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Abstract. Estimates of snow microphysical properties ob- 40-60 % for snowfall rate, are highly correlated, and are sub-
tained by analyzing collections of individual particles are stantial compared to expected uncertainties for radar and pre-
often limited to short timescales and coarse time resolu<ipitation gauge observations. The dominant sources of er-
tion. Retrievals using disdrometer observations coincidentors are viewing geometry effects and the discrete, truncated
with bulk measurements such as radar reflectivity and snowform of the size distributions. While modeled Z&relation-

fall amounts may overcome these limitations; however, re-ships are strongly affected by assumptions about snow par-
trieval techniques using such observations require uncerticle mass properties, such relationships are only modestly
tainty estimates not only for the bulk measurements them-sensitive tap owing to partially compensating effects on both
selves, but also for the simulated measurements modelethe reflectivity and snowfall rate.

from the disdrometer observations. Disdrometer uncertain-

ties arise due to sampling and analytic errors and to the dis-

crete, potentially truncated form of the reported size distri-

butions. Imaging disdrometers such as the Snowflake Vided Introduction

Imager and 2-D Video Disdrometer provide remarkably de-

tailed representations of snow particles, but view limited pro-Estimates of snow particle microphysical properties made
jections of their three-dimensional shapes. Particle sizes devith surface observations have typically involved measure-
termined by such instruments underestimate the true dimenMents of individual particlesNakaya and Teradal935
sions of the particles in a way that depends, in the meanKajikawa 1972 Mitchell et al, 1990. These methods pro-
on particle shape, also contributing to uncertainties. An un-vide highly detailed descriptions of particles, but the sam-
certainty model that accounts for these uncertainties is dePles have necessarily been small in number and short in du-
veloped and used to establish their contributions to simuJation due to the high amount of effort required. This makes
lated radar reflectivity and snowfall rate. Viewing geome- difficult the evaluation of the environmental distributions of
try effects are characterized by a paramegerthat relates the microphysical properties of snowfall and of the temporal
disdrometer-observed particle size to the true maximum di-evolution of these properties during snowfall events. This in-
mension of the particle. Values and uncertaintiegsfare es- formation, particularly regarding the environmental distribu-
timated using idealized ellipsoidal snow particles. The modeltions, is essential for the development of snowfall retrievals
is applied to observations from seven snow events from thé!Sing Bayesian techniques, which generally require a priori
Canadian CloudSat/CALIPSO Validation Project (C3VP), a information about snow microphysical properties.
mid-latitude cold-season cloud and precipitation field exper- Disdrometer-based analyses have the potential to over-

iment. Typical total uncertainties are 4 dB for reflectivity and Come the shortcomings of manual, single-particle observa-
tions by providing larger sample sizes and longer-duration
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3636 N. B. Wood et al.: Characterization of disdrometer uncertainties

sampling at high time resolution. Specifically, disdrometer sensing observations of clouds and precipitation was col-
observations of particle size distributions (PSDs) in concertlected in south-central Ontario as part of C3\H¢lak et al.
with observations of radar reflectivity or accumulated snow2006. An enhanced surface measurement site operated at the
mass have been used to estimate snow bulk and microphy$4eteorological Service of Canada’s Centre for Atmospheric
ical propertiesBrandes et al(2007) used 2-D video dis- Research Experiments (CARE) at Egbert, Ontario, approxi-
drometer and snow accumulation observations to estimatenately 80 km north of Toronto.
snow bulk densitieduang et al(2010 also used 2-D video A number of instruments installed at CARE provided ob-
disdrometer observations, along with C-band radar reflecservations of snow particles, including the NASA Snowflake
tivities, to estimate the parameters of snow particle mass-video Imager (SVI) Newman et al. 2009 and Colorado
dimension relations. In analyses such as these, the observe&tate University’s 2-D Video Disdrometer (2DVDJ tfurai
PSDs are used to model radar reflectivity or snowfall accu-and Bringj 2005. The SVI uses a video camera to capture
mulation, and the modeled values are then fitted to observe@-D images of particles. In each image frame, the SVI di-
reflectivities or accumulations by adjusting snow microphys-rectly observes a 3-D volume defined by the camera’s 2-D
ical properties. field of view and the depth of field\ewman et al.2009.
While uncertainties in the observed reflectivities or accu-For a single image frame, the discrete size distribution is
mulations contribute to uncertainties in the estimated micro- )
. . P - Jj=Np;
physical properties, so too do uncertainties in the modele%(D‘) 1 Z 1 1)
reflectivities or accumulations. These modeled quantitiesre-" """~ AD; 4~ A; ;L. :’
i —1 1,ji,j
quire integration of terms incorporating the observed PSDs, !
and the disdrometers introduce particular uncertainties irwhereD; is the characteristic particle size for tih bin, A; ;
these observed PSDs. The sources of uncertainty include fads the area of the camera field of view ahg; is the depth of
tors related to the integration itself (upper and lower boundsfield associated with thgth particle in theith size bin. Np
and the discrete, numerical treatment of the integral), and unis the total number of particles in the size bin akhd; is the
certainties in the integrands. In this work, the contributions ofbin width. Both the field of view and depth of field vary with
disdrometer uncertainties to uncertainties in models for nearparticle size. Typically, multiple image frames contribute to
Rayleigh radar reflectivity and for snowfall rate are evalu- an observed size distribution, and the total sample volume
ated. These uncertainty estimates are essential for use in r@creases with each frame, giving
trievals that would use coincident ground-based observations
of radar reflectivity and snowfall rate or accumulations to es-
. . - . N(D;)
timate snow microphysical properties. The results are also
used to estimate the effects of these uncertainties on so-called
Ze-S relationships which relate radar reflectivity to snowfall where N is the number of frames an@p;)x is the total
rate. Disdrometer uncertainties are specific to the measureaumber of particles in theth image frame and thih bin.
ment techniques and sampling strategies used by a particu- The 2DVD uses two horizontal light sheets, parallel but
lar instrument, and this work focuses on measurements fronoffset in the vertical, and each light sheet illuminates a hori-
the Canadian CloudSat/CALIPSO Validation Project (C3VP, zontal array of photodetectors in a line scan camera. As a par-
Hudak et al. 2006; however, it is anticipated that the meth- ticle falls through a light sheet, it shadows some of the pho-
ods can be applied to other datasets which employ similatodetectors, and the array is scanned rapidly to determine
instruments. which photodetectors are shadowed. A stack of horizontal
Section2 describes the C3VP disdrometer observationsshadow images of the particle results from the scans and,
and the measurement methods for these instruments. Sefrom this stack, information about the dimensions of the par-
tion 3 describes models for simulation of snowfall rate and ticle can be obtained. The light sheets are orthogonal, so par-
Rayleigh radar reflectivity from the disdrometer observa-ticles are observed from two different directiort$éafiesch
tions. Uncertainties for simulated reflectivities and snowfall 1999 Kruger and Krajewski2002 Schdnhuber et gl2007).
rates are characterized in Segtthen the results of applying If a particle is observed by both cameras and the corre-
these forward models and uncertainty characterizations to theponding images can be matched, the time interval between
C3VP observations are given in SegtFinally, Sect5 dis- the two images can be used to determine the particle’s fall-
cusses the implications of these uncertainties for estimatiorspeed. The irregular shape of snow particles complicates im-
problems using modeled reflectivities and snowfall rates.  age matching, since the orthogonal views will see two dis-
tinct sides of a particle and the particle’s orientation may
changeHanesch1999 defined a matching algorithm which
2 Snow particle observations applies a number of criteria to match particle images. The cri-
teria are based on the vertical extent of the particles, the ratio
During Northern Hemisphere winter 2006/2007, an exten-of the widths observed by the two cameras, the ratio of max-
sive set of surface- and aircraft-based in situ and remotémum width to height, and an allowed range of fallspeeds.

k=N j=(Np; )k 1

= - (2
NtAD; = AjjkLijk
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Huang et al(2010 used similar criteria but applied weights 10000¢ ‘
to each criterion, and the best match was chosen based on th i —— 6Decos] 1
image whose weighted sum is a maximum. The 2DVD ob- 1000 T [Peels) -
servations used in this work are the results of the analysis of E 20Jan 07| ]
Huang et al. (2010). The observations report the character-=_ 100t o2dano?|
istics of individual particles for which matching succeeded. € i —— 14Feb07
These characteristics include fallspeed and several measure “g 10¢ .
of particle size, along with the time at which the particle fell =z F
through the instrument. zZ i -

Given particle sizes and fallspeeds, the 2DVD particle size i
distribution can be determined as 0.1E N <

= vy ,\,\\
Jj=Np; r ‘J.)L)"
N(D;) = L ! , (3) 001 5 20
AtAD; ‘= Ai Vi Dy MM

wherei is the index of the size distribution bif; is the char- ~ Fig. 1. Averaged SVI size distributions for each C3VP snowfall
acteristic particle size for thigh bin, Az is the sampling time ~ event.
interval, A D; is the width of the'th size bin, Npis the num-

ber of particles in théth size bin, and4; ; andV; ; are re- 3 \odels for radar reflectivity and snowfall rate
spectively the horizontal measurement area and the fallspeed

of the jth particle in theith size bin. Note, however, that if = At the wavelengths used by precipitation radars, scattering
matching does not succeed, the unmatched particle canngly most cloud ice and snow particles is near Rayleigh, al-
be used in the size distribution calculation since fallspeed i&hough scattering by larger, precipitating ice particles may
not known and the particle’s contribution to the size distribu- deviate from the Rayleigh approximatiohétrosov et al.
tion via Eg. @) cannot be determineti@nesch1999 Huang  2009. For the uncertainty analyses presented here, particles
et al, 2010. The resulting data loss can lead to errors in thegre assumed to scatter per the Rayleigh approximation for
estimated size distributiotdliang et al.2010. spheres. The errors introduced by this assumption are treated
Because the SVI is not dependent on particle matchingin a forthcoming workAtlas et al.(1953 showed that low-
the SVI observations are taken as the primary measure of thgensity, irregularly shaped dry snow particles can be treated
snow PSDs for this work. The SVI size distributions are re- as equal volume spheres to calculate radar scattering prop-
ported in discrete size bins of width 0.25 mm for sizes from erties with small error. Provided the radar reflectivity to be
0 to 26 mm at 1 min resolution, but observations of parti- simulated is taken to be in close proximity to the radar, atten-
cles smaller than 0.3 mm are discarded during the SVl imagejation by snow particles and gases under typical winter con-
processingilewman et al.2009. While incomplete match-  ditions is negligible Klatrosoy 1998. Given snow particles

ing interferes with accurate determination of a PSD from theof sizesD with masses: (D), the effective radar reflectivity
2DVD data, it does not interfere with the measurement offactor is then Battan 1973

fallspeeds, so the 2DVD observations are used primarily for
particle fallspeed data. Also, because of differences in sam- 36 ||Ki||?
pling characteristics from the SVI, the 2DVD observations £Z&=
are used to quantify some sources of uncertainty for the SVI.
The observations used in this work are from seven snow
events that occurred at CARE during C3VIRu@ng et al.  Where N(D) is the particle size distributionkw = (nf; —
2010. Due to CARE's location southeast of Georgian Bay, l)/(nﬁq +2), nijig is the complex refractive index of liquid
it is subject to lake effect snow events. Five of the eventsyater: k; = (2o — 1)/ (2o + 2), nice is the complex refrac-
occurred during intensive observing periods (IOPs), and argjve index of ice; and the densityice is that of solid ice,
known to be synoptic or lake effect snow storms. While de-( 917 gcm3. The particular choice ab, a characteristic di-
tails of the two ex-IOP events are limited, they are expectedmension of the particles, is not significant provided a con-
to also have been lake effect or synoptic. The averaged SViistent choice is used to define both the PSD and the mass—
size distributions for each event (Fij.show that the events  dimension relationship, and the integration limits assert that

represent a range of slopes, indicating the degree of broader finite range of particle sizes contribute to Ze.
ing, and particle number concentrations. Snowfall rate is

Dmax
N(D)[m(D)]%dD, 4
7202, || Kull? / (D] )

min

Dma)(
s— 1 / N(Dym(D)V(D)dD, ®)

Pliq
Dhin
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where V(D) are the particle fallspeeds. In Ed)(S is in SVI image or
depth units (e.g., mmt of liquid water) andpjq is liquid 2DVD primary image 2DVD orthogonal image
Dy, also sometimes referred to as particle diameter. Micro-

water density. As was true for radar reflectivity, the particular

choice ofD is not significant, provided a consistent choice is

used for defining size distribution, mass and fallspeed. O

physical parameterizations describing the variation of parti- | - ’ , ~—

cle mass and horizontally projected area with particle size are Dsviw \ /

typically expressed in terms dby (e.g., Mitchell, 1996. D2pvow is the largest of

Further, explicit physical models for particle fallspeed de- these two dimensions

pend on a particle dimension which is generally taken to beFig. 2.Particle dimensions as measured by SVI and 2DVD disdrom-

D (Mitchell and Heymsfield2009. For irregularly shaped eters:Dsy e diameter of a circle with area equal to that of the

objects like snow particles, however, the varic_)us dimensiopssw particle image:Dsy;w. distance between horizontal extrema
that can be extracted from the SVI and 2DVD Images are d|f-of the SVI partide imageDSVl’f, distance between the two fur-

ferent thanDy (Fig. 2), since the disdrometer views a projec- thest removed points on the SVI particle image (feret diameter); and
tion of the actual particleL@ffler-Mang and Blahak2007). Dypyp,w, maximum of the distance between horizontal extrema
Assuming the observed is Dy can lead to substantial er- obtained from the two 2DVD particle images.

rors in microphysical parameters determined using coinci-

dent radar observations (Appendix).

The expected differences betweBgy and the variou) little sensitivity to both vertical and horizontal aspect ratios.
were evaluated via simulations using idealized snow parti-For this work, the SVI size distributions were basedyy, f
cles. Rather than using elliptical silhouett@aftaglia et al.  and the 2DVD fallspeeds obpvp w. Taking a typical hor-
2010, the particles were modeled as scalene ellipsoids, andzontal aspect ratio of 0.6<prolev and Isaac2003 gives
their plane-projected shapes were evaluated. The ellipsoidésvi =~ 0.82 for Dsy ¢ with a range of about 0.65 to 1.0. For
were defined using three distinct dimensions: a long dimen-D2pvow, ¢2ovp ~ 0.93 with a range of about 0.88 to 1.0.
sion “a” lying nominally in the horizontal plane along the Calculations using canting angles with a standard deviation
x axis, a short dimensiorb” also lying nominally in the hor-  of 18> showed similar results, suggesting the variatiokpin
izontal plane normal tod” and along they axis, and a short  is due mainly to the variation in particle shape rather than
vertical dimensioné” lying along thez axis normaltothe—  canting angle, provided canting angles are not extreme.

y plane. The true maximum dimension of the particleds 2 ~ Taking theD in Egs. @) and §) to be Dy, the transfor-
Particle orientation was varied by applying uniformly dis- mation to use the size distributions, fallspeeds and particle
tributed rotations about theaxis and canting at two distinct  Sizes based o®sy, and D2pvpw proceeds by assuming
angles about the andy axes. The canting angles were dis- that¢syi andgzpvp apply to the entire particle range. Trans-
tributed over the range af21° and weighted per a normal forming the SVI size distributions is done by noting that
distribution with a standard deviation of ®ased on the es-

Equal-area

circle \ %

3.1 Particle dimension

For the mass and fallspeed terms in E@g.gnd 6), D is
often taken to be the maximum dimension of the particle,

timates ofMatrosov et al(2005 for pristine particles. N(Dm) = N(Dsvi) dDsvif (6)
These various measuresBf(Fig. 2) were estimated from " dDwm
the simulated particle images, obtained from the projection .
of the particle shape onto the< plane, averaged over all and, sinceDsyi = ¢sviDu,
orientations and compared withy, for a range of particle
aspect ratios defined by/a andc/a. The value ofa was d;vu = Pgv|. @)
M

fixed at 0.5, giving a true maximum dimension of 1.0, while
0.05<b <a and Q05 < ¢ < b. These ranges produce par-
ticles that vary from column-like to plate-like to spherical.
Values for¢, the ratio of D to Dy, range from 0.3 to 1.0 , Dmax )
(Fig. 3). Dsv ec is sensitive to both the vertical aspect ratio ze— 362 ”K‘HZ / N (Dsvig) dsvi [m(DSV"f)] dDswis. (8)

c/a and the horizontal aspect ratiga, while Dsy;w and 72 pice || Kl - Psvi Psvi

Dsy t are minimally sensitive to the vertical aspect ratio. Of

the latter,Dsy| ¢ Shows somewhat less sensitivity to the hor- where thegpsy terms in in the numerator and denominator
izontal aspect ratio than doéxsy w, While Dopyp w shows have been retained to show explicitly the transformation to

The reflectivity model Eq.4) becomes

Atmos. Meas. Tech., 6, 3635648 2013 www.atmos-meas-tech.net/6/3635/2013/
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Dy. The snowfall rate model Eq5) becomes

D
1
S=—
Plig

'min

-9

Dsv ¢ Dapvp,w \ dDsv
N (Dsvit) ¢svi m ( ) ( W)

odsvi $2DVD odsvi

Together, Egs.§) and Q) constitute the vector-valued for-
ward modelF.

3639

wherex is the observed state aedepresents the total error.
The forward model has been written to show explicitly the
dependence on other parametétsyhere the tilde indicates
that these parameters may be known imperfectly. The total
errore can be expanded aB¢dgers2000
IF .
e:ey+AF(x,b)+£(b—b), (14)
whereey is the contribution from measurement error, the
second term on the right is the contribution due to the model’s
approximate formulation of the actual physical relationship,
and the third term on the right is the contribution due to errors
in the forward model parameters. These errors may consist of
both systematic biases and random components. Once recog-

nized biases have been corrected, the residual uncertainties
are characterized by the covariance magix

Sc=S,+Sr+Sp
=S, +Sr +KpSK],

(15)

where the definitions of the terms on the right parallel those
for €. In the third term, which is the contribution due to un-
certainty in the model parametefs§, is the Jacobian of the
model with respect to the parameters &yds the covariance
matrix for the parameters. The prodd(:f,SbKZ is denoted

In practice, the predefined discrete SVI size bins based omsSg. Uncertainties in the modeled Ze asidre contained in

Dsy 1 are converted to discrete bins basedy as

(10)

wherei is the SVI bin index and the discrete SVI size distri-

bution values are transformed as

N(Dw i) = N(Dsvif,i))$svi. (11)

Sr andSg. Because Ze anfl may range over several orders
of magnitude, their values and uncertainties were character-
ized in terms of dBZe and la§} where log is the common
logarithm.

4.1 Uncertainties due to parameters, g

The parameters used by the models E§sad Q) include

The particle sizes for the 2DVD single-particle fallspeed ob-the binned, discrete values Dy i, N(Dsvi.i), andVu.i,

servations are transformed as

(12)

along withgsvi, ¢2pvp, the dielectric parametefis; |2 and
[|Kwl|l2, and the densitiegice and pjiq. Since the models use
solid ice and liquid water densities and dielectric parameters,

these are not expected to be significant sources of uncertainty

for the jth particle observed during the SVI measurementand are neglected. In particular, the valud|&fi||2 is deter-
interval, after which the fallspeeds can be binned onto themined largely by the real part ofice. Uncertainties imice
D ; grid for further processing to obtain expected valuesat X-band appear smaN\arren and Brand®2008 and ref-

Vm.i and variances? (VM,,-). The subscript M indicates val-

erences therein), and temperature sensitivities appear weak

ues evaluated as functions of particle maximum dimension(Matzler, 2006. Since¢opyp shows little uncertainty com-
Terms such as?() ands(, ) are used herein to represent vari- pared topsy, its uncertainty is neglected as well. While the

ances and covariances, respectively.

4 Sources of uncertainty for modeled reflectivity and
snowfall rate

The relationship between the observations simulated b)?

a forward modeF and the actual observatiopsan be writ-
ten as

y=F(x,b)+e, (13)

www.atmos-meas-tech.net/6/3635/2013/

particle mass—dimension relationshigg D) is likely a sig-
nificant source of uncertainty, this work focuses on other er-
ror sources. The objective here is to characterize the nec-
essary forward model uncertainties for use in a future re-
trieval which would estimate mass—dimensions relationships
nd their uncertainties. The remaining sources of uncertainty
In Sp are due to uncertainties in the disdrometer observations
and are evaluated here.

Sg is in the form of a 2<2 error covariance ma-
trix for reflectivity in dBZe and log. The covariances

Atmos. Meas. Tech., 6, 3&EES 2013



3640 N. B. Wood et al.: Characterization of disdrometer uncertainties

sp (dBZe logS) result from the shared dependence of Ze 4.2 Model formulation uncertainties, Sg
and S on N(Dsvit.i), Dsvif.i, and¢syi. Given these pa-
rameter dependencies, the corresponding parameter covafpince size distributions are reported typically on discrete size
ance matrixS, and Jacobialk ;, are shown in Eqs1@) and  intervals, the integrals in Eqs8)(and @) are evaluated dis-
(17), respectively, where the ellipses indicate extension ovefcretely. In addition, both the SVI and 2DVD have minimum
all the discrete values dbsvif.;, N(Dsvif.i), andVy.;. Er- detectable particle number concentrations. These minimum
rors ingsyi, Vum.; and the SVI observations are expected to detectable concentrations are determined by the sample vol-
be uncorrelated, and thus covariances are set to zero. Notgmes of the instruments, which are, in turn, determined by
however, that in the following analysis of SVI uncertain- the characteristics of the detectors and the sampling times.
ties, uncertainties itsy 1; do contribute to uncertainties in Since particle number concentrations tend to decrease with
N(Dsv+.;), but any resulting covariances are ignoredin increasing particle size, the minimum detectable concentra-
This approach will produce somewhat worst-case estimatefons lead to a truncation of the reported size distribution in
of the uncertainties i8g. comparison to the true size distribution. These two factors
of discretization and truncation lead to errors in the modeled
Ze andS which are classified as model formulation errors

s%(Dsvif.1) and are characterized I8¢, a 2x 2 error covariance matrix
for reflectivity in dBZe and log. Covariances between I6g
s2(N(Dswif,1) and dBZe arise due to both models’ dependence on these dis-
S = (16)  crete, truncated distributions.
s2(Vm.1) For particles larger than 17 mm, the 2DVD can detect
- smaller number concentrations than can the SVI, and the
s%(psv) maximum detectable size for the 2DVD is significantly larger
odBZe _ _odBZe . ... 0dBZe than that for the SVI (Fig4). The number concentration de-
Ky = ["ﬁ%‘g@l w g%sg"g’f*“ 910gs gi’é@’g} (17)  tection limits were calculated as one particle per unit sam-
ADsvif1  INMDswifD  dVmi1  ¢svi pling volume per unit size interval. Sampling volumes for the

2DVD depend on particle fallspeeds, which were calculated
S 4 . perMitchell and Heymsfield2005 using particle mass and
Uncertainties inDsyi; andN (Dsvir;) can be separated ., parameterizations frodtitchell (1996 for “aggregates

into analytic uncertainties and sampling uncertainties. Ana—Of side planes, columns and bullets”. These differences sug-

Iyt!c uncerta}lntles include unc_ertamtlgs thqt arise in the _an'al- est that, although the 2DVD size distributions may be dis-
ysis of SVI images to determine particle sizes, uncertamﬂes?

’ . S orted by the matching process, the 2DVD individual particle
in the counted number of particles, and uncertainties in the . . . .

. . : observations can be used to estimate the effects of discretiza-
calculated depth of field and field of vieiéwman et al. . . o .

. o . ._tion and size distribution truncation on Ze afSdmodeled

2009. In contrast, sampling uncertainties arise due to statis- : )
. : : ; from the SVI observations. Independent 5 min samples of the
tical fluctuations in the number of particles counted by the

instrument. Because of the relatively small samole volume 2DVD individual particle observations were first binned into

of these t ) es of instruments bothy sources ofpuncertaintsthe size intervals used by the SVI; then discrete size distribu-
. ypes, ! certaiNty; ons were calculated using E@)(Next, for size intervals at

are likely significant. To estimate the total uncertainties in, . ihe calculated size distribution fell below the SVI min-

N(Dsvif) and Dsy,; required forSp, analytic and sam- ;o detectable value, the calculated distribution was set to
pling uncertainties were modeled separately and the resultin : . . : s
ero, forming the simulated discrete, truncated size distribu-

;;az\?)gceisds(dBded- Details of the uncertainty models are 9Velions. A single case, then, consisted of the original 2DVD

single-particle data for the 5 min sample, a discrete size dis-

tribution, and a discrete-truncated size distribution (Big.

4.1.1 Uncertainties forVi,; and ¢sv After modeling reflectivities and snowfall rates for each sam-
ple using the single particle, discrete and discrete-truncated

Following Brandes et al(2008, once the 2DVD fallspeeds distributions, biases for the discrete and discrete-truncated

were binned to match the SVI bin definitions, the modal fall- results were calculated by averaging differences versus the

speed was determined for each binned sample and a filte§ingle-particle results over all samples. Biases in the discrete

was applied. Fallspeeds departing from the modal values bynd discrete-truncated results were corrected, and then error

more than 0.5ms! were discarded from the sample; then variances and covariances were calculated versus the single-

the sample mean and variance of the mean were calculate@article results.

For each bin, the standard error of the mean fallspeed was

used as the fallspeed uncertainty. Given the range of values

for ¢sv in the lower left panel of Fig3, the uncertainty in

¢sv) was estimated as 0.15.

Atmos. Meas. Tech., 6, 3635648 2013 www.atmos-meas-tech.net/6/3635/2013/
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Fig. 4. Comparison of minimum detectable concentrations for the ) ) .
SVI and the 2DVD, assuming 5min samples, 0.25 mm size binsFig- 5. Example of the processing of 2DVD size observations to

and spherical particles which must be fully within the sensing areaform discrete and discrete-truncated particle size distributions: top,
observed particle sizes over a 5min sample; middle, transformation

to a discrete PSD based on SVI size bins; and bottom, application
4.2.1 Radar reflectivity of SVI detection limits to mask those bins undetected by the SVI.

Given an assumed mass—dimension relationship based on

Dy, the reference radar reflectivity can be calculated directlyto 1.0 for this analysis. To avoid biasing the results to fa-

from a particular sample of 2DVD individual particle obser- vor frequently occurring samples with trace snow rates, the
vations by summing the backscatter cross sections per ungamples were filtered to exclude those containing fewer than

volume: 100 particles. Of the 1273 original samples, this filtering re-
D 2 moved 383, 94 % of which had snowfall rates of less than
36 K2 1 /NP (m (%)) a8) 0.01 mmtr? of liquid water when evaluated usiag= 0.003
= N - aiv. andg = 2.0. The statistical properties were largely indepen-
w202 IIKulP AT S5 AV P prop Jey Incep

dent of«a, as was expected (Tahlg. The table shows errors

Corresponding reflectivities can then be calculated from thedoth for discretization with truncation and for discretization
simulated SVI discrete and discrete-truncated size distribu©nly for comparison. Except as noted, this description fo-
tions using Eq. §) evaluated using the trapezoidal method. CUS€S on the errors due to discretization plus truncation. The
The differences between these two reflectivities and the referteflectivity bias became more negativefascreased, rang-
ence reflectivity represent the model errors due to discretizalnd from —0.85 to—1.32 dB, while the residual errors in-
tion and due to combined discretization and truncation of thecreased from 0.74 to 2.24 dB.
size distribution.

A common assumption (e.gMitchell, 1996 is that the
mass—dimension relationship follows a power law of the
form

4.2.2 Snowfall rate

The snowfall rate biases and covariances were evaluated fol-
lowing a similar procedure. The reference snowfall rates
m(Dy) = aD? (29) were calculated directly from the 2DVD individual particle

M.
. . _ . . ) observations as
Provided the mass—dimension relationship BH) (s appli-

cable over the entire size distribution, differences in dBZe J=Np m (Dzovo,w.,-)
will depend ong and not o, since dBZe differences rep- ¢ _— 1 ¢20vD (20)
resent ratios of Ze. Particle mass is usually capped to be no ~ Afpiiq =0 Aj

more than that of an ice sphere. This cap means that some

dependence o@ may occur but is likely to be weak because Snowfall rates were then calculated with the discrete and

the cap affects only very small particles. discrete-truncated size distributions using Bj.again eval-
2DVD observations from the seven C3VP snow eventsuated via trapezoidal integration withppyp = 1.0. These

were used to evaluate these errors for a range of values fatifferences between these rates and the reference rates should

a and 8. Values fora (cgs units) ranged from 0.001 to scale linearly withx, again except for small departures due

0.009 in 0.002 increments, while those fBrranged inde- to the cap on particle mass, and when evaluated in terms of

pendently from 1.4 to 2.4 in 0.2 incremengspyp was set  logS should have limited dependence @n

www.atmos-meas-tech.net/6/3635/2013/ Atmos. Meas. Tech., 6, 3&EE8 2013



3642 N. B. Wood et al.: Characterization of disdrometer uncertainties

Table 1. Biases, standard deviations of errors and error correlations due to size distribution truncation and discretization for radar reflec-
tivity and snowfall rate. Numbers outside parentheses are due to both discretization and truncation, while those inside parentheses are fo

discretization only.

Reflectivity, dBZe

Snowfall rate, lo§

Correlation

B Bias SD Bias SD  coefficient
14 -0.85(0.72) 0.74(0.46) 0.016 (0.018) 0.062 (0.060) 0.49 (0.47)
1.6 -0.90(0.71) 0.94(0.46) 0.013(0.016) 0.062 (0.060) 0.46 (0.39)
1.8 —-0.98(0.73) 1.22(0.50) 0.007 (0.010) 0.067 (0.064) 0.48 (0.35)
20 -1.08(0.74) 1.53(0.53) —0.001 (0.003) 0.073(0.070) 0.51(0.32)
22 -119(0.76) 1.87(0.56) —0.009 (-0.004) 0.081(0.077) 0.54(0.29)
24 -1.32(0.77) 2.24(0.59) —0.017 ¢0.011) 0.090 (0.085) 0.56 (0.26)

Bias decreased from 0.016 t60.017 with increasings,

while the residual errors ranged from 0.062 to 0.090 (Ta-

ble1). Correlations between the reflectivity and snowfall rate

larger for the HE10 mass—dimension relationship than for the
BF95 relationship, owing mainly to the larger discretization
and truncation errors associated with the largeralue for

errors are 0.49 to 0.56. The snowfall rate errors proved toHE10. For these results, biases and residual errors were cal-

be exceptionally sensitive to hoWy ; was evaluated. Us-
ing a simple mean from a 2DVD sample centeredlow ;

culated for all SVI samples combined. Refinements, such as
evaluating bias and residual errors as functions of the mod-

and taken over a 0.25 mm size interval resulted in significantled reflectivities or snowfall rates, can help reduce resid-

positive biases (not shown), likely due to the effects of ex-

ual errors. Evaluatinr for HE10 microphysics by binning

treme positive outliers which become increasingly commonmodeled reflectivities and snowfall rates into bins of 2 dBZe
at smaller particle sizes. To ameliorate these effects, the filteand 0.1 in logS, then evaluating bias bin by bin, reduced

of Brandes et al(2008 described earlier was applied.

5 Results

The model described above was used to evaluate the contr
butions of each of the error sources to the total uncertaintie%
in modeled reflectivity and snowfall rate. The model was ap-
plied to 1053 independent 5 min SVI samples from the C3VP
snow events. Samples were required to contain at least 10

particles. Additionally, since the uncertainty model requires

an estimate of the size distribution slope, each sample wa
required to have at least three non-zero size distribution bins
The modeled uncertainties are sensitive to the parameters ol
the mass—dimension relationship, and two such relationship§

were applied: the first frorileymsfield et al(201Q HE10)
with & = 7.00x 10~3 and 8 = 2.2, and the second the fre-
guently usedBrown and Francig1995 BF95) relationship
with @ =2.94x 1073 and 8 = 1.9. Starting from the dis-
cretization and truncation errors given By (case A in Ta-
ble 2), additional sources of uncertainty were introduced in-
crementally. Case B adds disdrometer analytic and samplin
uncertainties, case C adds uncertaintieg fior an SVI-like
instrument, case D adds uncertaintiegifor an instrument
using an equal-areR, and case E adds 2DVD fallspeed un-
certainties to case C. For all cas¢sy 0.82.

residual errors for reflectivity from 1.87 to 1.04 dB and for
snowfall rate from 0.081 to 0.053 in I&g

When fully accounted, these forward model uncertainties
are substantial compared to reasonable estimates of measure-
ment uncertainties. Although these uncertainty estimates do
Fot require assumptions about the shape of their distribu-
ons, comparisons can be illustrated by assuming a partic-
ular shape. Figuré shows sampled probability density func-
jons (PDFs) and uncertainty ellipses calculated for bivariate
ormal distributions using the uncertainties in Takl€on-
sidering discretization and truncation errors (Fég) com-
Bined with uncertainties in the representation of particle di-
r?ension by the disdrometer (Figb) gives an uncertainty
llipse similar in size to that for estimated observational er-
ors (Fig.6c). The observational errors for reflectivity have
been represented with standard deviations of 1.5dB, simi-
lar to uncertainties for a well-calibrated operational C-band
radar [Thurai et al, 2008. Those for snowfall rate have been
estimated at 0.3 in log, which gives a factor of 2 uncer-
tainty in S. Uncertainties for snowfall measurements on short
timescales by automated all-weather gauges (e.g., appropri-

%tely fenced OTT Pluvio or Geonor T-200 instruments) are

not well characterized, so this value is taken as an approxi-
mate upper limit. Although errors in measurements of reflec-
tivity and snowfall rate are independent, the shared depen-
dence of the forward-modeled values on the observed size

The dominant sources of uncertainty for both dBZe anddistributions introduces correlations in the errors in modeled

log S were discretization and truncation, apdThe disdrom-

eter analytic and sampling uncertainties contributed WeaklyjOr axes of the ellipses in panels a and b. Summing the covari-

to the total uncertainties, as did the uncertainties in the bin

mean fallspeeds observed by the 2DVD. Uncertainties were

Atmos. Meas. Tech., 6, 3635648 2013

reflectivities and snowfall rates, illustrated by the sloped ma-

ance matrices for measurement and model errors pedBy. (
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Table 2. Contributions to uncertainties in forward-modeled dBZe andSloaveraged over 1053 5min samples. ValueSpffor g = 1.9
(BF95) were interpolated from Table

HE10 BF95
Case Description s(dBZe s(logS) s(dBZelogs) s(dBZe) s(logS) s(dBZelogs)
A Sr only 1.87 0.081 0.082 1.38 0.070 0.048
B A+s(D;),s (N (D;)) 2.01 0.089 0.094 1.50 0.077 0.057
C B+ (s (¢) =0.15 4.02 0.196 0.70 3.36 0.187 0.57
D B+ (s (¢) =0.25 6.14 0.34 2.00 5.23 0.29 1.48
E C+s (VMJ) 4.02 0.22 0.78 3.36 0.197 0.57
1 ' 1 o b particle masses, fallspeeds and scattering properties, as well
2:2 12 g: i 2:5 as from the uncertainties in the observed PSDs.SZ®la-
04 1 04 H o tionships were developed for reflectivities, snowfall rates and
o %2 08 w 2 ; . their uncertainties modeled from the 1053 data points using
£ @ PR / H o2 case E with the HE10 and BF95 mass—dimension relation-
04 04 04 1o ships. Fits were then performed for modifications to case E
:2:: 02 IEZZ I Z:;s in which ¢ was varied to simulate the use of several different
P e — unadjusted disdrometer measurements of particle size: E1,
aB dB a disdrometer using equal-arégg, E2, a disdrometer us-
1 m 1 P 0.14 ing Dsy ¢; and E3, a disdrometer usin@pvp,w. Fits were
ot 03s o 012 performed on the dBZe and Isgvalues using the bivariate
04 os 04 H o least-squares estimation methodvofk et al.(2004), which
2 °§ . Z:S 2 02 H 0.8 treats uncertainties in both variables as well as error covari-
2 2 ; s 02 H 0.6 ances between the variables, using a function of the form
0.4 0.4 L 0.04
as n os i log$ = a + b(dBZe). (21)
hs s o o Hees 0T w0t The parameters of the fitted relationships show only small

sensitivity to differences in the actual observed particle size,
represented by changesdgn(Table 3, cases E, E1, E2, and
(c) estimated observational uncertainties, 4dyicase E with es-  £3) pyt more substantial sensitivity to differences in the
t!mated observational uncertalntles_. _Orange'contours show the e$nass—dimension relationship (case E, HE10 versus BF95).
timated bounds for 1 standard deviation, while the grayscale |IIus-At 15dBZe, the differences ig lead to differences ir
rates sampled PDFs. of about+1.5%, while at 30 dBZe the differences $hare
about+5 %. In comparison, changes in the assumed mass—
) ] ) ) dimension relationship lead to differencesSirof 13 % at
leads to an uncertainty ellipse that is substantially larger than 5 4 7e and-20 % at 30 dBZe. The exponerfisound here

that for either the measurement or model uncertainties alonge¢ onsistent with values from a number of prior studies, as
and which maintains significant error correlations (Fd). summarized byFujiyoshi et al.(1990, and with the results
This enlargement of the uncertainty ellipse results from the Huang et al(2010, who analyzed 2DVD and collocated
comparatively large uncertainties in observed versus modr_pand radar observations for these same snow events and
gled snowfall rates and in modeled versus observed reflectivig ;nd values ranging from 1.1 to 1.9. For the coefficients
iies. A, Huang et alfound values in the range of 100 to 300,
somewhat smaller than those obtained here, while the stud-
ies summarized bifujiyoshi et algave larger values ranging

_ predominantly between 200 and 306{uang et alnote that
Snowfall rate may be estimated from observed radar reflecin some cases the large coefficients in these earlier studies
tivities using so-called Zes-relationships, typically reported may be due to the use of the reflectivity factor, rather than
in the form Ze= AS”. Such relationships can be developed {he equivalent reflectivity factor, to develop t-S rela-

using reflectivities and snowfall rates modeled from observeohonships from particle size distributions, which would cause
snow PSDs, although parameterized forms of the PSDs havgp oyt a factor of 4 increase i (Smith, 1984).

been used (e.gMatrosov et al.2009. These relationships
have uncertainties arising from the assumptions about the

Fig. 6. Uncertainty models fofa) case A alone(b) case E alone,

5.1 Ze-S relationships

www.atmos-meas-tech.net/6/3635/2013/ Atmos. Meas. Tech., 6, 3&EES 2013
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Table 3. Fit results for ZesS relationships, showing the parameterandb from Eq. 1). Also shown are parametessand B used in the
more typical form Ze= ASB. Uncertainties (square roots of estimated variances) are given in parentheses.

Ze=ASB
Case m(D) D é a b s(a, b) A B 2
E HE10 Dy 0.82 (0.15) —1.557 (0.006) 0.0615(8310™%4) —1.39x10"%® 339. 1.63 2.67
E BF95 Dy 0.82(0.15) —1.499 (0.005) 0.0655(810°%) —1.13x106 194. 153 2.82
El  HE10 Dec 1.17 (0.15) —1.488(0.004) 0.0577 (8104  —7.1x10°/ 378. 173 2.46

E2  HEL0 Dsyif 1.00 (0.15) —1.508(0.005) 0.0591 (8104 —95x10°7 358. 1.69 255
E3  HE10 Dypypw 0.88(0.15) —1.540(0.006) 0.0606 (8104 —1.22x10% 347. 1.65 264

6 Conclusions example, longer sampling will decrease the temporal reso-
lution of the dataset, while faster sampling would likely im-
TVOi . N . . . . pact camera hardware, data storage and processing require-
ypical retrieval and estimation techniques involve mini- ments. and potentially increase errors caused when parti-
mizing differences between observed and modeled quarméles ar,e counﬂed re eZuedI in successive frames. With ?aster
ties. For these sorts of problems, quantifying the uncertaintysam lina it becomgs morglikel that successive. frames no
characteristics of the model-measurement differences is es- ping, . y
: ) . : N onger observe independent samples of the PSD.

sential. As an example, in Bayesian optimal estimation the o .

; i . Uncertainties inp contribute at least half of the total un-
model-measurement difference uncertainties, along with the

a priori estimate of the PDF of the retrieved state, determinecerta'm'es in modeled reflectivities and snowfall rates. The

the posterior distribution of the retrieved state. In general,Value of¢ varies with particle shape and the particular di-

L . mensional measurement used by the disdrometer @Fig.
larger uncertainties in the model-measurement d|fference§ ) . y & 9.
. ) e . he use of dimensional measurements such as feret diam-
will contribute to larger uncertainties in the posterior, re-

. . eter that reduce the sensitivity ¢fto particle shape is desir-

trieved state. Retrieval performance can be gauged based o e . S .
. . : able to reduce these uncertainties. Additional coincident dis-
comparisons of the width of the posterior PDF compared to

that of the a priori PDF (e.g., Shannon Information Content;drormater observations may aiso help constyaior reduce

its uncertainties. As an example, although the dual viewing
Rodgers 2000, and so accurate assessments of the model eometries of the 2DVD raise particle matching issues, the

measurement difference uncertainties contribute to accurat . . Nt . )
2DvD,w particle size metric giveg values with relatively

ments of retrieval performance. . .
assessments of retrieval performance weak sensitivity to particle shape. The SVI is adaptable to

In this particular application, forward model uncertainties other viewing geometries (e.g., viewing from a more near!
are substantial compared to estimated measurement uncer- 99 9. g y

tainties, so omitting the contribution of forward model uncer- Vt:g?ﬁé:;]zntat:gcersgﬁaItfr:) e:r::::sr;f;:t.ally), and such ge-
tainties to the model-measurement difference uncertaintieS"™ yp . _ldlig . . :
. . L . Finally, while changes in the mass—dimension relationship
would likely underestimate uncertainties in the retrieved Stat% . .
. . . ) ave a pronounced effect on modeled Xeelationships,
and of the retrieval information content. Ignoring the forward chanaes i affect both reflectivity and snowfall rate some-
model uncertainties may in some cases cause retrieval fail- ges i y

ure, since the model-measurement difference uncertaintievsvhat proportionately so that Z&—elationships are mini-

impact the value of the cost function being minimized. mally affected. As shqwn n Tab@ ghanges I Of. 0'82.t0
-~ . 1.17 cause changes in the coefficient of Zeelationships
For modeled reflectivities and snowfall rates, the dominant .
: . o . f only 339 to 378, and changes in the exponent of only 1.63
sources of uncertainty are discretization and truncation, an . . :
S L . 0 1.73. Thus disdrometers employing different measures of
the uncertainty inp. Uncertainties in the discrete values of

D; andN (D;) provided by the disdrometer and uncertainties gartgclels;;e mr:ght be expected to produce similar modeled
in the size bin mean fallspeeds contributed minimally to the - refationsnips.

total uncertainties. Considering discretization and truncation,

truncation contributes more strongly to the total uncertain-aAppendix A

ties. Truncation uncertainties can be reduced by increasing

the sample volume, which increases the size at which trunpjsdrometer dimensional errors

cation occurs. For an instrument like the SVI, this can be

achieved by increasing the number of image frames in a sinHow significant are the errors introduced by treating a dis-
gle sample, by increasing the field of view, or by increas-drometer observation ab as the maximum dimension? An
ing the depth of field. The number of image frames can beexponential size distribution based on the true maximum
increased by either sampling longer or sampling faster, andlimensionDy, is

there are likely several trade-offs with either approach. For

Atmos. Meas. Tech., 6, 3635648 2013 www.atmos-meas-tech.net/6/3635/2013/
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where X0y and Yoy are the maximum width and height of

the frame,f is an empirical factor relating particle size to
N (Dwm) = No,m €Xp(—im Dw). (A1) depth of field, andD; . is the particle sizeNewman et al.
Here and in the following, the subscript M indicates quan- 2009. The expression EqB() embodies an “all-in” require-

tities determined from measurements of particle maximum'€Nt: i which the particle must be contained totally within

dimension. Transforming this distribution to use an observeafjh;icg(ljd tzfeVIri\lNat(i);rtlks]?\ilpm;g;é;) Ssir?gliﬂf?gx;n;griz?é‘r
dimensionDgps= ¢ Dy as the independent variable gives o ) . . ’
obs= ¢ D P 9 and this is consistent with the observBdused in these SVI

DM Nom AM data (note that the SVI,f subscript fbrhas been dropped for

N(Dobs) = N(DM)aDobs Ty eXp<__D°b5> - (A2) clarity). Combining Egs.d), (B1) and B2) then simplifying

) the indexing, the size distribution can be written as
where it has been assumed tlgats constant over the en-
tire distribution. The transformation fromy, to Dopsresults 1 =NPiot 1
i istributi i i -N(D;) = . (B3
in a distribution with steeper slope and larger mtercept. AI ( NAD; 2= (Xtoy— Dij)Yiow— D) f Dy (B3)
though the zeroth moments are the same for both distribu- J

tions, highe_r—ordgr moments are di_fferent and quantities sqcerl_ ot IS the total number of particles observed in ttrebin
as reflectivity which depend on higher-order moments will 5.c,mulated over all image frames. The number of fraNjes
be affected. Reflectivities can be calculated for both casesyq the frame dimensiong;e, and Yo, can be determined

one in which the disdrometer truly observBg and a sec-
ond in whichDgpsis erroneously taken to by . Applying
the mass power law Eql9) with the distribution Eq.42)
and calculating reflectivity per Eq4) gives

360? |IKill> Nom T'(28+1)

Z€ohs= , A3
" 1202 IKwl? 6 (/)P A3
while that for distribution Eq.A1) is
3602 |Ki||? I (28+1)
= Y , (A4)
72p%e 1Kwll? P

whererl is the gamma function. The ratio of the reflectivities
is

2
Zeos  Nowm/® g _
Zem  Nom (am/¢)?P*t

Taking a typical horizontal aspect ratio of 0#ofolev and
Isaa¢ 2003 gives ¢ ~ 0.82 for Dops= Dsyi . A common
estimate forB is 1.9 Brown and Francisl995, resulting in

a reflectivity ratio of 0.47. Thus Ze modeled usiNg Dops)

will be underestimated by 3.2dB. In order for a modeled
value of Zgps to match an observed Ze, the coefficient
would have to be overestimated by almost 50 %.

. (A5)

Appendix B

Disdrometer uncertainty models
B1 Analytic uncertainties for Dsy,; and N (Dsviy,i)

The SVI size distribution is determined as shown in E). (
Both A;;, andL;;, depend on particle size:

Aijk = Xtov — Djjk) Yiov — Dijk), (B1)
Lijx = f Dijk, (B2)

www.atmos-meas-tech.net/6/3635/2013/

accurately, and\ D; is a specified constant size bin width,
leaving Np (o1, f, @ndD;; as sources of error.

Errors in the measured particle sig are caused by blur-
ring and lack of contrast in the imagdéwman et a].2009.
These errors affect the estimates of the field of viéwy
and depth of fieldZ;;x, which then propagate as errors in
the calculated size distribution via EBJ). Particle sizing
errors also cause particles to be misclassified into size inter-
vals. Since undercounting in one interval will be accompa-
nied by overcounting in nearby intervals, the effects on in-
tegrated quantities like reflectivity and snowfall rate calcula-
tions in the forward model are expected to be minor and are
neglected.

Errors in the count of particles Np; can be caused by
reappearance of particles and by obscuration. In environ-
ments with very low wind speeds, a slowly falling particle
may appear in multiple frames, causing it to be counted mul-
tiple times. Winds at 2mg.l. were generally in excess of
1.5ms! during the seven snow events, and such repeated
counting is not expected to be a concern. Under conditions
of high particle concentrations, a particle in the background
of the sample volume may be obscured by a particle in the
foreground. It is not known to what extent obscuration af-
fects the SVI observations. For small particles, for which
concentrations may be high, the depth of field per Bg) (
is shallow, making obscuration unlikely. For large particles,
depth of field is larger but concentrations are typically low,
also making obscuration unlikely. Based on these arguments,
errors in Np ¢ due to reappearance and obscuration were
neglected.

To estimate the analytic uncertainty, we assume thatJNp
is measured with negligible uncertainty (e.g., overlapping or
doubly counted particles are uncommon). The measurements
D;; have uncertainties with variance%(Dij) that are ex-
pected to be independent and identically distributed. The pa-
rameter f has uncertainty independent of the uncertainties
in D;; with variances?(f). RepresentingV(D;) as N; to

Atmos. Meas. Tech., 6, 3&EES 2013
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simplify notation, Eq. B3) can be rewritten as disdrometer sample volume at a particular instant is typically
) taken to be a random deviatdogs and Waldvogell969
1 P and contributes to sampling uncertainty in the calculated size
"= N{AD; 'k (B4 gistribution values. For rainfall, the number of particles ob-

served in a given size bin by a volume sampling device like
where the SVI is often taken to be a Poisson-distributed random
variable (Joss and Waldvogell969 Gertzman and Atlas
i= 1 (B5) 1977 Uijlenhoet et al. 200§. The same approach is taken
(Xtov = Dj)(Yov — Dj) f - D; here for snowfall, considering it to behave as a homogeneous
Poisson process during the sampling time interval. The num-
ber of particles Npy,; appearing in the SVI sampling volume
then follows a Poisson distribution.
The observed particles sizd3;; also vary and are dis-
) 3x; 2 ) dx; 2 ) tributed according to a probability density function defined
s9(xj) = (ﬁ) s“(Dj) + <¥> s<(f). (B6) by the size distributionijlenhoet et al. 2006. The ob-
! servedD;; form a sequence of random variables taken to be

and where the subscript for terms inside the sum has been
omitted for clarity. The variances (x ;) can be estimated by
error propagation as

The variance2(N;) can be found as independent and identically distributed. As a resultthef
) Eqg. B5) are also independent and identically distributed. Re-
s°(N;) = ferring to Eq. B3), since both the particle size®; and the

aN\2 NN 5 an; \° ) (B7) number of particles Np,; are realizations of random vari-
(aTl) s (x1)+<ax2> 02 e Frev (¥Npy o) | - ables, the form oV (D;) is seen to be that of a random sum

of random variablesHeldman and Valdez-Florg2010, also

Since% = NfiD[_ , knowq as a randomly stopped sum.
Letting
2
s2(N;) = [ :| [sz(xl) +5%(x2) + - +sz(pr. )]. (B8) J=Np; tot
AD,‘ i,tot ’
Nf yi = Z Xj (B].O)

Provided the partial derivative% do not vary significantly =t
over the size range within a bin, the values%(ij) will also

not vary significantly and can be approximated with a single
values?(x), giving

the variance of; can be shown to be

V[i]=V[x;] E[Np; o] +[E [xj]]z VINp o], (B11)

5 (Feldman and Valdez-Flore2010 by applying the law of
} Np-sz(x). (B9) total variance, wher&|[] indicates variance anél[] indicates
' expectation. Since Np,, is Poisson-distributed, the best es-

. . . timate of the expectation and variance is the observed count,
Since single-particle measurements were not part of the

. ax _ 50 that
processed SVI data, the derivativ JJ and the variances )
s2(D;) were estimated at the expected valuesobn the " [:] = Npj 0tV [x;] 4 NPy or[E [x5]]°- (B12)

size bin interval betweed; and D;1. For spherical par-  Thys it is necessary to estimate the expectation and variance
ticles, the uncertainty in particle size has been estimated or ;. These can be estimated via Taylor series expansion of
18% (Newman et a.2009, and that estimate was used for ,(p)._ Since uncertainty irf does not contribute to sampling

this work even though nonspherical snow particles are obyncertainty, the expectation can be estimated as
served. Note thaD;; in this context is the dimension ob-

served by the disdrometer, not an estimate of the particIeE[x(D)] ~ x(iup) +
maximum dimensionNewman et al(2009 estimated the 2
uncertainty in depth of field at 15% when particle size is
known accurately, suggesting thgthas an uncertainty of
15 %, which was the value used for this work.

2
N;) ~
s°(N;) |:NfAD[

i
¥ (ko) )sf,, (B13)

whereup ands% are the expectation and variancel®f re-
spectively, and the primes indicate derivatives with respect to
D. The variance can be estimated as

B2 Sampling uncertainties for Dy, ,; and N (Dsvi,i) Vx(D)] ~ (x’(,uD))zs%. (B14)

Sampling errors affect both the number of particles counted

in the discrete size intervals and the distribution of particle As noted byUijlenhoet et al(2006, the particle size dis-
sizes observed in a particular interval. The number of parti-tribution can be written as the product of the total num-
cles Np (o in @ particular size bin observed arriving in the ber concentration)io:, and the probability density function
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x(D) can be found using EqsB{3) and B814). Next, the

1000; | variance ofy; can be found via EqR12). Finally, since
E Ny = — = (B21)
s | T Nap;"
g 100? E the variance ofV; is
N e : 2
< VIN] = Vi B22
10k SR 1 [Nl I:NfADi] ] (B22)
i . e ]
: s ] B3 Size distribution uncertainty model evaluation
| 2 ]
™ T T T As a simple check on the validity of the size distribution

uncertainty model, distinct samples of the SVI observations
were formed by repeatedly collecting five consecutive 1 min
Fig. B1. Comparison of uncertainties estimated from observationsSVI size distributions from the observations for one C3VP
(square root of variance computed from samples of 5 1 min particlesnow event. Variances were computed bin by bin for each
size distributions) and those calculated from the uncertainty modelsample. The statistical uncertainty model described above
was then applied to the 5min average size distribution ob-
tained from each sample, and then the modeled analytic and
of particle sizesp(D). Taking the particle sizes to be dis- sampling variances for each bin were summed. Both the

Modeled uncertainty, m® mm”

tributed exponentially gives empirical and modeled uncertainties spanned approximately
. B15 three orders of magnitude (Figl1). At small uncertainties,
N(D) = Nioth €Xp(=A D), (B15) the modeled and empirical uncertainties were in good agree-

ment. At large uncertainties, the modeled uncertainties for

the 5min size distributions were somewhat smaller than the
(B16)  empirical uncertainties for the 1 min size distributions. Given

that the empirical uncertainties apply to 1 min SVI observa-
What is needed are estimates of the expectation and variand®ns, while the modeled uncertainties apply to 5min aver-
of D on subintervals op(D). For a subinterval bounded by ages of the SVI observations, the differences appear reason-

from which it can be seen that

p(D) = rexp(—AD).

D; and D, 1, expectation and variance are defined by able.
Jin ™ p(D)DAD | |
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