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Abstract. This paper presents the current status of devel-
opment of a three-dimensional variational data assimilation
system (3D-Var). The system can be used with different nu-
merical weather prediction models, but it is mainly designed
to be coupled with the Regional Atmospheric Modelling Sys-
tem (RAMS). Analyses are given for the following param-
eters: zonal and meridional wind components, temperature,
relative humidity, and geopotential height.

Important features of the data assimilation system are the
use of incremental formulation of the cost function, and the
representation of the background error by recursive filters
and the eigenmodes of the vertical component of the back-
ground error covariance matrix. This matrix is estimated by
the National Meteorological Center (NMC) method.

The data assimilation and forecasting system is applied to
the real context of atmospheric profiling data assimilation,
and in particular to the short-term wind prediction. The anal-
yses are produced at 20 km horizontal resolution over central
Europe and extend over the whole troposphere. Assimilated
data are vertical soundings of wind, temperature, and rela-
tive humidity from radiosondes, and wind measurements of
the European wind profiler network.

Results show the validity of the analyses because they
are closer to the observations (lower root mean square error
(RMSE)) compared to the background (higher RMSE), and
the differences of the RMSEs are in agreement with the data
assimilation settings.

To quantify the impact of improved initial conditions on
the short-term forecast, the analyses are used as initial con-
ditions of three-hours forecasts of the RAMS model. In par-
ticular two sets of forecasts are produced: (a) the first uses
the ECMWF analysis/forecast cycle as initial and boundary
conditions; (b) the second uses the analyses produced by the

3D-Var as initial conditions, then it is driven by the ECMWF
forecast.

The improvement is quantified by considering the horizon-
tal components of the wind, which are measured at asynop-
tic times by the European wind profiler network. The results
show that the RMSE is effectively reduced at the short range.
The results are in agreement with the set-up of the numerical
experiment.

1 Introduction

Modern numerical weather prediction (NWP) data assimi-
lation systems use information from a range of sources to
provide the best estimate of the atmospheric state (i.e. the
analysis) at a given time. These systems combine informa-
tion coming from the observations, an a priori estimate of
the atmospheric state (the background or first-guess field),
detailed error statistics, and the law of physics.

Nowadays, increased computing power coupled with
greater access to real-time a-synoptic data is paving the way
toward a new generation of high-resolution (10 km or less
in the horizontal plane) operational mesoscale analysis and
forecasting systems (Zou et al., 1995; Sun and Crook, 1997;
Lazarus et al., 2002; Kalnay, 2003; Barker et al., 2004; Zu-
panski et al., 2005; Huang et al., 2009). Moreover, better ini-
tial conditions are increasingly considered as of the utmost
importance for a range of NWP applications, in particular at
the short range (0–12 h, Zhang et al., 2005; Schenkman et
al., 2011; Sun et al., 2012; Wang et al., 2013; Sun and Wang,
2013).

The variational data assimilation systems have the ad-
vantage to assimilate quantities not trivially related to the
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standard atmospheric variables, such as radiances, and they
include the imposition of dynamic balance either by the
model itself (4D-Var) or through the explicit use of balance
equations. In recent years, these advantages have fostered the
implementation of variational data assimilation systems in
limited area models (Zou et al., 1995; Barker et al., 2004;
Huang et al., 2009; Zupanski et al., 2005). These systems
replaced previously used schemes such as optimal interpola-
tion (Parrish and Derber, 1992; Rabier et al., 2000).

This paper shows the development of a three-dimensional
stand-alone data assimilation system tailored for the Re-
gional Atmospheric Modeling System (RAMS; Cotton et al.,
2003; Pielke, 2002). In particular, the data assimilation sys-
tem can use the RAMS fields as background and the analyses
can be used to initialize the RAMS model (cycling mode).

The analysis system uses the incremental formulation of
the cost function (Courtier et al., 1994), which reduces the
computational cost, and a control variable transform to make
the minimization of the cost function practicable.

This paper shows an upgrade of the 2D-Var data assim-
ilation system reported by Federico (2013). Two important
features were introduced: (a) the use of the 3D-Var method,
which replaces the 2D-Var; (b) the option to run the anal-
ysis on the same horizontal coordinate system as RAMS,
which simplifies the interaction between the data assimila-
tion scheme and the meteorological model.

It is important to mention that a 4D-Var data assimila-
tion system is already in use for RAMS, designed as RAM-
DAS (Regional Atmospheric Modeling and Data Assimila-
tion System; Zupanski et al., 2005; Polkinghorne et al., 2010;
Polkinghorne and Vukicevic, 2011). Nevertheless, there are
two main reasons, practical and scientific, for implementing
the 3D-Var system of this paper:

1. The RAMDAS system uses the RAMS model and
its adjoint but it is not part of the RAMS model
suite. RAMS comes with other data assimilation sys-
tems, such as nudging or dynamical adaptation (Pielke,
2002), but without a variational data assimilation sys-
tem. This work aims to fill this void by realizing a sim-
ple but effective variational data assimilation system,
suitable for applications and operational implementa-
tion in small meteorological centres. The 3D-Var, in-
deed, requires less computational resources compared
to 4D-Var (Rabier et al., 2000) or ensemble Kalman
filters (Anderson, 2001). Compared to the 4D-Var, it
does not require the tangent linear and adjoint mod-
els and is simpler to implement. Moreover, the 3D-Var
can be effective at improving the initial model state
and has the advantages of variational data assimilation
systems.

2. To the knowledge of the author, the RAMDAS sys-
tem was mainly developed and applied at the cloud-
resolving scales, while the 3D-Var system of this pa-
per is designed for larger scales (synoptic, meso-α),

as emphasized by the model resolution adopted in this
work and by the balance equations used in the 3D-Var.

As a consequence of the last point, there are also technical
differences between RAMDAS and the 3D-Var, the most im-
portant difference being that the 3D-Var uses the incremental
formulation of the cost function differently from RAMDAS.
The incremental formulation of the cost function was chosen
because it reduces the computational cost and it improves the
conditioning of the cost function because of the linearization
required in its implementation. Even though the incremen-
tal formulation of the cost function might not be suitable for
convective-scales because of the linearization required in its
formulation, recent studies show the applicability of this ap-
proach to the convective scale for the WRF (Weather Re-
search and Forecasting) model (Sun et al., 2012; Wang et al.,
2013).

Another difference between the 3D-Var and RAMDAS is
that the former uses the zonal and meridional wind compo-
nents as control variables while RAMDAS uses the velocity
potential and stream function. Using the velocity potential
and stream function changes the subspace in which the cor-
relations are calculated and allows for a simpler modelling
of the covariances. This makes saves considerable computing
time. Nevertheless, numerical investigations (Sun and Wang,
2013) have shown differences between the two choices that
affect the final analysis. Because of this difference, the zonal
and meridional wind components, which are prognostic vari-
ables of RAMS, have been chosen as control variables in the
3D-Var system.

Another difference between the two data assimilation sys-
tems, which is worth mentioning here, is the different rep-
resentation of the background error covariance matrix. This
matrix is directly modelled in RAMDAS as square root cor-
relation matrices, while a control variable transform is used
in the 3D-Var. The RAMDAS approach avoids the need for
an eigenvalue–eigenvector decomposition, while the 3D-Var
approach can be used to filter modes responsible for a (small)
fraction of the error variance, thus requiring less computa-
tional resources.

Even though the data assimilation system is continuously
under development, it proves to be fast and reliable and can
be used for real applications. Hence, while the basic aim of
the paper is to show the general characteristics of the 3D-Var,
an application to the data assimilation of tropospheric pro-
files is also given. Indeed, the numerical experiment set-up of
this paper should be of interest to the atmospheric profiling
community because it can be used in OSE (observing sys-
tem experiment), which allows for the objective assessment
and comparison of existing observing systems, or in OSSE
(observing system simulation experiment), whose aim is to
show the impact of next generation observing systems in a
controlled software environment such as weather prediction
models (Otkin et al., 2011; Moninger et al., 2010).
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The paper is divided as follows: Sect. 2 provides details
about the data assimilation system; Sect. 3 shows the numer-
ical experiment set-up; Sect. 4 gives the results of the ap-
plication to the short-term wind forecast; and Sect. 5 gives
conclusions.

2 The data assimilation system

The basic goal of the 3D-Var algorithm is to produce an op-
timal estimate of the true atmospheric state at analysis time
through iterative solution of a prescribed cost function (Ide
et al., 1997):

J (x) =
1

2
(x − xb)T B−1(x − xb)

+
1

2

(
yo

− H(x)
)T R−1(

yo
− H(x)

)
, (1)

whereJ (x) is the cost function,x is the state vector,xb is
the background state,H is the forward observational oper-
ator, yo is the vector of the observations, andB andR are
the background and observational errors covariance matri-
ces, respectively. The observational errors covariance matrix
R is the sum of the covariance of instrumental errors matrix
(E) and of the covariance of representativeness errors matrix
(F), i.eR = E + F.

The problem can be summarized as the iterative solution
of Eq. (1) to find the analysis statexa that minimizesJ (x).
This solution represents the a posteriori maximum likelihood
(minimum variance) estimate of the true state of the atmo-
sphere given the two sources of a priori data: backgroundxb

and observationsyo (Lorenc, 1986).
For a model statex with n ∼ 106–107 degrees of freedom,

the direct solution of Eq. (1) is practically unfeasible because
it requires∼ O(n2) calculations. One practical implementa-
tion is to perform a preconditioning via a control variableν

defined byx′
= Uν, wherex′

= x −xb is the model variable
increment. The transformU is chosen to satisfy the relation-
shipB = UUT . Using the incremental formulation (Courtier
et al., 1994) and the control variable transform, Eq. (1) may
be rewritten:

J =
1

2
νT ν +

1

2

(
yo′

− HUν
)T

R−1
(
yo′

− HUν
)
, (2)

whereyo′

= yo
− H(xb) is the innovation vector andH is

the linearization of the nonlinear observation operatorH1. In
this form, the background term is diagonalized, reducing the
number of calculations required fromO(n2) to O(n).

The control variableν is a vectorν = (u′,v′,RH ′,T ′),
whereu′ andv′ are the zonal and meridional wind compo-
nent increments,RH ′ is the relative humidity increment, and

1It is worth noting that the nonlinearity of the observation opera-
tor H is considered in the computation of the innovation vectoryo′

.
This is accomplished in the outer loop for variational methods using
the incremental approach with an outer loop (Huang et al., 2009).

T ′ is the temperature increment. The model variable incre-
mentx′ is a vectorx′ = (Z′,u′,v′,RH ′,T ′), whereZ′ is the
geopotential height increment and the other symbols are as
in ν.

The transformx′
= Uν from the control variableν to the

model variable incrementx′ is implemented through three
operators, namelyUp, Uv, andUh, applied in sequence.

The transformUh is implemented through recursive filters
(Purser et al., 2003; Barker et al., 2004). The recursive filter
performs the task of convolving a spatial distribution of the
analysis increments with a smoothing kernel, which is the
covariance function of the background error. A single pass of
a recursive filter consists of an initial advancing smoothing:

Fi = (1− α)Di + αFi−1 (3)

for increasing indexi, whereD is the input forcing andF is
the result of the sweep, followed by a backing sweep

Ri = (1− α)Fi + αRi+1 (4)

for decreasingi, whereF is now the input andR is the re-
sponse of the filter. The smoothing parameterα lies between
0 and 1 and determines the correlation length of the smooth-
ing response function.

The single-pass recursive filter of the operatorUh involves
one smoothing in the WE direction followed by one smooth-
ing in the NS direction.

The recursive filter has two parameters: the number of
passes and the length scaled. The number of passes deter-
mines the response of the filter. In particular, forN = 2 the
response approximates a second-order auto-regressive func-
tion (SOAR), while forN = ∞ the response is Gaussian. In
this paper twelve passes are used. This value ensures a well-
shaped filter response, without the formation of unphysical
lozenge-shaped model variable incrementsx′.

The length scales of the recursive filters, which determine
the smoothing parameterα (see Barker et al., 2003 for the de-
tails of the calculation) are computed by the National Meteo-
rological Center (NMC) method (Parrish and Derber, 1992).
This method gives a climatological estimate of the back-
ground error matrix by the averaged difference, computed
over a sample, between two short forecasts verifying at the
same time. In this paper a one-month (July 2012) series of
24 h minus 12 h forecasts, verifying at 00:00 UTC of each
day, is used. These simulations have the same grid configura-
tion as the background run (10 km horizontal resolution; see
Table 2 and next section) and have been interpolated onto the
3D-Var system grid (20 km horizontal resolution; see Table 2
and next section) before the determination of the recursive
filter length scales.

The length scales used in this paper are shown in Fig. 1.
They depend on the height and on the variable, and they
are larger for temperature and smaller for relative humidity.
There is an evident increase of the length scales above the
planetary boundary layer (PBL) for all variables. This is ex-
pected because the interaction between the orography and the
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Fig. 2: The effect of the Uh , Uv and Up transforms (see text for details). Solid lines are 7 
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interval). 10 

Fig. 1.Length scales (x axis) of the different parameters of the con-
trol variable as a function of the pressure (y axis). u is for zonal
velocity,v is for meridional velocity,T is for temperature, and RH
is for relative humidity.

atmospheric flow in the PBL generates features smaller than
those of the free atmosphere.

The vertical transformUv is given by an empirical orthog-
onal function (EOF) decomposition of the vertical compo-
nent of the background error covariance matrix (Bz). To de-
termineBz, the NMC method is firstly applied, by averaging
both in space (in longitude and latitude) and time, the dif-
ference between 24 h and 12 h forecasts valid at the same
time (see Appendix B for details). These simulations have
the same grid configuration as the background run and have
been interpolated onto the 3D-Var grid for the computation
of theBz matrix. Hence the background error is computed on
the 3D-Var grid.

The variances of the model error are tuned after the ap-
plication of the NMC method, as detailed in Appendix B. In
fact, using the NMC method, the structure of the background
error covariance is estimated as the average over many dif-
ferences between two short-range model forecasts verifying
at the same time, while the magnitude of the covariance is
often appropriately scaled considering the problem at hand
(see, for example, Kalnay, 2003; Sun et al., 2012; Barker et
al., 2004).

The tuning factor chosen in this paper,t (var,p), depends
on the variable and on the height (the 3D-Var system uses
pressure as vertical coordinate) and is determined from the
observational error (σo), which, in turn, depends on the vari-
able and height.

The values ofσo are taken from the bibliography (Lazarus
et al., 2002; Sashegyi et al., 1993). More in detail, the
observational error is equal for the zonal and meridional
wind components. It increases from 2.5 m s−1 at 1000 hPa
to 4 m s−1 at 300 hPa. Then it decreases to 3.5 m s−1 at
200 hPa. Above 200 hPa the observational error for the veloc-
ity components is held constant. For the relative humidity, the

observational error is held constant (10 %) from 1000 hPa to
500 hPa, then it increases to 20 % at 200 hPa. Above 200 hPa
the relative humidity is not assimilated. For the temperature,
the observational error decreases from 1.8 K at 1000 hPa to
1.0 K at 800 hPa. Then it is held constant up to 500 hPa. The
error increases from 1.0 K to 2.0 K between 500 and 300 hPa,
and is held constant above this level.

In this paper, the tuning factort (var,p) is computed so
that the variance of the model error is two times the vari-
ance of the observational error for each variable and level.
This choice is helpful in the context of this paper because the
impact of a single observation on the analysis can be easily
quantified.

It is worth noting that estimating the value of the forecast
and observational errors is not an easy task because the NMC
method provides only an approximation to the climatological
component of the background error (Kalnay, 2003; Barker et
al., 2004) and future studies will further focus on this prob-
lem, also using the Lönnberg–Hollingsworth (1986) method.
In this method the background and forecast errors are esti-
mated from the differences between forecasts and observa-
tions. However, the Lönnberg–Hollingsworth method has is-
sues because the observational network often does not have
enough density to allow a proper estimate of the error struc-
ture.

Moreover, the choice of this paper of giving more credence
to the observations than to the background could produce the
problem of observations overfitting (Andersson et al., 1998),
which worsen the forecast after a few hours.

As a consequence of the above issues, some assumptions
must be made regarding estimating the observational and
forecast errors, and sensitivity tests were done to support the
choices made for this paper. In particular, numerical experi-
ments were produced similar to that presented in this paper,
but with the variance of the background error changed within
a reasonable range (1–2) of the variance of the observational
error. The results of these sensitivity tests show that, even if
the performance of the data assimilation and forecasting sys-
tem depends, in an absolute sense, on the choice of the ob-
servational and forecast errors, the main conclusions of this
paper remain unchanged.

By the application of the NMC method and of the tuning
factors, the vertical component of the background error ma-
trix Bz is obtained. TheBz is a block matrix, where each
block contains the vertical covariance between variables er-
rors averaged in space and time:

Bz =


b(T ,T ) b(T ,RH) b(T ,u) b(T ,v)

b(RH,T ) b(RH,RH) b(RH,u) b(RH,v)

b(u,T ) b(u,RH) b(u,u) b(u,v)

b(v,T ) b(v,RH) b(v,u) b(v,v)

 (5)

In Eq. (3),b(var1,var2) is a square matrix whose dimensions
are equal to the number of levels of the analysis grid (29),
containing the vertical error covariance between the variables
var 1 and var 2;T , RH, u andv are the temperature, relative
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humidity, the zonal and meridional wind components, re-
spectively.

TheBz matrix is symmetric and positive-defined and can
be decomposed in the eigenvalues and eigenvector matri-
ces, i.e.Bz = V LV T , whereV is the eigenvectors andL
the eigenvalues matrix. Using this decomposition, the ver-
tical transformUv is written asUv = V L1/2.

The physical transformUp is applied to transform the con-
trol variableν = (u′,v′,RH ′,T ′) to the model variable in-
crementsx′

= (Z′,u′,v′,RH ′,T ′), which differ only for the
geopotential height increment.

The geopotential height increment is determined by the
geostrophic equilibrium in pressure coordinates:

∇
2
pZ′

=
f ζ ′

g
, (6)

whereζ ′ is the vertical component of the perturbed relative
potential vorticity computed from the increments of the zonal
(u′) and meridional (v′) wind components,g is the gravity
(m s−2) andf is the Coriolis parameter (s−1).

The transformUp ensures the balance between the mass
and wind increments. A future development of the analysis
scheme will involve the implementation of a more sophisti-
cated equation improving the mass–wind balance in regions
where the geostrophic balance is a coarse approximation of
the real flow, as the tropics or the PBL. For this purpose a
statistical balance may also be employed. This approach is
followed, for example, by Barker et al. (2004), who recover
the pressurep, which plays the role of the geopotential height
in their 3D-Var, by the equation

p = Cpb + pu, (7)

wherepb is the balanced pressure andpu is the unbalanced
pressure. The unbalanced pressurepu is the control variable,
while pb is computed from a balance equation including cy-
clostrophic terms. The correlation coefficientC, which is
computed by the NMC method, provides a statistical filter-
ing in regions where the balance equation is not appropriate.

Finally, it is important to mention that it is assumed that
the observational errors are uncorrelated with each other, so
the matrixR in Eq. (2) is a diagonal matrix whose elements
are all equal toσ 2

o . The dimensions of the matrixR equal the
number of measurements available at the analysis time.

Figure 2 shows the combined effect of theUp, Uv andUh
transforms. It shows the longitude–height cross section at
57.5◦ N latitude for the meridional velocity increments and
for the geopotential height increments determined by a sin-
gle meridional wind component observation innovation of
2.5 m s−1, introduced over the Gotland Island∼ (57.5◦ N,
18◦ E) at 500 hPa. The final increment is spread vertically
by theUv transform and horizontally byUh. TheUp trans-
form determines the increments of the geopotential height. It
is worth noting that a positive innovation of the meridional
wind component at 500 hPa causes negative increments of
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Fig. 2. The effect of theUh,Uv and Up transforms (see text for
details). Solid lines are contours of meridional wind increments (v′,
contours from 0. to 1.6 m s−1 with 0.2 interval); dashed lines are
the geopotential height incrementsZ′ (contours from−0.6 to 0.6 m
with 0.2 m interval).

the same variable in the upper and lower troposphere. This is
caused by the negative covariance between the vertical errors
at 500 hPa and those in the upper and lower troposphere for
the meridional wind component, as shown in Appendix B.

3 The experiment set-up

The background and the forecast are issued by the RAMS
model (non-hydrostatic), version 6.0. Its physical settings are
summarized in Table 1.

The analysis system and the RAMS model share the same
horizontal coordinate system, which is a rotated polar stere-
ographic projection, whose pole is near the centre of the do-
main to minimize the projection distortion (Pielke, 2002). In
the vertical direction, RAMS uses the sigma-z terrain follow-
ing coordinate (Pielke, 2002), while the analysis uses pres-
sure.

The possibility to run the analysis on the same horizon-
tal coordinate system as RAMS, eventually with coarsened
horizontal resolution to speed up the analysis, is an impor-
tant feature because it simplifies the interpolation between
the RAMS and analysis grids2.

RAMS uses thirty-three levels in the vertical. The 3D-Var
uses twenty-nine pressure levels from 1000 hPa to 50 hPa,
spaced every 50 hPa between 800 and 300 hPa, and every

2The option to run the analysis on a regularly spaced longitude-
latitude grid is also available to use the ISAN (ISentropic ANalysis)
package, which is the standard method to initialize RAMS (see the
RAMS technical manual available athttp://www.atmet.com/html/
docs/rams/rams_techman.pdf). This option, however, requires two
different RAMS configurations, as shown in Federico (2013).

www.atmos-meas-tech.net/6/3563/2013/ Atmos. Meas. Tech., 6, 3563–3576, 2013
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Table 1.RAMS model physical settings.

Physical option Description

Parametrized cumulus
convection

Modified Kuo scheme to account for
updraft and downdraft (Molinari and
Corsetti, 1985).

Explicit precipitation
parametrization

Bulk microphysical model which prog-
noses cloud water, rain, ice crystals, ag-
gregates, graupel and hail (Walko et al.,
1995).

Sub-grid mixing The turbulent mixing in the horizontal
directions is parameterized following
Smagorinsky (1963), which relates the
mixing coefficients to the fluid strain
rate and includes corrections for the in-
fluence of the Brunt–Vaisala frequency
and the Richardson number (Pielke,
2002). Vertical diffusion is parameter-
ized according to the Mellor and Ya-
mada (1982) scheme, which employs a
prognostic turbulent kinetic energy.

Exchange between the
surface, the biosphere
and the atmosphere.

LEAF-3 sub-model (Walko et al.,
2000). LEAF includes prognostic equa-
tions for soil temperature and moisture
for multiple layers, vegetation temper-
ature and surface water, including dew
and intercepted rainfall, snow cover
mass and thermal energy for multi-
ple layers, and temperature and water
vapour mixing ratio of canopy air.

Radiation scheme A full-column, two-stream single-band
radiation scheme is used to calcu-
late short-wave and long-wave radiation
(Chen and Cotton, 1983). The Chen and
Cotton scheme accounts for condensate
in the atmosphere, but not for specific
optical properties of ice hydrometeors.

25 hPa below 800 hPa. Above 300 hPa the vertical levels are
unevenly spaced with a maximum distance of 25 hPa.

Observations used in this paper are vertical radiosondes
(both land and ship) inside the analysis domain and wind
measurement of the European wind profiler network. Both
observing systems are shortly reviewed in Appendix A. Ra-
diosondes reports contain vertical profiles of temperature,
relative humidity, pressure, wind speed and direction, and are
available at synoptic hours (00:00, 06:00, 12:00, 18:00 UTC)
with few exceptions. The wind profilers measure the wind
speed and direction in the vertical above the instrument and
observations are available every one-hour.

Observations were downloaded from the MARS (Meteo-
rological Archive and Retrieval System, see alsohttp://www.
ecmwf.int/publications/manuals/mars/) archive of ECMWF
(European Centre for Medium Weather range Forecast) and
the numerical experiment is performed for the month of
July 2012.

Table 2. RAMS and analysis grid settings. NNXP, NNYP and
NNYZ are the number of grid points in the west–east, north–south,
and vertical directions. Lx (km), Ly (km), Lz (m) are the domain
extension in the west–east, north–south, and vertical directions. DX
(km) and DY (km) are the horizontal grid resolutions in the west–
east and north–south directions. CENTLON and CENTLAT are the
geographical coordinates of the grid centres. The analysis grid uses
pressure as vertical coordinate.

RAMS grid Analysis grid

NNXP 231 116
NNYP 231 116
NNZP 32 29
Lx 2520 km 2520 km
Ly 2520 km 2520 km
Lz 18800 m 1000–50 hPa
DX 10 km 20 km
DY 10 km 20 km
CENTLAT (◦) 50.0 50.0
CENTLON (◦) 8.0 8.0

A simple univariate quality control of the observations is
adopted, which is based on the application of two checks in
sequence. In the first step, the observations whose innova-
tions are larger than four times the background error (σb) are
discarded. This step avoids including observations affected
by gross errors in the analysis. The second step is inspired by
the cross-check of DiMego et al. (1985). In particular, each
innovation is compared to the innovations located inside a
circle whose radius is equal to three times the length scale
of the recursive filters (Fig. 1). For each pair it is checked
if the innovations are in reasonable agreement. Two inno-
vations are in agreement if (a) they differ by less than one
background error and their distance is less than one length
scale of the recursive filter; and (b) the threshold of one back-
ground error is increased up to 3.5 background errors for
distances between innovations increasing from one to three
length scales of the recursive filter. If the innovations are in
agreement, a “hold” flag is assigned to the observation be-
ing tested. The process is iterated for all observations. At the
end of the process an observation is retained if (a) two or
more cross-checks were done and at least two of them gave
a “hold” result; (b) one cross-check was done and it gave a
“hold” result; or (c) no cross-check could be done, i.e. iso-
lated observations are retained if they pass the gross check.

Figure 3 shows an example of the analysis for the zonal
wind component at 850 hPa at 12:00 UTC on 1 July. The
background has 10 km horizontal resolution and covers the
central Europe zone. Its grid setting is shown in Table 2.
The analysis increments are given on the same grid as the
background but with halved horizontal resolution (20 km) to
speed up the analysis computation. Figure 3b, in particular,
shows how the interaction among several observations im-
pacts the analysis increments, as over central Europe; it also
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Figure 3: a) Background of the zonal wind component (m/s) at 850 hPa at 12 UTC on 01 July 3 

2012; b) analysis increments (m/s) at the same time and level of a). The positions of the 4 

radiosoundings (open squares) and of the wind profilers (filled circles) used in the analysis 5 

are shown. The figure shows the horizontal domain used in this paper. 6 

Fig. 3. (a) Background of the zonal wind component (m s−1) at
850 hPa at 12:00 UTC on 1 July 2012;(b) analysis increments
(m s−1) at the same time and level of(a). The positions of the ra-
diosondes (open squares) and of the wind profilers (filled circles)
used in the analysis are shown. The figure shows the horizontal do-
main used in this paper.

shows the effects of isolated observations on the analysed
field, as over the North Sea.

To quantify the impact of the analysis both on the im-
provement of the initial state and on the short-term forecast,
the following strategy is adopted (Fig. 4). For each day of
July 2012, one background run lasting 24 h is made starting
at 00:00 UTC (hereafter also background run). Its initial and
boundary conditions are taken every 6 h from the 00:00 UTC
operational analysis/forecast cycle of ECMWF. These fields
are available at 0.25◦ horizontal resolution.

After 12 h of each run, an analysis is made. The 12:00 UTC
was chosen because there are several radiosonde and wind
profiler reports for this time. Table 3 shows the number of
data used at the analysis times, accumulated over the whole
period and over the whole domain (Fig. 3, Table 2), while
Fig. 5a shows their vertical distribution, accumulated over
the whole period. From Table 3 and Fig. 5a, it is noticeable
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Fig. 4. Synopsis of the simulations. BCKG is the background run,
which lasts 24 h. ANL is the analysis time: an analysis is performed
at 12:00 UTC. FCST is the short-term forecast, which lasts 3 h.

that there are more data for the wind components because of
the data from the European wind profiler network. Figure 5b
shows the spatial distribution of the radiosondes and wind
profilers at analysis time (12:00 UTC) for the whole period.

Starting from the analysis time, a short-term RAMS fore-
cast, lasting 3 h, is made (hereafter also forecast run). For this
run (a) the initial conditions are given by the analyses pro-
duced at 12:00 UTC; and (b) the boundary conditions after
6 h are the same as the background run.

The root mean square error (RMSE) is computed between
the background fields and observations, and between the
forecast fields and observations for the whole period. The
comparison of these statistics at the analysis time shows the
performance of the data assimilation system; the same com-
parison for times following the analysis time quantifies the
impact of the analyses on the short-term forecast.

Statistics are presented for the zonal and meridional wind
components only because few data are available for other
variables after the analysis time. Indeed, temperature and
relative humidity, which are measured by radiosondes, are
available at synoptic times (00:00, 06:00, 12:00, 18:00 UTC)
with few exceptions, while wind observations are available
every one-hour by wind profilers measurements (Table 3).
For example, Fig. 5c shows the vertical distribution of the
data at 13:00 UTC for the whole period. Less than 5 obser-
vations are available for temperature and relative humidity
at all levels, while the number of data for the wind compo-
nents varies from 309 (875 hPa) to 25 (130 hPa). From Fig. 5c
it is apparent that statistics for temperature and relative hu-
midity are reliable only at the analysis time and they will be
briefly discussed in the next section. Finally, Fig. 5d shows
the spatial distribution of the observational systems used at
forecasting times (13:00, 14:00 and 15:00 UTC).

4 Results

Hereafter the RMSE computed between the background run
and the observations at a fixed time and for the whole period
is referred to as the control forecast error (RMSE_b). Simi-
larly, the RMSE computed between the forecast run and the
observations at a fixed time and for the whole period is re-
ferred to as the forecast error (RMSE_f). For the computation
of both RMSEs, the grid point nearest to each observation is
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Figure 5: a) The number of data available at the analysis time (12 UTC) accumulated for the 2 

whole period and over the whole domain. T is for temperature, RH is for relative humidity, u 3 

and v are for the zonal and meridional wind components, respectively. The number of data for 4 

the wind components (u, v) is the same for all levels; b) positions of the radiosoundings (open 5 

squares) and radar wind profilers (filled circles) at 12 UTC considering the whole period. Not 6 

all radiosoundings and radar wind profilers are reporting data at a specific analysis time; c) as 7 

in a) for 13 UTC; d) positions of the radiosoundings (open squares) and radar wind profilers 8 

(filled circles) at forecasting times (13, 14 and 15 UTC). Not all radiosoundings and radar 9 

wind profilers are reporting data at a specific forecasting time. 10 
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Fig. 5. (a)The number of data available at the analysis time (12:00 UTC) accumulated for the whole period and over the whole domain.T

is for temperature, RH is for relative humidity, andu andv are for the zonal and meridional wind components, respectively. The number of
data for the wind components (u,v) is the same for all levels;(b) positions of the radiosondes (open squares) and radar wind profilers (filled
circles) at 12:00 UTC considering the whole period. Not all radiosondes and radar wind profilers are reporting data at a specific analysis
time; (c) as in(a) for 13:00 UTC;(d) positions of the radiosondes (open squares) and radar wind profilers (filled circles) at forecasting times
(13:00, 14:00 and 15:00 UTC). Not all radiosondes and radar wind profilers are reporting data at a specific forecasting time.

Table 3.Number of available data at analysis and forecasting times, accumulated over the whole period and over the whole domain.u is for
zonal velocity,v is for meridional velocity,T is for temperature, and RH is for relative humidity.

Radiosondes Wind profilers

Time Soundings number u,v T RH Soundings number u,v

12:00 UTC 458 5984 3993 3622 405 2684
13:00 UTC 5 57 / / 407 2763
14:00 UTC 8 73 / / 407 2744
15:00 UTC 9 90 / / 413 2802

considered and the statistics are computed for the whole do-
main (Fig. 3).

It should also be emphasized that RMSE_f at the analy-
sis time is computed after the analyses have been used to
initialize the RAMS model. Hence, the difference between
RMSE_b and RMSE_f accounts for the errors introduced by

the vertical interpolation between the RAMS and analysis
grids.

Figure 6a shows the RMSE for the zonal wind compo-
nent. The RMSE_b is about 2.0–2.5 m s−1 up to 500 hPa,
while it increases above this level, reaching a maximum of
3.4 m s−1 at 250 hPa. The forecast error at the analysis time
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Figure 6: RMSE of the background field (RMSE_b), of the analyses (RMSE_f), and their 3 
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Fig. 6. RMSE of the background field (RMSE_b), of the analyses
(RMSE_f), and their difference (RMSE_b− RMSE_f) for(a) zonal
wind component and(b) meridional wind component. The RMSEs
are computed for the whole period, considering the grid points near-
est to the observations. The RMSE_f statistics are computed after
the RAMS model has been initialized by the analyses.

(RMSE_f) decreases by more than 1.0 m s−1 for most levels
and RMSE_f is more than halved below 700 hPa.

Similar considerations apply for the meridional wind com-
ponent (Fig. 6b), whose RMSE_f is∼ 1.0 m s−1 lower than
RMSE_b for several levels.

The analyses for both wind components show a decrease
of the performance above 300 hPa, as shown by the decrease
of the difference between RMSE_b and RMSE_f above this
level.

For the other parameters (not shown) similar results are
obtained, with a significant reduction of the error at the anal-
ysis time (30–60 % of the background error). The improve-
ment is comparatively larger at the lower levels.

Even if it is not simple to quantify the performance of the
data assimilation scheme because it varies with the parameter
and with height, a discussion is provided to clarify the results
of Fig. 6.

First it should be noticed that the analyses effectively re-
duce the error. The analysis RMSE is lowered by 30–60 % of
the control forecast value for most levels and for all parame-
ters; below 700 hPa, the RMSE reduction is often larger than
50 % of the background value.

The error reduction of 30–60 % of the control forecast
value is in reasonable agreement with the setting of the data
assimilation system. In particular, considering that the model
error varianceσ 2

b is twice the observational error variance
σ 2

o at all levels, and for the ideal case of one measurement
available at a grid point of the analysis grid, the analysis
at this point is closer to the observation than to the back-
ground, and the error is more than halved. In particular, for
this simple ideal case, it can be shown that the analysis er-
ror (RMSE_f) isσ 2

o /(σ 2
o + σ 2

b ) of the control forecast error
(RMSE_b; Kalnay, 2003), with an error reduction of 67 %.

The limit of this simple ideal case is not attained in the
practical application of the analysis system mainly because
the observations innovations, i. e. the differences between the
background and observations, interact with each other both in
the horizontal plane and vertically. This is shown, for exam-
ple, by the analysis increments of Fig. 3b in central Europe.

It is interesting to consider the impact of the analysis on
the short-term forecast.

Figure 7 shows the difference between RMSE_b and
RMSE_f for the wind components. A positive difference
means that the short-term forecast has a lower error than the
control forecast and the wind forecast is effectively improved
by using the analyses as initial conditions.

After the one-hour forecast, the improvement of the per-
formance for the zonal velocity is apparent. In particular, the
difference of the RMSE_b and RMSE_f is positive for all
levels but 975 and 150 hPa, and it is larger than 0.5 m s−1 for
several levels. A useful statistic to represent the impact of the
analysis on the short-term forecast is the vertically averaged
value of the difference between RMSE_b and RMSE_f. This
value is 1.15 m s−1 for the analysis time and 0.43 m s−1 for
the one-hour forecast. From these values it follows that using
the analyses effectively reduces the error (37 % of the value
at the analysis time) after one-hour forecast.

After the two-hours forecast the improvement reduces.
The vertical average of the difference between RMSE_b and
RMSE_f is 0.20 m s−1, showing that the improvement is a
sizeable fraction, i.e. larger than 10 %, of the initial value,
and that the analysis is still effective at improving the short-
term forecast.

For the three-hours forecast the impact of the analysis on
the short-term forecast is negligible in practice. There are
few levels for which the difference between RMSE_b and
RMSE_f is negative, and its vertical average is 0.04 m s−1.

Figure 7b shows the same statistics of Fig. 7a for the
meridional wind component. The impact of the analysis on
the one-hour forecast reduces the error by 0.0–0.8 m s−1,
depending on the level and the vertical average of the dif-
ference between RMSE_b and RMSE_f is 0.52 m s−1. This
value must be compared with 0.97 m s−1 at the analysis time,
and shows a positive impact of the analysis on the one-hour
forecast. It is also noticeable the poor performance of the
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Figure 7: Differences between RMSE_b and RMSE_f for the analysis time (ANL), one- 3 

(01h), two- (02h), and three-hours (03h) forecast for the: a) zonal wind component; b) 4 

meridional wind component. The RMSEs are computed for the whole period considering the 5 

grid-points nearest to the observations. The analysis time is shown to better understand the 6 

behaviour of the performance with time. 7 

Fig. 7.Differences between RMSE_b and RMSE_f for the analysis
time (ANL), one-(01 h), two-(02 h), and three-hours (03 h) forecast
for the (a) zonal wind component and(b) meridional wind com-
ponent. The RMSEs are computed for the whole period, consider-
ing the grid points nearest to the observations. The analysis time is
shown to better understand the behaviour of the performance with
time.

short-term forecast above 200 hPa, caused by the compara-
tively poorer performance of the analysis for upper levels.

Even though the improvement is reduced after the two-
hour forecast, the difference between RMSE_b and RMSE_f
is larger than 0.3 m s−1 for several levels. The vertical aver-
age of this difference is 0.27 m s−1, which is still a sizeable
fraction (≈28 %) of its initial value.

After the three-hours forecast the improvement is smaller
but still apparent for several levels in Fig. 7b. The vertical
average of the difference between RMSE_b and RMSE_f is
0.11 m s−1.

It can be concluded that, for the setting of this paper, us-
ing the analyses has a positive impact on the one-hour and
two-hours forecasts for both wind components, with smaller
positive impacts on the three-hours forecast.

This result is encouraging because the number of data
used in the analysis is small. Moreover, it is in agreement
with the numerical experiment settings. Indeed, consider-
ing the wind components, which have the largest number of

measurements, the number of data used by the analysis is, on
average, less than 15 for most levels (Fig. 5a). The analysis
increments are centred at the observational point and have
a radius of influence that depends on the height, but which
is of the order of 100 km (Fig. 1). The analysis increments
are advected downwind of the measurement point after a few
hours, in agreement with the results of this section. It is ex-
pected that, using a larger number of data, the positive impact
of the analysis on the short–term forecast would last longer.

5 Conclusions

This paper presents the current status of development of
a 3D-Var data assimilation system, tailored for the RAMS
model, which is computationally fast and can be used in
small meteorological centres.

The cost function is written in the incremental form. For
the practical minimization of the cost function a variable
transformation is used, which is composed of three trans-
forms applied in sequence: the horizontal transformUh, the
vertical transformUv, and then the physical transformUp.

The horizontal transformUh is applied through recur-
sive filters, which are computationally fast, while the ver-
tical transform Uv is obtained through the eigenvalues–
eigenvectors decomposition of the vertical component of the
background error covariance matrix. The physical transform
Up gives the geopotential height increments by applying the
geostrophic balance to the wind increments. This ensures the
balance between the increments of mass and wind fields.

The length scale of the recursive filters and the vertical
component of the background error covariance matrix are es-
timated by the NMC method.

A practical example is shown for the analysis/short-term
wind forecast (0–3 h). Analyses are produced once a day at
12:00 UTC for the month of July 2012 with a horizontal reso-
lution of 20 km and twenty-nine vertical levels. Observations
are tropospheric profiles of wind, temperature and relative
humidity from radiosondes, and tropospheric wind profiles
from the European wind profiler network.

Analyses are effective at reducing the initial model error.
The improvement is between 30 % and 60 % of the control
forecast error for all parameters for most levels. It was shown
that this improvement is in agreement with the data assimi-
lation settings; nevertheless there is a decrease of the perfor-
mance with increasing height partially caused by the errors
introduced by the vertical interpolation between the RAMS
and analysis grids.

The impact of the analyses on the short-term forecast is
evaluated for the wind components only because there are
few measurements at asynoptic times for other variables.

The results show that the improvement for the one-hour
forecast is larger than 37 % of the error reduction at the anal-
ysis time for both wind components. The same improvement
is larger than 17 % of the error reduction at the analysis time
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Table A1. Characteristics of the radar wind profilers.

Frequency Antenna Power Range Resolution
(MHZ) size (m2) peak (kW) (km) (m) Name and description

50 10 000 250 2–20 150–1000 VHF wind profiler. Wind profilers used for
sampling the troposphere and lower stratosphere.

400 120 40 0.2–14 250 UHF wind profiler. Wind profilers used for
sampling the troposphere.

1000 5 0.5 0.1–5 60–100 Boundary layer wind profiler. Used to sample
the lower troposphere.

for the two-hours forecast and for both wind components.
The positive impact of the analysis after the three-hours fore-
cast is reduced (4 % and 11 % of its value at the analysis time
for the zonal and meridional wind components, respectively)
but still evident for several levels.

It is concluded that, considering the amount of data used
in the data assimilation, the results are encouraging and are
in agreement with the set-up of the numerical experiment.

Work is in progress on several aspects of the data assim-
ilation system. In particular, future development will con-
sider (a) the inclusion of measurements coming from differ-
ent sources; (b) a more sophisticated balance for theUp trans-
form; and (c) an improved quality control of the observations.
Nevertheless, the analysis system and the numerical experi-
ment presented in this work should be of interest for the at-
mospheric profiling community because it can be applied to
OSE and OSSE experiments aiming to investigate the impact
of the tropospheric profilers on the short-term wind forecast.

Appendix A

Observing systems

In this paper measurements from two observing systems are
used: radiosondes and wind profilers. These instruments are
shortly reviewed in this Appendix.

A1 Radiosondes

The radiosonde is a balloon-borne device measuring, in situ,
the vertical profile of meteorological variables and transmits
the data to a ground-based receiving station.

Vertical profiles of temperature, humidity, and pressure are
given as the balloon ascends from the land or ocean surface to
heights up to about 30 km. The profile of these meteorologi-
cal variables is called an upper-air sounding that is known as
a radiosonde observation or RAOB.

The radiosonde is carried aloft by a balloon, which is
made of natural rubber (latex) or synthetic rubber (neoprene).
Operational radiosonde systems typically use balloons that
weight from 0.3 to 1.2 kg, filled to ensure an ascent rate of

300 m min−1. The meteorological measurements are made at
intervals that vary from 1 to 6 s, depending on the radiosonde
type.

Sensors used for pressure, humidity and temperature ob-
servations are often of the capacitance type. Changes in pres-
sure, temperature and/or humidity result in changes in the ca-
pacitance of each sensor, which is converted to a frequency
signal. Frequencies are converted to physical measurements
by factory calibration measurements. Wind speed and direc-
tion are determined by observing the drift of the balloon
and high quality tracking information is necessary for ob-
taining high quality wind measurements. Nowadays Global
Positioning System (GPS) is of widespread usage because of
its high accuracy and global coverage. A GPS receiver in-
side the radiosonde measures directly the drift velocity of the
balloon and hence the wind.

Countries launching operational radiosondes are members
of the World Meteorological Organization’s World Weather
Watch program. They launch radiosondes at 00:00 and
12:00 UTC (actually the launches occur 45 min before these
observing times) and are contemporary worldwide to provide
a synoptic description of the atmosphere. Countries of the
World Weather Watch program freely share their sounding
data with each other. After an operational upper-air sounding
is completed, a standard data message (TEMP) is prepared
and made available to all nations using the Global Telecom-
munications System.

There are two main applications of radiosonde observa-
tions: to analyse and describe current weather patterns, and
to provide inputs to short- and medium-range weather fore-
casting models. More details about radiosondes are provided
by the World Meteorological Organization (WMO, 1996).

A2 Wind profilers

The radar wind profiler is a remotely observing equipment
using pulsed electromagnetic radiation to measure the winds
in the atmosphere, both in the horizontal plane and in the ver-
tical direction. The principle of their workings is the follow-
ing: an electromagnetic wave is sent to the atmosphere and a
small fraction of its energy is scattered in all directions, in-
cluding that of the receiving antenna. The returned energy is
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500 hPa causes negative increments in the lower and upper troposphere, as shown by the 1 

negative vertical error covariance between these levels. This behaviour of the vertical error 2 

covariance is clearly shown in Figure 2.  3 

Finally, Figure B.2 shows the covariance between the meridional wind component at 900, 500 4 

and 250 hPa, and the zonal wind component. There is a decrease of the absolute value of the 5 

covariance compared to Figure B.1, as expected, and there is a rather complex interaction 6 

between the two wind components as a function of the level.  7 
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Figure B.1: Vertical error covariance of the meridional wind component at 900 (diamonds), 500 (squares) and 9 
200 (triangles) hPa. 10 
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Fig. B1. Vertical error covariance of the meridional wind compo-
nent at 900 (diamonds), 500 (squares) and 200 (triangles) hPa.

amplified and discriminated in range by sampling it with de-
lays of fixed intervals, which are built in the data processing
system. In this way, the radar receives scattered energy from
discrete altitudes, referred to as range gates.

In the troposphere and the stratosphere the backscattered
energy is produced by small-scale fluctuations of the refrac-
tive index, which are in turn produced by small-scale fluctu-
ations in atmospheric density. These small-scale fluctuations
are produced by the turbulence and move with the bulk mo-
tion of the medium in which they are embedded. The radar
is most sensitive to the scattering by turbulent eddies whose
spatial scale is half of the length scale of the electromagnetic
radiation emitted by the radar (Table A1).

The Doppler frequency shift of the backscattered energy
is determined and it is used to calculate the velocity of the
air toward or away from the radar, along the direction of the
emitted beam as a function of the height.

A typical configuration of the radar wind profiler is that
of an antenna, which is both the transmitter and the receiver,
emitting electromagnetic pulses in five directions: one is the
vertical and the other four, tilted off the vertical, are orthog-
onal to one another. The vertical beam is used to retrieve the
vertical velocity, while the combination of all the beams is
used to determine the horizontal wind components.

Finally, Table A1 shows the main characteristics of the
radar wind profilers, including those of the European wind
profiler network, used for wind profiling in the tropo-
sphere/low stratosphere. More details about wind profilers
can be found in Clifford et al. (1994).

Appendix B

The computation of the Bz matrix

This Appendix shows how the vertical component of the
background error covariance matrix (Bz) is derived and how
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Figure B.2: Vertical error covariance between the meridional wind component at 900 (diamonds), 500 (squares) 2 
and 200 (triangles) hPa and the zonal wind component. 3 
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Fig. B2. Vertical error covariance between the meridional wind
component at 900 (diamonds), 500 (squares) and 200 (triangles)
hPa and the zonal wind component.

the tuning factors are applied. The methodology to compute
Bz is detailed in the following points:

1. The difference between two short-term forecasts
verifying at the same time is firstly computed
x′(i,j,k, t) = xT 1(i,j,k, t) − xT 2(i,j,k, t), where
T 1 = 12 h andT 2 = 24 h, andi,j,k, t show the de-
pendence ofx′ on the three spatial dimensions and
time. In this paper the whole month of July 2012
was considered and the differencesx′(i,j,k, t) were
computed between two short-term forecasts verifying
at 00:00 UTC on each day;

2. For each vertical level, the averagex(k, t) is computed
to define anomalies:

v′(i,j,k, t) = x′(i,j,k, t) − x(k, t) (B1)

3. The domain averaged vertical background error co-
variance matrixB′(k,k′, t) is computed for each day:

B′(k,k′, t) =

∑
i=1,I ;j=1,J

v′(i,j,k, t)v′(i,j,k′, t)

IJ

(B2)

4. The matricesB′(k,k′, t) are averaged in time to get
the space and time averaged vertical component of the
background error covariance matrixB′

z:

B′
z = B′

z(k,k′) =

∑
t=1,T

B′(k,k′, t)

T
(B3)

The elements of the covariance matrixB′
z are tuned after

this step, obtaining the vertical component of the background
error covariance matrixBz. The tuning coefficients are de-
pendent on the variable and on the level (pressure) and are
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chosen for each variable and level so that the variance of the
model error is two times the variance of the observational
error.

More in detail, the matrixB′
z may be written as

B′
z =


b′(T ,T ) b′(T ,RH) b′(T ,u) b′(T ,v)

b′(RH,T ) b′(RH,RH) b′(RH,u) b′(RH,v)

b′(u,T ) b′(u,RH) b′(u,u) b′(u,v)

b′(v,T ) b′(v,RH) b′(v,u) b′(v,v)

 (B4)

where,b′ (var 1, var 2) is a square-matrix whose dimensions
are equal to the number of levels of the analysis grid (29,
Table 2), containing the vertical error covariance between the
variables var 1 and var 2 computed from Eqs. (B1)–(B3);T ,
RH, u andv are the temperature, relative humidity, the zonal
and meridional wind components, respectively.

The tuning factort (var,p) is computed so that

t (var,p)B′
z(var,var,p,p) = 2σ 2

o (var,p), (B5)

whereB′
z(var,var,p,p) are the diagonal terms of theB′

z ma-
trix (Eq. B4). Once the values oft (var,p) have been deter-
mined, the square diagonal matrixD is formed containing the
square root of the tuning factors ordered according to the ma-
trix B′

z (Eq. B4). The vertical component of the background
error covariance matrixBz is then computed as follows:

Bz = DB′
zD. (B6)

The Bz matrix is symmetric and positive-defined and can
be decomposed in the eigenvalues and eigenvectors matri-
ces, i.e.Bz =V LV T , whereV is the eigenvectors andL the
eigenvalues matrix. Using this decomposition, the vertical
transformUv is written asUv = V L1/2.

Figure B1 shows the vertical covariance profiles from the
Bz matrix, i.e. after the application of the tuning factors, of
the meridional wind component for three levels, namely 900,
500, and 250 hPa.

The vertical error covariance shows a broader peak at
500 hPa compared to that in the upper and lower troposphere.
Moreover, a positive increment of the meridional wind com-
ponent at 500 hPa causes negative increments in the lower
and upper troposphere, as shown by the negative vertical er-
ror covariance between these levels. This behaviour of the
vertical error covariance is clearly shown in Fig. 2.

Finally, Fig. B2 shows the covariance between the merid-
ional wind component at 900, 500 and 250 hPa, and the zonal
wind component. There is a decrease of the absolute value of
the covariance compared to Fig. B1, as expected, and there is
a rather complex interaction between the two wind compo-
nents as a function of the level.
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