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Abstract. Estimates of snow microphysical properties ob-
tained by analyzing collections of individual particles are
often limited to short timescales and coarse time resolu-
tion. Retrievals using disdrometer observations coincident
with bulk measurements such as radar reflectivity and snow-
fall amounts may overcome these limitations; however, re-
trieval techniques using such observations require uncer-
tainty estimates not only for the bulk measurements them-
selves, but also for the simulated measurements modeled
from the disdrometer observations. Disdrometer uncertain-
ties arise due to sampling and analytic errors and to the dis-
crete, potentially truncated form of the reported size distri-
butions. Imaging disdrometers such as the Snowflake Video
Imager and 2-D Video Disdrometer provide remarkably de-
tailed representations of snow particles, but view limited pro-
jections of their three-dimensional shapes. Particle sizes de-
termined by such instruments underestimate the true dimen-
sions of the particles in a way that depends, in the mean,
on particle shape, also contributing to uncertainties. An un-
certainty model that accounts for these uncertainties is de-
veloped and used to establish their contributions to simu-
lated radar reflectivity and snowfall rate. Viewing geome-
try effects are characterized by a parameter,φ, that relates
disdrometer-observed particle size to the true maximum di-
mension of the particle. Values and uncertainties forφ are es-
timated using idealized ellipsoidal snow particles. The model
is applied to observations from seven snow events from the
Canadian CloudSat/CALIPSO Validation Project (C3VP), a
mid-latitude cold-season cloud and precipitation field exper-
iment. Typical total uncertainties are 4 dB for reflectivity and

40–60 % for snowfall rate, are highly correlated, and are sub-
stantial compared to expected uncertainties for radar and pre-
cipitation gauge observations. The dominant sources of er-
rors are viewing geometry effects and the discrete, truncated
form of the size distributions. While modeled Ze–S relation-
ships are strongly affected by assumptions about snow par-
ticle mass properties, such relationships are only modestly
sensitive toφ owing to partially compensating effects on both
the reflectivity and snowfall rate.

1 Introduction

Estimates of snow particle microphysical properties made
with surface observations have typically involved measure-
ments of individual particles (Nakaya and Terada, 1935;
Kajikawa, 1972; Mitchell et al., 1990). These methods pro-
vide highly detailed descriptions of particles, but the sam-
ples have necessarily been small in number and short in du-
ration due to the high amount of effort required. This makes
difficult the evaluation of the environmental distributions of
the microphysical properties of snowfall and of the temporal
evolution of these properties during snowfall events. This in-
formation, particularly regarding the environmental distribu-
tions, is essential for the development of snowfall retrievals
using Bayesian techniques, which generally require a priori
information about snow microphysical properties.

Disdrometer-based analyses have the potential to over-
come the shortcomings of manual, single-particle observa-
tions by providing larger sample sizes and longer-duration
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sampling at high time resolution. Specifically, disdrometer
observations of particle size distributions (PSDs) in concert
with observations of radar reflectivity or accumulated snow
mass have been used to estimate snow bulk and microphys-
ical properties.Brandes et al.(2007) used 2-D video dis-
drometer and snow accumulation observations to estimate
snow bulk densities.Huang et al.(2010) also used 2-D video
disdrometer observations, along with C-band radar reflec-
tivities, to estimate the parameters of snow particle mass–
dimension relations. In analyses such as these, the observed
PSDs are used to model radar reflectivity or snowfall accu-
mulation, and the modeled values are then fitted to observed
reflectivities or accumulations by adjusting snow microphys-
ical properties.

While uncertainties in the observed reflectivities or accu-
mulations contribute to uncertainties in the estimated micro-
physical properties, so too do uncertainties in the modeled
reflectivities or accumulations. These modeled quantities re-
quire integration of terms incorporating the observed PSDs,
and the disdrometers introduce particular uncertainties in
these observed PSDs. The sources of uncertainty include fac-
tors related to the integration itself (upper and lower bounds,
and the discrete, numerical treatment of the integral), and un-
certainties in the integrands. In this work, the contributions of
disdrometer uncertainties to uncertainties in models for near-
Rayleigh radar reflectivity and for snowfall rate are evalu-
ated. These uncertainty estimates are essential for use in re-
trievals that would use coincident ground-based observations
of radar reflectivity and snowfall rate or accumulations to es-
timate snow microphysical properties. The results are also
used to estimate the effects of these uncertainties on so-called
Ze–S relationships which relate radar reflectivity to snowfall
rate. Disdrometer uncertainties are specific to the measure-
ment techniques and sampling strategies used by a particu-
lar instrument, and this work focuses on measurements from
the Canadian CloudSat/CALIPSO Validation Project (C3VP,
Hudak et al., 2006); however, it is anticipated that the meth-
ods can be applied to other datasets which employ similar
instruments.

Section2 describes the C3VP disdrometer observations
and the measurement methods for these instruments. Sec-
tion 3 describes models for simulation of snowfall rate and
Rayleigh radar reflectivity from the disdrometer observa-
tions. Uncertainties for simulated reflectivities and snowfall
rates are characterized in Sect.4; then the results of applying
these forward models and uncertainty characterizations to the
C3VP observations are given in Sect.5. Finally, Sect.5 dis-
cusses the implications of these uncertainties for estimation
problems using modeled reflectivities and snowfall rates.

2 Snow particle observations

During Northern Hemisphere winter 2006/2007, an exten-
sive set of surface- and aircraft-based in situ and remote

sensing observations of clouds and precipitation was col-
lected in south-central Ontario as part of C3VP (Hudak et al.,
2006). An enhanced surface measurement site operated at the
Meteorological Service of Canada’s Centre for Atmospheric
Research Experiments (CARE) at Egbert, Ontario, approxi-
mately 80 km north of Toronto.

A number of instruments installed at CARE provided ob-
servations of snow particles, including the NASA Snowflake
Video Imager (SVI) (Newman et al., 2009) and Colorado
State University’s 2-D Video Disdrometer (2DVD) (Thurai
and Bringi, 2005). The SVI uses a video camera to capture
2-D images of particles. In each image frame, the SVI di-
rectly observes a 3-D volume defined by the camera’s 2-D
field of view and the depth of field (Newman et al., 2009).
For a single image frame, the discrete size distribution is

N(Di) =
1

1Di

j=Npi∑
j=1

1

Ai,jLi,j

, (1)

whereDi is the characteristic particle size for theith bin,Ai,j

is the area of the camera field of view andLi,j is the depth of
field associated with thej th particle in theith size bin. Npi
is the total number of particles in the size bin and1Di is the
bin width. Both the field of view and depth of field vary with
particle size. Typically, multiple image frames contribute to
an observed size distribution, and the total sample volume
increases with each frame, giving

N(Di) =
1

Nf1Di

k=Nf∑
k=1

j=(Npi )k∑
j=1

1

AijkLijk

, (2)

whereNf is the number of frames and(Npi)k is the total
number of particles in thekth image frame and theith bin.

The 2DVD uses two horizontal light sheets, parallel but
offset in the vertical, and each light sheet illuminates a hori-
zontal array of photodetectors in a line scan camera. As a par-
ticle falls through a light sheet, it shadows some of the pho-
todetectors, and the array is scanned rapidly to determine
which photodetectors are shadowed. A stack of horizontal
shadow images of the particle results from the scans and,
from this stack, information about the dimensions of the par-
ticle can be obtained. The light sheets are orthogonal, so par-
ticles are observed from two different directions (Hanesch,
1999; Kruger and Krajewski, 2002; Schönhuber et al., 2007).

If a particle is observed by both cameras and the corre-
sponding images can be matched, the time interval between
the two images can be used to determine the particle’s fall-
speed. The irregular shape of snow particles complicates im-
age matching, since the orthogonal views will see two dis-
tinct sides of a particle and the particle’s orientation may
change.Hanesch(1999) defined a matching algorithm which
applies a number of criteria to match particle images. The cri-
teria are based on the vertical extent of the particles, the ratio
of the widths observed by the two cameras, the ratio of max-
imum width to height, and an allowed range of fallspeeds.
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Huang et al.(2010) used similar criteria but applied weights
to each criterion, and the best match was chosen based on the
image whose weighted sum is a maximum. The 2DVD ob-
servations used in this work are the results of the analysis of
Huang et al. (2010). The observations report the character-
istics of individual particles for which matching succeeded.
These characteristics include fallspeed and several measures
of particle size, along with the time at which the particle fell
through the instrument.

Given particle sizes and fallspeeds, the 2DVD particle size
distribution can be determined as

N(Di) =
1

1t1Di

j=Npi∑
j=1

1

Ai,jVi,j

, (3)

wherei is the index of the size distribution bin,Di is the char-
acteristic particle size for theith bin,1t is the sampling time
interval,1Di is the width of theith size bin, Npi is the num-
ber of particles in theith size bin, andAi,j andVi,j are re-
spectively the horizontal measurement area and the fallspeed
of the j th particle in theith size bin. Note, however, that if
matching does not succeed, the unmatched particle cannot
be used in the size distribution calculation since fallspeed is
not known and the particle’s contribution to the size distribu-
tion via Eq. (3) cannot be determined (Hanesch, 1999; Huang
et al., 2010). The resulting data loss can lead to errors in the
estimated size distribution (Huang et al., 2010).

Because the SVI is not dependent on particle matching,
the SVI observations are taken as the primary measure of the
snow PSDs for this work. The SVI size distributions are re-
ported in discrete size bins of width 0.25 mm for sizes from
0 to 26 mm at 1 min resolution, but observations of parti-
cles smaller than 0.3 mm are discarded during the SVI image
processing (Newman et al., 2009). While incomplete match-
ing interferes with accurate determination of a PSD from the
2DVD data, it does not interfere with the measurement of
fallspeeds, so the 2DVD observations are used primarily for
particle fallspeed data. Also, because of differences in sam-
pling characteristics from the SVI, the 2DVD observations
are used to quantify some sources of uncertainty for the SVI.

The observations used in this work are from seven snow
events that occurred at CARE during C3VP (Huang et al.,
2010). Due to CARE’s location southeast of Georgian Bay,
it is subject to lake effect snow events. Five of the events
occurred during intensive observing periods (IOPs), and are
known to be synoptic or lake effect snow storms. While de-
tails of the two ex-IOP events are limited, they are expected
to also have been lake effect or synoptic. The averaged SVI
size distributions for each event (Fig.1) show that the events
represent a range of slopes, indicating the degree of broaden-
ing, and particle number concentrations.
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Fig. 1. Averaged SVI size distributions for each C3VP snowfall events.
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Fig. 1. Averaged SVI size distributions for each C3VP snowfall
event.

3 Models for radar reflectivity and snowfall rate

At the wavelengths used by precipitation radars, scattering
by most cloud ice and snow particles is near Rayleigh, al-
though scattering by larger, precipitating ice particles may
deviate from the Rayleigh approximation (Matrosov et al.,
2009). For the uncertainty analyses presented here, particles
are assumed to scatter per the Rayleigh approximation for
spheres. The errors introduced by this assumption are treated
in a forthcoming work.Atlas et al.(1953) showed that low-
density, irregularly shaped dry snow particles can be treated
as equal volume spheres to calculate radar scattering prop-
erties with small error. Provided the radar reflectivity to be
simulated is taken to be in close proximity to the radar, atten-
uation by snow particles and gases under typical winter con-
ditions is negligible (Matrosov, 1998). Given snow particles
of sizesD with massesm(D), the effective radar reflectivity
factor is then (Battan, 1973)

Ze=
36

π2ρ2
ice

||Ki ||
2

||Kw||
2

Dmax∫
Dmin

N(D) [m(D)]2dD, (4)

whereN(D) is the particle size distribution;Kw = (n2
liq −

1)/(n2
liq + 2), nliq is the complex refractive index of liquid

water;Ki = (n2
ice− 1)/(n2

ice+ 2), nice is the complex refrac-
tive index of ice; and the densityρice is that of solid ice,
0.917 gcm−3. The particular choice ofD, a characteristic di-
mension of the particles, is not significant provided a con-
sistent choice is used to define both the PSD and the mass–
dimension relationship, and the integration limits assert that
a finite range of particle sizes contribute to Ze.

Snowfall rate is

S =
1

ρliq

Dmax∫
Dmin

N(D)m(D)V (D)dD, (5)
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whereV (D) are the particle fallspeeds. In Eq. (5), S is in
depth units (e.g., mm h−1 of liquid water) andρliq is liquid
water density. As was true for radar reflectivity, the particular
choice ofD is not significant, provided a consistent choice is
used for defining size distribution, mass and fallspeed.

3.1 Particle dimension

For the mass and fallspeed terms in Eqs. (4) and (5), D is
often taken to be the maximum dimension of the particle,
DM , also sometimes referred to as particle diameter. Micro-
physical parameterizations describing the variation of parti-
cle mass and horizontally projected area with particle size are
typically expressed in terms ofDM (e.g., Mitchell, 1996).
Further, explicit physical models for particle fallspeed de-
pend on a particle dimension which is generally taken to be
DM (Mitchell and Heymsfield, 2005). For irregularly shaped
objects like snow particles, however, the various dimensions
that can be extracted from the SVI and 2DVD images are dif-
ferent thanDM (Fig.2), since the disdrometer views a projec-
tion of the actual particle (Löffler-Mang and Blahak, 2001).
Assuming the observedD is DM can lead to substantial er-
rors in microphysical parameters determined using coinci-
dent radar observations (Appendix).

The expected differences betweenDM and the variousD
were evaluated via simulations using idealized snow parti-
cles. Rather than using elliptical silhouettes (Battaglia et al.,
2010), the particles were modeled as scalene ellipsoids, and
their plane-projected shapes were evaluated. The ellipsoids
were defined using three distinct dimensions: a long dimen-
sion “a” lying nominally in the horizontal plane along the
x axis, a short dimension “b” also lying nominally in the hor-
izontal plane normal to “a” and along they axis, and a short
vertical dimension “c” lying along thez axis normal to thex–
y plane. The true maximum dimension of the particle is 2a.
Particle orientation was varied by applying uniformly dis-
tributed rotations about thez axis and canting at two distinct
angles about thex andy axes. The canting angles were dis-
tributed over the range of±21◦ and weighted per a normal
distribution with a standard deviation of 9◦ based on the es-
timates ofMatrosov et al.(2005) for pristine particles.

These various measures ofD (Fig. 2) were estimated from
the simulated particle images, obtained from the projection
of the particle shape onto thex–z plane, averaged over all
orientations and compared withDM for a range of particle
aspect ratios defined byb/a and c/a. The value ofa was
fixed at 0.5, giving a true maximum dimension of 1.0, while
0.05≤ b ≤ a and 0.05≤ c ≤ b. These ranges produce par-
ticles that vary from column-like to plate-like to spherical.
Values forφ, the ratio ofD to DM , range from 0.3 to 1.0
(Fig. 3). DSVI,ec is sensitive to both the vertical aspect ratio
c/a and the horizontal aspect ratiob/a, while DSVI,w and
DSVI,f are minimally sensitive to the vertical aspect ratio. Of
the latter,DSVI,f shows somewhat less sensitivity to the hor-
izontal aspect ratio than doesDSVI,w, while D2DVD,w shows
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Fig. 2.Particle dimensions as measured by SVI and 2DVD disdrom-
eters:DSVI,ec, diameter of a circle with area equal to that of the
SVI particle image;DSVI,w, distance between horizontal extrema
of the SVI particle image;DSVI,f, distance between the two fur-
thest removed points on the SVI particle image (feret diameter); and
D2DVD,w, maximum of the distance between horizontal extrema
obtained from the two 2DVD particle images.

little sensitivity to both vertical and horizontal aspect ratios.
For this work, the SVI size distributions were based onDSVI,f
and the 2DVD fallspeeds onD2DVD,w. Taking a typical hor-
izontal aspect ratio of 0.6 (Korolev and Isaac, 2003) gives
φSVI ≈ 0.82 forDSVI,f with a range of about 0.65 to 1.0. For
D2DVD,w, φ2DVD ≈ 0.93 with a range of about 0.88 to 1.0.
Calculations using canting angles with a standard deviation
of 18◦ showed similar results, suggesting the variation inφ

is due mainly to the variation in particle shape rather than
canting angle, provided canting angles are not extreme.

Taking theD in Eqs. (4) and (5) to beDM , the transfor-
mation to use the size distributions, fallspeeds and particle
sizes based onDSVI,f and D2DVD,w proceeds by assuming
thatφSVI andφ2DVD apply to the entire particle range. Trans-
forming the SVI size distributions is done by noting that

N(DM) = N(DSVI,f)
dDSVI,f

dDM
(6)

and, sinceDSVI,f = φSVIDM ,

dDSVI,f

dDM
= φSVI. (7)

The reflectivity model Eq. (4) becomes

Ze=
36

π2ρ2
ice

||Ki ||
2

||Kw||
2

Dmax∫
Dmin

N
(
DSVI,f

)
φSVI

[
m

(
DSVI,f

φSVI

)]2 dDSVI,f

φSVI
, (8)

where theφSVI terms in in the numerator and denominator
have been retained to show explicitly the transformation to
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disdrometers to true maximum dimensionDM .

DM . The snowfall rate model Eq. (5) becomes

S =
1

ρliq

Dmax∫
Dmin

N
(
DSVI,f

)
φSVI m

(
DSVI,f

φSVI

)
V

(
D2DVD,w

φ2DVD

)
dDSVI,f

φSVI
. (9)

Together, Eqs. (8) and (9) constitute the vector-valued for-
ward modelF .

In practice, the predefined discrete SVI size bins based on
DSVI,f are converted to discrete bins based onDM as

DM,i =
DSVI,f,i

φSVI
, (10)

wherei is the SVI bin index and the discrete SVI size distri-
bution values are transformed as

N(DM,i) = N(DSVI,f,i)φSVI. (11)

The particle sizes for the 2DVD single-particle fallspeed ob-
servations are transformed as

DM,j =
D2DVD,w,j

φ2DVD
(12)

for the j th particle observed during the SVI measurement
interval, after which the fallspeeds can be binned onto the
DM,i grid for further processing to obtain expected values
VM,i and variancess2

(
VM,i

)
. The subscript M indicates val-

ues evaluated as functions of particle maximum dimension.
Terms such ass2() ands(, ) are used herein to represent vari-
ances and covariances, respectively.

4 Sources of uncertainty for modeled reflectivity and
snowfall rate

The relationship between the observations simulated by
a forward modelF and the actual observationsy can be writ-
ten as

y = F (x, b̃) + ε, (13)

wherex is the observed state andε represents the total error.
The forward model has been written to show explicitly the
dependence on other parameters,b̃, where the tilde indicates
that these parameters may be known imperfectly. The total
errorε can be expanded as (Rodgers, 2000)

ε = εY + 1F (x,b) +
∂F

∂b
(b − b̃), (14)

whereεY is the contribution from measurement error, the
second term on the right is the contribution due to the model’s
approximate formulation of the actual physical relationship,
and the third term on the right is the contribution due to errors
in the forward model parameters. These errors may consist of
both systematic biases and random components. Once recog-
nized biases have been corrected, the residual uncertainties
are characterized by the covariance matrixSε :

Sε = Sy + SF + SB (15)

= Sy + SF + KbSbKT
b ,

where the definitions of the terms on the right parallel those
for ε. In the third term, which is the contribution due to un-
certainty in the model parameters,Kb is the Jacobian of the
model with respect to the parameters andSb is the covariance
matrix for the parameters. The productKbSbKT

b is denoted
asSB . Uncertainties in the modeled Ze andS are contained in
SF andSB . Because Ze andS may range over several orders
of magnitude, their values and uncertainties were character-
ized in terms of dBZe and logS, where log is the common
logarithm.

4.1 Uncertainties due to parameters, SB

The parameters used by the models Eqs. (8) and (9) include
the binned, discrete values ofDSVI,f,i , N(DSVI,f,i), andVM,i ,
along withφSVI, φ2DVD, the dielectric parameters||Ki ||

2 and
||Kw||

2, and the densitiesρice andρliq . Since the models use
solid ice and liquid water densities and dielectric parameters,
these are not expected to be significant sources of uncertainty
and are neglected. In particular, the value of||Ki ||

2 is deter-
mined largely by the real part ofnice. Uncertainties innice
at X-band appear small (Warren and Brandt, 2008, and ref-
erences therein), and temperature sensitivities appear weak
(Mätzler, 2006). Sinceφ2DVD shows little uncertainty com-
pared toφSVI, its uncertainty is neglected as well. While the
particle mass–dimension relationshipm(D) is likely a sig-
nificant source of uncertainty, this work focuses on other er-
ror sources. The objective here is to characterize the nec-
essary forward model uncertainties for use in a future re-
trieval which would estimate mass–dimensions relationships
and their uncertainties. The remaining sources of uncertainty
in SB are due to uncertainties in the disdrometer observations
and are evaluated here.

SB is in the form of a 2× 2 error covariance ma-
trix for reflectivity in dBZe and logS. The covariances
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sB (dBZe, logS) result from the shared dependence of Ze
and S on N(DSVI,f,i), DSVI,f,i , and φSVI. Given these pa-
rameter dependencies, the corresponding parameter covari-
ance matrixSb and JacobianKb are shown in Eqs. (16) and
(17), respectively, where the ellipses indicate extension over
all the discrete values ofDSVI,f,i , N(DSVI,f,i), andVM,i . Er-
rors inφSVI, VM,i and the SVI observations are expected to
be uncorrelated, and thus covariances are set to zero. Note,
however, that in the following analysis of SVI uncertain-
ties, uncertainties inDSVI,f,i do contribute to uncertainties in
N(DSVI,f,i), but any resulting covariances are ignored inSb.
This approach will produce somewhat worst-case estimates
of the uncertainties inSB .

Sb =



s2(DSVI,f,1)

. . .

s2(N(DSVI,f,1))

. . .

s2(VM,1)

. . .

s2(φSVI)


(16)

Kb =

[
∂dBZe

∂DSVI,f,1
· · ·

∂dBZe
∂N(DSVI,f,1)

· · · 0· · ·
∂dBZe
∂φSVI

∂ logS
∂DSVI,f,1

· · ·
∂ logS

∂N(DSVI,f,1)
· · ·

∂ logS
∂VM,1

· · ·
∂ logS
∂φSVI

]
(17)

Uncertainties inDSVI,f,i andN(DSVI,f,i) can be separated
into analytic uncertainties and sampling uncertainties. Ana-
lytic uncertainties include uncertainties that arise in the anal-
ysis of SVI images to determine particle sizes, uncertainties
in the counted number of particles, and uncertainties in the
calculated depth of field and field of view (Newman et al.,
2009). In contrast, sampling uncertainties arise due to statis-
tical fluctuations in the number of particles counted by the
instrument. Because of the relatively small sample volumes
of these types of instruments, both sources of uncertainty
are likely significant. To estimate the total uncertainties in
N(DSVI,f,i) andDSVI,f,i required forSB , analytic and sam-
pling uncertainties were modeled separately and the resulting
variances added. Details of the uncertainty models are given
in AppendixB.

4.1.1 Uncertainties forVM,i and φSVI

Following Brandes et al.(2008), once the 2DVD fallspeeds
were binned to match the SVI bin definitions, the modal fall-
speed was determined for each binned sample and a filter
was applied. Fallspeeds departing from the modal values by
more than 0.5 ms−1 were discarded from the sample; then
the sample mean and variance of the mean were calculated.
For each bin, the standard error of the mean fallspeed was
used as the fallspeed uncertainty. Given the range of values
for φSVI in the lower left panel of Fig.3, the uncertainty in
φSVI was estimated as 0.15.

4.2 Model formulation uncertainties, SF

Since size distributions are reported typically on discrete size
intervals, the integrals in Eqs. (8) and (9) are evaluated dis-
cretely. In addition, both the SVI and 2DVD have minimum
detectable particle number concentrations. These minimum
detectable concentrations are determined by the sample vol-
umes of the instruments, which are, in turn, determined by
the characteristics of the detectors and the sampling times.
Since particle number concentrations tend to decrease with
increasing particle size, the minimum detectable concentra-
tions lead to a truncation of the reported size distribution in
comparison to the true size distribution. These two factors
of discretization and truncation lead to errors in the modeled
Ze andS which are classified as model formulation errors
and are characterized bySF , a 2× 2 error covariance matrix
for reflectivity in dBZe and logS. Covariances between logS
and dBZe arise due to both models’ dependence on these dis-
crete, truncated distributions.

For particles larger than 17 mm, the 2DVD can detect
smaller number concentrations than can the SVI, and the
maximum detectable size for the 2DVD is significantly larger
than that for the SVI (Fig.4). The number concentration de-
tection limits were calculated as one particle per unit sam-
pling volume per unit size interval. Sampling volumes for the
2DVD depend on particle fallspeeds, which were calculated
perMitchell and Heymsfield(2005) using particle mass and
area parameterizations fromMitchell (1996) for “aggregates
of side planes, columns and bullets”. These differences sug-
gest that, although the 2DVD size distributions may be dis-
torted by the matching process, the 2DVD individual particle
observations can be used to estimate the effects of discretiza-
tion and size distribution truncation on Ze andS modeled
from the SVI observations. Independent 5 min samples of the
2DVD individual particle observations were first binned into
the size intervals used by the SVI; then discrete size distribu-
tions were calculated using Eq. (3). Next, for size intervals at
which the calculated size distribution fell below the SVI min-
imum detectable value, the calculated distribution was set to
zero, forming the simulated discrete, truncated size distribu-
tions. A single case, then, consisted of the original 2DVD
single-particle data for the 5 min sample, a discrete size dis-
tribution, and a discrete-truncated size distribution (Fig.5).
After modeling reflectivities and snowfall rates for each sam-
ple using the single particle, discrete and discrete-truncated
distributions, biases for the discrete and discrete-truncated
results were calculated by averaging differences versus the
single-particle results over all samples. Biases in the discrete
and discrete-truncated results were corrected, and then error
variances and covariances were calculated versus the single-
particle results.
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Fig. 4. Comparison of minimum detectable concentrations for the
SVI and the 2DVD, assuming 5 min samples, 0.25 mm size bins
and spherical particles which must be fully within the sensing area.

4.2.1 Radar reflectivity

Given an assumed mass–dimension relationship based on
DM , the reference radar reflectivity can be calculated directly
from a particular sample of 2DVD individual particle obser-
vations by summing the backscatter cross sections per unit
volume:

Ze=
36

π2ρ2
ice

||Ki ||
2

||Kw||
2

1

1t

j=Np∑
j=0

(
m
(

D2DVD,w,j

φ2DVD

))2

AjVj

. (18)

Corresponding reflectivities can then be calculated from the
simulated SVI discrete and discrete-truncated size distribu-
tions using Eq. (8) evaluated using the trapezoidal method.
The differences between these two reflectivities and the refer-
ence reflectivity represent the model errors due to discretiza-
tion and due to combined discretization and truncation of the
size distribution.

A common assumption (e.g.,Mitchell, 1996) is that the
mass–dimension relationship follows a power law of the
form

m(DM) = αD
β
M . (19)

Provided the mass–dimension relationship Eq. (19) is appli-
cable over the entire size distribution, differences in dBZe
will depend onβ and not onα, since dBZe differences rep-
resent ratios of Ze. Particle mass is usually capped to be no
more than that of an ice sphere. This cap means that some
dependence onα may occur but is likely to be weak because
the cap affects only very small particles.

2DVD observations from the seven C3VP snow events
were used to evaluate these errors for a range of values for
α and β. Values for α (cgs units) ranged from 0.001 to
0.009 in 0.002 increments, while those forβ ranged inde-
pendently from 1.4 to 2.4 in 0.2 increments.φ2DVD was set
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Fig. 5. Example of the processing of 2DVD size observations to
form discrete and discrete-truncated particle size distributions: top,
observed particle sizes over a 5 min sample; middle, transformation
to a discrete PSD based on SVI size bins; and bottom, application
of SVI detection limits to mask those bins undetected by the SVI.

to 1.0 for this analysis. To avoid biasing the results to fa-
vor frequently occurring samples with trace snow rates, the
samples were filtered to exclude those containing fewer than
100 particles. Of the 1273 original samples, this filtering re-
moved 383, 94 % of which had snowfall rates of less than
0.01 mmh−1 of liquid water when evaluated usingα = 0.003
andβ = 2.0. The statistical properties were largely indepen-
dent ofα, as was expected (Table1). The table shows errors
both for discretization with truncation and for discretization
only for comparison. Except as noted, this description fo-
cuses on the errors due to discretization plus truncation. The
reflectivity bias became more negative asβ increased, rang-
ing from −0.85 to−1.32 dB, while the residual errors in-
creased from 0.74 to 2.24 dB.

4.2.2 Snowfall rate

The snowfall rate biases and covariances were evaluated fol-
lowing a similar procedure. The reference snowfall rates
were calculated directly from the 2DVD individual particle
observations as

S =
1

1tρliq

j=Np∑
j=0

m
(

D2DVD,w,j

φ2DVD

)
Aj

. (20)

Snowfall rates were then calculated with the discrete and
discrete-truncated size distributions using Eq. (9) again eval-
uated via trapezoidal integration withφ2DVD = 1.0. These
differences between these rates and the reference rates should
scale linearly withα, again except for small departures due
to the cap on particle mass, and when evaluated in terms of
logS should have limited dependence onα.
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Table 1. Biases, standard deviations of errors and error correlations due to size distribution truncation and discretization for radar reflec-
tivity and snowfall rate. Numbers outside parentheses are due to both discretization and truncation, while those inside parentheses are for
discretization only.

Reflectivity, dBZe Snowfall rate, logS
Correlation

β Bias SD Bias SD coefficient

1.4 −0.85 (−0.72) 0.74 (0.46) 0.016 (0.018) 0.062 (0.060) 0.49 (0.47)
1.6 −0.90 (−0.71) 0.94 (0.46) 0.013 (0.016) 0.062 (0.060) 0.46 (0.39)
1.8 −0.98 (−0.73) 1.22 (0.50) 0.007 (0.010) 0.067 (0.064) 0.48 (0.35)
2.0 −1.08 (−0.74) 1.53 (0.53) −0.001 (0.003) 0.073 (0.070) 0.51 (0.32)
2.2 −1.19 (−0.76) 1.87 (0.56) −0.009 (−0.004) 0.081 (0.077) 0.54 (0.29)
2.4 −1.32 (−0.77) 2.24 (0.59) −0.017 (−0.011) 0.090 (0.085) 0.56 (0.26)

Bias decreased from 0.016 to−0.017 with increasingβ,
while the residual errors ranged from 0.062 to 0.090 (Ta-
ble1). Correlations between the reflectivity and snowfall rate
errors are 0.49 to 0.56. The snowfall rate errors proved to
be exceptionally sensitive to howVM,i was evaluated. Us-
ing a simple mean from a 2DVD sample centered onDM,i

and taken over a 0.25 mm size interval resulted in significant
positive biases (not shown), likely due to the effects of ex-
treme positive outliers which become increasingly common
at smaller particle sizes. To ameliorate these effects, the filter
of Brandes et al.(2008) described earlier was applied.

5 Results

The model described above was used to evaluate the contri-
butions of each of the error sources to the total uncertainties
in modeled reflectivity and snowfall rate. The model was ap-
plied to 1053 independent 5 min SVI samples from the C3VP
snow events. Samples were required to contain at least 100
particles. Additionally, since the uncertainty model requires
an estimate of the size distribution slope, each sample was
required to have at least three non-zero size distribution bins.
The modeled uncertainties are sensitive to the parameters of
the mass–dimension relationship, and two such relationships
were applied: the first fromHeymsfield et al.(2010, HE10)
with α = 7.00× 10−3 andβ = 2.2, and the second the fre-
quently usedBrown and Francis(1995, BF95) relationship
with α = 2.94× 10−3 and β = 1.9. Starting from the dis-
cretization and truncation errors given bySF (case A in Ta-
ble 2), additional sources of uncertainty were introduced in-
crementally. Case B adds disdrometer analytic and sampling
uncertainties, case C adds uncertainties inφ for an SVI-like
instrument, case D adds uncertainties inφ for an instrument
using an equal-areaD, and case E adds 2DVD fallspeed un-
certainties to case C. For all cases,φ = 0.82.

The dominant sources of uncertainty for both dBZe and
logS were discretization and truncation, andφ. The disdrom-
eter analytic and sampling uncertainties contributed weakly
to the total uncertainties, as did the uncertainties in the bin-
mean fallspeeds observed by the 2DVD. Uncertainties were

larger for the HE10 mass–dimension relationship than for the
BF95 relationship, owing mainly to the larger discretization
and truncation errors associated with the largerβ value for
HE10. For these results, biases and residual errors were cal-
culated for all SVI samples combined. Refinements, such as
evaluating bias and residual errors as functions of the mod-
eled reflectivities or snowfall rates, can help reduce resid-
ual errors. EvaluatingSF for HE10 microphysics by binning
modeled reflectivities and snowfall rates into bins of 2 dBZe
and 0.1 in logS, then evaluating bias bin by bin, reduced
residual errors for reflectivity from 1.87 to 1.04 dB and for
snowfall rate from 0.081 to 0.053 in logS.

When fully accounted, these forward model uncertainties
are substantial compared to reasonable estimates of measure-
ment uncertainties. Although these uncertainty estimates do
not require assumptions about the shape of their distribu-
tions, comparisons can be illustrated by assuming a partic-
ular shape. Figure6 shows sampled probability density func-
tions (PDFs) and uncertainty ellipses calculated for bivariate
normal distributions using the uncertainties in Table2. Con-
sidering discretization and truncation errors (Fig.6a) com-
bined with uncertainties in the representation of particle di-
mension by the disdrometer (Fig.6b) gives an uncertainty
ellipse similar in size to that for estimated observational er-
rors (Fig.6c). The observational errors for reflectivity have
been represented with standard deviations of 1.5 dB, simi-
lar to uncertainties for a well-calibrated operational C-band
radar (Thurai et al., 2008). Those for snowfall rate have been
estimated at 0.3 in logS, which gives a factor of 2 uncer-
tainty inS. Uncertainties for snowfall measurements on short
timescales by automated all-weather gauges (e.g., appropri-
ately fenced OTT Pluvio or Geonor T-200 instruments) are
not well characterized, so this value is taken as an approxi-
mate upper limit. Although errors in measurements of reflec-
tivity and snowfall rate are independent, the shared depen-
dence of the forward-modeled values on the observed size
distributions introduces correlations in the errors in modeled
reflectivities and snowfall rates, illustrated by the sloped ma-
jor axes of the ellipses in panels a and b. Summing the covari-
ance matrices for measurement and model errors per Eq. (15)
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Table 2. Contributions to uncertainties in forward-modeled dBZe and logS, averaged over 1053 5 min samples. Values ofSF for β = 1.9
(BF95) were interpolated from Table1.

HE10 BF95

Case Description s (dBZe) s (logS) s (dBZe, logS) s (dBZe) s (logS) s (dBZe, logS)

A SF only 1.87 0.081 0.082 1.38 0.070 0.048
B A +s (Di) ,s (N (Di)) 2.01 0.089 0.094 1.50 0.077 0.057
C B+(s (φ) = 0.15) 4.02 0.196 0.70 3.36 0.187 0.57
D B +(s (φ) = 0.25) 6.14 0.34 2.00 5.23 0.29 1.48
E C+s

(
VM,i

)
4.02 0.22 0.78 3.36 0.197 0.57
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Fig. 6. Uncertainty models for(a) case A alone,(b) case E alone,
(c) estimated observational uncertainties, and(d) case E with es-
timated observational uncertainties. Orange contours show the es-
timated bounds for 1 standard deviation, while the grayscale illus-
trates sampled PDFs.

leads to an uncertainty ellipse that is substantially larger than
that for either the measurement or model uncertainties alone
and which maintains significant error correlations (Fig.6d).
This enlargement of the uncertainty ellipse results from the
comparatively large uncertainties in observed versus mod-
eled snowfall rates and in modeled versus observed reflectiv-
ities.

5.1 Ze–S relationships

Snowfall rate may be estimated from observed radar reflec-
tivities using so-called Ze–S relationships, typically reported
in the form Ze= ASB . Such relationships can be developed
using reflectivities and snowfall rates modeled from observed
snow PSDs, although parameterized forms of the PSDs have
been used (e.g.,Matrosov et al., 2009). These relationships
have uncertainties arising from the assumptions about the

particle masses, fallspeeds and scattering properties, as well
as from the uncertainties in the observed PSDs. Ze–S rela-
tionships were developed for reflectivities, snowfall rates and
their uncertainties modeled from the 1053 data points using
case E with the HE10 and BF95 mass–dimension relation-
ships. Fits were then performed for modifications to case E
in whichφ was varied to simulate the use of several different
unadjusted disdrometer measurements of particle size: E1,
a disdrometer using equal-areaDec; E2, a disdrometer us-
ing DSVI,f; and E3, a disdrometer usingD2DVD,w. Fits were
performed on the dBZe and logS values using the bivariate
least-squares estimation method ofYork et al.(2004), which
treats uncertainties in both variables as well as error covari-
ances between the variables, using a function of the form

logS = a + b(dBZe). (21)

The parameters of the fitted relationships show only small
sensitivity to differences in the actual observed particle size,
represented by changes inφ (Table3, cases E, E1, E2, and
E3), but more substantial sensitivity to differences in the
mass–dimension relationship (case E, HE10 versus BF95).
At 15 dBZe, the differences inφ lead to differences inS
of about±1.5 %, while at 30 dBZe the differences inS are
about±5 %. In comparison, changes in the assumed mass–
dimension relationship lead to differences inS of ±13 % at
15 dBZe and±20 % at 30 dBZe. The exponentsB found here
are consistent with values from a number of prior studies, as
summarized byFujiyoshi et al.(1990), and with the results
of Huang et al.(2010), who analyzed 2DVD and collocated
C-band radar observations for these same snow events and
found values ranging from 1.1 to 1.9. For the coefficients
A, Huang et al.found values in the range of 100 to 300,
somewhat smaller than those obtained here, while the stud-
ies summarized byFujiyoshi et al.gave larger values ranging
predominantly between 200 and 3000.Huang et al.note that
in some cases the large coefficients in these earlier studies
may be due to the use of the reflectivity factor, rather than
the equivalent reflectivity factor, to develop theZ–S rela-
tionships from particle size distributions, which would cause
about a factor of 4 increase inA (Smith, 1984).
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Table 3.Fit results for Ze–S relationships, showing the parametersa andb from Eq. (21). Also shown are parametersA andB used in the
more typical form Ze= ASB . Uncertainties (square roots of estimated variances) are given in parentheses.

Ze= ASB

Case m(D) D φ a b s(a,b) A B χ2

E HE10 DM 0.82 (0.15) −1.557 (0.006) 0.0615 (3× 10−4) −1.39× 10−6 339. 1.63 2.67
E BF95 DM 0.82 (0.15) −1.499 (0.005) 0.0655 (3× 10−4) −1.13× 10−6 194. 1.53 2.82
E1 HE10 Dec 1.17 (0.15) −1.488 (0.004) 0.0577 (3× 10−4) −7.1× 10−7 378. 1.73 2.46
E2 HE10 DSVI,f 1.00 (0.15) −1.508 (0.005) 0.0591 (3× 10−4) −9.5× 10−7 358. 1.69 2.55
E3 HE10 D2DVD,w 0.88 (0.15) −1.540 (0.006) 0.0606 (3× 10−4) −1.22× 10−6 347. 1.65 2.64

6 Conclusions

Typical retrieval and estimation techniques involve mini-
mizing differences between observed and modeled quanti-
ties. For these sorts of problems, quantifying the uncertainty
characteristics of the model–measurement differences is es-
sential. As an example, in Bayesian optimal estimation the
model–measurement difference uncertainties, along with the
a priori estimate of the PDF of the retrieved state, determine
the posterior distribution of the retrieved state. In general,
larger uncertainties in the model–measurement differences
will contribute to larger uncertainties in the posterior, re-
trieved state. Retrieval performance can be gauged based on
comparisons of the width of the posterior PDF compared to
that of the a priori PDF (e.g., Shannon Information Content;
Rodgers, 2000), and so accurate assessments of the model–
measurement difference uncertainties contribute to accurate
assessments of retrieval performance.

In this particular application, forward model uncertainties
are substantial compared to estimated measurement uncer-
tainties, so omitting the contribution of forward model uncer-
tainties to the model–measurement difference uncertainties
would likely underestimate uncertainties in the retrieved state
and of the retrieval information content. Ignoring the forward
model uncertainties may in some cases cause retrieval fail-
ure, since the model–measurement difference uncertainties
impact the value of the cost function being minimized.

For modeled reflectivities and snowfall rates, the dominant
sources of uncertainty are discretization and truncation, and
the uncertainty inφ. Uncertainties in the discrete values of
Di andN(Di) provided by the disdrometer and uncertainties
in the size bin mean fallspeeds contributed minimally to the
total uncertainties. Considering discretization and truncation,
truncation contributes more strongly to the total uncertain-
ties. Truncation uncertainties can be reduced by increasing
the sample volume, which increases the size at which trun-
cation occurs. For an instrument like the SVI, this can be
achieved by increasing the number of image frames in a sin-
gle sample, by increasing the field of view, or by increas-
ing the depth of field. The number of image frames can be
increased by either sampling longer or sampling faster, and
there are likely several trade-offs with either approach. For

example, longer sampling will decrease the temporal reso-
lution of the dataset, while faster sampling would likely im-
pact camera hardware, data storage and processing require-
ments, and potentially increase errors caused when parti-
cles are counted repeatedly in successive frames. With faster
sampling, it becomes more likely that successive frames no
longer observe independent samples of the PSD.

Uncertainties inφ contribute at least half of the total un-
certainties in modeled reflectivities and snowfall rates. The
value ofφ varies with particle shape and the particular di-
mensional measurement used by the disdrometer (Fig.2).
The use of dimensional measurements such as feret diam-
eter that reduce the sensitivity ofφ to particle shape is desir-
able to reduce these uncertainties. Additional coincident dis-
drometer observations may also help constrainφ or reduce
its uncertainties. As an example, although the dual viewing
geometries of the 2DVD raise particle matching issues, the
D2DVD,w particle size metric givesφ values with relatively
weak sensitivity to particle shape. The SVI is adaptable to
other viewing geometries (e.g., viewing from a more nearly
vertical orientation rather than horizontally), and such ge-
ometries may prove useful for constrainingφ.

Finally, while changes in the mass–dimension relationship
have a pronounced effect on modeled Ze–S relationships,
changes inφ affect both reflectivity and snowfall rate some-
what proportionately so that Ze–S relationships are mini-
mally affected. As shown in Table3, changes inφ of 0.82 to
1.17 cause changes in the coefficient of Ze–S relationships
of only 339 to 378, and changes in the exponent of only 1.63
to 1.73. Thus disdrometers employing different measures of
particle size might be expected to produce similar modeled
Ze–S relationships.

Appendix A

Disdrometer dimensional errors

How significant are the errors introduced by treating a dis-
drometer observation ofD as the maximum dimension? An
exponential size distribution based on the true maximum
dimensionDM is
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N(DM) = N0,M exp(−λMDM). (A1)

Here and in the following, the subscript M indicates quan-
tities determined from measurements of particle maximum
dimension. Transforming this distribution to use an observed
dimensionDobs= φDM as the independent variable gives

N(Dobs) = N(DM)
∂DM

∂Dobs
=

N0,M

φ
exp

(
−

λM

φ
Dobs

)
, (A2)

where it has been assumed thatφ is constant over the en-
tire distribution. The transformation fromDM to Dobs results
in a distribution with steeper slope and larger intercept. Al-
though the zeroth moments are the same for both distribu-
tions, higher-order moments are different and quantities such
as reflectivity which depend on higher-order moments will
be affected. Reflectivities can be calculated for both cases,
one in which the disdrometer truly observesDM and a sec-
ond in whichDobs is erroneously taken to beDM . Applying
the mass power law Eq. (19) with the distribution Eq. (A2)
and calculating reflectivity per Eq. (4) gives

Zeobs=
36α2

π2ρ2
ice

||Ki ||
2

||Kw||
2

N0,M

φ

0(2β + 1)

(λM/φ)2β+1
, (A3)

while that for distribution Eq. (A1) is

ZeM =
36α2

π2ρ2
ice

||Ki ||
2

||Kw||
2
N0,M

0(2β + 1)

λ
2β+1
M

, (A4)

where0 is the gamma function. The ratio of the reflectivities
is

Zeobs

ZeM
=

N0,M/φ

N0,M

λ
2β+1
M

(λM/φ)2β+1
= φ2β . (A5)

Taking a typical horizontal aspect ratio of 0.6 (Korolev and
Isaac, 2003) givesφ ≈ 0.82 for Dobs= DSVI,f. A common
estimate forβ is 1.9 (Brown and Francis, 1995), resulting in
a reflectivity ratio of 0.47. Thus Ze modeled usingN(Dobs)

will be underestimated by 3.2 dB. In order for a modeled
value of Zeobs to match an observed Ze, the coefficientα

would have to be overestimated by almost 50 %.

Appendix B

Disdrometer uncertainty models

B1 Analytic uncertainties for DSVI,f,i and N
(
DSVI,f,i

)
The SVI size distribution is determined as shown in Eq. (2).
BothAijk andLijk depend on particle size:

Aijk = (Xfov − Dijk)(Yfov − Dijk), (B1)

Lijk = f Dijk, (B2)

whereXfov andYfov are the maximum width and height of
the frame,f is an empirical factor relating particle size to
depth of field, andDijk is the particle size (Newman et al.,
2009). The expression Eq. (B1) embodies an “all-in” require-
ment, in which the particle must be contained totally within
the field of view of the image to be counted.Newman et al.
derived the relationship Eq. (B2) using the feret diameter,
and this is consistent with the observedD used in these SVI
data (note that the SVI,f subscript forD has been dropped for
clarity). Combining Eqs. (2), (B1) and (B2) then simplifying
the indexing, the size distribution can be written as

N(Di) =
1

Nf1Di

j=Npi,tot∑
j=1

1

(Xfov − Dij )(Yfov − Dij )f Dij

. (B3)

Npi,tot is the total number of particles observed in theith bin
accumulated over all image frames. The number of framesNf
and the frame dimensionsXfov andYfov can be determined
accurately, and1Di is a specified constant size bin width,
leaving Npi,tot, f , andDij as sources of error.

Errors in the measured particle sizeDij are caused by blur-
ring and lack of contrast in the image (Newman et al., 2009).
These errors affect the estimates of the field of viewAijk

and depth of fieldLijk, which then propagate as errors in
the calculated size distribution via Eq. (B3). Particle sizing
errors also cause particles to be misclassified into size inter-
vals. Since undercounting in one interval will be accompa-
nied by overcounting in nearby intervals, the effects on in-
tegrated quantities like reflectivity and snowfall rate calcula-
tions in the forward model are expected to be minor and are
neglected.

Errors in the count of particles Npi,tot can be caused by
reappearance of particles and by obscuration. In environ-
ments with very low wind speeds, a slowly falling particle
may appear in multiple frames, causing it to be counted mul-
tiple times. Winds at 2 ma.g.l. were generally in excess of
1.5 ms−1 during the seven snow events, and such repeated
counting is not expected to be a concern. Under conditions
of high particle concentrations, a particle in the background
of the sample volume may be obscured by a particle in the
foreground. It is not known to what extent obscuration af-
fects the SVI observations. For small particles, for which
concentrations may be high, the depth of field per Eq. (B2)
is shallow, making obscuration unlikely. For large particles,
depth of field is larger but concentrations are typically low,
also making obscuration unlikely. Based on these arguments,
errors in Npi,tot due to reappearance and obscuration were
neglected.

To estimate the analytic uncertainty, we assume that Npi,tot
is measured with negligible uncertainty (e.g., overlapping or
doubly counted particles are uncommon). The measurements
Dij have uncertainties with variancess2(Dij ) that are ex-
pected to be independent and identically distributed. The pa-
rameterf has uncertainty independent of the uncertainties
in Dij with variances2(f ). RepresentingN(Di) as Ni to
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simplify notation, Eq. (B3) can be rewritten as

Ni =
1

Nf1Di

j=Npi,tot∑
j=1

xj , (B4)

where

xj =
1

(Xfov − Dj )(Yfov − Dj )f · Dj

(B5)

and where thei subscript for terms inside the sum has been
omitted for clarity. The variancess2(xj ) can be estimated by
error propagation as

s2(xj ) =

(
∂xj

∂Dj

)2

s2(Dj ) +

(
∂xj

∂f

)2

s2(f ). (B6)

The variances2(Ni) can be found as

s2(Ni) =(∂Ni

∂x1

)2

s2(x1) +

(
∂Ni

∂x2

)2

s2(x2) + ·· ·+

(
∂Ni

∂xNpi,tot

)2

s2(xNpi,tot
)

 . (B7)

Since∂Ni

∂xj
=

1
Nf1Di

,

s2(Ni) =

[
1

Nf1Di

]2[
s2(x1) + s2(x2) + ·· ·+ s2(xNpi,tot

)
]
. (B8)

Provided the partial derivatives
∂xj

∂Dj
do not vary significantly

over the size range within a bin, the values ofs2(xj ) will also
not vary significantly and can be approximated with a single
values2(x), giving

s2(Ni) ≈

[
1

Nf1Di

]2

Npis
2(x). (B9)

Since single-particle measurements were not part of the
processed SVI data, the derivatives

∂xj

∂Dj
and the variances

s2(Dj ) were estimated at the expected values ofD on the
size bin interval betweenDi and Di+1. For spherical par-
ticles, the uncertainty in particle size has been estimated at
18 % (Newman et al., 2009), and that estimate was used for
this work even though nonspherical snow particles are ob-
served. Note thatDij in this context is the dimension ob-
served by the disdrometer, not an estimate of the particle
maximum dimension.Newman et al.(2009) estimated the
uncertainty in depth of field at 15 % when particle size is
known accurately, suggesting thatf has an uncertainty of
15 %, which was the value used for this work.

B2 Sampling uncertainties forDSVI,f,i and N
(
DSVI,f,i

)
Sampling errors affect both the number of particles counted
in the discrete size intervals and the distribution of particle
sizes observed in a particular interval. The number of parti-
cles Npi,tot in a particular size bin observed arriving in the

disdrometer sample volume at a particular instant is typically
taken to be a random deviate (Joss and Waldvogel, 1969)
and contributes to sampling uncertainty in the calculated size
distribution values. For rainfall, the number of particles ob-
served in a given size bin by a volume sampling device like
the SVI is often taken to be a Poisson-distributed random
variable (Joss and Waldvogel, 1969; Gertzman and Atlas,
1977; Uijlenhoet et al., 2006). The same approach is taken
here for snowfall, considering it to behave as a homogeneous
Poisson process during the sampling time interval. The num-
ber of particles Npi,tot appearing in the SVI sampling volume
then follows a Poisson distribution.

The observed particles sizesDij also vary and are dis-
tributed according to a probability density function defined
by the size distribution (Uijlenhoet et al., 2006). The ob-
servedDij form a sequence of random variables taken to be
independent and identically distributed. As a result, thexj of
Eq. (B5) are also independent and identically distributed. Re-
ferring to Eq. (B3), since both the particle sizesDij and the
number of particles Npi,tot are realizations of random vari-
ables, the form ofN(Di) is seen to be that of a random sum
of random variables (Feldman and Valdez-Flores, 2010), also
known as a randomly stopped sum.

Letting

yi =

j=Npi,tot∑
j=1

xj (B10)

the variance ofyi can be shown to be

V
[
yi

]
= V

[
xj

]
E
[
Npi,tot

]
+
[
E
[
xj

]]2
V
[
Npi,tot

]
, (B11)

(Feldman and Valdez-Flores, 2010) by applying the law of
total variance, whereV [] indicates variance andE[] indicates
expectation. Since Npi,tot is Poisson-distributed, the best es-
timate of the expectation and variance is the observed count,
so that

V
[
yi

]
= Npi,totV

[
xj

]
+ Npi,tot

[
E
[
xj

]]2
. (B12)

Thus it is necessary to estimate the expectation and variance
for xj . These can be estimated via Taylor series expansion of
x(D). Since uncertainty inf does not contribute to sampling
uncertainty, the expectation can be estimated as

E[x(D)] ≈ x(µD) +
x′′(µD)

2
s2
D, (B13)

whereµD ands2
D are the expectation and variance ofD, re-

spectively, and the primes indicate derivatives with respect to
D. The variance can be estimated as

V [x(D)] ≈
(
x′(µD)

)2
s2
D. (B14)

As noted byUijlenhoet et al.(2006), the particle size dis-
tribution can be written as the product of the total num-
ber concentration,Ntot, and the probability density function
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Fig. 6. Uncertainty models for (a) case A alone, (b) case E alone, (c) estimated observational uncertainties,
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27

Fig. B1. Comparison of uncertainties estimated from observations
(square root of variance computed from samples of 5 1 min particle
size distributions) and those calculated from the uncertainty model.

of particle sizes,p(D). Taking the particle sizes to be dis-
tributed exponentially gives

N(D) = Ntotλexp(−λD), (B15)

from which it can be seen that

p(D) = λexp(−λD). (B16)

What is needed are estimates of the expectation and variance
of D on subintervals ofp(D). For a subinterval bounded by
Di andDi+1, expectation and variance are defined by

µD =

∫ Di+1
Di

p(D)DdD∫ Di+1
Di

p(D)dD
(B17)

and

s2
D =

∫ Di+1
Di

p(D)(D − µD)2dD∫ Di+1
Di

p(D)dD
. (B18)

Evaluating these integrals for the exponential probability dis-
tribution gives

µD = Di +
1

λ
−

(Di+1 − Di)exp(−λ(Di+1 − Di))

1− exp(−λ(Di+1 − Di))
(B19)

and

s2
D =

1

λ2
−

exp(−λ(Di+1 − Di))(Di+1 − Di)
2

(1− exp(−λ(Di+1 − Di)))
2

. (B20)

The value ofλ can be estimated by linear least squares
fitting of ln(Ni) to Di . Given these last two relationships and
λ, the expectation and variance ofD can be determined for
each size bin. From these, the expectation and variance of

x(D) can be found using Eqs. (B13) and (B14). Next, the
variance ofyi can be found via Eq. (B12). Finally, since

Ni =
1

Nf1Di

yi, (B21)

the variance ofNi is

V [Ni ] =

[
1

Nf1Di

]2

V
[
yi

]
. (B22)

B3 Size distribution uncertainty model evaluation

As a simple check on the validity of the size distribution
uncertainty model, distinct samples of the SVI observations
were formed by repeatedly collecting five consecutive 1 min
SVI size distributions from the observations for one C3VP
snow event. Variances were computed bin by bin for each
sample. The statistical uncertainty model described above
was then applied to the 5 min average size distribution ob-
tained from each sample, and then the modeled analytic and
sampling variances for each bin were summed. Both the
empirical and modeled uncertainties spanned approximately
three orders of magnitude (Fig.B1). At small uncertainties,
the modeled and empirical uncertainties were in good agree-
ment. At large uncertainties, the modeled uncertainties for
the 5 min size distributions were somewhat smaller than the
empirical uncertainties for the 1 min size distributions. Given
that the empirical uncertainties apply to 1 min SVI observa-
tions, while the modeled uncertainties apply to 5 min aver-
ages of the SVI observations, the differences appear reason-
able.
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