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Abstract. The high temporal resolution of data acquisition
by geostationary satellites and their capability to resolve the
diurnal cycle allows for the retrieval of a valuable source of
information about geophysical parameters. In this paper, we
implement a Kalman filter approach to apply temporal con-
straints on the retrieval of surface emissivity and temperature
from radiance measurements made from geostationary plat-
forms. Although we consider a case study in which we ap-
ply a strictly temporal constraint alone, the methodology will
be presented in its general four-dimensional, i.e., space-time,
setting. The case study we consider is the retrieval of emis-
sivity and surface temperature from SEVIRI (Spinning En-
hanced Visible and Infrared Imager) observations over a tar-
get area encompassing the Iberian Peninsula and northwest-
ern Africa. The retrievals are then compared with in situ data
and other similar satellite products. Our findings show that
the Kalman filter strategy can simultaneously retrieve sur-
face emissivity and temperature with an accuracy of± 0.005
and±0.2 K, respectively.

1 Introduction

Infrared instrumentation on geostationary satellites is now
rapidly approaching the spectral quality and accuracy of
modern sensors on board polar platforms. Currently at the
core of European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT) geostationary meteo-
rological programme is the Meteosat (meteorological satel-
lite) Second Generation (MSG). EUMETSAT is preparing

for Meteosat Third Generation (MTG), which will carry the
Flexible Combined Imager (FCI) with a spatial resolution of
1–2 km at the sub-satellite point and 16 channels (8 in the
thermal band), and an infrared sounder (IRS) that will be
able to provide unprecedented information on horizontally,
vertically, and temporally (four-dimensional; 4-D) resolved
water vapor and temperature structures of the atmosphere.
The IRS will have a hyperspectral resolution of 0.625 cm−1

wave numbers, will take measurements in two bands, the
long-wave infrared (LWIR) (14.3–8.3 µm) and the mid-wave
infrared (MWIR) (6.25–4.6 µm), and with a spatial resolution
of 4 km and a repeat cycle of 60 min.

Because geostationary satellites are capable of resolving
the diurnal cycle, and hence providing time-resolved se-
quences or times series of observations, they are a source
of information which can suitably constrain the derivation
of geophysical parameters. In this paper, we implement a
Kalman filter (KF) approach for applying temporal con-
straints on the retrieval of surface emissivity and tempera-
ture from radiance measurements made from MSG SEVIRI
(Spinning Enhanced Visible and Infrared Imager). The study
has been performed also in view of future applications to the
MTG mission. This mission should improve sounding den-
sity, quality and accuracy of surface and atmospheric param-
eters.

The Kalman filter (Kalman, 1960; Kalman and Bucy,
1961) has received widespread attention in the context of nu-
merical weather prediction (NWP) and in the broad research
area of data assimilation (e.g.,Lorenc, 1986; Evensen, 1994;
Talagrand, 1997; Nychka and Anderson, 2010). Specific

Published by Copernicus Publications on behalf of the European Geosciences Union.



3614 G. Masiello et al.: Kalman filter surface temperature and emissivity retrieval from geostationary platforms

applications to atmospheric chemistry with satellite data have
been described by, e.g.,Khattatov et al.(1999); Lamarque et
al. (1999); Levelt et al.(1998). For a detailed review and tuto-
rial of the theoretical background of KF the reader is referred
to, e.g.,Wikle and Berliner(2007); Nychka and Anderson
(2010).

The present paper addresses the capability of the Kalman
filter to convey temporal constraint in the retrieval of sur-
face parameters though time series of geostationary satellite
data. The fact that time continuity of the observations brings
much information about atmospheric processes is normally
evidenced by the pronounced dynamical correlation, which
in many instances can be modeled with Markov chains or
Markov stochastic processes (e.g.,Serio, 1992; Cuomo et al.,
1994; Serio, 1994, and references therein).

To exploit the temporal information, we focus on imple-
menting the KF so that it is capable of incorporating dynam-
ical correlation within the retrieval process without making
use of a full dynamical NWP system. We aim at develop-
ing a retrieval strategy for surface emissivity and tempera-
ture which allows us insight into understanding how we can
better exploit satellite data per se. In other words, the analy-
sis is conducted within a context which envisages an almost
entirely data-driven system. In this respect, we clarify that al-
though we try to exploit tools such as the KF which are gen-
erally used in a data assimilation context, we aim at address-
ing a retrieval problem limited to surface parameters. We do
not want to solve an assimilation problem according to the
common method (e.g., seeNychka and Anderson, 2010) of
combining a NWP model with observations.

In view of future MTG applications, the KF methodology
is presented in a general context which applies to both spa-
tial and temporal constraints. However, it will be exempli-
fied for a case study in which we consider a strictly temporal
constraint alone. As said, this is the problem of surface tem-
perature (Ts) and emissivity (ε) separation, that is, the simul-
taneous retrieval of(Ts,ε) from SEVIRI infrared channels.
Toward this objective, a case study has been defined which
includes a specific target area characterized by a large vari-
ety of surface features.

The problem of retrieving surface emissivity and temper-
ature from satellite data has long been studied. A recent re-
view of the subject has been provided byLi et al. (2013).
According to this review, our KF approach from a geosta-
tionary platform is novel. A similarity could be found with
the scheme developed byLi et al. (2011). However, while in
Li et al. (2011) the observations are accumulated for a pre-
scribed time slot (normally six hours), we pursue a genuine
dynamical strategy which exploits the sequential approach of
the Kalman filter. This results in an algorithm which does not
need to increase the dimensionality of the data space because
of time accumulation, while preserving the highest time res-
olution prescribed by the repeat time of the geostationary in-
strumentation (15 min for SEVIRI).

To check the quality and performance of our approach, KF
retrieval results will be compared with in situ data, space-
time collocated ECMWF (European Centre for Medium-
Range Weather Forecasts) analysis and other similar satellite
products, such as those from the AVHRR (Advanced Very
High Resolution Radiometer).

The study is organized as follows. Section2 will present
the data used in the analysis. This section will also provide
some details about the forward model we have developed for
SEVIRI. Section3 will deal with the retrieval methodology,
whereas Sect.4 will exemplify the application of the method-
ology to a SEVIRI case study. Finally, conclusions will be
made in Sect.5.

2 Data and forward modeling

In this paper, the KF methodology will be applied for the re-
trieval of surface emissivities and surface temperature from
SEVIRI infrared channels in the atmospheric window over
a target area, covering a geographic region with very differ-
ent surface features: sea water, arid, vegetated and cultivated
land, and urban areas.

The SEVIRI imager on board Meteosat-9 allows for a
complete image scan (full Earth scan) once every 15 min pe-
riod with a spatial resolution of 3 km for 12 channels (8 in
the thermal band), over the full disk covering Europe, Africa
and part of South America.

SEVIRI infrared channels range from 3.9 µm to 12 µm.
Their conventional definition in terms of channel number is
given in Table1, whereas their spectral response is shown in
Fig. 1. The figure also provides a comparison with a typical
IASI (Infrared Atmospheric Sounder Interferometer) spec-
trum at a spectral sampling of 0.25 cm−1.

IASI has been developed in France by the Centre National
d’Etudes Spatiales (CNES) and is on board the Metop (Me-
teorological Operational Satellite) platform, a series of three
satellites belonging to the EUMETSAT European Polar Sys-
tem (EPS). The instrument has a spectral coverage extend-
ing from 645 to 2760 cm−1, which, with a sampling interval
1σ = 0.25 cm−1, gives 8461 data points or channels for each
single spectrum. Data samples are taken at intervals of 25 km
along and across track, each sample having a minimum diam-
eter of about 12 km. Further details on IASI and its mission
objectives can be found inHilton et al.(2012). Atmospheric
parameters (temperature, water vapor and ozone profiles) de-
rived from IASI spectral radiances will be used in this paper
to assess the sensitivity of SEVIRI atmospheric window in-
frared channels to the atmospheric state vector.

As stated before, for the purpose of this study, SEVIRI
Meteosat-9 high rate level 1.5 image data and IASI (level 1C)
observations have been collected for the target area shown in
Fig. 2 for the full month of July 2010. The area is covered
with 392 088 Meteosat-9 pixels and includes Spain, Portugal,
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Table 1. Definition of SEVIRI infrared channels and radiometric
noise in noise equivalent difference temperature (NEDT) at a scene
temperature of 280 K.

Channel wave no.
Number (cm−1) wavelength (µm) NEDT at 280 K (K)

1 2564.10 3.9
2 1612.90 6.2 0.12
3 1369.90 7.3 0.20
4 1149.40 8.7 0.13
5 1030.9 9.7 0.21
6 925.90 10.8 0.13
7 833.30 12.0 0.18
8 746.30 13.4 0.37
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Fig. 1. SEVIRI channel spectral response over-imposed to a typical
IASI spectrum.
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Fig. 2. Target area (rectangled in blue) used to check the retrieval
algorithms. The figure also show the position of smaller test areas
situated East of Seville (Spain), in a flat dune area in the Sahara
desert, and below Sardinia island in the Mediterranean sea.

Fig. 1.SEVIRI channel spectral response superimposed on a typical
IASI spectrum.

part of the northwestern Africa, and the western part of the
Mediterranean Basin.

To check the performance of the scheme, we have also
selected three smaller areas (also shown in Fig.2 with red
boxes) in Spain, the Sahara desert, and the Mediterranean
Basin, which have a size of 0.5× 0.5 degrees and each cor-
respond to one box of the ECMWF analysis grid mesh (e.g.,
see Fig.3). For the Spanish location the area includes 187
SEVIRI pixels, 219 for the Sahara desert and 178 for the
Mediterranean Basin. The land coverage for the small tar-
get area close to Seville is a mosaic of cultivated areas, with
green grass, foliage, bare soil and urban areas. For this type
of coverage we expect an emissivity at atmospheric window
well above 0.90. The small Sahara desert area is just a desert
sand homogeneous flat area, with no vegetation. In this case
we know that emissivity is dominated by quartz particles,
which yield a characteristic fingerprint at 8.6 µm (reststrahlen
doublet of quartz). This strong signature is in the middle of
the SEVIRI channel at 8.7 µm, and, therefore, the retrieved
emissivity at this channel has to show the quartz fingerprint.
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Fig. 2. Target area (blue rectangle) used to check the retrieval algo-
rithms. The figure also show the position of smaller test areas situ-
ated east of Seville (Spain), in a flat dune area in the Sahara desert,
and below island of Sardinia in the Mediterranean sea.

For the whole target area shown in Fig.2, we have also
acquired ancillary information for the characterization of the
thermodynamical atmospheric state. This information is pro-
vided by ECMWF analysis products for the surface temper-
ature,Ts and the atmospheric profiles of temperature, wa-
ter vapor and ozone(T ,Q,O) at the canonical hours 00:00,
06:00, 12:00 and 18:00 UTC. ECMWF model data are pro-
vided on 0.5× 0.5 degree grid. In each ECMWF grid box
there are on average≈ 200 SEVIRI pixels, for which we as-
sume that the atmospheric state vector is the time collocated
ECMWF analysis (e.g., see Fig.3).

Within the inverse scheme, an important issue concerns
a priori information to constrain the retrieval of emissiv-
ity. To this end, we have used the University of Wiscon-
sin Baseline Fit Global Infrared Land Surface Emissiv-
ity Database (UW/BFEMIS database, e.g.,http://cimss.ssec.
wisc.edu/iremis/) (Seemann et al., 2008; Borbas and Ruston,
2010). The UW/BFEMIS database is available for years 2003
to 2012, globally, with 0.05 degree spatial resolution. Details
of how to transform UW/BFEMIS database emissivity to SE-
VIRI channel emissivity can be found inSerio et al.(2013);
Masiello et al.(2013).

For the purpose of comparison, we have used also NOAA
(National Ocean and Atmosphere Administration) Opti-
mum Interpolation 1/4 degree daily Sea-Surface Tempera-
ture (OISST) analyses for the month of July 2010. The anal-
ysis, which is a product of the processing of AMSR (Ad-
vanced Microwave Scanning Radiometer) and AVHRR, will
be compared to that obtained by SEVIRI for sea surface. The
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analysis will be referred to as AMSR+AVHRR OISST in the
remainder of this paper. The AMSR+AVHRR OISST analy-
sis has been downloaded from the websiteftp://eclipse.ncdc.
noaa.gov/pub/OI-daily-v2/NetCDF/2010/AVHRR-AMSR/.

Finally, we have also used data collected at the Evora
ground site (38.55◦ N, 8.01◦ W) located in southern Portu-
gal and maintained by the EUMETSAT Satellite Applica-
tions Facility on Land Surface Analysis (LSA SAF) team.
The area surrounding the site is dominated byQuercuswood-
land plains and is fairly homogeneous at the SEVIRI spatial
scales (Dash et al., 2004). The ground station is equipped
with a suite of radiometers (9.6–11.5 µm range) providing
temperatures of tree canopies and of ground in the sun and
in the shade. These are combined to provide a composite
ground temperature representative of SEVIRI pixels, consid-
ering that the fractional area coverage of canopies is 0.32
(Trigo et al., 2008). It is worth mentioning that the ground
and the treetop canopy present contrasting temperatures par-
ticularly during daytime, when differences can easily reach
15 K. As a consequence, the composite ground temperatures
are fairly sensitive to the fraction of trees being considered.
For this purpose, the area surrounding the Evora station was
carefully characterized using very high resolution IKONOS
satellite images (Kabsch et al., 2008; Trigo et al., 2008). In
addition, our Kalman Filter retrievals for the pixels closer to
Evora are also compared with the operational land-surface
temperature product provided by the LSA SAF (Freitas et
al., 2010).

2.1 Forward models:σ -IASI and σ -SEVIRI

Forward calculations for the SEVIRI channels 2–8 (see Ta-
ble 1) are obtained by theσ -SEVIRI code that we have de-
veloped specifically for this study.

We do not consider the SEVIRI channel at 3.9 µm since
during daytime it is contaminated by reflected solar radiation
and affected by non-local thermodynamic equilibrium (non-
LTE) effects. Furthermore, the CO2 line mixing at 4.3 µm
CO2 band head is poorly modeled in state-of-the-art radiative
transfer and can add potentially large bias.

Regarding channels 2 to 8, the forward model,σ -SEVIRI
has been derived fromσ -IASI (Amato et al., 2002) which is a
monochromatic radiative transfer designed for the fast com-
putation of spectral radiance and its derivatives (Jacobian)
with respect to a given set of geophysical parameters.

The form of the radiative transfer equation, whichσ -IASI
and henceσ -SEVIRI consider in its numerical scheme, has
been recently reviewed and presented inMasiello and Serio
(2013), to which the interested reader is referred. The model
also takes into account the radiance term, which is the ra-
diation reflected from the surface back to the satellite. Both
Lambertian and specular reflections can be modeled.

To accomplish the radiative transfer calculationσ -IASI
uses a lookup table for the optical depth; this table was de-
veloped from one of the most popular line-by-line forward
models, Line-By-Line Radiative Transfer Model (LBLRTM)
(Clough et al., 2005).

The modelσ -SEVIRI is itself based on a lookup table,
which is obtained by a proper down-sampling of the lookup
table forσ -IASI. For this reason we need to give some details
aboutσ -IASI in order to describe howσ -SEVIRI works.

Theσ -IASI model (Amato et al., 2002) parameterizes the
monochromatic optical depth with a second-order polyno-
mial. At a given pressure-layer and wave numberσ (in cm−1

units), the optical depth for the a genericith molecule is com-
puted according to

χσ,i = qi

2∑
j=0

cσ,j,iT
j , (1)

whereT is the temperature,qi the molecule concentration
andcσ,j,i with j = 0,1,2, are fitted coefficients, which are
actually stored in the optical depth lookup table.

For water vapor, unlike other gases, in order to take into
account effects depending on the gas concentration, such as
self-broadening, a bi-dimensional lookup table created by
Masiello and Serio(2003) is used. Thus, for water vapor,
identified withi = 1, the optical depth is calculated accord-
ing to

χσ,1 = q1

(
2∑

j=0

cσ,j,1T
j
+ cσ,3,1q1

)
. (2)

The subscriptσ indicates the monochromatic quantities. In
the case of hyperspectral instruments, such as IASI, the
monochromatic optical depths are computed and parameter-
ized at the spectral sampling interval of 10−4 cm−1.

This spectral sampling is much too fine for a band instru-
ment such as SEVIRI. In the case of SEVIRI, the spectral
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sampling can be averaged and sampled at a rate of 10−1 cm−1

without sacrificing accuracy. Also in this case the optical
depth can be parameterized with a low-order polynomial, and
its coefficients are obtained as explained below.

For each species,i, we can define an equivalent optical
depth which can be parameterized with respect to tempera-
ture in the same way we do for monochromatic quantities
(Eqs.1 and 2). Considering the larger channel bandwidths
of the SEVIRI measurements, averaging is applied over the
spectral wave-number band of each channel. This averaging
is identified by the angular brackets〈·〉. The equivalent opti-
cal depth is

χ〈σ 〉,i = qi

2∑
j=0

c〈σ 〉,j,iT
j , (3)

where the equivalent coefficientsc〈σ 〉,j,i with j = 0,1,2, are
obtained by fitting the layer transmittance averaged over the
coarse sampling of 10−1 cm−1,

qi

2∑
j=0

c〈σ 〉,j,iT
j

= − log
[〈

exp
(
−χσ,i

)〉]
. (4)

Because of this down-samplingσ -SEVIRI, which is based
on the coarse-mesh lookup table, runs≈ 1000 times faster
than σ -IASI. As the parent code,σ -IASI, σ -SEVIRI can
compute the analytical Jacobian derivative for a large set of
surface and atmospheric parameters:ε, Ts and(T ,Q,O).

3 The retrieval framework

Before showing the retrieval problem for the pair of surface
parameters(Ts,ε), we briefly review the concept of the op-
timal estimation in the general context of data assimilation
(Lorenc, 1986; Talagrand, 1997; Wikle and Berliner, 2007;
Nychka and Anderson, 2010; Rodgers, 2000), which allows
us to describe the retrieval methodology in its general spa-
tiotemporal framework and also to put in evidence its com-
monalities with the KF methodology.

For the benefit of the reader, we will try to stay as close
as possible to the notation used inRodgers(2000), therefore
the symbol and subscriptε will be used to denote the obser-
vational covariance matrix and hence the noise term affecting
the spectral radiance. For emissivity we will use the symbol
ε, which should not be confused withε.

3.1 Static a priori background

To simplify the exposition let us assume that the times are
indexed by integers,t = 1,2, . . ., although handling unevenly
spaced times does not add any fundamental difficulty.

The derivation of the thermodynamical state of the atmo-
sphere, at a given timet , given a set of independent obser-
vations of the spectral radiance,Rt (σ ), is well established

when each timet is considered independent from past and
future measures. LetRt be the radiance vector

Rt = (Rt (σ1), . . .,Rt (σm))T , (5)

with m the number of spectral radiances, and where the su-
perscriptT stands for transpose. Under the assumption of
multivariate normality the retrieval problem can be seen as
one of variational analysis in which a suitable estimation of
the state vector is obtained by minimizing the form (see e.g.,
Courtier, 1997; Talagrand, 1997; Tarantola, 1987; Carissimo
et al., 2005):

min
v

1

2
(Rt − F(v))T S−1

ε (Rt − F(v))

+
1

2
(v − va))

T S−1
a (v − va)) , (6)

whereF is the forward model function;v is the atmospheric
state vector, of sizen; va is the atmospheric background state
vector, of sizen; Sε is the observational covariance matrix, of
sizem × m; andSa is the background covariance matrix, of
sizen×n. Equation (6) is commonly linearized and a Gauss
Newton iterative method is used to solve the quadratic form

min
x

1

2
(yt − Kx)T S−1

ε (yt − Kx)

+
1

2
(x − xa)

T S−1
a (x − xa) , (7)

whereK is ∂F (v)
∂v

|v=vo ; yt = Rt −Rot ; andx is v −vo;xa =

va − vo. It should be stressed that, formally, the state vector,
v can be thought of as a 3-D geophysical field, and not nec-
essarily of a vector in one dimension (altitude coordinate).

The formal solution of Eq. (7) is well established (e.g.,
Tarantola, 1987; Rodgers, 2000).

x̂ = xa +
(
KT S−1

ε K + S−1
a

)−1
KT S−1

ε (yt − Kxa)

Ŝ =
(
KT S−1

ε K + S−1
a

)−1 (8)

In the context ofdata assimilation, xa is normally the fore-
cast at timet , andSa is the forecast error covariance matrix.
The estimation,̂x, is referred to as the analysis.

3.2 The Kalman filter

The Kalman filter was first developed byKalman(1960) and
Kalman and Bucy(1961) in an engineering context and as
a linear filter. Its derivation from the Bayes formalism has
been shown by many authors (e.g., see the review byWikle
and Berliner, 2007).

With our notation, the formal filter can be summarized
with the two equations below which are often referred to as
theobservation equation(or data model) and thestate equa-
tion (or dynamic model or system model), respectively.{

Rt = F(vt ) + εt

vt+1 = Mvt + ηt+1
(9)
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Here M is a linear operator and the noise model term,ηt

has covariance,Sη. The remaining parameters appearing
in Eq. (9) have the same meaning as those introduced in
Sect.3.1. KF is intrinsically linear, therefore the observation
equation has to be linearized in order to write down the op-
timal estimation for the state vector. With the same notation
we have used until now, we have the linear KF form{

yt = K txt + εt

vt+1 = Mvt + ηt+1
, (10)

where we use the notationK t for the Jacobian to stress that
it depends on time,t .

It should be noted that we assume that both the noise terms
εt andηt are independent of the state vector.

3.2.1 The KF update step or analysis

Under the same assumption of multivariate normal statistics
as that used in Sect.3.1, we have that the optimal KF esti-
mate,x̂t at timet is given by (e.g.,Wikle and Berliner, 2007)

x̂t = xa +
(
KT

t S−1
ε K t + S−1

a

)−1
KT

t S−1
ε (yt − K txa)

Ŝt =
(
KT

t S−1
ε K t + S−1

a

)−1 . (11)

We see that the optimal KF estimate forx̂t is formally equiv-
alent to that obtained by the variational or optimal estimation
approach in Sect.3.1. We recall, once again, that in the con-
text of data assimilation, xa is normally the forecast at time
t , andSa is the error forecast covariance matrix. The estima-
tion, x̂t , is referred to as theanalysisat time t , which has
covariance matrix given bŷSt .

One important aspect of the formal solution is that the
analysis update depends only on the data at timet and not
on that at previous times. This property is referred to as the
Markov property. In fact, the formal solution for the anal-
ysis does not depend on the dynamical system directly. We
can see that the expression in Eq. (11) does not contain the
operatorM .

The above property is also referred to as the regularization
property of KF. New data comes in att and the KF updated
state estimate is the minimizer of the quadratic form or cost
function,S:

S = min
x

1

2
(yt − K txt )

T S−1
ε (yt − K txt )

+
1

2
(xt − xa)

T S−1
a (xt − xa) . (12)

However, an important distinction regarding data assimi-
lation is thatSa is potentially generated from the process and
not from an external spatial model. In factSa is iterated with
the process, as will become clear in examining the forecast
step for the linear KF. It is important here to stress that the
minimization of the form (12) needs an iterative approach

because of the nonlinearity of the forward model and a crite-
rion to stop iterations. We use the usualχ2 criterion. In fact,
under linearity, the value of twice the quadraticS (Eq. 12)
at the minimum is distributed as aχ2 variable withm de-
grees of freedom (Tarantola, 1987). A χ2 threshold,χ2

th, at
three sigma confidence intervals, can be then obtained ac-
cording toχ2

th = m + 3
√

2m. Therefore, the iterative proce-
dure is stopped when

χ2
= 2× S ≤ χ2

th. (13)

3.2.2 The KF forecast step

In our notation,x̂ = v̂−vo andx̂a = v̂a −vo, so that the for-
mal KF estimate for the state vector is

v̂t = va +

(
KT

t S−1
ε K t + S−1

a

)−1
KT

t S−1
ε (yt − K txa) . (14)

For the forecast step the KF assumes that the process evolves
in a linear way, according to the operatorM ; therefore, we
can obtain an estimate of the forecast at timet + 1, standing
at timet , through the linear transform

v̂
f

t+1 = M v̂t , (15)

where the superscriptf stands for forecast. The forecast has
uncertainty given by

Ŝ
f

t = MŜtMT
+ Sη (16)

whereSη is the covariance matrix of the noise termηt (see
Eq.10).

As soon as new data comes in at timet + 1, the forecast
becomes the background,

va = v̂
f

t+1, Sa = Ŝ
f

t , (17)

and we are ready to obtain the new analysis,v̂t+1.
An important concept to draw from this sequential updat-

ing is that spatial information about the distribution ofvt can
be generated from the dynamics of the process. In fact, ana-
lyzing the forecast covariance matrix (Eq.16), it is seen that
it is based on the previous forecast covariance matrix and also
inherits the dynamical relationship from the previous time.
Thus, in the situation of assimilation for a space-time pro-
cess, the spatial covariance for inference is built up sequen-
tially based on past updates with observations and propagat-
ing the posterior forward in time as a forecast distribution.
We stress that this spatial information is the difference or er-
ror between the conditional mean and the true field and is not
the covariance of the process itself.

However, the goodness of this spatial information mostly
relies on the quality of the physics we model with the op-
eratorM . Typically, the forecast step is completed by a de-
terministic, physically based model. In this case, the spatial
information has value. However, in a case in which we want
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the problem driven from the data, the model can be very sim-
plistic and inherently inadequate to describe the real-world
process. In this case, spatial information has to be provided
externally through a proper definition ofSa .

3.3 A formulation of the emissivity/temperature
retrieval with KF

As stated at the beginning of Sect.3, the general KF formal-
ism has been described and presented in a full 4-D setting.
In this section we will deal with an application to the(Ts,ε)

problem where we apply a strictly temporal only method.
To begin with, we introduce a transform for the emissiv-

ity, which allows us to constrain the retrieval to the physical
emissivity range of 0–1. Lettingε be the emissivity at any of
the channels, we consider thelogit transform

e = log
ε

1− ε
, (18)

which has inverse

ε =
exp(e)

1+ exp(e)
. (19)

The transform maps 0–1 into the interval[−∞,+∞] and
vice versa. Therefore if we work with the variablee, retrieval
positiveness forε is ensured.

In order to work with the parametere we have to properly
transform the Jacobian. It easily follows from Eq. (18) that

∂R

∂e
=

∂R

∂ε
ε(1− ε), (20)

whereR is the radiance at a generic channel.
If we linearize the forward model, at timet , with respect

to e andTs, we obtain

yt = Atδet + BtδTst , (21)

with δe = e − eo of dimensionm× 1, δTst = Tst −Tsto. The
matrix At is the emissivity Jacobian, a diagonal matrix of
size m × m, and Bt is the surface temperature Jacobian, a
vector of dimensionm × 1. We have that the size of the ob-
servation vector,yt is m × 1, the dimension of the Jacobian
Kt = (At ,Bt ) is m × (m + 1), and that the state vector,

xt =


δe1t

δe2t

. . .

δeMt

δTst

 , (22)

has dimension(m + 1) × 1. As regards the state or model
equation for emissivity, an evolution equation is straightfor-
ward if we consider the high repeat rate of SEVIRI observa-
tions (15 min). This leads us to assume that the evolution of
ε has a low variability on a time scale of few hours. This is
particularly true for emissivity, but much less for temperature

over land, which is strongly influenced from the daily cycle.
For sea surface the assumption of a low time variability on
time scales of several hours is good both forTs andε.

With this in mind, let v = (e1, . . .,em,Ts)
T be the

emissivity–temperature vector, a suitable dynamical equation
is then a simple persistence

vt+1 = Mvt + ηt+1, (23)

where, according to our notation (see Sect.3.2), ηt is a noise
term with covariance,Sη, andM is the identity propagation
operator.

We know that the persistence model of Eq. (23) is not
physically correct since it cannot reproduce the strong daily
cyclic behavior ofTs expected in clear sky for land surface
(Gottsche and Olesen, 2009; Menglin and Dickinson, 1999;
Menglin, 2000). It could be a fair model for sea surface,
where thermal inertia of water strongly damps the effect of
the solar cycle; however, it cannot represent a good model
for land surface.

Nevertheless, it has to be stressed that within the con-
text of the Kalman filter methodology we can accommo-
date our knowledge about the adequacy of the model (Wikle
and Berliner, 2007). In practice, provided that the parame-
ters are strongly constrained by the data, the precise form of
the evolutionary equation is not important for the estimation
problem as long as the error covariance appropriately reflects
the uncertainty of the current state estimate. To this end, an
important role is played by the stochastic noise covariance,
Sη. By properly tuning the stochastic noise covariance, we
can have a retrieval which is either dominated by the data
(Sη → +∞, model inadequate), or the state model (Sη → 0,
model adequate).

SEVIRI atmospheric window channels are strongly dom-
inated byTs. This is exemplified in Fig.4, which shows a
simulation of the daily evolution ofTs for a desert site and
the corresponding radiance signal at channel 7 (12 µm). The
simulation has been obtained using the daily cycle model de-
veloped byGottsche and Olesen(2009) on the basis of in
situ observations made at a station in the Namib desert. The
model fits the data with an accuracy of≈ 1–2 K, therefore
theTs evolution shown in Fig.4 reflects a realistic situation.

The corresponding radiance has been obtained throughσ -
SEVIRI. The state vector needed for the computation of the
radiance has been obtained from the ECMWF analysis for a
desert site.

Another way to assess the strong dependence of the SE-
VIRI atmospheric window channels on temperature is to
compute the indexD between two consecutive times,t and
t + 1, defined according to

D =
Bt (σj ) + B(t+1)σj

2
×

Ts,t+1 − Ts,t

Rt+1(σj ) − Rt (σj )
, (24)

where σj denotes the wave number of a generic SEVIRI
channel. This index is the ratio of the derivative Jacobian of

www.atmos-meas-tech.net/6/3613/2013/ Atmos. Meas. Tech., 6, 3613–3634, 2013



3620 G. Masiello et al.: Kalman filter surface temperature and emissivity retrieval from geostationary platforms

16 G. Masiello et al.: Kalman filter surface temperature and emissivity retrieval from geostationary platforms

−5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4 −3.8
33.8

34

34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

longitude

la
tit

ud
e

 

 
seviri pixel
ECMWF grid

Fig. 3. Example of overlapping between the SEVIRI fine mesh and
that coarse corresponding to the ECMWF analysis.
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Fig. 4. Simulation of SEVIRI atmospheric window channels 7, 6
and 5 respectively (12 µm, 10.8 µm and 8.7 µm) response (panel b)
to the forcing of the daily temperature cycle shown in panel a). Panel
c) shows the derivative ratio D (see text for details) corresponding
to the three SEVIRI atmospheric window channels. In panel b) r.u.
stands for radiance units; 1 r.u.=1 W m−2 (cm−1)−1 sr−1.
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Fig. 5. Retrieval exercise using simulations with a variance of the
stochastic term for Ts equal to 1 K2 and f = 10. Upper panel: skin
temperature retrieval; lower panel: emissivity retrieval at the three
SEVIRI atmospheric window channels.

Fig. 4. Simulation of the response of the SEVIRI atmospheric win-
dow channels 7, 6 and 5 (12 µm, 10.8 µm and 8.7 µm, respectively)
(b) to the forcing of the daily temperature cycle shown in(a). Panel
(c) shows the derivative ratioD (see text for details) correspond-
ing to the three SEVIRI atmospheric window channels. In(b) r.u.
stands for radiance units; 1 r.u. = 1 W m−2 (cm−1)−1 sr−1.

the surface temperature to the increment of the radiance due
to the variation of the surface temperature within the time
interval (t, t + 1). Because of the meaning of the Jacobian,
this index has to be close to 1 in case the channel strongly
depends onTs. Note that the second factor in Eq. (24) is
the finite-difference-based calculation of the inverse of the
Jacobian itself. For the case shown in Fig.4a, b, Fig.4c
shows the indexD for the three SEVIRI atmospheric chan-
nels. From this figure it is immediately seen that the radiance
time-behavior is completely dominated by the time-evolution
of Ts. This is a helpful situation because, at least for temper-
ature, we can design a Kalman filter which is strongly driven
by the data.

To this end, we first clarify how we build upSη andSa on
the basis of the related matrices for emissivity and surface
temperature.

We do not consider correlation between emissivity and
surface temperature; therefore,

Sη =

(
Sηe, 0
0, SηTs

)
, (25)

and

Sa =

(
Se, 0
0, STs

)
, (26)

whereSηe is the covariance matrix of the emissivity stochas-
tic term; SηTs is the variance (scalar) of the surface-
temperature stochastic term;Se is the initial background co-
variance matrix of the emissivity vector; andSTs is the initial
background variance (scalar) of the surface-temperature pa-
rameter.

At this point we have defined all the components of our
(Ts,ε) problem which are needed to run the Kalman filter.
The flow of operations is here summarized for the benefit of
the reader. First, obtain the analysis update through Eq. (14);
second, compute the forecast with Eq. (15); third, find the
forecast covariance matrix through Eq. (16); and, finally, de-
fine the forecast to be the new background (Eq.17) and return
to Eq. (14) for a new cycle.

Further details of how we build up the above ingredi-
ents are given below. To begin with,Se is derived from the
UW/BFEMIS database (see Sect.2). Its definition and cal-
culation is space-time localized. For a given month and SE-
VIRI pixel location, UW/BFEMIS yields ten different sam-
ples of the emissivity vector from ten different years. The
UW/BFEMIS emissivity-vector samples undergo thelogit
transform (see Eq.18) and are used to compute the covari-
ance matrixSe. It could be argued thatSe built up on ten
samples implies an unrealistically large statistical uncertainty
for the covariances. This is true and reflects the present stage
of our knowledge about surface emissivity. Because of this
uncertainty we will be forced to apply somewhat ad hoc fur-
ther manipulations of this covariance matrix to get realistic
retrievals.

An example ofSe for the set of seven SEVIRI channels
(2 to 8 in Table1), for the month of July and for a SEVIRI
pixel corresponding to a site in the Sahara desert is shown in
Table2. Se shown in Table2 makes reference to the emissiv-
ity vector ordered from longest to shortest wave number. The
element (5,5) corresponds to the channel at 8.7 µm, which
is in the middle of the quartz reststrahlen band and hence is
characterized by the strongest variability.

The covariance matrixSηe is derived fromSe with a scal-
ing procedure. This is justified because of the need to scale
downSηe in order to correctly take into account the expected
variation of emissivity on a time scale comparable to the SE-
VIRI repeat time of 15 min. However, this is a rather ad hoc
inflation/deflation procedure, which is performed on the ba-
sis of trial and error until we yield realistic retrievals.

The covariance matrixSe is scaled according to the fol-
lowing procedure. LetSe(i,j); i,j = 1, . . .,m = 7 be the el-
ements ofSe. The correlation matrixCe is defined according
to

Ce(i,j) =
Se(i,j)

√
Se(i, i)Se(j,j)

; i,j = 1, . . .,m = 7, (27)

and the matrixSe is scaled according to

S(s)
e (i,j) =

√
Se(i, i)

f 2(i)
×

Se(j,j)

f 2(j)
Ce(i,j);

i,j = 1, . . .,m = 7, (28)

whereS(s)
e is the matrix scaled by the vector of scaling fac-

tors,f . The scaling operation above preserves the correlation
structure and in practice we consider a constant scaling fac-
tor, f 2, that does not change along the diagonal.
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Table 2. Example of the matrixSe for a SEVIRI pixel corresponding to a desert site (30.66◦ N, 5.56◦ E). The covariance matrix has been
computed for the SEVIRI channels 2 to 8 in Table1 and makes reference to the emissivity vector ordered from longest to shortest wave. The
element (5,5) corresponds to the channel at 8.7 µm, which is in the middle of the quartz reststrahlen band and hence is characterized by the
strongest variability.

Column
Row 1 2 3 4 5 6 7

1 0.0273 0.0265 0.0136 0.0070 0.0109−0.0025 0.0053
2 0.0265 0.0262 0.0137 0.0068 0.0100−0.0025 0.0057
3 0.0136 0.0137 0.0075 0.0037 0.0056−0.0017 0.0032
4 0.0070 0.0068 0.0037 0.0023 0.0028−0.0008 0.0012
5 0.0109 0.0100 0.0056 0.0028 0.0067−0.0018 0.0018
6 −0.0025 −0.0025 −0.0017 −0.0008 −0.0018 0.0008 −0.0007
7 0.0053 0.0057 0.0032 0.0012 0.0018−0.0007 0.0017

We assumeSηe = S(s)
e . As already mentioned, the appro-

priate value off has to be tuned in simulation. After ex-
tensive simulations (Serio et al., 2013), we have found that
f = 10 is appropriate for this case study.

As far asTs is concerned, based on the evidence of Fig.4,
we want to stay closer to the data than to the model. We have
that a variance of 1 K2 for the initial background and stochas-
tic termsSTs andSηTs respectively, provides a balanced re-
trieval. In other words, at least for land surface,SηTs does not
need to be downscaled with respect toSTs.

This can be seen in Fig.5, where we show the results of a
retrieval exercise obtained in simulation for the case of desert
site (seeSerio et al., 2013, for full details). The case shown
uses a persistence model for the state equation of both emis-
sivity and skin temperature. For emissivity this is correct,
since the simulation assumes a constant emissivity at each
SEVIRI channel. Conversely it is not correct for the surface
temperature, whose true value follows the daily cycle shown
in Fig. 5.

The example shown in Fig.5 and the error analysis in
Fig. 6 allows us to illustrate the property of the KF to ac-
commodate the knowledge of the adequacy of thedetermin-
istic model. As said before this is obtained by properly tun-
ing the stochastic term. In the example shown in Fig.5, the
stochastic variance forTs has been set to 1 K2. Because of
this choice, we correctly follow the data and retrieve the true
value of the surface temperature within the accuracy deter-
mined by the a posteriori covariance matrix, that is≈ 0.2◦C.
The same conclusion holds for emissivity, which is retrieved
within an accuracy of≈ 0.005. For the stochastic variance,
we can also prescribe a value just equal to zero, which will
result in a retrieval highly dominated by the model. The re-
sults are presented in Fig.7. We see that after some iterations,
the retrieval just follows the (inadequate) persistence model.
The initialization point for skin temperature in both exercises
is the true temperature minus 4◦C. Note that we need to spec-
ify only the initialization point att = 0, after that KF yields
the retrieval on the basis of the data points and model alone.
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The results shown in Figs.5 to 7 justify the use of a sim-
plistic persistence model forTs because the data – that is,
observations – strongly constrain the phenomenon under in-
vestigation. We can get to the same conclusion by observing
that, even by prescribing a stochastic variance forTs equal to
1 K2, we obtain a precision for the final estimate of≈ 0.2◦C.
This finding implies that the a priori information forTs has
little to no impact on the final estimate, which is therefore
largely dominated by the data.

The retrieval exercise shown in Figs.5 to 7 allows us to
address another important issue: how the time constraint im-
posed with the persistence model improves the retrieval in
comparison to a scheme where this constraint is not im-
posed at all. If we try to solve the(Ts,ε) retrieval problem
within the usual context of least squares estimation with a
static background, we get a retrieval covariance matrix with
a strong anticorrelation betweenTs andε. This anticorrela-
tion is due to the relationship of these two parameters within
the radiative transfer equation and makes their effective sep-
aration unpractical. To exemplify this effect, we have run the
same retrieval exercise shown in Fig.5, but now withM = 0.
In this way, the retrieval does not evolve through the state
equation and the surface parameters are estimated on the ba-
sis of a static background. The error analysis for this exercise
is shown in Fig.8. The anticorrelation effect is soon evident.
We find thatTs is biased significantly low andε significantly
high. Comparing Fig.6 with Fig. 8, we can clearly iden-
tify the impact of temporal information propagation from the
KF versus the case without this propagation. The comparison
confirms the merit of the KF application for this problem.

It is also noteworthy that for land we have empirical
state models, which can reproduce the surface temperature
daily cycle with high accuracy (Gottsche and Olesen, 2009;
Menglin and Dickinson, 1999; Menglin, 2000). Therefore
the question may be posed as to whether or not we can im-
prove the results by using a more adequate model forTs. This
exercise has been performed inSerio et al.(2013), where the
temperature daily cycle was modeled with a second-order au-
toregressive process. However, no improvement was found
with respect to a simple persistence model. The fact is that
the daily cycle is reproduced in its very fine details by the
data, as it is possible to see, e.g., from Fig. 4. Therefore, for
the particular case of retrieving(Ts,ε), there is no essential
need to include the daily cycle information though an exter-
nal model. However, it has also to be stressed that this may
not be the case, e.g., for atmospheric parameters where the
satellite infrared observations are less adequate and need to
be assimilated in a system with an accurate dynamical model.

Finally, we stress that for sea surfaces a simple persistence
model is accurate also for the skin temperature, and there-
fore SηTs needs to be downscaled with respect toSTs. We
useSTs = 1 K2 and obtainSηTs again by scaling with a factor
f = 10, that isSηTs = 0.01 K2.

For the sea-surface emissivity covariance we use Ma-
suda’s model (Masuda et al., 1988). For any single SEVIRI
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ance matrix,̂St ) is shown by the±1σ tolerance interval.

pixel field of view angle, we generate the emissivity vector
for wind speed in the range 0–15 m s−1 and with a step of
1.5 m s−1. In this way we have 11 emissivity vectors, which
are used to define background vector and covariance. Again,
the resulting covariance is downscaled by a factorf = 10.

The validity of the persistence model for sea surface has
been checked directly on the basis of real observations, be-
cause for sea surface the ECMWF analysis is credited with
an accuracy within±1 K. Figure9 exhibits the results for the
sea target area shown in Fig.2 and for 31 July 2010. We see
that a stochastic variance term below 0.25 K2 tends to have a
better agreement with the ECMWF model, which leads us to
conclude that for sea surface a persistence model is effective
not only for emissivity, but also forTs.

In passing, we also note from Fig.9 that the skin tem-
perature reaches a maximum around 15:00 UTC. The maxi-
mum around 15:00 UTC is in agreement withGentemann et
al. (2003), who showed that during the daytime, solar heat-
ing may lead to the formation of a near-surface diurnal warm
layer, particularly in regions with low wind speeds. Analysis
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Fig. 7. Retrieval exercise similar to that shown in Fig. 5, but now
the variance of stochastic term forTs is equal to 0 K2 andf = 10.

of TMI (the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager) and AVHRR skin temperature have re-
vealed that the onset of warming begins as early as 08:00
and peaks near 15:00 with a magnitude of 2.8◦C during fa-
vorable conditions.

3.3.1 Sensitivity to the atmospheric state vector

For the problem of(Ts,ε) retrieval, we consider SEVIRI at-
mospheric window channels alone, namely channels 4, 6, and
7 (see Table1). However, in practice atmospheric window
channels can have a contribution from the atmospheric pa-
rameters(T ,Q,O) which give the major emission contribu-
tion between 8 and 12 µm.

In the present scheme, the retrieved state vector includes
(Ts,ε) alone, whereas the principal atmospheric parameters
are obtained from the ECMWF analysis and are not fur-
ther iterated within the retrieval scheme. Thus, the question
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Fig. 8.Error analysis for the retrieval exercise similar to that shown
in Fig. 5, but now with the propagation operatorM = 0. The vari-
ance of the stochastic term forTs is equal to 1 K2 andf = 10.

arises concerning the potential bias on the retrieved param-
eters(Ts,ε) resulting from the uncertainty of those not re-
trieved, that is(T ,Q,O).

We stress that in our scheme the (non-retrieved) atmo-
spheric state vector(T ,Q,O) is obtained from the space-
time collocated ECMWF analysis, which, especially for arid
regions such as that analyzed in this paper, could be signifi-
cantly in error in daytime (Masiello and Serio, 2013).

The assessment of the bias on the retrieved pair(Ts,ε)

which arises from a non-perfect knowledge of the atmo-
spheric state vector, can be performed through a linear per-
turbation analysis by dealing with a generic atmospheric pa-
rameter, sayX, as a interfering factor.

Within the context of optimal estimation, (e.g.,Rodgers,
2000), which (as shown in Sect.3.2.1) applies to any iter-
ation step of the Kalman filter methodology, the sensitivity
of the retrieved vector,̂v, to a difference1X = X − Xo of
the given atmospheric parameter,X, with respect to the ref-
erence stateXo assumed in the forward model calculations
can be computed according to (Carissimo et al., 2005)
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1v̂ =

(
KT S−1

ε K + S−1
a

)−1
KT S−1

ε KX1X, (29)

whereK is the Jacobian matrix of the retrieved vector and
KX is the Jacobian matrix of the interfering factor computed
at the reference stateXo.

Equation (29) can be used to check the impact of possi-
ble biases in the ECMWF analysis on the retrieval for sur-
face emissivity and temperature. To obtain realistic situa-
tions we have used a couple of day–night IASI spectra (see
Fig. 10) recorded on 10 July 2010 over the Sahara desert
at two close locations which are included in the target area
shown in Fig.2. These two IASI spectra have been inverted
for (Ts,ε,T ,Q,O) using the so-calledϕ-IASI package (Am-
ato et al., 1995; Masiello and Serio, 2004; Carissimo et al.,
2005; Grieco et al., 2007; Masiello et al., 2009; Masiello and
Serio, 2013). The IASI retrieved atmospheric state vector is
compared to the ECMWF reference state vector in Fig.10.
We see that large differences arise in daytime, mostly con-
cerning the lower troposphere. For nighttime we have a good
agreement for the surface temperature (303.9 K of ECMWF
and 303 K of IASI), whereas for daytime we have a disagree-
ment which is as large as 12 K (310.1 of ECMWF and 321.7
of IASI).

We can take the difference,XIASI −XECMWF, as a realistic
departure of the ECMWF analysis from thetrueatmospheric
state vector and compute, through Eq. (29), the resulting bias
over the retrieved surface emissivity and temperature. In do-
ing so, we have usedSa defined according to

Sa =

(
Se, 0
0, 1.K2

)
, (30)

with Se obtained from the UW/BFEMIS database. It should
be stressed thatSa defined in Eq. (30) gives the less favorable
situation. In fact, as iterations evolve, the matrixSa evolves
as well according to Eq. (16) and its norm tends to decrease.
In this situation, it can be shown (Carissimo et al., 2005) that
the interfering effect also tends to decrease. Thus the calcu-
lations we are going to show should be viewed as an upper
boundary to the impact of interfering atmospheric factors.

With this in mind, Table3 shows the impact over the re-
trieval of the interfering factors,(T ,Q,O). It can be seen
that even in this least favorable case, the impact is modest
and much lower than the precision of the retrieval. As ex-
pected, the impact is larger during daytime, although mostly
affecting the second decimal digit for skin temperature and
below the fourth decimal digit for emissivity.

Based on this result, we have implemented the(Ts,ε)-
version of the Kalman filter methodology by considering
the simultaneous use of channels 4, 6, and 7. The retrieved
state vectors are constructed from surface temperature and
emissivity alone. We do consider atmospheric parameters
in the state vector. These come from space-time collocated
ECMWF analysis; however, they are not retrieved.

It is worth mentioning that the conclusion reached in this
section applies to our retrieval scheme and does not have a
general validity. The impact of possible interfering factors
depends on the regularization determined by the matrixSa ,
and tends to attain its largest value in the limitS−1

a → 0
(Carissimo et al., 2005), that is, for the case of unconstrained
least squares.

4 Results

4.1 Assessing the performance of the
emissivity/temperature retrieval

We begin with the description of results obtained by process-
ing SEVIRI data at the three small test areas shown in Fig.2.
With this first series of results, we want to address issues such
as the precision of the method and its convergence properties.
Results obtained from the analysis of the full target area will
be shown later in this section.

The Kalman filter has been applied to SEVIRI atmo-
spheric channels alone. These are the channels at 12, 10.8
and 8.7 µm. The corresponding channel emissivity and the
surface temperature have been simultaneously retrieved with
a time resolution of 15 min. This time step also coincides
with the sequential updating rate of the filter.

For the sake of clearness, Table4 summarizes the many
settings of the filter. Note that in computing background vec-
tor and the related covariance matrix from the UW/BFEMIS
database, we have not used the data for July 2010, which are
used for comparison with our results.

Figure 11 allows us to exemplify the precision of the
methodology. The retrieval has been obtained for one single

Atmos. Meas. Tech., 6, 3613–3634, 2013 www.atmos-meas-tech.net/6/3613/2013/
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Fig. 10. (a)Day–night pair of IASI observations over a Sahara desert site (1 r.u. = 1 W m−2 sr−1 (cm−1)−1); (b) temperature retrieval and
comparison with the space-time collocated ECMWF analysis;(c) H2O retrieval and comparison with the space-time collocated ECMWF
analysis;(d) O3 retrieval and comparison with the space-time collocated ECMWF analysis.

day and one single SEVIRI pixel from the Sahara desert test
area, and therefore corresponds to the highest space-time res-
olution of the methodology. It is possible to see that even
for a time resolution of 15 min, temperature is obtained with
a precision of≈ ±0.2 K and better, whereas emissivity is
obtained with a precision better than≈ ±0.005. The emis-
sivity retrieval shown in Fig.11 corresponds to the channel
at 8.7 µm. This channel is in the middle of the quartz rest-
strahlen band and has the higher contrast in the atmospheric
window. From Fig.11, we see that the emissivity tends to fol-
low the daily cycle, with larger values obtained during night-
time/early morning.

This is better evidenced from the analysis of the long se-
quence of clear-sky days shown in Figs.12 and 13. The
analysis refers to a single SEVIRI pixel in the Sahara desert
(30.66◦ N, 5.56◦ E) and has been performed with a time res-
olution of 15 min. According toLi et al. (2012), we have that
the amplitude of the daily cycle is quite evident for the SE-
VIRI channel at 8.7 µm where peak-to-peak variations can
reach≈ 0.03. Smaller variations are found at 10.8 µm (below
0.01). At 12 µm the variation is much less pronounced and in
some cases it seems to have a reverse sign with respect to the
pattern at 8.7 µm, an effect which has been reported also by
Li et al. (2012).

These daily variations of emissivity over desert sand, even
in the dry (non-rainy) season, have been first reported byLi et
al. (2012). It is very likely that these variations are the result

Table 3. Potential bias affecting the retrieval of surface emissivity
and temperature due to atmospheric parameters. The bias is dimen-
sionless for emissivity and in K for the surface temperature.

Interfering atmospheric parameter

Retrieved parameter Temp. profile H2O profile Ozone profile

Day

Emissivity at 12 µm 0.0000 0.0000 0.0000
Emissivity at 10.8 µm 0.0000 0.0000 0.0000
Emissivity at 8.7 µm 0.0000 0.0001 0.0000
Surface temperature 0.0013 0.0021 0.0004

Night

Emissivity at 12 µm 0.0000 0.0000 0.0000
Emissivity at 10.8 µm 0.0000 0.0000 0.0000
Emissivity at 8.7 µm 0.0000 −0.0001 0.0000
Surface temperature 0.0014 −0.0014 0.0003

of day–night sand evotranspiration, which occurs for direct
adsorption of water vapor at the surface (Agam and Berliner,
2004, 2006; Mira et al., 2007). Clear-sky daily variation of
emissivity is more pronounced for desert sand because of the
strong contrast of quartz absorption band at 8.6 µm.

However, it should be noted that the a posteriori covari-
ance matrix of the analysis,Ŝt (see Eq.11) shows a relatively
strong anticorrelation of the retrievedTs andε. This anticor-
relation could introduce a systematic drift in the retrieved
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Table 4.Summary of the settings for the KF scheme.

Element Setting/Reference

Emissivity model equation Persistence
Surface temp. model equation Persistence
Emissivity true values Unknown
Emissivity initial background vector (at time=0) Average from UW/BFEMIS database, over the years 2003–2012, but not 2010
Emissivity initial backgroundSe (at time=0) from UW/BFEMIS database, 2003–2012 years, but not 2010
Emissivity stochastic covariance,Sηe as line above scaled down withf = 10
Surface temp. true values Unknown
Surface temp. initial value (at time = 0) ECMWF analysis at 00:00 h
Surface temp. initial background,STs 1 K2

Surface temp. stochastic varianceSηTs As STs for land,STs/f
2, with f = 10 for sea surface

Observational covariance matrix,Sε Diagonal, from SEVIRI radiometric noise
Atmospheric profiles Assumed known, space-time collocated ECMWF analysis
Convergence criterion Cost function (χ2

= 2S ≤ χ2
th)
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Fig. 11. Top: emissivity retrieval (channel at 8.7 µm) for one day
and one single SEVIRI pixel over the Sahara desert; bottom panel:
same as top, but for temperature. Error bars are the square root of
the corresponding diagonal elements of the covariance matrix, Ŝt .
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Fig. 12. Retrieved surface temperature (bottom panel) for a site in
the Sahara desert. The retrieval has been obtained with the Kalman
filter for ten consecutive days. In the legend, ECMWF Ts analy-
sis refers to the surface temperature analysis at the canonical hours
within a day, whereas ECMWF Ts is the ECMWF surface tempera-
ture linearly extrapolated to the SEVIRI time steps. The upper panel
in the figure also shows the quality of the reconstructed radiance
(channel at 12 µm). 1 r.u.=1 W m−2 sr−1 (cm−1)−1Fig. 11. Upper panel: emissivity retrieval (channel at 8.7 µm) for

one day and one single SEVIRI pixel over the Sahara desert; bottom
panel: same as top, but for temperature. Error bars are the square
root of the corresponding diagonal elements of the covariance ma-
trix, Ŝt .

parameters, and therefore could potentially be a spurious
cause of the diurnal variation seen in emissivity. Never-
theless, based on our present retrieval exercises with real
and simulated observations, it seems that a persistence state
model for emissivity is capable to attenuate cyclic artefacts
in the retrieval (as an example, see the simulation provided
in Figs.5 and6). Moreover, for non-arid lands we have ob-
served situations in which the day–night emissivity variation,
despite the anticorrelation ofTs andε, is in phase with the
daily temperature cycle (e.g., see Sect.4.2), that is, the re-
verse of the situation we have observed for conditions over
desert sand. Furthermore, IASI observations (Masiello et al.,
2013) confirm that the daily variation of emissivity is a gen-
uine feature in the data. Finally,Hulley et al. (2010) has
shown that emissivity retrieval from satellite observations is
sensitive to changes in soil moisture.

Figures11 to 13 are meant to exemplify that our physical
scheme is sensitive to these day–night emissivity variations.
An in-depth assessment of this effect is ongoing. As already
stressed in section1, the present study mostly focuses on the
novel aspect of the methodology and a comparison of its re-
sults with in situ data and other similar satellite products.

Bearing this in mind, we go back to Fig.12, from which it
is possible to see that a slight cloudiness affects the observa-
tions at the beginning of the second day. We do not skip these
observations when performing the retrieval, therefore Fig.12
shows that slight cloudiness does not bring the Kalman filter
to an unstable state. In other words, the stability of the filter
is not influenced by slight cloudiness, although this informa-
tion is forward-propagated through the forecast.

However, overcast conditions that persist a long time (e.g.,
from t1 to t2, with t2 − t1 � 15 min) can (e.g., because of
rain) drastically change the emissivity at the endpointst1
and t2. Furthermore, cloudy radiances could be undetected,
in which case serious overcast conditions could negatively
influence the retrieval products. To avoid this effect, cloudy
radiances (if detected) are just skipped within the KF scheme

Atmos. Meas. Tech., 6, 3613–3634, 2013 www.atmos-meas-tech.net/6/3613/2013/
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Fig. 12. Retrieved surface temperature (bottom panel) for a site in
the Sahara desert. The retrieval has been obtained with the Kalman
filter for ten consecutive days. In the legend, ECMWF Ts analy-
sis refers to the surface temperature analysis at the canonical hours
within a day, whereas ECMWF Ts is the ECMWF surface tempera-
ture linearly extrapolated to the SEVIRI time steps. The upper panel
in the figure also shows the quality of the reconstructed radiance
(channel at 12 µm). 1 r.u.=1 W m−2 sr−1 (cm−1)−1

Fig. 12.Retrieved surface temperature (bottom panel) for a site in
the Sahara desert. The retrieval has been obtained with the Kalman
filter for ten consecutive days. In the legend, ECMWFTs analy-
sis refers to the surface temperature analysis at the canonical hours
within a day, whereas ECMWFTs is the ECMWF surface tempera-
ture linearly extrapolated to the SEVIRI time steps. The upper panel
in the figure also shows the quality of the reconstructed radiance
(channel at 12 µm). 1 r.u. = 1 W m−2 sr−1 (cm−1)−1.

and, furthermore, only retrieval which satisfies the cost func-
tion condition of Eq. (13) are propagated through the filter.
To this end, it should be stressed that KF does not need to
deal with equally spaced times.

This is exemplified in Fig.14, which shows the retrieval
for surface temperature corresponding to whole month of
July for the Seville test area. The analysis has been per-
formed only for clear-sky soundings (according to the oper-
ational SEVIRI cloud mask) and has been spatially averaged
over the 187 available SEVIRI pixels. Cloudy radiances are
skipped in the analysis, which means that we use a time step
which is not a constant. Missing values of the surface temper-
ature in Fig.14correspond to cloudy radiances. However, un-
detected cloudy observations could also be processed, which
can drift the filter to regions which do not correspond to the
cost function below the prescribedχ2-threshold. Therefore,
retrievals are only considered and propagated ahead only in
case the cost functionχ2

= 2S has been reduced below the
χ2-threshold. Thesegoodretrievals are shown in Fig.14.

The retrieval for emissivity is shown again in Fig.14(bot-
tom panel). Also in this case, the results have been aver-
aged over spatially adjacent clear-sky pixels. We stress that
clear sky is defined according to the SEVIRI cloud mask,
which can still contain undetected cloudiness. These unde-
tected clouds cause the occasional spikes seen in Fig.14. It
is also interesting to note, that we also see a cyclic emissiv-
ity behavior for Seville, although now the amplitude of these
variations is confined within±0.01.

Figure15 exemplifies the analysis for the case of sea sur-
face. The retrieval for(Ts,ε) refers to the Mediterranean
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Fig. 13. (Ts,ε) time evolution for the retrieval exercise shown
in Fig. 12. (a) Surface temperature,(b) emissivity at 12 µm,(c)
emissivity at 10.8 µm,(d) emissivity at 8.7 µm. Black dots mark
12:00 UTC to identify the times of the emissivity minima as com-
pared to noon.

target area shown in Fig.2. Also in this case the results have
been spatially averaged. Possible gaps in the time sequence
correspond to time intervals characterized by the presence of
cloudiness.

4.2 Comparison with ECMWF Ts, AVHRR-AMSR and
in situ land surface temperature observations

Figure 12 shows that the ECMWF model compares fairly
well with the retrieval at nighttime hours, whereas during
daytime ECMWF surface temperature is biased significantly
low. This is in line with the deficiencies in ECMWF model
skin temperature identified byTrigo and Viterbo(2003).

To have a better assessment of this bias, we have spatially
averaged the data over the ECMWF grid box of 0.5×0.5 de-
grees. In this way the results are much more consistent with
the horizontal spatial resolution of the ECMWF analysis.

The results are shown in Fig.16. For the desert site, we
find that the bias at midday reaches about 9◦C and has a
minimum at midnight, when the bias is about 1◦C. At 06:00
and 18:00 UTC the bias is still negative and has a magnitude
of about 2◦C.

For the case of the test site of Seville, we have observed
a negative bias of≈ 7◦C at midday. However, for the other
three canonical hours of the ECMWF analysis, the bias is
below 1◦C.

A much better comparison has been obtained in the case of
the ocean site, also shown in Fig.16. In this case, the overall
bias is about−0.3◦C (ECMWF is slightly warmer than KF).
However, we also see a dependence on the hour of the day.
The bias is almost zero at 00:00 and 18:00 UTC, and reaches
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SEVIRI repeat time of 15 min.

0 5 10 15 20 25 30
20

22

24

26

28

30

Time (days, the time step is 15 min)

T
s (

°C
)

a)

0 5 10 15 20 25 30
0.95

0.96

0.97

0.98

0.99

1

Time (days, the time step of 15 min)

E
m

is
sv

ity

 

 

b)

Channel at 12 μm
Channel at 10.8 μm
Channel at 8.7 μm

Fig. 15. Retrieved surface temperature (a) and emissivity (b) for the
Mediterranean sea. Results have been averaged over the 178 adja-
cent SEVIRI pixels. The retrievals included are only those which
correspond to clear sky soundings and χ2 = 2S cost function val-
ues below threshold. Data have been processed (and are shown) at
the SEVIRI repeat time of 15 min.
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Seville test site. Results have been averaged over the 187 adjacent
SEVIRI pixels. The retrievals included are only those which cor-
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= 2S cost function values
below threshold. Data have been processed (and are shown) at the
SEVIRI repeat time of 15 min.

≈ −0.6◦C at 12:00 UTC. Thus, it seems that the ECMWF
model also has a bias for sea surface, which depends on the
daily cycle.

A very good agreement has also been found with the
AMSR+AVHRR OISST analysis (see Fig.17). The analysis
has been used to compute the skin temperature over the small
Mediterranean target area shown in Fig.2. The results shows
that SEVIRI KF captures the correct day-to-day variations
of the skin temperature. Daily average temperatures agree
within 0.5◦C and, whereas the agreement of the monthly av-
erage temperature is within 0.1◦C (23.93◦C SEVIRI KF vs.
24.06◦C of AMSR+AVHRR OISST). The relatively large
difference (about 0.7◦C) around days 23–24 is likely due to
the effect of cloudiness combined to the coarser spatial reso-
lution of the OISST analysis.
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Fig. 15.Retrieved surface temperature(a) and emissivity(b) for the
Mediterranean Sea. Results have been averaged over the 178 adja-
cent SEVIRI pixels. The retrievals included are only those which
correspond to clear-sky soundings andχ2

= 2S cost function val-
ues below threshold. Data have been processed (and are shown) at
the SEVIRI repeat time of 15 min.

Finally, we will now show and discuss the comparison
with in situ land surface temperature observations at the
Evora station (southern Portugal). For this station the SE-
VIRI KF analysis for temperature and emissivity was com-
puted for all clear observations, with clear sky defined ac-
cording to the SEVIRI operational cloud mask.

Figure18 (upper panel) compares the surface temperature
for three consecutive clear-sky days in July 2010. It is seen
that the SEVIRI KF analysis is slightly upward biased with
respect to the in situ observations both at midday and before
sunrise. This behavior is also obtained for the LSA SAFTs
product and can be partially explained by the heterogenous
scene, even though the methodology used to process in situ
observations has been designed with the aim of minimizing
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Fig. 16. Example of scatter plots of retrieved and ECMWF Ts for
the three test areas. To be properly compared with ECMWF prod-
ucts, retrievals have been spatially averaged over the 0.5× 0.5 grid
boxes shown in Fig. 2. a) Sahara desert; b) Seville site; c) Mediter-
ranean basin.
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Fig. 17. Comparison of the daily average sea surface tempera-
ture retrieved with SEVIRI KF and that computed on the basis of
AMSR+AVHRR OISST analysis. Each tiny red line corresponds to
one single SEVIRI pixel (178 pixels in total). The two tick lines
correspond to results that have been spatially averaged over the
Mediterranean target area shown in Fig. 2

Fig. 16.Example of scatter plots of retrieved and ECMWFTs for the
three test areas. To be properly compared with ECMWF products,
retrievals have been spatially averaged over the 0.5×0.5 grid boxes
shown in Fig.2. (a) Sahara desert;(b) Seville site;(c) Mediter-
ranean Basin.
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Fig. 17. Comparison of the daily average sea-surface tempera-
ture retrieved with SEVIRI KF and that computed on the basis of
AMSR+AVHRR OISST analysis. Each tiny red line corresponds to
one single SEVIRI pixel (178 pixels in total). The two tick lines
correspond to results that have been spatially averaged over the
Mediterranean target area shown in Fig.2.

this effect. When we consider the comparison with SEVIRI
LSA SAF product, the midday and nighttime bias tend to be
confined well below 1◦C. The position of Meteosat-9 with
respect to Evora, favors the observation of sunlit surfaces.
The current compositing of ground data does not include an
accurate weighing of sunlit and shadowed ground fractions,
which also may lead to in situ temperatures being cooler than
those actually observed by SEVIRI. This is further corrobo-
rated by the comparison between SEVIRI KF analysis for
temperature and the SEVIRI LSA SAFTs product; two inde-
pendent methodologies produce very close values, with neg-
ligible systematic differences and standard deviation of about
0.8◦C.

Emissivity retrieval for Evora (see Fig.18), with the high-
est value obtained for 8.7 µm, clearly above that obtained
for 10.8 µm, is consistent with the emissivity spectra for dry
grass (Seemann et al., 2008; Baldridge et al., 2009). This is
in agreement with the type of landscape observed around the
station during the summer, when the understorey dries out
completely.

Also for Evora an emissivity wavy pattern is visible, al-
though its amplitude is very small (within±0.005, as exem-
plified in Fig.18 (bottom panel)). LSA SAF analysis uses an
almost constant emissivity at 10.8 µm, which has a value of
0.975 (black line in Fig.18). The SEVIRI KF analysis shows
that the emissivity at this channel is≈ 0.972 and varies in
phase with the daily temperature cycle. Although, as previ-
ously stated, the amplitude of this variation is of the order of
few parts per thousand.
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Fig. 18. Upper panel, land surface temperature for three consecu-
tive clear sky days in July 2010 estimated according to this work
(SEVIRI KF), in situ observations, and SEVIRI LSA SAF analysis.
Middle panel, difference between retrieval and in situ observations
(retrieval- in situ). Bottom panel, KF emissivity at the three SE-
VIRI atmospheric window channels. For comparison the figure also
shows the emissivity at 10.8 µm assumed by the SEVIRI LSA SAF
analysis.
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Fig. 19. Upper panel, scatter plot of T̂s estimated according this
work and in situ observations at Evora station. Bottom panel, scatter
plot of T̂s estimated according to this work and the SEVIRI LSA
LST analysis.

Fig. 18. Upper panel: land surface temperature for three consecu-
tive clear-sky days in July 2010 estimated according to this work
(SEVIRI KF), in situ observations, and SEVIRI LSA SAF analysis.
Middle panel, difference between retrieval and in situ observations
(Retrieved-In Situ). Bottom panel: KF emissivity at the three SE-
VIRI atmospheric window channels. For comparison the figure also
shows the emissivity at 10.8 µm assumed by the SEVIRI LSA SAF
analysis.
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Fig. 19. Upper panel, scatter plot of T̂s estimated according this
work and in situ observations at Evora station. Bottom panel, scatter
plot of T̂s estimated according to this work and the SEVIRI LSA
LST analysis.

Fig. 19.Upper panel: scatter plot of̂Ts estimated according to this
work and in situ observations at the Evora station. Bottom panel:
scatter plot ofTs estimated according to this work and the SEVIRI
LSA SAF analysis.

The full set of SEVIRI KF temperature retrievals for the
Evora station is compared to in situ observations in the scat-
ter plot of Fig. 19. This figure confirms the presence of a
positive bias of 1.10◦C in the KF analysis. Again, we stress
that this difference is within the uncertainty of the compar-
ison between in situ and satellite observations. The bias is
nearly zero when we compare SEVIRI KF to SEVIRI LSA
SAF.

4.3 Monthly maps

We have used the scheme to perform(Ts,ε) retrieval over
the full target area for land surface and the results are sum-
marized in this section.

Figure20 shows the monthly map for the surface temper-
ature and compares it with the equivalent map derived from
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Fig. 20.Left, SEVIRI monthly map of surface temperature. Right, ECMWF monthly map of surface temperature.

Fig. 21.Left, SEVIRI monthly map of emissivity at 8.7 µm. Right, difference with UW/BFEMIS database for July 2010.

the ECMWF analysis. The comparison allows us to appreci-
ate the high horizontal spatial resolution (0.05◦

×0.05◦) com-
pared to that of ECMWF, which is ten times less resolved
(0.5◦

× 0.5◦). Because of the monthly average, differences
tend to be lower than those seen for hourly and daily values.
However, especially for the arid regions differences up to 5 K
are still visible.

Figure21 shows the monthly map of the channel emissiv-
ity at 8.7 µm. The difference with the UW/BFEMIS database
for the same month and geographic region is also shown in
the same figure. Differences appears to be more marked for
the desert sand, where the variability is much larger because
of the strong response from quartz particles. However, the
agreement is generally good and no important deviations are
seen. The map of the channel emissivity at 8.7 µm shows very
well the details of seas of sand in the Sahara desert. These
correspond to the bluest areas in the map and are character-
ized by the lower value of emissivity.

For the sake of brevity, the maps corresponding to the
other two window channels are not shown. The compari-
son of the results with monthly maps from the UW/BFEMIS
database for the same date and location shows that differ-
ences for these channels are normally below 0.01 (Serio et
al., 2013).

Finally, it is worth mentioning that the results shown in
this section have been intercompared with those obtained by
IASI (infrared atmospheric sounder interferometer), for the
same target area and dates, in a recent paper byMasiello
and Serio(2013). The intercomparison showed that SEVIRI
and IASI products for temperature agree within 1 K, whereas
emissivity retrievals are found highly consistent with differ-
ences normally of the order of≈ 0.001.

5 Conclusions

In this paper we have described a Kalman filter methodol-
ogy and its implementation for the retrieval of surface tem-
perature and emissivity from SEVIRI atmospheric window
infrared channels.

The methodology has been applied to a case study char-
acterized by many surface features (vegetation, cultivation,
urban areas, bare soil, desert sand and sea water, to name a
few).

It has been shown that by properly tuning the parameters
of the state equation, we can model the different time scales
of emissivity and temperature and hence develop a method
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which allows us to separate the radiative effects of the two
parameters.

The analysis performed on the basis of a case study has
revealed many important features regarding the time evo-
lution of emissivity. For desert sand we observe day–night
variations which are anticorrelated with the daily tempera-
ture cycle. Conversely, for other types of surface features,
it seems that there is only a very small day–night variation
which tends to be correlated with the daily temperature cy-
cle.

It has been shown that the Kalman filter can handle un-
evenly spaced data acquisition times; this allows us to pro-
cess long sequences of data in which cloudy observations are
simply skipped. However, the effect of raining clouds can
alter the emissivity and introduce sharp gradients in its time
evolution that could be inconsistent with the persistence state
equation and the relative large time scale assumed for this pa-
rameter. This effect could be alleviated by reinitializing the
Kalman filter in presence of a big gap in the time sequence
because of cloudiness. However, this is a point that has to
be addressed with suitable case studies and therefore needs
further investigation.

The results have been compared with several independent
observations. These comparisons lead us to conclude that the
scheme is accurate and can be reliably extended to the full
SEVIRI disk.

The KF methodology for the retrieval of(Ts,ε) we have
developed in this paper considers a situation in which we
give (at least for surface temperature) poor confidence to the
dynamical model (we assign a relatively high value for the
stochastic variance). Therefore, the question of whether a dy-
namical model should be considered at all could be posed, we
could use, e.g., Optimal Estimation (Rodgers, 2000). There
are however mainly two reasons in favor of KF for the prob-
lem at hand. First, without the time constraint for emissivity
(which allowed us to prescribe low error in the persistence
model) we would not successfully separate emissivity from
temperature (which are inherently anticorrelated because of
the radiative transfer equation). By forcing emissivity to per-
sistence we prevent its retrieved value from developing an
unrealistic time dependence that is anticorrelated to surface
temperature. Second, although with Optimal Estimation we
could accommodate time continuity within the a priori back-
ground matrix through accumulation of the data on a given
time slot; this would be at the expense of increasing the di-
mensionality of the retrieval system (Serio et al., 2013). In
contrast, KF is much more efficient at keeping the dimen-
sionality of the data space low.

It is also worth mentioning that, although we assign a rel-
atively high value to the stochastic variance of the surface
temperature, we yield a retrieval precision for this parame-
ter (square root of the diagonal of the a posteriori retrieval
covariance matrix) of≈ ±0.2◦C. Once again, this result im-
plies that the a priori information for temperature has little

to no impact on the final estimate which is, therefore, largely
dominated by the data.

To summarize, the inclusion through a KF of a persis-
tence model within the retrieval scheme allows us to effec-
tively separate emissivity from surface temperature because
it attenuates the(Ts-ε) anticorrelation statistical structure im-
posed by Least Squares estimation. In addition, the (fortu-
nate) fact that the surface temperature is strongly constrained
by the data allows us to relax the persistence constraint for
this parameter alone and obtain an effective simultaneous re-
trieval.

The application we have considered in this paper fo-
cuses on time continuity and neglects possible spatial cor-
relation of the surface temperature field. The use of a tem-
poral constraint alone and the statistical independency of
nearbyTs grid points also reflects our present understanding
of the emissivity and surface temperature space-time evolu-
tion. Nevertheless, we have shown that results are realistic
using an uncorrelated assumption. However, it is important
to stress that in our study the KF methodology has been es-
tablished in its general form which applies to both spatial
and temporal constraints. We think that the use of physical
algorithms such as that developed in this study, once applied
to the full disk, can lead to the formulation and/or improve-
ments of statistical ensembles (such as the UW/BFEMIS
database), which should allow us to get better insight into
understanding spatial features of(Ts,ε) fields and, finally,
enable us to apply a full 3-D Kalman filter.

It is fair to say that for the present(Ts,ε) problem we
could also make use of a Kalman smoother (KS) (Rodgers,
2000). KS is a particular application of KF: a KF run for-
ward and backward. The error analysis shown in this paper
demonstrates that we can already achieve a very useful pre-
cision with a KF: for temperature,±0.2K and for emissivity,
±0.005. In principle a KS approach could further improve
the results, but the study was done with regard to an oper-
ational implementation where the additional logistics would
be prohibitive.

Finally, we want to stress that although the case study de-
veloped in this study is limited to surface parameters (be-
cause of the limited information content of SEVIRI infrared
channels on atmospheric parameters), the retrieval method-
ology has been described in its most general framework and
can therefore provide guidance to its application to future in-
struments such as MTG-IRS. This instrument will have some
2000 spectral channels. Therefore, the data space, rather than
the parameter space, will be driving the design of a product
retrieval algorithm. Even withm = 2000, a 2-D Kalman filter
(time× vertical) is feasible in terms of computational costs.
In this respect, if we consider that the observational covari-
ance matrix for MTG-IRS is expected to be nearly diago-
nal (which implies conditional independence of the obser-
vations), the Kalman filter update can be done sequentially
(Nychka and Anderson, 2010; Rodgers, 2000). With this ap-
proach we need to store onlym = 2000 diagonal elements
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and use a numerical algorithm which does not involve any
matrix inversion. From a computational point of view, the
dimensionality of the problem would be driven by the anal-
ysis covariance matrix,Sa , which at this point could include
also suitable spatial constraints making the methodology 4-
D. However, in case of atmospheric parameters, the issue of
the dynamical model becomes much more important than
for the (Ts,ε) problem. In fact, we know that infrared ob-
servations from satellites can lack the spatial vertical reso-
lution to resolve, e.g., temperature and moisture structures
in the boundary layer and lower troposphere. One possible
approach could be to use the ECMWF analysis or forecast
directly as the state equation. With satellite observations ev-
ery 15 min and with 3 km resolution, the present philosophy
of data-driven approach with a persistence model and suit-
able space-time stochastic error levels could be exploited to
retrieve a 4-D atmospheric field.
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