosols containing culturable bacteria have been reported to
have aerodynamic diameters of∼ 4 µm at several continental
sites (Despŕes et al., 2012; Tong and Lighthart, 2000; Wang
et al., 2007), which is similar to the cluster diameters of∼ 2–
4 µm. The relatively high cluster AFs are consistent with bac-
terial aggregates, which are expected to be highly asymmet-
ric. Thus, this literature as it stands suggests these clusters
may represent bacterial aggregates or some other bacteria-
containing aerosol.

Clusters C3 and E4 both show high fluorescence in
FL2 370, which has previously been found to be characteris-
tic of grass smut fungal spores such as Bermuda grass smut
and Johnson grass smut (Gabey, 2011) using the WIBS3.
However, those species tend to be larger in size than theDO
of ∼ 3 µm (6–8 µm and 6–10 µm respectively). It is possible
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Fig. 7. Ambient WIBS4 data set clustering statistics. Ten-cluster
solution chosen due concomitant drop inR2 and rise in RMS.

that these clusters represent some other fungal spore. C3
and E4 have substantially different FL2280 measurements,
which is likely to be due to the stated differences between
WIBS models. Previous work has not yet established if high
FL2 280 levels are typical of grass smut fungal spore mea-
surements in the WIBS4.

Clusters D3 and F4 are very likely to represent fungal
spores, as they are highly fluorescent in all three channels, are
relatively large and asymmetric (Gabey, 2011). While the av-
erage diameter is much smaller than that of pollen, it is likely
that any pollen detected has been conflated with this cluster,
as it is also highly fluorescent in all channels.

Population normalised distance simple attribution was
used to generate concentration time series for the clusters re-
solved by each instrument. The time series gradient of scatter
and Pearson’sr values are shown in Table6 with the time se-
ries for each cluster shown in Fig.8. The time series from
each instrument compare very well, especially considering
that some of the less populous clusters are close to the limit
of detection of the instruments. The time series show clear
separation of different factors. The accumulation mode and
smut fungal spore clusters were found to respond to meteoro-
logical variables such as precipitation and relative humidity
(Huffman et al., 2013), while the bacteria and other fungal
spore clusters show a strong nocturnal profile.

The diurnal profiles are largely consistent with the physi-
cal interpretation of the clusters. It should be noted that the
extreme upper size range of the accumulation mode, which
these clusters represent, may not have the same source profile
as the rest of the accumulation mode. The nocturnal elevation
of the concentrations of the other fungal spore clusters is con-
sistent with the literature, which reports some kinds of active
fungal spore emissions at night when the relative humidity is
high (Despŕes et al., 2012; Elbert et al., 2007; Gabey et al.,
2010). The nocturnal elevation of the bacteria clusters is in-
consistent with previous bacteria measurements, which tend
to show peak culturable bacteria concentrations during the
day (Shaffer and Lighthart, 1997). However, data from com-
parable sites are limited. It is also possible that the WIBS
technique is more sensitive to non-culturable bacteria that
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Table 5.Cluster averages and standard deviations for the WIBS4 data set. Bottom row shows the number of constituent measurements.

A4 B4 C4 D4 E4 F4

FL1 280 5± 3.8 30± 2.1 2087± 0.0 1124± 0.6 86± 1.5 2110± 0.0
FL2 280 98± 1.4 702± 0.5 1486± 0.3 518± 0.5 1849± 0.2 2055± 0.0
FL2 370 80± 1.3 620± 0.5 492± 0.6 119± 0.9 1893± 0.1 1822± 0.1
DO (µm) 1.6± 1.6 2.1± 2.0 3.5± 1.4 2.4± 1.5 2.8± 1.8 4.9± 1.4
AF 8.6± 2.0 9.5± 2.3 20.6± 1.8 15.6± 1.9 12.3± 3.5 26.8± 1.8
# 7934 384 138 92 91 27

Table 6. Gradient,m, of straight line least squares regression fit
through zero of scattered data, and Pearson’sr, for cluster time se-
ries from each WIBS instrument. Only profile data from below 5 m
were used to aid comparison.

WIBS3 vs. WIBS4 A3, A4 + B4 B3, C4 + D4 C3, E4 D3, F4

m 0.92 1.23 2.18 1.43
r 0.84 0.81 0.73 0.73

AMTD
5, 6387–6422, 2012

Cluster analysis of
WIBS data

N. H. Robinson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

400

200

0

00:00
04/08/2011

12:00 00:00
05/08/2011

12:00 00:00
06/08/2011

12:00 00:00
07/08/2011

Time

50

0

20

10

0

C
o

n
ce

n
tr

at
io

n
 (

L
1-

)

20

10

0

 WIBS 3
 or  WIBS 4 A3, A4+B4 - Accumulation mode 

B3, C4+D4 - Bacteria

C3, E4 - Plant spores

D3, F4 - Fungal Spores

Fig. 8. Comparison of cluster time series over an exemplary period. WIBS3 time series shown
by red points and WIBS4 time series shown by blue bars. Cluster names and their physical
interpretation detailed in labels. A4 (dark blue) and B4 (light blue) are stacked from comparison
to A3, and C4 (dark blue) and D4 (light blue) are stacked for comparison to B3. WIBS4 mea-
surements from all profile heights are displayed. Rainfall (mean as a function of height) at the
profile tower site is displayed at the bottom (log scale).

6422

Fig. 8. Comparison of cluster time series over an exemplary pe-
riod. WIBS3 time series shown by red points and WIBS4 time series
shown by blue bars. Cluster names and their physical interpretation
detailed in labels. A4 (dark blue) and B4 (light blue) are stacked
for comparison to A3, and C4 (dark blue) and D4 (light blue) are
stacked for comparison to B3. WIBS4 measurements from all pro-
file heights are displayed.

are missed by off-line techniques, or insensitive to smaller
bacteria aerosols which are detected on filters. It is also pos-
sible that these clusters represent some non-bacteria aerosol
type which has yet to be characterised using the WIBS. The
nocturnal increase seen in the other fungal spores and bacte-
ria clusters may also be due to the collapse of the nocturnal
boundary layer if sources are local . A full interpretation of
the time series of these clusters, plus cluster gradient flux es-
timates, will be presented inRobinson et al.(2013).

Fluorescence scanning electron microscope (SEM) and
DNA analysis of filter samples were performed as part of
the same project (Huffman et al., 2013; Prenni et al., 2013).
That analysis is consistent with the interpretation of the clus-
ter analysis presented here, with identified species including
Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes,
Enterobacteriaceae and Pseudomonadaceae bacteria; Basid-
iomycota (club fungi) and Ascomycota (sac fungi) fungal
spores; and smut fungal spores.

7 Conclusions

Hierarchical agglomerative cluster analysis was successfully
applied to a subset of WIBS measurements. The remain-
ing measurements were then attributed to the resolved clus-
ters, allowing the generation of respective concentration time
series. The approach was tested and verified on a con-
trolled data set of PSL measurements. Several attribution ap-
proaches were compared, with the most effective being asso-
ciation of each particle with the cluster to which it is closest
to in n-dimensional measurement space when normalised for
variability and magnitude. The cluster analysis of PSL data,
whilst it partially conflated two similar PSLs, successfully
resolved most PSL groups.

The technique was then applied to two separate contem-
poraneous ambient WIBS data sets. To our knowledge, this
is the first time cluster analysis has been applied to a data
set of long-term online PBAP measurements. The average
measurement values of clusters were qualitatively similar be-
tween the two instruments, if differences in instrument de-
sign are taken into account. The cluster concentration time
series compare quantitatively well between the two instru-
ments. The ambient cluster results were associated with
aerosol types by comparison of the cluster measurement av-
erages and time series to the existing literature. It appears
that the cluster analysis resolved the following: accumula-
tion mode aerosol; bacterial clusters; fungal smut spores; and
other fungal spores. It should be noted that there is a paucity
of work characterising the response of the WIBS to different
PBAP types, and, as such, the physical interpretation pre-
sented here is tentative. Future studies should aim to present
systematic laboratory characterisation of PBAP subtypes in
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order to allow more rigorous interpretation of WIBS clus-
ter analyses. Future WIBS models are expected to increase
instrument precision and introduce more fluorescence mea-
surement channels, which will vastly improve the effective-
ness of this cluster analysis approach. Future work should
aim to extend this method to real-time discriminatory PBAP
monitoring.
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