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Abstract. This paper presents the current status of devel-3D-Var as initial conditions, then it is driven by the ECMWF
opment of a three-dimensional variational data assimilationforecast.

system (3D-Var). The system can be used with different nu- The improvement is quantified by considering the horizon-
merical weather prediction models, but it is mainly designedtal components of the wind, which are measured at asynop-
to be coupled with the Regional Atmospheric Modelling Sys- tic times by the European wind profiler network. The results
tem (RAMS). Analyses are given for the following param- show that the RMSE is effectively reduced at the short range.
eters: zonal and meridional wind components, temperatureThe results are in agreement with the set-up of the numerical
relative humidity, and geopotential height. experiment.

Important features of the data assimilation system are the
use of incremental formulation of the cost function, and the
representation of the background error by recursive filters
and the eigenmodes of the vertical component of the backl Introduction
ground error covariance matrix. This matrix is estimated by
the National Meteorological Center (NMC) method. Modern numerical weather prediction (NWP) data assimi-

The data assimilation and forecasting system is applied tdation systems use information from a range of sources to
the real context of atmospheric profiling data assimilation,Provide the best estimate of the atmospheric state (i.e. the
and in particular to the short-term wind prediction. The anal-analysis) at a given time. These systems combine informa-
yses are produced at 20 km horizontal resolution over centralion coming from the observations, an a priori estimate of
Europe and extend over the whole troposphere. Assimilatedhe atmospheric state (the background or first-guess field),
data are vertical soundings of wind, temperature, and reladetailed error statistics, and the law of physics.
tive humidity from radiosondes, and wind measurements of Nowadays, increased computing power coupled with
the European wind profiler network. greater access to real-time a-synoptic data is paving the way

Results show the validity of the analyses because the};oward a new generation of high-resolution (10 km or less
are closer to the observations (lower root mean square errdp the horizontal plane) operational mesoscale analysis and
(RMSE)) compared to the background (higher RMSE), angforecasting systems (Zou et al., 1995; Sun and Crook, 1997,
the differences of the RMSESs are in agreement with the datd-azarus et al., 2002; Kalnay, 2003; Barker et al., 2004; Zu-
assimilation settings. panski et al., 2005; Huang et al., 2009). Moreover, better ini-

To quantify the impact of improved initial conditions on tial conditions are increasingly considered as of the utmost
the short-term forecast, the analyses are used as initial coriportance for a range of NWP applications, in particular at
ditions of three-hours forecasts of the RAMS model. In par-the short range (0-12h, Zhang et al., 2005; Schenkman et
ticular two sets of forecasts are produced: (a) the first usedl-» 2011; Sun etal., 2012; Wang et al., 2013; Sun and Wang,
the ECMWF analysis/forecast cycle as initial and boundary2013).

conditions; (b) the second uses the analyses produced by the The variational data assimilation systems have the ad-
vantage to assimilate quantities not trivially related to the
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3564 S. Federico: Implementation of a 3D-Var system

standard atmospheric variables, such as radiances, and they as emphasized by the model resolution adopted in this
include the imposition of dynamic balance either by the work and by the balance equations used in the 3D-Var.
model itself (4D-Var) or through the explicit use of balance
equations. In recent years, these advantages have fostered the
implementation of variational data assimilation systems inAs a consequence of the last point, there are also technical
limited area models (Zou et al., 1995; Barker et al., 2004;differences between RAMDAS and the 3D-Var, the mostim-
Huang et al., 2009; Zupanski et al., 2005). These systemgortant difference being that the 3D-Var uses the incremental
replaced previously used schemes such as optimal interpoldermulation of the cost function differently from RAMDAS.
tion (Parrish and Derber, 1992; Rabier et al., 2000). The incremental formulation of the cost function was chosen
This paper shows the development of a three-dimensionabecause it reduces the computational cost and it improves the
stand-alone data assimilation system tailored for the Re€onditioning of the cost function because of the linearization
gional Atmospheric Modeling System (RAMS; Cotton et al., required in its implementation. Even though the incremen-
2003; Pielke, 2002). In particular, the data assimilation sys-tal formulation of the cost function might not be suitable for
tem can use the RAMS fields as background and the analyseonvective-scales because of the linearization required in its
can be used to initialize the RAMS model (cycling mode). formulation, recent studies show the applicability of this ap-
The analysis system uses the incremental formulation ofproach to the convective scale for the WRF (Weather Re-
the cost function (Courtier et al., 1994), which reduces thesearch and Forecasting) model (Sun et al., 2012; Wang et al.,
computational cost, and a control variable transform to make2013).
the minimization of the cost function practicable. Another difference between the 3D-Var and RAMDAS is
This paper shows an upgrade of the 2D-Var data assimthat the former uses the zonal and meridional wind compo-
ilation system reported by Federico (2013). Two importantnents as control variables while RAMDAS uses the velocity
features were introduced: (a) the use of the 3D-Var methodpotential and stream function. Using the velocity potential
which replaces the 2D-Var; (b) the option to run the anal-and stream function changes the subspace in which the cor-
ysis on the same horizontal coordinate system as RAMSrelations are calculated and allows for a simpler modelling
which simplifies the interaction between the data assimila-of the covariances. This makes saves considerable computing
tion scheme and the meteorological model. time. Nevertheless, numerical investigations (Sun and Wang,
It is important to mention that a 4D-Var data assimila- 2013) have shown differences between the two choices that
tion system is already in use for RAMS, designed as RAM- affect the final analysis. Because of this difference, the zonal
DAS (Regional Atmospheric Modeling and Data Assimila- and meridional wind components, which are prognostic vari-
tion System; Zupanski et al., 2005; Polkinghorne et al., 2010;ables of RAMS, have been chosen as control variables in the
Polkinghorne and Vukicevic, 2011). Nevertheless, there are8D-Var system.
two main reasons, practical and scientific, for implementing Another difference between the two data assimilation sys-
the 3D-Var system of this paper: tems, which is worth mentioning here, is the different rep-
1. The RAMDAS system uses the RAMS model and rese_ntgtior) of the backgrognd error covariance matrix. This
its adjoint but it is not part of the RAMS model matrix is dlreptly modglled n RAMDA.‘S as square root cor-
suite. RAMS comes with other data assimilation sys- relation matrices, while a control variable transform is used

tems, such as nudging or dynamical adaptation (Pielke!n the 3D-Var. The RAMDAS approach avoids the need for

2002), but without a variational data assimilation sys- an eigenvalue—eigenvectqr decomposition, W.h”e the 3D-Var

tem. This work aims to fill this void by realizing a sim- apprpach can be used tq filter modes resppnsmle fora (small)
ple but effective variational data assimilation system, fracnon of the error variance, thus requiring less computa-

suitable for applications and operational implementa—tlonal resources.

tion in small meteorological centres. The 3D-Var, in- Even though the data assimilation system is continuously

deed, requires less computational resources compare'ﬂnder development, it proves to be fast and reliable and can

to 4D-Var (Rabier et al., 2000) or ensemble Kalman be used f(_)r real applications. Hence, whi!e Fhe basic aim of
filters (Anderson, 2001). Compared to the 4D-Var, it the Paperis to show the generql c.haracterls'ucs ofthe 3D-Var,
does not require the tangent linear and adjoint mod-2" appllcathn to the data aSS|m|Iat!on of troposphenc pro-
els and is simpler to implement. Moreover, the 3D-Var f||_es Is also given. Indeeo_l, the numerical experiment set-up of
can be effective at improving the initial model state this paper should be of interest to the atmospheric profiling

and has the advantages of variational data assimilatior?ommumty becausellt can be used in O.SE .(observmg sys-
systems. tem experiment), which allows for the objective assessment

and comparison of existing observing systems, or in OSSE

2. To the knowledge of the author, the RAMDAS sys- (observing system simulation experiment), whose aim is to
tem was mainly developed and applied at the cloud-show the impact of next generation observing systems in a
resolving scales, while the 3D-Var system of this pa- controlled software environment such as weather prediction
per is designed for larger scales (synoptic, mego- models (Otkin et al., 2011; Moninger et al., 2010).
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The paper is divided as follows: Sect. 2 provides detailsT’ is the temperature increment. The model variable incre-
about the data assimilation system; Sect. 3 shows the numementx’ is a vectorx’ =(Z’,u’,v', RH', T'), whereZ’ is the
ical experiment set-up; Sect. 4 gives the results of the apgeopotential height increment and the other symbols are as
plication to the short-term wind forecast; and Sect. 5 givesin v.
conclusions. The transformx’ = Uv from the control variable to the
model variable increment’ is implemented through three
operators, namely,, Uy, andUh, applied in sequence.

The transforni/p, is implemented through recursive filters

The basic goal of the 3D-Var algorithm is to produce an Op_(Purser etal, 2003; Barker et al,, 2004). The recursive filter
timal estimate of the true atmospheric state at analysis timé erforms the task of convolving a spatial distribution of the

. . : . . analysis increments with a smoothing kernel, which is the
through iterative solution of a prescribed cost function (Ide ; : .
covariance function of the background error. A single pass of

2 The data assimilation system

etal,, 1997): a recursive filter consists of an initial advancing smoothing:
1
J@) =5 —x”) B w —xP) Fi=(1-a)D;+aFi1 €)
1 5 T-1/ 0 for increasing index, whereD is the input forcing and" is
5 (—H®) R -HE), (D) the result of the sweep, followed by a backing sweep
where J (x) is the cost functionx is the state vectox?is  Ri=(1—a)F; +aRiy1 4)

the background staté/ is the forward observational oper- for decreasing, whereF is now the input ancR is the re-

o .
ator, y° is the vector of the observations, aBaandR are sponse of the filter. The smoothing parametdies between

the background and observational errors covariance matrin o 41 and determines the correlation length of the smooth-
ces, respectively. The observational errors covariance matr%g response function

R is the sum of the covariance of instrumental errors matrix 5o single-pass recursive filter of the operatgiinvolves
(E) and of the covariance of representativeness errors matrig o smoothing in the WE direction followed by one smooth-

(F)..eR=E+F. , _ , __ing in the NS direction.
The problem can be summarized as the iterative solution The recursive filter has two parameters: the number of

'Io'fth. (ll)_to find the analr):sis state’ t_ha_t mini_mizesl(lixl)_h dpasses and the length scaleThe number of passes deter-
Is solution represents the a posteriori maximum likelihood in g the response of the filter. In particular, /6= 2 the

(m|n|mum variance) estimate of the-trl_Je state of the atmo'response approximates a second-order auto-regressive func-
sphere given the two sources of a priori data: backgratthd

dob iorng® (L 1986 tion (SOAR), while forN = oo the response is Gaussian. In
anF 0 servgn?ny ( orinc, 1P )'107 q  freed this paper twelve passes are used. This value ensures a well-
oramoade _state with n ~ LU—1YU degrees of freedom, shaped filter response, without the formation of unphysical
the direct solution of Eq. (1) is practically unfeasible becauselozenge-shaped model variable incrematits
i ires~ 2 i ical i - L . .
'F requires 0 ) calculat|o.n.s. Qne pract|ca| |mplementa The length scales of the recursive filters, which determine
tion is to perform a preconditioning via a control variable

defined bu’ h , bis th del variabl the smoothing parameter(see Barker et al., 2003 for the de-
efined byx” = Uv, wherex” = x —x71is the model variable ;¢ ot he calculation) are computed by the National Meteo-

increment. The transforid is chosen to satisfy the relation- rological Center (NMC) method (Parrish and Derber, 1992).
shipB = UUT. Using the incremental formulation (Courtier This method gives a climatological estimate of thé back-
etal., 1.994) and the control variable transform, Eq. (1) mayground error matrix by the averaged difference, computed
be rewritten: over a sample, between two short forecasts verifying at the
same time. In this paper a one-month (July 2012) series of
24 h minus 12 h forecasts, verifying at 00:00 UTC of each
o o by . . . day, is used. These simulations have the same grid configura-
whe_rey =y - H(x") is t_he Innovation .vector andl is tion as the background run (10 km horizontal resolution; see
the linearization of the nonlinear observation operatbrin Table 2 and next section) and have been interpolated onto the

this form, the background term is diagonalized, reducing thesp, /o, system grid (20 km horizontal resolution; see Table 2

; i 2
nu_rrr;]ber of callcuIaFlobnls rgquwed from(f )t/o ?(I’;)ILI/ T and next section) before the determination of the recursive
e control variablev is a vectorv = (v, v/, , T, filter length scales.

wherex’ andv’ are the zonal and meridional wind compo- The length scales used in this paper are shown in Fig. 1.
nentincrementsR H' is the relative humidity increment, and They depend on the height and on the variable, and they

Lit is worth noting that the nonlinearity of the observation opera- are larger for temperature and smaller for relative humidity.
tor H is considered in the computation of the innovation vegfor ~ There is an evident increase of the length scales above the
This is accomplished in the outer loop for variational methods usingplanetary boundary layer (PBL) for all variables. This is ex-
the incremental approach with an outer loop (Huang et al., 2009). pected because the interaction between the orography and the

J=%vTer%(y"’—HUv)TR—l(y”’—HUv), )
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200 - : v observational error is held constant (10 %) from 1000 hPa to
i _—— 1t 500 hPa, then it increases to 20 % at 200 hPa. Above 200 hPa
1% the relative humidity is not assimilated. For the temperature,

i the observational error decreases from 1.8 K at 1000 hPa to
1.0K at 800 hPa. Then it is held constant up to 500 hPa. The
error increases from 1.0 K to 2.0 K between 500 and 300 hPa,

i and is held constant above this level.

In this paper, the tuning factat(var, p) is computed so
that the variance of the model error is two times the vari-

i ance of the observational error for each variable and level.
This choice is helpful in the context of this paper because the

] impact of a single observation on the analysis can be easily

| L quantified.
o . e It is worth noting that estimating the value of the forecast
and observational errors is not an easy task because the NMC

trol variable as a function of the pressunedxis). « is for zonal method provides only an approximation to the climatological

velocity, v is for meridional velocityT is for temperature, and RH component of the backgrqund grror (Kalnay, 2003; I3arker et
is for relative humidity. al., 2004) and future studies will further focus on this prob-

lem, also using the Lénnberg—Hollingsworth (1986) method.
In this method the background and forecast errors are esti-
mated from the differences between forecasts and observa-
atmospheric flow in the PBL generates features smaller thations. However, the Lonnberg—Hollingsworth method has is-
those of the free atmosphere. sues because the observational network often does not have
The vertical transfornd/y is given by an empirical orthog- enough density to allow a proper estimate of the error struc-
onal function (EOF) decomposition of the vertical compo- ture.
nent of the background error covariance matBx)( To de- Moreover, the choice of this paper of giving more credence
termineB_, the NMC method is firstly applied, by averaging to the observations than to the background could produce the
both in space (in longitude and latitude) and time, the dif- problem of observations overfitting (Andersson et al., 1998),
ference between 24 h and 12h forecasts valid at the samehich worsen the forecast after a few hours.
time (see Appendix B for details). These simulations have As a consequence of the above issues, some assumptions
the same grid configuration as the background run and havenust be made regarding estimating the observational and
been interpolated onto the 3D-Var grid for the computationforecast errors, and sensitivity tests were done to support the
of theB, matrix. Hence the background error is computed onchoices made for this paper. In particular, numerical experi-
the 3D-Var grid. ments were produced similar to that presented in this paper,
The variances of the model error are tuned after the apbut with the variance of the background error changed within
plication of the NMC method, as detailed in Appendix B. In a reasonable range (1-2) of the variance of the observational
fact, using the NMC method, the structure of the backgrounderror. The results of these sensitivity tests show that, even if
error covariance is estimated as the average over many dithe performance of the data assimilation and forecasting sys-
ferences between two short-range model forecasts verifyingem depends, in an absolute sense, on the choice of the ob-
at the same time, while the magnitude of the covariance iservational and forecast errors, the main conclusions of this
often appropriately scaled considering the problem at hangaper remain unchanged.
(see, for example, Kalnay, 2003; Sun et al., 2012; Barker et By the application of the NMC method and of the tuning
al., 2004). factors, the vertical component of the background error ma-
The tuning factor chosen in this papetvar, p), depends trix B, is obtained. TheB, is a block matrix, where each
on the variable and on the height (the 3D-Var system use$lock contains the vertical covariance between variables er-
pressure as vertical coordinate) and is determined from theors averaged in space and time:
ngee;\;aélﬁzzrim%)’ which, in turn, depends on the vari BT.T) B(T.RH) b(T.u) b(T.v)
: - b(RH, T) b(RH, RH) b(RH, 1) b(RH, v)
The values ofy, are taken from the bibliography (Lazarus B, = (5)
) . . - b(u,T) bw,RH) b(u,u) bu,v)
et al.,, 2002; Sashegyi et al., 1993). More in detail, the bw.T) bw.RH) b(v.u) b v)
observational error is equal for the zonal and meridional ’ ’ ’ ’
wind components. It increases from 2.5msat 1000hPa  In Eq. (3),b(varl, var2) is a square matrix whose dimensions
to 4ms?' at 300hPa. Then it decreases to 3.5thst are equal to the number of levels of the analysis grid (29),
200 hPa. Above 200 hPa the observational error for the veloceontaining the vertical error covariance between the variables
ity components is held constant. For the relative humidity, thevar 1 and var 2T, RH, u andv are the temperature, relative

hP:

o

3

3
T

Fig. 1. Length scalesy axis) of the different parameters of the con-
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27.6
200

humidity, the zonal and meridional wind components, re- 37 00 25 88
spectively.

The B, matrix is symmetric and positive-defined and can
be decomposed in the eigenvalues and eigenvector matri
ces, i.e.B,=VLVT, whereV is the eigenvectors and
the eigenvalues matrix. Using this decomposition, the ver-
tical transformUy is written asUy = VL1/2.

The physical transforriv,, is applied to transform the con-
trol variablev = (w’,v’, RH', T') to the model variable in-
crements’ = (Z',u’,v', RH', T"), which differ only for the
geopotential height increment.

The geopotential height increment is determined by the
geostrophic equilibrium in pressure coordinates:

/
Viz' = e (6)

g Fig. 2. The effect of theUy, Uy and Up transforms (see text for
where¢’ is the vertical component of the perturbed relative details). Solid lines are contours of meridional wind incremetts (
potential vorticity computed from the increments of the zonal contours from 0. to 1.6ns" with 0.2 interval); dashed lines are
(') and meridional ¢') wind componentsg is the gravity th_e geopotgntlal height incremer#t$ (contours from-0.6 to 0.6 m
(ms2) and f is the Coriolis parameter (3). with 0.2 m interval).

The transformlU, ensures the balance between the mass

and wind increments. A future development of the analysis ) ) .
scheme will involve the implementation of a more sophisti- the same variable in the upper and lower troposphere. This is

cated equation improving the mass—-wind balance in regiongaused by the negative covariance between the vertical errors

where the geostrophic balance is a coarse approximation dft °00 hPa and those in the upper and lower troposphere for

the real flow, as the tropics or the PBL. For this purpose all'€ meridional wind component, as shown in Appendix B.

statistical balance may also be employed. This approach is

followed, for example, by Barker et al. (2004), who recover

the pressure, which plays the role of the geopotential height 3 The experiment set-up
in their 3D-Var, by the equation

400 400

— 600

P(hPa)

1000 1 1 1 1000

Longitude(®)

The background and the forecast are issued by the RAMS
p =Cpp+ pu, (7) model (non-hydrostatic), version 6.0. Its physical settings are

summarized in Table 1.
where py is the balanced pressure apglis the unbalanced  The analysis system and the RAMS model share the same
pressure. The unbalanced presspyrés the cqntrql varla}ble, horizontal coordinate system, which is a rotated polar stere-
while pp is computed from a balgnce equation mclgdln.g CY- ographic projection, whose pole is near the centre of the do-
clostrophic terms. The correlation coefficie@it which is i to minimize the projection distortion (Pielke, 2002). In
computed by the NMC method, provides a statistical filter- ihe vertical direction, RAMS uses the sigméerrain follow-

ing in regions where the balance equation is not appropriate-rng coordinate (Pielke, 2002), while the analysis uses pres-
Finally, it is important to mention that it is assumed that g, e

the observational errors are uncorrelated with each other, so The possibility to run the analysis on the same horizon-

the matrixR in Ezq. (2) is a diagonal matrix whose elements (5| coordinate system as RAMS, eventually with coarsened

are all equal ters. The dimensions of the matrR equal the  pqyizontal resolution to speed up the analysis, is an impor-

number of measurements available at the analysis time. gt feature because it simplifies the interpolation between
Figure 2 shows the combined effect of tbig, Uy andUn the RAMS and analysis grids

transforms. It shows the longitude—height cross section at RaMS uses thirty-three levels in the vertical. The 3D-Var

57.8 N latitude for the meridional velocity increments and ,gag twenty-nine pressure levels from 1000 hPa to 50 hPa,

for the geopotential height increments determined by a Sin'spaced every 50hPa between 800and 300hPa, and every
gle meridional wind component observation innovation of

l .
2.5ms ", introduced over the Gotland Island (57.5'N, 2The option to run the analysis on a regularly spaced longitude-

18°E) at 500hPa. The flnal' increment is spread Vert'ca”yIatitude grid is also available to use the ISAN (ISentropic ANalysis)
by the Uy transform and horizontally byh. The Up trans-  y5ckage, which is the standard method to initialize RAMS (see the
form determines the increments of the geopotential height. IRAMS technical manual available &ttp://www.atmet.com/html/

is worth noting that a positive innovation of the meridional docs/rams/rams_techman.pdfhis option, however, requires two
wind component at 500 hPa causes negative increments afifferent RAMS configurations, as shown in Federico (2013).
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Table 1. RAMS model physical settings.

Physical option

Description

Parametrized cumulus Modified Kuo scheme to account for

convection updraft and downdraft (Molinari and
Corsetti, 1985).
Explicit precipitation Bulk microphysical model which prog-

parametrization

noses cloud water, rain, ice crystals, ag-
gregates, graupel and hail (Walko et al.,
1995).

Sub-grid mixing

The turbulent mixing in the horizontal
directions is parameterized following
Smagorinsky (1963), which relates the
mixing coefficients to the fluid strain
rate and includes corrections for the in-
fluence of the Brunt—Vaisala frequency
and the Richardson number (Pielke,
2002). Vertical diffusion is parameter-
ized according to the Mellor and Ya-
mada (1982) scheme, which employs a
prognostic turbulent kinetic energy.

Exchange between the LEAF-3 sub-model

(Walko et al,

surface, the biosphere 2000). LEAF includes prognostic equa-

and the atmosphere.

tions for soil temperature and moisture
for multiple layers, vegetation temper-

ature and surface water, including dew
and intercepted rainfall, snow cover

mass and thermal energy for multi-

ple layers, and temperature and water
vapour mixing ratio of canopy air.

Radiation scheme

A full-column, two-stream single-band
radiation scheme is used to calcu-
late short-wave and long-wave radiation
(Chen and Cotton, 1983). The Chen and
Cotton scheme accounts for condensate
in the atmosphere, but not for specific
optical properties of ice hydrometeors.

S. Federico: Implementation of a 3D-Var system

Table 2. RAMS and analysis grid settings. NNXP, NNYP and
NNYZ are the number of grid points in the west—east, north—south,
and vertical directions. Lx (km), Ly (km), Lz (m) are the domain
extension in the west—east, north—south, and vertical directions. DX
(km) and DY (km) are the horizontal grid resolutions in the west—
east and north—south directions. CENTLON and CENTLAT are the
geographical coordinates of the grid centres. The analysis grid uses
pressure as vertical coordinate.

RAMS grid  Analysis grid
NNXP 231 116
NNYP 231 116
NNzZP 32 29
Lx 2520 km 2520 km
Ly 2520 km 2520 km
Lz 18800 m 1000-50 hPa
DX 10 km 20 km
DY 10 km 20 km
CENTLAT (°) 50.0 50.0
CENTLON ) 8.0 8.0

A simple univariate quality control of the observations is
adopted, which is based on the application of two checks in
sequence. In the first step, the observations whose innova-
tions are larger than four times the background ewgy ére
discarded. This step avoids including observations affected
by gross errors in the analysis. The second step is inspired by
the cross-check of DiMego et al. (1985). In particular, each
innovation is compared to the innovations located inside a
circle whose radius is equal to three times the length scale
of the recursive filters (Fig. 1). For each pair it is checked
if the innovations are in reasonable agreement. Two inno-
vations are in agreement if (a) they differ by less than one
background error and their distance is less than one length

25 hPa below 800 hPa. Above 300 hPa the vertical levels arécale of the recursive filter; and (b) the threshold of one back-
unevenly spaced with a maximum distance of 25 hPa.

Observations used in this paper are vertical radiosonde

ground error is increased up to 3.5 background errors for
gistances between innovations increasing from one to three

(both land and ship) inside the analysis domain and WindIength scales of the recursive filter. If the innovations are in

measurement of the European wind profiler network. Bot
observing systems are shortly reviewed in Appendix A. Ra-
diosondes reports contain vertical profiles of temperature

hagreement, a “hold” flag is assigned to the observation be-

ing tested. The process is iterated for all observations. At the
end of the process an observation is retained if (a) two or
more cross-checks were done and at least two of them gave

relative humidity, pressure, wind speed and direction, and ar§n“ ., _ .
available at synoptic hours (00:00, 06:00, 12:00, 18:00 UTC)2 *I‘g,',d resll_"t’ (b) one Cross'cr:‘eclf was ddt‘)’”‘z and it gave a
with few exceptions. The wind profilers measure the wind n°ld” result; or (c) no cross-c ich cou eh one, |.e.h|sol;
speed and direction in the vertical above the instrument andt""tefj observations are retained if they pass t 1€ gross check.
observations are available every one-hour. _Flgure 3 shows an example of the analysis for the zonal

Observations were downloaded from the MARS (Meteo-WInd component at 850hP_a at 12:00 UTC on 1 July. The
rological Archive and Retrieval System, see aiém:/Avww, background has 10 km horlgontal _resqlut|0n anq covers the
ecmwf.int/publications/manuals/marsirchive of ECMWF central Europe zone. Its grid setting is shown in Table 2.

(European Centre for Medium Weather range Forecast) an he analysis incrgments are giyen on the same grid as the
the numerical experiment is performed for the month of ackground but with halved horizontal resolution (20 km) to
July 2012 speed up the analysis computation. Figure 3b, in particular,

shows how the interaction among several observations im-
pacts the analysis increments, as over central Europe; it also
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e that there are more data for the wind components because of

. the data from the European wind profiler network. Figure 5b

s shows the spatial distribution of the radiosondes and wind
profilers at analysis time (12:00 UTC) for the whole period.

Starting from the analysis time, a short-term RAMS fore-
cast, lasting 3 h, is made (hereafter also forecast run). For this
run (a) the initial conditions are given by the analyses pro-
duced at 12:00 UTC; and (b) the boundary conditions after
6 h are the same as the background run.

The root mean square error (RMSE) is computed between
the background fields and observations, and between the
forecast fields and observations for the whole period. The
comparison of these statistics at the analysis time shows the
performance of the data assimilation system; the same com-

........................................... parison for times following the analysis time quantifies the
impact of the analyses on the short-term forecast.
U ..... { gg*\;a 24 Statistics are presented for the zonal and meridional wind
— e = components only because few data are available for other
variables after the analysis time. Indeed, temperature and
Fig. 3. (a) Background of the zonal wind component (M at relative humidity, which are measured by radiosondes, are
850hPa at 12:00UTC on 1 July 201¢h) analysis increments  available at synoptic times (00:00, 06:00, 12:00, 18:00 UTC)
(ms) at the same time and level @). The positions of the ra-  ith few exceptions, while wind observations are available
dloso_ndes (open s_,quares) and of theT wind profilers (fllle_d cwcles)every one-hour by wind profilers measurements (Table 3).
use_d in the_ana_ly5|s are shown. The figure shows the horizontal dOFor example, Fig. 5¢ shows the vertical distribution of the
main used in this paper. data at 13:00 UTC for the whole period. Less than 5 obser-
vations are available for temperature and relative humidity
at all levels, while the number of data for the wind compo-
shows the effects of isolated observations on the analysefients varies from 309 (875 hPa) to 25 (130 hPa). From Fig. 5¢
field, as over the North Sea. it is apparent that statistics for temperature and relative hu-

To quantify the impact of the analysis both on the im- Midity are reliable only at the analysis time and they will be
provement of the initial state and on the short-term forecastPriefly discussed in the next section. Finally, Fig. 5d shows
the following strategy is adopted (Fig. 4). For each day ofthe spatial distribution of the observational systems used at
July 2012, one background run lasting 24 h is made startindorecasting times (13:00, 14:00 and 15:00 UTC).
at 00:00 UTC (hereafter also background run). Its initial and
boundary conditions are taken every 6 h from the 00:00 UTC
operational analysis/forecast cycle of ECMWF. These fields4 Results
are available at 0.25horizontal resolution.

After 12 h of each run, an analysis is made. The 12:00 UTCHereafter the RMSE computed between the background run
was chosen because there are several radiosonde and wiadd the observations at a fixed time and for the whole period
profiler reports for this time. Table 3 shows the number ofis referred to as the control forecast error (RMSE_b). Simi-
data used at the analysis times, accumulated over the wholerly, the RMSE computed between the forecast run and the
period and over the whole domain (Fig. 3, Table 2), while observations at a fixed time and for the whole period is re-
Fig. 5a shows their vertical distribution, accumulated overferred to as the forecast error (RMSE_f). For the computation
the whole period. From Table 3 and Fig. 5a, it is noticeableof both RMSEs, the grid point nearest to each observation is
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Fig. 5. (a) The number of data available at the analysis time (12:00 UTC) accumulated for the whole period and over the wholeZdomain.

is for temperature, RH is for relative humidity, anchndv are for the zonal and meridional wind components, respectively. The number of
data for the wind components,(v) is the same for all levelgb) positions of the radiosondes (open squares) and radar wind profilers (filled
circles) at 12:00 UTC considering the whole period. Not all radiosondes and radar wind profilers are reporting data at a specific analysis
time; (c) as in(a) for 13:00 UTC;(d) positions of the radiosondes (open squares) and radar wind profilers (filled circles) at forecasting times
(13:00, 14:00 and 15:00 UTC). Not all radiosondes and radar wind profilers are reporting data at a specific forecasting time.

Table 3. Number of available data at analysis and forecasting times, accumulated over the whole period and over the whole iddorain.
zonal velocity,v is for meridional velocityT is for temperature, and RH is for relative humidity.

Radiosondes Wind profilers
Time Soundings number u,v T RH Soundings number u,v
12:00 UTC 458 5984 3993 3622 405 2684
13:00 UTC 5 57 / / 407 2763
14:00 UTC 8 73 / / 407 2744
15:00 UTC 9 90 / / 413 2802

considered and the statistics are computed for the whole dathe vertical interpolation between the RAMS and analysis
main (Fig. 3). grids.

It should also be emphasized that RMSE_f at the analy- Figure 6a shows the RMSE for the zonal wind compo-
sis time is computed after the analyses have been used teent. The RMSE_b is about 2.0-2.5mtsup to 500 hPa,
initialize the RAMS model. Hence, the difference betweenwhile it increases above this level, reaching a maximum of
RMSE_b and RMSE_f accounts for the errors introduced by3.4ms! at 250 hPa. The forecast error at the analysis time
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The error reduction of 30-60% of the control forecast
value is in reasonable agreement with the setting of the data
assimilation system. In particular, considering that the model
error varianceog is twice the observational error variance
o2 at all levels, and for the ideal case of one measurement
available at a grid point of the analysis grid, the analysis
at this point is closer to the observation than to the back-
ground, and the error is more than halved. In particular, for
this simple ideal case, it can be shown that the analysis er-
ror (RMSE_f) iso2/(02 + o) of the control forecast error
(RMSE_b; Kalnay, 2003), with an error reduction of 67 %.

The limit of this simple ideal case is not attained in the
practical application of the analysis system mainly because
the observations innovations, i. e. the differences between the
background and observations, interact with each other both in
the horizontal plane and vertically. This is shown, for exam-
ple, by the analysis increments of Fig. 3b in central Europe.

It is interesting to consider the impact of the analysis on
the short-term forecast.

Figure 7 shows the difference between RMSE_b and
RMSE_f for the wind components. A positive difference
means that the short-term forecast has a lower error than the
control forecast and the wind forecast is effectively improved
by using the analyses as initial conditions.

After the one-hour forecast, the improvement of the per-
formance for the zonal velocity is apparent. In particular, the
difference of the RMSE_b and RMSE_f is positive for all

est to the observations. The RMSE_f statistics are computed afteleVels but 975 and 150 hPa, and it is larger than 0.5Hfsr
the RAMS model has been initialized by the analyses.

(RMSE_f) decreases by more than 1.0Th for most levels

and RMSE_fis more than halved below 700 hPa.
Similar considerations apply for the meridional wind com- the analyses effectively reduces the error (37 % of the value

ponent (Fig. 6b), whose RMSE_fis1.0ms ! lower than

RMSE_b for several levels.

several levels. A useful statistic to represent the impact of the
analysis on the short-term forecast is the vertically averaged
value of the difference between RMSE_b and RMSE_f. This
value is 1.15ms! for the analysis time and 0.43 msfor

the one-hour forecast. From these values it follows that using

at the analysis time) after one-hour forecast.
After the two-hours forecast the improvement reduces.

The analyses for both wind components show a decreas&he vertical average of the difference between RMSE_b and
of the performance above 300 hPa, as shown by the decrea®MSE_f is 0.20 ms?, showing that the improvement is a
of the difference between RMSE_b and RMSE_f above thissizeable fraction, i.e. larger than 10 %, of the initial value,

level.

and that the analysis is still effective at improving the short-

For the other parameters (not shown) similar results arg¢erm forecast.
obtained, with a significant reduction of the error at the anal- For the three-hours forecast the impact of the analysis on
ysis time (30-60 % of the background error). The improve-the short-term forecast is negligible in practice. There are
ment is comparatively larger at the lower levels.
Even if it is not simple to quantify the performance of the RMSE_f is negative, and its vertical average is 0.04™'s
data assimilation scheme because it varies with the parameter Figure 7b shows the same statistics of Fig. 7a for the
and with height, a discussion is provided to clarify the resultsmeridional wind component. The impact of the analysis on

of Fig. 6.

few levels for which the difference between RMSE_b and

the one-hour forecast reduces the error by 0.0-0.8ms

First it should be noticed that the analyses effectively re-depending on the level and the vertical average of the dif-
duce the error. The analysis RMSE is lowered by 30-60 % ofference between RMSE_b and RMSE_f is 0.52th §his
the control forecast value for most levels and for all parame-value must be compared with 0.97 misat the analysis time,
ters; below 700 hPa, the RMSE reduction is often larger tharand shows a positive impact of the analysis on the one-hour

50 % of the background value.

www.atmos-meas-tech.net/6/3563/2013/
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measurements, the number of data used by the analysis is, on
average, less than 15 for most levels (Fig. 5a). The analysis
increments are centred at the observational point and have
a radius of influence that depends on the height, but which
is of the order of 100 km (Fig. 1). The analysis increments
are advected downwind of the measurement point after a few
hours, in agreement with the results of this section. It is ex-
pected that, using a larger number of data, the positive impact
of the analysis on the short—term forecast would last longer.

5 Conclusions

This paper presents the current status of development of
a 3D-Var data assimilation system, tailored for the RAMS
model, which is computationally fast and can be used in
small meteorological centres.

The cost function is written in the incremental form. For
the practical minimization of the cost function a variable
transformation is used, which is composed of three trans-
forms applied in sequence: the horizontal transf@fin the
vertical transforni/y, and then the physical transfori.

The horizontal transformi/y, is applied through recur-
sive filters, which are computationally fast, while the ver-
tical transform Uy is obtained through the eigenvalues—
eigenvectors decomposition of the vertical component of the
background error covariance matrix. The physical transform
Up gives the geopotential height increments by applying the
geostrophic balance to the wind increments. This ensures the

time (ANL), one-(01 h), two-(02h), and three-hours (03h) forecasty, .y oo hetween the increments of mass and wind fields.

for the (a) zonal wind component antb) meridional wind com-
ponent. The RMSEs are computed for the whole period, consider-
ing the grid points nearest to the observations. The analysis time i§_

The length scale of the recursive filters and the vertical
omponent of the background error covariance matrix are es-

shown to better understand the behaviour of the performance wittimated by the NMC method.

time.

A practical example is shown for the analysis/short-term
wind forecast (0—3 h). Analyses are produced once a day at
12:00 UTC for the month of July 2012 with a horizontal reso-

short-term forecast above 200 hPa, caused by the comparéuition of 20 km and twenty-nine vertical levels. Observations

tively poorer performance of the analysis for upper levels.

are tropospheric profiles of wind, temperature and relative

Even though the improvement is reduced after the two-humidity from radiosondes, and tropospheric wind profiles
hour forecast, the difference between RMSE_b and RMSE_ from the European wind profiler network.

is larger than 0.3 mg for several levels. The vertical aver-
age of this difference is 0.27 m%, which is still a sizeable

fraction (28 %) of its initial value.
After the three-hours forecast the improvement is smallerthat this improvement is in agreement with the data assimi-

Analyses are effective at reducing the initial model error.
The improvement is between 30% and 60 % of the control
forecast error for all parameters for most levels. It was shown

but still apparent for several levels in Fig. 7b. The vertical lation settings; nevertheless there is a decrease of the perfor-
average of the difference between RMSE_b and RMSE_f ismance with increasing height partially caused by the errors
0.11ms?, introduced by the vertical interpolation between the RAMS
It can be concluded that, for the setting of this paper, us-and analysis grids.
ing the analyses has a positive impact on the one-hour and The impact of the analyses on the short-term forecast is
two-hours forecasts for both wind components, with smallerevaluated for the wind components only because there are
positive impacts on the three-hours forecast. few measurements at asynoptic times for other variables.
This result is encouraging because the number of data The results show that the improvement for the one-hour
used in the analysis is small. Moreover, it is in agreementforecast is larger than 37 % of the error reduction at the anal-
with the numerical experiment settings. Indeed, consider-ysis time for both wind components. The same improvement
ing the wind components, which have the largest number ofs larger than 17 % of the error reduction at the analysis time
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Table Al. Characteristics of the radar wind profilers.

Frequency Antenna  Power Range  Resolution
(MHZ) size (n?) peak (kW) (km) (m) Name and description
50 10000 250 2-20 150-1000  VHF wind profiler. Wind profilers used for

sampling the troposphere and lower stratosphere.

400 120 40 0.2-14 250 UHF wind profiler. Wind profilers used for
sampling the troposphere.

1000 5 0.5 0.1-5 60-100 Boundary layer wind profiler. Used to sample
the lower troposphere.

for the two-hours forecast and for both wind components.300 m mir . The meteorological measurements are made at
The positive impact of the analysis after the three-hours foreintervals that vary from 1 to 6 s, depending on the radiosonde
castis reduced (4 % and 11 % of its value at the analysis timeaype.
for the zonal and meridional wind components, respectively) Sensors used for pressure, humidity and temperature ob-
but still evident for several levels. servations are often of the capacitance type. Changes in pres-
It is concluded that, considering the amount of data usedsure, temperature and/or humidity result in changes in the ca-
in the data assimilation, the results are encouraging and arpacitance of each sensor, which is converted to a frequency
in agreement with the set-up of the numerical experiment. signal. Frequencies are converted to physical measurements
Work is in progress on several aspects of the data assimby factory calibration measurements. Wind speed and direc-
ilation system. In particular, future development will con- tion are determined by observing the drift of the balloon
sider (a) the inclusion of measurements coming from differ-and high quality tracking information is necessary for ob-
entsources; (b) amore sophisticated balance foffteans-  taining high quality wind measurements. Nowadays Global
form; and (c) an improved quality control of the observations. Positioning System (GPS) is of widespread usage because of
Nevertheless, the analysis system and the numerical experits high accuracy and global coverage. A GPS receiver in-
ment presented in this work should be of interest for the at-side the radiosonde measures directly the drift velocity of the
mospheric profiling community because it can be applied toballoon and hence the wind.
OSE and OSSE experiments aiming to investigate the impact Countries launching operational radiosondes are members
of the tropospheric profilers on the short-term wind forecast.of the World Meteorological Organization’s World Weather
Watch program. They launch radiosondes at 00:00 and
12:00 UTC (actually the launches occur 45 min before these

Appendix A observing times) and are contemporary worldwide to provide
a synoptic description of the atmosphere. Countries of the
Observing systems World Weather Watch program freely share their sounding

data with each other. After an operational upper-air sounding
In this paper measurements from two observing systems aris completed, a standard data message (TEMP) is prepared
used: radiosondes and wind profilers. These instruments arand made available to all nations using the Global Telecom-

shortly reviewed in this Appendix. munications System.
There are two main applications of radiosonde observa-
Al Radiosondes tions: to analyse and describe current weather patterns, and

_ _ _ ~_ to provide inputs to short- and medium-range weather fore-
The radiosonde is a balloon-borne device measuring, in situgasting models. More details about radiosondes are provided

the vertical profile of meteorological variables and transmitspy the World Meteorological Organization (WMO, 1996).
the data to a ground-based receiving station.

Vertical profiles of temperature, humidity, and pressure areA2  Wind profilers
given as the balloon ascends from the land or ocean surface to
heights up to about 30 km. The profile of these meteorologi-The radar wind profiler is a remotely observing equipment
cal variables is called an upper-air sounding that is known asising pulsed electromagnetic radiation to measure the winds
a radiosonde observation or RAOB. in the atmosphere, both in the horizontal plane and in the ver-
The radiosonde is carried aloft by a balloon, which is tical direction. The principle of their workings is the follow-
made of natural rubber (latex) or synthetic rubber (neoprene)ing: an electromagnetic wave is sent to the atmosphere and a
Operational radiosonde systems typically use balloons thasmall fraction of its energy is scattered in all directions, in-
weight from 0.3 to 1.2 kg, filled to ensure an ascent rate ofcluding that of the receiving antenna. The returned energy is

www.atmos-meas-tech.net/6/3563/2013/ Atmos. Meas. Tech., 6, 355¥#6 2013



3574 S. Federico: Implementation of a 3D-Var system

200 T 2
300 {1 K7
4004
5 g 500 -
= ] |
< < 600
700 A
=0=900 hPa =0=900 hPa
=@=500 hPa 800 7 ==500 hPa
- 900 1 f‘ 250 hPa
a
1000 -,
-20 -10 0 10 20 30 40 -2,0 -1,0 0,0 2,0 3,0
cov(v,v); (m/s)"2 cov(u,v); (m/s)"2

Fig. B1. Vertical error covariance of the meridional wind compo- Fig- B2. Vertical error covariance between the meridional wind
nent at 900 (diamonds), 500 (squares) and 200 (triangles) hPa. ~ component at 900 (diamonds), 500 (squares) and 200 (triangles)
hPa and the zonal wind component.

amplified and discriminated in range by sampling it with de- the tuning factors are applied. The methodology to compute
lays of fixed intervals, which are built in the data processingg, is detailed in the following points:
system. In this way, the radar receives scattered energy from

discrete altitudes, referred to as range gates. 1. The difference between two short-term forecasts
In the troposphere and the stratosphere the backscattered ~ verifying at the same time is firstly computed
energy is produced by small-scale fluctuations of the refrac- x'(i, j.k,t) =x71(, j. k,t) —x720, j. k,1), where
tive index, which are in turn produced by small-scale fluctu- T1=12h andT2=24h, andi, j, k,t show the de-
ations in atmospheric density. These small-scale fluctuations ~ pendence ofc’ on the three spatial dimensions and
are produced by the turbulence and move with the bulk mo- time. In this paper the whole month of July 2012
tion of the medium in which they are embedded. The radar was considered and the differencesi, j, k,t) were

is most sensitive to the scattering by turbulent eddies whose ~ computed between two short-term forecasts verifying
spatial scale is half of the length scale of the electromagnetic at 00:00 UTC on each day;
radiation emitted by the radar (Table Al).

The Doppler frequency shift of the backscattered energy
is determined and it is used to calculate the velocity of the
air toward or away from the radar, along the direction of the Foeo e —
emitted beam as ; function of the heighqt. va j k=20 k0 =Xk (B1)

A typical configuration of the radar wind profiler is that
of an antenna, which is both the transmitter and the receiver,
emitting electromagnetic pulses in five directions: one is the
vertical and the other four, tilted off the vertical, are orthog-

2. For each vertical level, the averagé, r) is computed
to define anomalies:

3. The domain averaged vertical background error co-
variance matrixB’(k, k', r) is computed for each day:

onal to one another. The vertical beam is used to retrieve the VG ik OV KL )
vertical velocity, while the combination of all the beams is B'(k, k' 1) = Z AL T AL
used to determine the horizontal wind components. i=1,1;j=1,J

Finally, Table A1 shows the main characteristics of the (B2)
radar wind profilers, including those of the European wind
profiler network, used for wind profiling in the tropo- 4. The matricesB'(k, k', 1) are averaged in time to get
sphere/low stratosphere. More details about wind profilers the space and time averaged vertical component of the
can be found in Clifford et al. (1994). background error covariance matx:

B'(k, k', 1)
. B, =B.(k.k') = Z — (B3)

Appendix B 1=1T
The computation of the B, matrix The elements of the covariance matlk are tuned after

this step, obtaining the vertical component of the background
This Appendix shows how the vertical component of the error covariance matriB,. The tuning coefficients are de-
background error covariance matr,( is derived and how pendent on the variable and on the level (pressure) and are
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chosen for each variable and level so that the variance of thand for their support in using the MARS archive. | am also grateful
model error is two times the variance of the observationalto Anna Trevisan for the helpful discussion and comments on this
error. paper.
More in detail, the matriB may be written as
- Edited by: D. Cimini
(T, T) b/(T,RH) b(T,u) b(T,v)
B — b (RH, T) b'(RH,RH) '(RH, u) b'(RH, v)
z b, Ty b'wu,RH) b'(u,u) b'(u,v)
bV, T) b w,RH) b(v,u) b(v,v)

(B4)
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