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Abstract. Source apportionment using the bilinear model
through a multilinear engine (ME-2) was successfully ap-
plied to non-refractory organic aerosol (OA) mass spectra
collected during the winter of 2011 and 2012 in Zurich,
Switzerland using the aerosol chemical speciation monitor
(ACSM). Five factors were identified: low-volatility oxy-
genated OA (LV-OOA), semivolatile oxygenated OA (SV-
OOA), hydrocarbon-like OA (HOA), cooking OA (COA)
and biomass burning OA (BBOA). A graphical user interface
SoFi (Source Finder) was developed at PSI in order to facil-
itate the testing of different rotational techniques available
within the ME-2 engine by providing a priori factor profiles
for some or all of the expected factors. ME-2 was used to
test the positive matrix factorization (PMF) model, the fully
constrained chemical mass balance (CMB) model, and par-
tially constrained models utilizinga values and pulling equa-
tions. Within the set of model solutions determined to be en-
vironmentally reasonable, BBOA and SV-OOA factor mass
spectra and time series showed the greatest variability. This
variability represents the uncertainty in the model solution
and indicates that analysis of model rotations provides a use-
ful approach for assessing the uncertainty of bilinear source
apportionment models.

1 Introduction

Atmospheric aerosols are of scientific and political inter-
est due to their highly uncertain direct and indirect effects
on the solar radiation balance of the Earth’s atmosphere
(IPCC, 2007). Moreover, aerosols have a strong negative ef-
fect on human health (Peng et al., 2005), visibility (Watson,

2002), ecosystems, and agricultural areas via acidification
and eutrophication (Matson et al., 2002). Therefore, reliable
source identification and quantification is essential for the de-
velopment of effective political abatement strategies. Based
on their formation processes, atmospheric aerosols can be
roughly separated into primary and secondary aerosols, i.e.
those directly emitted and those formed from gas-phase reac-
tions of emitted precursor gases, respectively. However, the
details of aerosol formation processes are still poorly under-
stood; in particular the submicron organic fraction of partic-
ulate matter (PM1) (Hallquist et al., 2009), which comprises
20–90 % of the total submicron aerosol mass depending on
the measurement location (Jimenez et al., 2009), is poorly
characterized.

The Aerodyne aerosol mass spectrometer (AMS) provides
online quantitative mass spectra of the non-refractory (in-
organic and organic) components of the submicron aerosol
fraction with high time resolution, i.e., seconds to minutes
(Canagaratna et al., 2007). Through knowledge of the typi-
cal mass spectral fragmentation patterns, these spectra can be
assigned to several inorganic components and to the organic
fraction (Allan et al., 2004). However, interpretation of the
organic fraction is challenging due to the enormous number
of possible compounds. Over the past years, numerous am-
bient studies have successfully exploited the positive matrix
factorization (PMF) algorithm, apportioning the measured
organic mass spectra in terms of source/process-related com-
ponents (see Zhang et al., 2011 for a review). The statistical
tool PMF (Paatero and Tapper, 1994; Paatero, 1997) within
the bilinear algorithm represents the time series of measured
organic mass spectra as a linear combination of static factor
profiles (i.e. mass spectra) and their respective time series.
However, if all measured variables (i.e., the mass to charge
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ratios(m/z)) for the mass spectrometer exhibit temporal co-
variation, e.g., due to meteorological events such as rainfall
or boundary layer evolution, or if the model solution has high
rotational ambiguity, then the apportionment with PMF can
yield non-meaningful or mixed factors. Under such condi-
tions, the bilinear model can be directed towards an optimal
solution by utilizing a priori information in the form of the
factor profiles and/or time series. If all factor profiles are
predetermined, the approach is a so called chemical mass
balance (CMB). At the other extreme, the factor profiles in
PMF are calculated entirely by the algorithm. The multilin-
ear engine algorithm (ME-2) is capable of solving both these
extremes and all intermediate cases in accordance with the
constraints provided by the user (Paatero, 1999; Paatero and
Hopke, 2009). Several PM source apportionment studies in
which PMF did not properly represent the measured data
have utilized ME-2 to find acceptable solutions (e.g., Lanz
et al., 2008; Amato and Hopke, 2012; Reche et al., 2012).
However, such studies are scarce, possibly due to the need
for manual configuration and analysis of the results of the
powerful ME-2 package. Therefore, in order to facilitate the
choice of the initial conditions for the ME-2 engine and the
analysis of the results, we have written the graphical user
interface SoFi (Source Finder) within the software package
IGOR Pro (Wavemetrics, Inc., Portland, OR, USA). SoFi will
be freely distributed to all interested ME-2/PMF users.

In this study, the ME-2 engine was successfully applied
to organic mass spectra obtained with the recently devel-
oped aerosol chemical speciation monitor (ACSM) (Ng et
al., 2011b), an instrument based on AMS technology and op-
timized for long-term sampling. The ACSM was deployed in
downtown Zurich, Switzerland, from January 2011 to Febru-
ary 2012.

2 Materials and methods

2.1 Measurements

From January 2011 to February 2012, an ACSM (Aero-
dyne Research, Inc., Billerica, MA, USA) was deployed at
Kaserne, Zurich (Switzerland), an urban background station
in the center of a metropolitan area with about one million in-
habitants. The ACSM is a compact, low-maintenance aerosol
mass spectrometer designed for long-term measurements of
non-refractory particulate matter with vacuum aerodynamic
diameters smaller than 1 µm (NR-PM1). The instrument is
described in detail by Ng et al. (2011b), and the reader is re-
ferred to Jayne et al. (2000), Jimenez et al. (2003), Allan et
al. (2003a,b, 2004) and Canagaratna et al. (2007) for a de-
tailed description of the AMS technique.

At the Kaserne station in Zurich, ambient aerosol briefly
entered the temperature-controlled room and was subse-
quently drawn to a cyclone (model SCC 1.829 cyclon from
BGI, INC.) with a size cut-off of 2.5 µm, using a flow of

5 L min−1 for removing coarse mode particles. The resulting
aerosol flow passed through a Nafion drier (MD-110-48S-4,
PermaPure LLC, Toms River, NJ, USA) and a subsequent
∼ 2 m long stainless steel sampling tube (6 mm OD) before
reaching the ACSM inlet. In the ACSM, the dried aerosol
particles are sampled continuously (with an averaging time
of 30 min) through a 100 µm aperture (∼ 90 cm3 min−1), and
are then passed through an aerodynamic lens (∼ 2 torr) where
they are focused into a narrow beam. The particle beam im-
pacts a surface that is resistively heated at∼ 600◦C. Here the
non-refractory fraction is flash vaporized. The resulting gas
is ionized by hard electron impact (70 eV) and analyzed with
a quadrupole mass spectrometer. The final aerosol signal is
retrieved by subtracting the background signal from filtered
air under the same sampling conditions.

To obtain quantitative mass concentrations for the ACSM,
a collection efficiency parameter (CE) needs to be applied to
account for the incomplete detection of the aerosol species
(Middlebrook et al., 2012). The CE is a function of the
lens system of the shape and bouncing of the aerosol par-
ticles on the vaporizer. Specially the bouncing effect of the
aerosol particles was found to be influenced by several pa-
rameters, such as the mass fraction of ammonium nitrate,
particle acidity, and water content (Matthew et al., 2008).
Water content does not affect the present study because the
particles are dried. The effects of the nitrate mass fraction
and particle acidity on CE have recently been parameter-
ized for ambient data (Middlebrook et al., 2012). However,
for the present study, this parameterization underestimates
the CE, as demonstrated by higher CE-corrected mass con-
centrations for the ACSM compared to simultaneous PM10
measurements by a tapered element oscillating microbalance
(TEOM, FDMS 8500, Thermo Scientific). The CE will be
investigated in detail in a future publication; here we assume
CE= 1, which provides a lower limit for ACSM-measured
mass concentrations. Note that since the CE is applied to all
measured species, changes in the CE do not affect the rela-
tive intensity ofm/z within a mass spectrum and hence also
do not affect the ME-2 results reported in this manuscript.

The meteorological parameters and trace gases were mea-
sured with conventional instruments by the Swiss National
Air Pollution Monitoring Network, NABEL (Empa, 2011).
The time resolution of all these measurements was ten min-
utes. NOx was measured by chemiluminescence. The tech-
nique involves a molybdenum converter that suffers from
artifacts due to partial conversion of NOx oxidation prod-
ucts (Steinbacher et al., 2007). These artifacts, however,
are only expected to be important at low concentrations,
for example during summer. Carbon monoxide was mon-
itored by non-dispersive Fourier transform infrared spec-
troscopy (APNA 360, Horiba, Kyoto, Japan), UV absorption
spectroscopy was employed to determine the temporal vari-
ation of ozone (Thermo Environmental Instruments (TEI)
49C, Thermo Electron Corp., Waltham, MA) and black car-
bon was estimated utilizing an aethalometer, AE 31 (Magee
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Scientific Inc.), based on measured light absorption coeffi-
cients at different wavelengths. In addition, the measured ab-
sorption coefficients at wavelengths 470 and 880 nm were
used in order to retrieve the related black carbon contribu-
tions from the traffic (BCtraffic) and wood burning (BCwb)
source (Sandradewi et al., 2008; Herich et al., 2011).

2.2 The multilinear engine (ME-2)

The organic mass spectra measured by the ACSM can be rep-
resented as a matrixX where the columnsj are them/z’s and
each rowi represents a single mass spectrum. A frequently
used method is to group the variables into distinct factors
based on certain criteria. The simplest and most commonly
used approach is to group the variables into two constant ma-
trices, the so-called bilinear model, e.g., principal component
analysis (PCA) (Wold et al., 1987) or positive matrix factor-
ization (PMF) (Paatero and Tapper, 1994). The bilinear factor
analytic model in matrix notation is defined as:

X = GF + E, (1)

where the measured matrixX is approximated by the prod-
uct ofG andF andE is the model residual.p is then defined
as the number of factors of the chosen model solution, i.e.,
the number of columns ofG and at the same time the num-
ber of rows ofF. Each columnj of the matrixG represents
the time series of a factor, and each rowi of F represents
the profile (e.g., mass spectrum) of this factor. The differ-
ences between the bilinear models PCA and PMF are only
due to the restrictions of the models. PCA imposes orthog-
onality of the factors, i.e., the scalar of two different rows
of F is zero and does not require non-negative entries. By
contrast, PMF requires non-negative entries throughoutG
andF. This constraint makes the PMF algorithm particularly
suitable when mass concentrations must always be positive
(especially for chemometrics or environmental studies). In
the literature there are two solvers, namely ME-2 and PMF2
that solve the PMF algorithm. The main difference is the en-
hanced control of rotations within the ME-2 solver, as de-
scribed in the next subchapters.

However for both solvers, the entries inG andF are fit us-
ing a least squares algorithm that iteratively minimizes the
quantity Qm, defined as the sum of the squared residuals
weighted by their respective uncertainties, where the uncer-
tainty may contain the measurement and model uncertainty:

Qm
=

m∑
i=1

n∑
j=1

(
eij

σij

)2

. (2)

Here, eij are the elements of the residual matrixE and
σij are the measurement uncertainties for the input points
ij . Data points whereσij � eij constitute a large fraction
of Qm, and these points will have a high impact during the
model iteration. Normally this ensures that data with high
signal-to-noise has a higher impact than measurements near

the detection limit. However,σij � eij may also occur due to
dominant and rare local events or electronic noise within the
measurement equipment, when neither of these events should
be considered by the model. To prevent the solution from be-
ing driven by a few strong outliers, the model is generally run
in the “robust” mode, in which pulling of the solution by out-
liers is reduced. At each step of the solution process, outliers
are defined based on the ratio of residuals to uncertainties:

outlier=

∣∣∣∣ eij

σij

∣∣∣∣ > α, (3)

whereα is the user-defined threshold value. A value of 4 is
recommended as a defining criterion for outliers within the
robust mode (Paatero, 1997). The residuals are reweighted
dynamically to reduce, and ideally to remove, the depen-
dence of the rate of change ofQm on the rate of change of
the residuals of the outliers:

dQm

dEoutliers

∼= 0. (4)

2.2.1 NormalizingQ by the expected value ofQ (Qexp)

Normally, monitoring the totalQ is not meaningful because
the expected value depends on the size of the data matrix and
on the number of chosen factors. One therefore normalizes
Qm by the degree of freedom of the model solution (called
Qexp) which is both a function of the size of the data matrix
and of the number of factors.

Qexp ∼= n · m − p · (m + n). (5)

Ideally, if the model entirely captured the variability of the
measured data and all uncertainties were properly defined, a
Q/Qexp value of 1 would be expected. However, several rea-
sons e.g. an erroneously chosen number of factors, transient
sources that are not fully modeled, errors in the estimate of
the measurement uncertainties, and the unknown model un-
certainties – prevent the use of the absoluteQ/Qexp. Instead,
one should investigate the relative change of this ratio across
different model runs (large changes indicate significantly de-
creased residuals and suggest an improved solution), to assist
in choosing reasonable model solutions.

2.2.2 Rotational ambiguity of the model solutions

Solutions given by the PMF algorithm may have a substantial
degree of rotational ambiguity (Paatero et al., 2002). There
are two different kinds of rotations that are allowed, namely
the pure and the approximate rotations. For pure rotations,
the object functionQm does not change after the rotation:

G = GT andF = T−1F, (6)

whereT is a nonsingular matrix of dimensionp × p, T−1 is
its inverse, andG andF are the rotated matrices. The ma-
trix multiplication of G andF leads to the same product as
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for G and F, and thereforeQm remains unchanged. If the
transformation matrixT does not fulfill Eq. (6), the rotation
is called an approximate rotation andQm changes. For the
PMF and the ME-2 solver, there is a user-specific parameter
called fpeak, denoted byϕ for the global control of such ap-
proximate rotations. For positiveϕ, elementary rotations or
a series of elementary rotations are performed that increase
columns of the matrixG and decrease rows of the matrixF
while conserving mass. The opposite occurs for negativeϕ.
However, the fpeak tool explores only rotations in one di-
mension of the multidimensional space, and if the entries of
G andF are positive and more than one factor is chosen, then
the rotational space is multidimensional and the correspond-
ing ambiguity can be very large (e.g., for three factors, the ro-
tational space is nine-dimensional). An advantage of the ME-
2 solver compared to the PMF solver is improved rotational
control, e.g., selected factors can be summed/subtracted to-
gether, so the entire matrix does not have to be transformed.
Thus, the rotations can be studied in a more controlled en-
vironment. Normally, the user should explore the solution
space, both since it is rare to find the environmental solution
for the unrotated case, and since the it allows the user to eval-
uate the rotational ambuigity of the chosen solution in the so-
lution space. Alternatively, to reduce the rotational ambigu-
ity, a priori information in the form of known rows ofF (fac-
tor profiles) or of known columns ofG (factor time series)
can be added to the model (Paatero and Hopke, 2009). This a
priori information creates a very specific rotated model solu-
tion that can be further investigated. Three main approaches
can be exploited with the ME-2 solver, i.e. the chemical mass
balance (CMB), thea value, and the pulling technique (de-
scribed below).

The use of a priori information at the stage of the calcula-
tion of the model solution provides a more efficient and sen-
sitive exploration of the model space than is possible with
e.g., the global fpeak tool (Paatero and Hopke, 2009). For
this reason, we developed a user-friendly interface (Fig. S1
in the Supplement), SoFi (Source Finder), to facilitate the
testing of the different rotational techniques available within
the ME-2 model. Three different approaches were exploited,
i.e., the chemical mass balance (CMB), thea value, and the
pulling technique, using the bilinear model based on the cri-
terion of positive entries inG andF. The application of these
techniques is described in detail in Paatero and Hopke (2009)
and only a brief description is presented here. In addition,
this interface allows the user to run the PMF algorithm
with/without the above-mentioned constraining techniques
for combined data sets, e.g. particle and gas-phase data, in the
robust mode. This technique was first tested using a pseudo
robust approach by Slowik et al. (2010). Crippa et al. (2013a)
exploited this interface to perform a combined source ap-
portionment on ambient AMS and PTR-MS (proton transfer
reaction mass spectrometer) data from the Paris 2009/2010
campaign entirely in the robust mode.

2.2.3 Fully unconstrained matrices G and F: positive
matrix factorization (PMF)

For a completely unconstrained PMF run, the algorithm
models the entries ofG andF autonomously.

2.2.4 Fully constrained matrix F: chemical mass
balance (CMB)

Within the chemical mass balance, all elements of theF ma-
trix, i.e., all factor profiles, are set to non-negative values by
the user. The entries of the matrixG remain variable and are
evaluated by the model.

2.2.5 Constrained matrices F/G: a value approach
(a value)

Here the elements of theF matrix (factor profiles) and/or of
the G matrix (factor time series) can be constrained by the
user. The user inputs one or more factor profiles (rows of
F)/factor time series (columns ofG) and a constraint defined
by the scalara that can be applied to the entire profile/time
series or to individual elements of the profile/time series only.
Thea value determines the extent to which the outputF/G
is allowed to vary from the inputF/G, according to:

fj,solution= fj ± a · fj , (7)

gi,solution= gi ± a · gi, (8)

wheref andg represent a row and the column of the matrices
F andG, respectively. The indexj varies between 0 and the
number of variables andi varies between 0 and the number
of measured points in time.

The situation of the chemical mass balance described in
Sect. 2.2.4 is achieved by using the scalara set to 0 for all
factor profiles.

2.2.6 Constrained matrices F/G: pulling approach
(pulling)

The user has the possibility of introducing pulling equations
into the model that pull profile factor elements towards pre-
defined anchor values (here shown for a row of the matrixF
only):

aj = fj + rj . (9)

In Eq. (9),aj represents the anchor to which the model
pulls the iterative valuefj , and rj represents the residual.
The anchor is a known value introduced as a priori informa-
tion by the user. The pulling equations create an additional
auxiliary termQaux that is added toQm. Thus, if pulling
equations are introduced, the model will minimize the argu-
ment ofQ with respect to all entries in the matricesG and
F:

argmin
G,F

(Q) = argmin
G,F

(Qm
+ Qaux). (10)
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The term ofQaux has a conceptually similar aspect toQm:

Qaux
=

∑
k

(
rk

sk

)2

. (11)

The indexj has been replaced byk in Eq. (11), sincek de-
notes the index of the pulling equations added to the model
(over many factor profiles/time series). The pulling param-
etersk specifies the softness of the pull. The smallersk be-
comes, the higher the impact ofQaux of thekth pull within
the iterative process. The pulling approach is a sensitive tech-
nique in that, if the pulling equation is not compatible with
the specific data matrix, the decrease ofQaux (Eq. 11) ob-
tained asfj reaches its anchor valueaj (Eq. 9) is negligi-
ble compared to a larger increase ofQm (Eq. 2); consequen-
tially, the pull falls off. Adding known factor profiles/time
series and using the pulling technique might be seen as a
“soft” and self-regulating constraining technique. Generally,
the user provides the total acceptable limits ofQm, denoted
as dQ. Changing these limits and the pulling parametersk
allows the user to monitor the change inQm and to judge its
acceptability.

2.2.7 The correct solution and number of factors

Generally, increasing the number of factors decreasesQ and
the ratio ofQ to Qexp, due to the additional degrees of free-
dom of the model, allowing a better fit to the measured ma-
trix. However, these additional factors may not be physically
meaningful. As a first metric in judging the correct number
of factors, Paatero and Tapper (1993) recommended consid-
ering the size of the decrease ofQ orQ/Qexpas a function of
added factors, rather than its absolute value. Changes inQ or
Q/Qexp over different model runs of a few percentages are
acceptable, if the model solution is enhanced. If the differ-
ence is however, of tens of percentages, further investigation
is required.

In addition to theQ – analysis, Paatero (2004) introduced
another metric based on the estimation of the measurement
variation explained by the factors. The explained variation
(EV) is a dimensionless quantity that indicates how much
variation in time or variation in each variable is explained by
each factor. As an example, the equation for the explained
variation for theith point in time for the factork is given by:

EVik =

m∑
j=1k

(
∣∣gik · fkj

∣∣/σij )

m∑
j=1k

((
P∑

h=1

∣∣gih · fhj

∣∣ + ∣∣eij

∣∣)/σij )

for k = 1, . . . ,P . (12)

Similar equations can be formulated for the unexplained
variation (UEV) by replacing the productgik · fkj in the nu-
merator witheij . Expressing the explained and the unex-
plained variation for a variablej as EVjk is done by simply
replacing the sum overj in the ratio with the sum overi. If all
variation is explained by the model, then EV= 1. According

to Paatero (2004) a variable should be regarded as explained
only if the UEV for that variable is less than 25 %.

Besides these mathematical instruments, it is crucial to
compare the model output with measurements or reference
values that were not included in the model solution. This aids
in the selection and verification of the factor solutions.

In order to test the aforementioned rotational approaches,
we used a data matrix containing the winter data from down-
town Zurich measured with the ACSM from both 2011 and
2012. The measurement error matrix was calculated accord-
ing to the method of Allan et al. (2003a, 2004), them/z 44-
relatedm/z’s and weak and badm/z’s were downweighted
and a minimum error was considered for the uncertainty of
all points in the data matrix as in Ulbrich et al. (2009). In ad-
dition, the measurement uncertainty for points with a signal
to noise (S/N) smaller than 2 (weak variables) and aS/N

smaller than 0.2 (bad variables) were increased by a factor of
3 and 10, respectively, as in Ulbrich et al. (2009).

3 Results

3.1 Unconstrained matrices G and F (PMF)

The first step in the source apportionment analysis was to
perform the bilinear model without any a priori information
in the modeled matrices (PMF) for different numbers of fac-
tors, e.g., one to ten factors, to estimate an environmentally
reasonable number of factors. PMF analysis of aerosol mass
spectra has previously been described in detail (e.g., Lanz
et al., 2007, 2010; Ulbrich et al., 2009), and similar met-
rics for determining the appropriate number of factors were
employed in this study. Specifically, the solution was cho-
sen based on an analysis of the dependence ofQ/Qexp and
the explained variation in the number of factors, as well as
the correlation of the retrieved factor profiles and time series
with reference spectra and collocated measurements. A five-
factor solution was selected for further analysis. This solu-
tion is summarized below and additional details are provided
in the Supplement (Sect. S6.2). PMF solutions with a higher
number of factors are not considered, due to purely math-
ematical splits of the factor profiles leaving the EV almost
untouched and hence not representing additional sources.

The five-factor solution consists of three primary fac-
tors and two secondary factors. The primary factors
are hydrocarbon-like organic aerosol (HOA), cooking or-
ganic aerosol (COA) and biomass burning organic aerosol
(BBOA), while the secondary factors are semi-volatile oxy-
genated organic aerosol (SV-OOA) and low-volatility oxy-
genated organic aerosol (LV-OOA). These factors have been
identified in many previous studies and only a brief descrip-
tion of their most important characteristics is given here.
Factor mass spectra are shown in Fig. S2, the time series
are shown in Fig. S3 and the diurnal patterns are shown
in Fig. S4. The HOA spectrum shows high signal atm/z
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Table 1. Overview of the different model runs discussed in this
study. The empty space indicates unconstrained information. The
parameters listed in the table indicate the strength of the constraints
for the corresponding model run.

Constraints

Model run Secondary species Primary species

PMF
CMB a value= 0 a value= 0
a value a value (0.1, 0.2, 0.3)
pulling dQ = 100,s (0.01, 0.015, 0.02, 0.05)

typical of aliphatic hydrocarbons (Canagaratna et al., 2004;
Zhang et al., 2005). The time series and diurnal pattern of
HOA are correlated with traffic-related species like NOx,
CO, and BCtraffic. The COA profile is qualitatively similar
to HOA but has higherm/z 55 and lessm/z 57, similar to
previous results (Allan et al., 2010; He et al., 2010; Slowik
et al., 2010; Sun et al., 2011; Mohr et al., 2012; Crippa
et al., 2013b) and its diurnal cycle shows the characteris-
tic lunch peak at noon. The BBOA profile has significantly
higher contributions atm/z 60 andm/z 73. These fragments
are characteristic of sugars such as levoglucosan (Alfarra et
al., 2007) which are released during wood combustion pro-
cesses. The BBOA diurnal pattern has higher contributions
at night, consistent with domestic heating activities in win-
ter. SV-OOA and LV-OOA have significantly higher contri-
butions atm/z 44, which is typically dominated by the CO+2
ion. This ion results from the thermal decomposition and
fragmentation of highly oxygenated species such as organic
acids (Ng et al., 2010). Compared with SV-OOA, LV-OOA
typically has a higher mass fraction atm/z 44, suggesting a
more aged and less volatile aerosol. Their time series cor-
relate with the time series of secondary species like sulfate,
nitrate and ammonium aerosol.

Note that while features of the factors described above can
be identified from the PMF analysis, there is no unequivocal
apportionment of each factor to one specific source. Hence,
the labeled factors in Sect. S6.2 in the Supplement are only
indicative. For example, the characteristic COA peak at noon
is visible but rather broad between 08:00 and 12:00 LT. The
primary factors HOA and COA both contain signal from
m/z 44 andm/z 60, suggesting that some biomass burning
aerosol may be apportioned to these factors. These features
reveal a mixed situation for the PMF factor solution. In order
to retrieve an environmentally satisfactory model solution,
further investigation of the multidimensional solution space
is needed. One possible method is to make use of the global
rotational parameter fpeak. Nonetheless, the outcome might
not always be satisfactory, as was the case for this study. The
ME-2 solver provides three alternative options for the explo-
ration of the solution space:

Fig. 1. Values ofQ/Qexp for different model runs. The CMB run,
for which all factor profiles have been fixed, is almost double the
other values.

1. application of user-specific rotations to search for so-
lutions that better describe the measured data matrix

2. addition of specific pulling equations on e.g. retrieved
factor profiles and/or time series from earlier uncon-
strained PMF solutions

3. utilization of a priori information, thus strongly reduc-
ing the rotational ambiguity.

This study investigates only the third approach, although
the user-specific rotations and specific pulling equations are
potentially valuable techniques and should be further inves-
tigated in future source apportionment studies.

3.2 Comparison of solutions constraining matrix F

3.2.1 Overview

Besides the PMF run using unconstrained matricesG and
F described in the last section, the subsequent model runs
constraining the matrixF, or parts of it, have been tested.
The following runs are summarized in Table 1.

– CMB, with all five factors fixed (see Sect. 2.2.4).

– a value approach (see Sect. 2.2.5), where the primary
factors HOA, COA and BBOA were constrained and
the other factors left free. Differenta values were
tested, i.e., witha value 0 to 0.3 applied simultane-
ously to all constrained profiles. Note that ana value
of 0 yields a “partial CMB” model where the primary
factors are fully constrained and the secondary factors
are fully free.

– pulling approach (see Sect. 2.2.6), where the primary
factors HOA, COA and BBOA were constrained and
the other factors left free. The parameters tested were
dQ = 100 and softness (s) between 0.01 and 0.05.
Since dQ stayed invariant, the only value reported for
the pulling runs in the following graphs is the softness
(s).
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Fig. 2. Explained variation (EV) for each factor and total unex-
plained variation (UEV) during the different model runs.

The primary factors (HOA, COA, BBOA) employed have
been taken from Crippa et al. (2013b), an unconstrained PMF
analysis in which the primary sources have successfully been
separated, and the secondary factors (SV-OOA, LV-OOA)
were the averaged mass spectra reported by Ng et al. (2011a).

Figure 1 showsQ/Qexp for the mentioned runs. This
graph and the successive ones are structured such that model
runs with weaker boundaries (i.e., with largera values or
softer pulling parameters) are on the outside, while runs
with stronger constraints are inside. Therefore, PMF repre-
sents the outer edge and CMB is in the center. Note that for
the a value approach, the value in the graph indicates the
lower and upper limit. For the pulling runs, the value reported
stands for the softnesss of the pull (dQ is constant at 100).

The CMB result has the worst compatibility with the mea-
sured data matrix, as shown by the higherQ/Qexp ratio. This
is also reflected in the plot of the explained variation (EV)
(Fig. 2), where the CMB run shows the highest unexplained
variation (UEV). In general there is a considerable change
in the distribution of EV between the different model con-
figurations. In particular, the EV for the secondary species
SV-OOA and LV-OOA varies significantly. The EV for the
primary species COA, HOA and BBOA stays approximately
constant for thea values runs between 0 and 0.2 and the
pulling runs between 0.01 and 0.02.

The mean mass concentration of all factors as a function
of all model runs is shown in Fig. 3. The black rectangles
in Fig. 3 (and Fig. 4) denote environmentally reasonable so-
lutions, as discussed later. The figure shows that the CMB
approach lacks in representing the measured data, due to the
very decreased explained mass compared to the other mod-
els, as already mentioned for Figs. 1 and 2. In addition, the
continuous redistribution of the mass contributions to the five
factors as the tightness of constraint changes is also apparent.

Fig. 3. Mean mass concentration for the five factors for the model
runs. The results reported within the two rectangles represent envi-
ronmentally reasonable solutions.

Fig. 4. CorrelationsR2 (Pearson) between the time series of se-
lected factors and the time series of external data as a function of
the model runs. The results reported within the two rectangles rep-
resent environmentally reasonable solutions.

As mentioned in Sect. 2.2.7, an important criterion – along
with the Q/Qexp and the explained variation – for judging
acceptable source apportionment solutions is the compari-
son with external information. Figure 4 listsR2 (Pearson)
for the correlations between the time series of HOA with the
traffic species NOx and BCtraffic as well as between BBOA
and BCwood burningand between LV-OOA and NR-PM1 sul-
fate as a function of the different model solutions. Accept-
able correlation values fall within the black rectangle. Note
that, althoughR2 (Pearson) for BBOA with BCwb is high-
est for the pulling model run withs = 0.05, this run is still
rejected due to the other degraded correlations, in particular
that for the traffic factor HOA. Further support for identify-
ing the model solutions within the rectangles as environmen-
tally reasonable is provided by the analysis of the diurnal
cycle of HOA and COA (Sect. 3.2.3 and in the Sect. S6.4 in
the Supplement), where the expected diurnal patterns for the
traffic and cooking factors can be found. The absolute mean
and relative mass concentrations for all selected solutions are
shown in Table 2. The high standard deviation for BBOA
indicates that the apportionment of this species is more un-
certain, while COA and HOA show very little variation.
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Fig. 5.Factor profiles of the five factor solutions HOA, COA, BBOA, SV-OOA and LV-OOA as a function ofa value (left panel) and pulling
strength (s) for solutions classified as environmentally reasonable. Different solutions are represented by different symbols, with circles and
triangles being the most and least constrained, respectively.

Table 2.Absolute and relative mean factor mass concentrations av-
eraged over all environmentally reasonable model runs.

Factor mean± 1 std. dev./ mean± 1 std. dev./ ratio of std.
µg m−3 % dev. to total/%

LV-OOA 3.20± 0.22 50.0± 3.5 7.0
SV-OOA 1.36± 0.08 21.2± 1.2 5.7
BBOA 0.82± 0.16 12.8± 2.5 19.5
COA 0.48± 0.05 7.5± 0.08 1.1
HOA 0.54± 0.05 8.5± 0.08 0.9

3.2.2 Comparison of factor profiles

Figure 5 shows the factor profiles of all environmentally
reasonable model solutions. Models based ona values and
pulling equations are shown in the left and right column, re-
spectively. Different constraint levels are shown by different
symbols. As noted in the previous section, the selected solu-
tions lie in a relatively small range ofa values (0–0.2) and
strong pulling strengths (0.01–0.02).

As seen in Fig. 5, there is no significant variation of the pri-
mary factor profiles HOA, COA and BBOA as a function of
the different model runs, due to the imposed tight constraint.
By contrast, the unconstrained factors, especially SV-OOA,
show more model-dependent variation. In particular, the high
variation ofm/z 43 in SV-OOA highlights the high uncer-
tainty in apportioning this variable. Figure 3 highlights the
fact that moving from a constrained run to a less constrained
situation, apportions less mass to LV-OOA and more in SV-
OOA as well as to the three primary factors HOA, COA and,
in particular, BBOA. This is evidenced in the factor profile
with the increase ofm/z 44 in SV-OOA for less constrained
model runs.

3.2.3 Comparison of factor time series

Diurnal cycles for the environmentally reasonable model so-
lutions are shown in Fig. 6. In addition, NOx and BCtraffic
are plotted together with HOA, while BCwb is plotted with
BBOA.

The diurnal trends of HOA, NOx, and BCtraffic are highly
correlated. The diurnal cycle of the cooking factor COA man-
ifests a strong peak during meal activities, similar to COA
factors found in other source apportionment studies con-
ducted on NR-PM1 data in other cities such as Barcelona
(Mohr et al., 2012) and Paris (Crippa et al., 2013b). In addi-
tion, the fact that the diurnal cycle over the weekends man-
ifests only a small bump at noon for the cooking factor,
while the morning traffic peak has totally disappeared, rein-
forces the interpretation of a successful separation of the two
sources, HOA and COA (Sect. S6.4.3). BBOA is correlated
with BCwood burningand is highest at night, consistent with
domestic heating activities and previous measurements in
Zurich (Lanz et al., 2008). The diurnal cycle of SV-OOA
is anticorrelated with temperature, suggesting that the fac-
tor represents semivolatile material which is influenced by
temperature-driven partitioning; the diurnal cycle of LV-
OOA, by contrast, does not show strong diurnal trends.

3.3 Comparison with a previous source apportionment
study

In the past, the ME-2 solver has already been used to con-
strain a hydrocarbon like factor HOA for a few weeks in
winter in Zurich (Lanz et al., 2008). In that study, thea value
leading to an acceptable solution was at 60 %. The lower and
higher limits themselves depend on the constrained factor
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Fig. 6.Mean hourly factor mass concentrations for solutions classi-
fied as environmentally reasonable. Open and closed symbols de-
note a value and pulling solutions, respectively. Symbol shapes
indicate the level of constraint, with circles being the most con-
strained and triangles the least. NOx, BCtraffic and BCwood burning
are shown for comparison.

Fig. 7. CorrelationsR2 (Pearson) between the time series of se-
lected factors and the time series of external data as a function of
the global fpeak tool used for the exploration of the solution based
on the unconstrained PMF run. The reportedQ/Qexp values are
within the range of the constrained runs. The value in the middle
represents the unrotated case (fpeak= 0).

profile. The profile used in our study has a substantial contri-
bution (1.4 %) ofm/z 44, the same variable which occurs in
almost all factor profiles. Therefore, a largea value would
easily lead to a mixing situation which is avoided by us-
ing only smallera values. This was not the case for the
constrained factor deployed in Lanz et al. (2008) where no
m/z 44 was present at all (0 %). In that study, the source
apportionment over three weeks led to three factors, HOA,
BBOA and OOA. The diurnal cycle of their HOA showed
a lunch peak, revealing a possible contribution of the COA
factor. This conclusion is reinforced by the fact that the mass
contribution for their HOA was between 3 and 13 %. Our
contribution when merging COA and HOA together varies
between 7 and 18 % (Fig. 5). In addition, they could not sep-
arate OOA into SV-OOA and LV-OOA, most probably due to
the small temperature range (−8 to 8◦C) during those days.
By contrast, the temperature range for this study (−13.5 to
18.1◦C) was sufficient to allow a separation of SV-OOA and
LV-OOA within the source apportionment.

4 Discussion

4.1 Uncertainty in bilinear model results

As discussed in the previous section, the bilinear PMF al-
gorithm containing constraints inF solved by the ME-2 en-
gine yields a set of environmentally reasonable solutions
which definitely improve the source apportionment. Note
that the fully unconstrained PMF run did not even fall into
the range of environmentally acceptable solutions. While
the constrained ME-2 solutions have many features in com-
mon, the reported profiles and mass concentrations differ (see
Table 2, Figs. 5 and 6). This variation reflects the model
uncertainty for the bilinear system. Rotational techniques,
such as thea value approach, pulling equations or individual
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rotations as well as the frequently used global rotational tool
fpeak are tools for the quantitative assessment of the bilinear
model uncertainty.

An additional source of uncertainty in the model results,
derives from the selection of the anchoring factor profiles
and the magnitude of their constraints. The effects of the
latter are evident from the CMB result (see Sect. 3.2.1). In
particular, the mass contribution of the SV-OOA factor was
almost negligible. This occurred because the profiles were
completely fixed, leaving the model with no chance to adapt
the SV-OOA profile to the measured data, and resulting in
the highest unexplained variation (UEV) as shown in Fig. 2.
However, a semi-volatile fraction has been modeled for the
a value, pulling, and even the PMF approaches. This under-
lines the fact that if an anchor profile is too tight, a legitimate
factor can be excluded from the model result.

The effect of choosing various factor profiles is high-
lighted by the comparison with the results of Lanz et
al. (2008), in which winter AMS data from Zurich was ana-
lyzed using a constrained HOA factor profile with ana value
of 60 %. This value is considerably higher than the maximum
a value of 20 % selected in this study. The difference in the
requireda value for these two studies is likely due to the
choice of HOA factor profile itself. In the present study, the
employed HOA anchor profile has a non-zero contribution in
m/z 44 (1.4 %). Most probably, a largea value would lead to
a mixing situation based on the variablem/z 44, which we
avoided in this study by using only smallera values. This
was not the case for the constrained factor used in Lanz et
al. (2008), as nom/z 44 was present at all (0 %).

However, testing the influence of different anchoring pro-
files and the tightness of their constraints, before a solution
fails to be environmentally interpretable, is ongoing and will
be methodically discussed in a future study.

4.2 Recommendations for ME-2 analysis of aerosol
mass spectra

Currently, there is very little research regarding the inclu-
sion of a priori information in the source apportionment for
aerosol mass spectrometer data. The scope of this work is
to facilitate the source apportionment in this respect by test-
ing, in a semi-automatic way, different rotational tools of the
ME-2 solver with the user-friendly graphical user interface
SoFi.

Generally, the user can anchor factor information (profiles
or time series) and easily vary the tightness of the constraint
while monitoring the various criteria for the evaluation of a
solution (see Sect. 2.2.7). Based on the experience gained in
this study, we recommend that one constrains the primary
factors (HOA, COA, BBOA) for NR-PM1 source apportion-
ments whenever the unconstrained PMF run reveals indica-
tions for such sources in the model result and/or in the cor-
responding residuals. In first runs, the secondary species can
stay unconstrained, since they do not represent specific emis-

sions, but rather span the range of aging processes in a spe-
cific location during the measurement time. Thus, it is diffi-
cult to match this evolution with auxiliary data. However, this
topic is under study and more information will be provided
in future studies.

The user should in any case perform sensitivity tests on the
tightness of the constrained factor profiles (a value or pulling
parameters), to assess the environmentally reasonable solu-
tions, and present this range rather than only a single solu-
tion. As stated in Sect. 4.1, these parameters highly depend
on the anchoring profiles employed, and thus no limits for
these values can be suggested at this stage. However, in gen-
eral the increase ofQ/Qexp should not be larger than a few
percentages as already stated in Paatero and Tapper (1993).

Crippa et al. (2013c) performed the source apportionment
with the ME-2 engine on the AMS EUCAARI (European In-
tegrated project on Aerosol, Cloud, Climate, and Air Quality
Interactions) data measured in 2008/2009, with the aim of
possibly standardizing the method of source apportionment
on NR-PM1 data with ME-2.

4.3 Comparison between the PMF2 and the
ME-2 solver

As discussed in Sect. 2.2.2, a fundamental difference be-
tween the PMF2 and ME-2 solvers their ability to explore the
solution space. PMF2 utilizes the global fpeak tool, which
allows rotations in only a single dimension of the multidi-
mensional space. The limitation of this tool is summarized
in Fig. 7. TheR2 values of LV-OOA, BBOA and HOA with
their external tracers as a function ofQ/Qexp as the fpeak is
varied, are reported in Fig. 7. The fpeak range was chosen as
such to allow for an increase ofQ/Qexp similar to that of the
constrained approach using ME-2. The dashed lines in this
graph represent the meanR2 values of the modeled ME-2
solutions in the boxed regions in Fig. 4. Figure 7 shows that
the ME-2 solutions equal or outperform the best available
PMF2 solutions for all factors. A particularly large improve-
ment is evident for HOA, most likely due to the improved
separation of HOA and COA by constraining these factors.
Thus, there is no guarantee that the environmentally optimal
solution can be retrieved through the PMF2 solver; it may be
an inaccessible rotation in the PMF solution space. This lim-
itation does not exist for the ME-2 solver, where all rotations
are accessible.

The ME-2 solver provides the user with a tool for eas-
ily entering a priori information in form of, e.g. known fac-
tor profiles, similar to the tests conducted in this study with
the primary factor profiles (HOA, BBOA and COA). Further-
more, it enables the full exploration of the solution space ex-
ploiting the individual fpeak tool or the pulling equations. We
are actually systematically testing the exploration of the so-
lution space based on the pulling equation for AMS data, and
its advantages for AMS source apportionment studies will be
presented in a future work (Canonaco et al., 2014).
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5 Conclusions

Source apportionment using the bilinear model as imple-
mented through the multilinear engine (ME-2) was success-
fully applied to non-refractory organic aerosol (OA) mass
spectra measured during winter 2011 and 2012 in Zurich,
Switzerland using the aerosol chemical speciation monitor
(ACSM). The solutions have been analyzed exploiting the
newly developed software source finder (SoFi). The selected
solutions consist of two secondary factors and three primary
factors. The secondary factors are a semi-volatile oxidized
OA (SV-OOA) and a low-volatility oxidized OA (LV-OOA).
The three primary factors are traffic-related hydrocarbon-like
OA (HOA), cooking OA (COA) and biomass burning OA
(BBOA).

Different rotational approaches were investigated employ-
ing the ME-2 engine. The tested implementations consisted
of the unconstrained run (PMF), fully constrained chemical
mass balance (CMB), and partially constrained models us-
ing thea value parameter and pulling equations. In addition,
a sensitivity test on the constrained profiles was performed
for the a value and pulling model runs. This allowed us to
identify the set of environmentally reasonable solutions.

Moreover, such analysis provides insight into the uncer-
tainty of the bilinear model solution, e.g., the primary factor
BBOA and the secondary semivolatile factor SV-OOA show
the highest variability across models (implying the highest
model uncertainty), while COA and HOA have the least vari-
ability (smallest model uncertainty).

Finally, some recommendations for future NR-PM1
source apportionments exploiting ME-2 are reported.

Supplementary material related to this article is
available online athttp://www.atmos-meas-tech.net/6/
3649/2013/amt-6-3649-2013-supplement.pdf.

Acknowledgements.The ACSM measurements were supported by
the Swiss Federal Office for the Environment (FOEN). J. Slowik
acknowledges support from the Swiss National Science Foundation
(SNF) through the “Ambizione” program. We would like to thank
P. Paatero for the valuable comments during the analysis of the data
and the Environmental group of the Swiss Federal Laboratories for
Materials and Testing (EMPA) for their support. Special thanks
are also owed to Michele Canonaco for a critical reading of this
manuscript.

Edited by: J. Abbatt

References

Alfarra, M. R., Prévôt, A. S. H., Szidat, S., Sandradewi, J., Weimer,
S., Lanz, V. A., Schreiber, D., Mohr, M., and Baltensperger, U.:
Identification of the mass spectral signature of organic aerosols
from wood burning emissions, Environ. Sci. Technol., 41, 5770–
5777, 2007.

Allan, J. D., Alfarra, M. R., Bower, K. N., Williams, P. I., Gal-
lagher, M. W., Jimenez, J. L., McDonald, A. G., Nemitz, E.,
Canagaratna, M. R., Jayne, J. T., Coe, H., and Worsnop, D. R.:
Quantitative sampling using an Aerodyne aerosol mass spec-
trometer: 2. Measurements of fine particulate chemical compo-
sition in two UK cities, J. Geophys. Res.-Atmos., 108, 4091,
doi:10.1029/2002JD002359s, 2003a.

Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower,
K. N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative
sampling using an Aerodyne aerosol mass spectrometer: 1. Tech-
niques of data interpretation and error analysis, J. Geophys. Res.-
Atmos., 108, 4090, doi:10.1029/2002JD002358s, 2003b.

Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R.,
Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B.,
Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A gen-
eralised method for the extraction of chemically resolved mass
spectra from aerodyne aerosol mass spectrometer data, J. Aerosol
Sci., 35, 909–922, 2004.

Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M.
J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe,
H.: Contributions from transport, solid fuel burning and cook-
ing to primary organic aerosols in two UK cities, Atmos. Chem.
Phys., 10, 647–668, doi:10.5194/acp-10-647-2010, 2010.

Amato, F. and Hopke, P. K.: Source apportionment of the ambient
PM2.5 across St. Louis using constrained positive matrix factor-
ization, Atmos. Environ., 46, 329–337, 2012.

Canagaratna, M. R., Jayne, J. T., Ghertner, D. A., Herndon, S., Shi,
Q., Jimenez, J. L., Silva, P. J., Williams, P., Lanni, T., Drewnick,
F., Demerjian, K. L., Kolb, C. E., and Worsnop, D. R.: Chase
studies of particulate emissions from in-use New York City vehi-
cles, Aerosol Sci. Technol., 38, 555–573, 2004.

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Al-
farra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H.,
Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M.,
Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and
Worsnop, D. R.: Chemical and microphysical characterization
of ambient aerosols with the Aerodyne aerosol mass spectrome-
ter, Mass Spectrom. Rev., 26, 185–222, doi:10.1002/mas.20115s,
2007.

Canonaco, F., Crippa, M., Slowik, J., Baltensperger, U., and Prévôt,
A. S. H.: Development of the pulling technique for AMS data
based on the ME-2 solver using SoFi, in preparation, 2014.

Crippa, M., Canonaco, F., Slowik, J. G., El Haddad, I., De-
Carlo, P. F., Mohr, C., Heringa, M. F., Chirico, R., Marchand,
N., Temime-Roussel, B., Abidi, E., Poulain, L., Wiedensohler,
A., Baltensperger, U., and Prévôt, A. S. H.: Primary and sec-
ondary organic aerosol origin by combined gas-particle phase
source apportionment, Atmos. Chem. Phys., 13, 8411–8426,
doi:10.5194/acp-13-8411-2013, 2013a.

Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M.
F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di
Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi,
E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann,

www.atmos-meas-tech.net/6/3649/2013/ Atmos. Meas. Tech., 6, 3649–3661, 2013

http://www.atmos-meas-tech.net/6/3649/2013/amt-6-3649-2013-supplement.pdf
http://www.atmos-meas-tech.net/6/3649/2013/amt-6-3649-2013-supplement.pdf
http://dx.doi.org/10.1029/2002JD002359s
http://dx.doi.org/10.1029/2002JD002358s
http://dx.doi.org/10.5194/acp-10-647-2010
http://dx.doi.org/10.1002/mas.20115s
http://dx.doi.org/10.5194/acp-13-8411-2013


3660 F. Canonaco et al.: The Source Finder (SoFi)

S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S.
H., and Baltensperger, U.: Wintertime aerosol chemical compo-
sition and source apportionment of the organic fraction in the
metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981,
doi:10.5194/acp-13-961-2013, 2013b.

Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Car-
bone, S., Capes, G., Dall’Osto, M., Day, D. A., DeCarlo, P. F.,
Di Marco, C. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt
Ruiz, L., Hillamo, R., Jimenez, J.-L., Junninen, H., Kiendler-
Scharr, A., Kortelainen, A.-M., Kulmala, M., Mensah, A. A.,
Mohr, C., Nemitz, E., O’Dowd, C., Ovadnevaite, J., Pandis, S.
N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki,
E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S.
H.: Organic aerosol components derived from 25 AMS datasets
across Europe using a newly developed ME-2 based source ap-
portionment strategy, Atmos. Chem. Phys. Discuss., 13, 23325–
23371, doi:10.5194/acpd-13-23325-2013, 2013c.

Empa: Technischer Bericht zum Nationalen Beobachtungsnetz für
Luftfremdstoffe (NABEL), available at:http//www.empa.ch(last
access: 30 October 2013), 2011.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simp-
son, D., Claeys, M., Dommen, J., Donahue, N. M., George,
C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoff-
mann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L.,
Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th.
F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and im-
pact of secondary organic aerosol: current and emerging issues,
Atmos. Chem. Phys., 9, 5155–5236, doi:10.5194/acp-9-5155-
2009, 2009.

He, L.-Y., Lin, Y., Huang, X.-F., Guo, S., Xue, L., Su, Q., Hu,
M., Luan, S.-J., and Zhang, Y.-H.: Characterization of high-
resolution aerosol mass spectra of primary organic aerosol emis-
sions from Chinese cooking and biomass burning, Atmos. Chem.
Phys., 10, 11535–11543, doi:10.5194/acp-10-11535-2010, 2010.

Herich, H., Hueglin, C., and Buchmann, B.: A 2.5 year’s source ap-
portionment study of black carbon from wood burning and fos-
sil fuel combustion at urban and rural sites in Switzerland, At-
mos. Meas. Tech., 4, 1409–1420, doi:10.5194/amt-4-1409-2011,
2011.

IPCC: IPCC Fourth Assessment Report: The Physical Science Ba-
sis, working group I, final report, Geneva, Switzerland, 2007.

Jayne, J. T., Leard, D. C., Zhang, X. F., Davidovits, P., Smith, K.
A., Kolb, C. E., and Worsnop, D. R.: Development of an aerosol
mass spectrometer for size and composition analysis of submi-
cron particles, Aerosol Sci. Technol., 33, 49–70, 2000.

Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R.,
Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X. F., Smith,
K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol sam-
pling using the aerodyne aerosol mass spectrometer, Geophys.
Res. Atmos., 108, 8425, doi:10.1029/2001JD001213s, 2003.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prévôt, A. S.
H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe,
H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wil-
son, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laak-
sonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,
M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M.
J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R.,

Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick,
F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cot-
trell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S.,
Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J.
R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C.
E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic
aerosols in the atmosphere, Science, 326, 1525–1529, 2009.

Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B.,
Hueglin, C., and Prévôt, A. S. H.: Source apportionment of sub-
micron organic aerosols at an urban site by factor analytical mod-
elling of aerosol mass spectra, Atmos. Chem. Phys., 7, 1503–
1522, doi:10.5194/acp-7-1503-2007, 2007.

Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B.,
Hueglin, C., Szidat, S., Wehrli, M. N., Wacker, L., Weimer, S.,
Caseiro, A., Puxbaum, H., and Prévôt, A. S. H.: Source attribu-
tion of submicron organic aerosols during wintertime inversions
by advanced factor analysis of aerosol mass spectra, Environ.
Sci. Technol., 42, 214–220, doi:10.1021/es0707207s, 2008.

Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr,
C., DeCarlo, P. F., Gianini, M. F. D., Hueglin, C., Schneider, J.,
Favez, O., D’Anna, B., George, C., and Baltensperger, U.: Char-
acterization of aerosol chemical composition with aerosol mass
spectrometry in Central Europe: an overview, Atmos. Chem.
Phys., 10, 10453–10471, doi:10.5194/acp-10-10453-2010, 2010.

Matson, P., Lohse, K. A., and Hall, S. J.: The globalization of nitro-
gen deposition: Consequences for terrestrial ecosystems, Ambio,
31, 113–119, 2002.

Matthew, B. M., Middlebrook, A. M., and Onasch, T. B.: Collection
efficiencies in an aerodyne aerosol mass spectrometer as a func-
tion of particle phase for laboratory generated aerosols, Aerosol
Sci. Technol., 42, 884–898, doi:10.1080/02786820802356797s,
2008.

Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Cana-
garatna, M. R.: Evaluation of composition-dependent collec-
tion efficiencies for the aerodyne aerosol mass spectrome-
ter using field data, Aerosol Sci. Technol., 46, 258–271,
doi:10.1080/02786826.2011.620041s, 2012.

Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J.
G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R.,
Peñuelas, J., Jiménez, J. L., Crippa, M., Zimmermann, R., Bal-
tensperger, U., and Prévôt, A. S. H.: Identification and quan-
tification of organic aerosol from cooking and other sources in
Barcelona using aerosol mass spectrometer data, Atmos. Chem.
Phys., 12, 1649–1665, doi:10.5194/acp-12-1649-2012, 2012.

Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian,
J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P.
S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt,
L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S.
H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol
components observed in Northern Hemispheric datasets from
Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–
4641, doi:10.5194/acp-10-4625-2010, 2010.

Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ul-
brich, I. M., and Worsnop, D. R.: Real-time methods for es-
timating organic component mass concentrations from aerosol
mass spectrometer data, Environ. Sci. Technol., 45, 910–916,
doi:10.1021/es102951ks, 2011a.

Atmos. Meas. Tech., 6, 3649–3661, 2013 www.atmos-meas-tech.net/6/3649/2013/

http://dx.doi.org/10.5194/acp-13-961-2013
http://dx.doi.org/10.5194/acpd-13-23325-2013
http//www.empa.ch
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-10-11535-2010
http://dx.doi.org/10.5194/amt-4-1409-2011
http://dx.doi.org/10.1029/2001JD001213s
http://dx.doi.org/10.5194/acp-7-1503-2007
http://dx.doi.org/10.1021/es0707207s
http://dx.doi.org/10.5194/acp-10-10453-2010
http://dx.doi.org/10.1080/02786820802356797s
http://dx.doi.org/10.1080/02786826.2011.620041s
http://dx.doi.org/10.5194/acp-12-1649-2012
http://dx.doi.org/10.5194/acp-10-4625-2010
http://dx.doi.org/10.1021/es102951ks


F. Canonaco et al.: The Source Finder (SoFi) 3661

Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R.,
Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang,
Q., Sun, Y. L., and Jayne, J. T.: An aerosol chemical speciation
monitor (ACSM) for routine monitoring of the composition and
mass concentrations of ambient aerosol, Aerosol Sci. Technol.,
45, 770–784, doi:10.1080/02786826.2011.560211s, 2011b.

Paatero, P.: Least squares formulation of robust non-negative factor
analysis, Chemometr. Intell. Lab., 37, 23–35, 1997.

Paatero, P.: The multilinear engine – A table-driven, least squares
program for solving multilinear problems, including the n-way
parallel factor analysis model, J. Comput. Graph. Stat., 8, 854–
888, 1999.

Paatero, P.: User’s guide for positive matrix factorization programs
PMF2 and PMF3, 2004.

Paatero, P. and Hopke, P. K.: Rotational tools for factor analytic
models, J. Chemometrics, 23, 91–100, 2009.

Paatero, P. and Tapper, U.: Analysis of different modes of factor
analysis as least squares fit problems, Chemometr. Intell. Lab.,
18, 183–194, 1993.

Paatero, P. and Tapper, U.: Positive matrix factorization – a nonneg-
ative factor model with optimal utilization of error-estimates of
data values, Environmetrics, 5, 111–126, 1994.

Paatero, P., Hopke, P. K., Song, X. H., and Ramadan, Z.: Un-
derstanding and controlling rotations in factor analytic models,
Chemometr. Intell. Lab., 60, 253–264, 2002.

Peng, R. D., Dominici, F., Pastor-Barriuso, R., Zeger, S. L., and
Samet, J. M.: Seasonal analyses of air pollution and mor-
tality in 100 US cities, Am. J. Epidemiol., 161, 585–594,
doi:10.1093/aje/kwi075s, 2005.

Reche, C., Viana, M., Amato, F., Alastuey, A., Moreno, T., Hillamo,
R., Teinila, K., Saarnio, K., Seco, R., Penuelas, J., Mohr, C.,
Prévôt, A. S. H., and Querol, X.: Biomass burning contributions
to urban aerosols in a coastal Mediterranean City, Sci. Total Env-
iron., 427, 175–190, doi:10.1016/j.scitotenv.2012.04.012s, 2012.

Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra, M.
R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using
aerosol light absorption measurements for the quantitative de-
termination of wood burning and traffic emission contributions
to particulate matter, Environ. Sci. Technol., 42, 3316–3323,
doi:10.1021/es702253ms, 2008.

Slowik, J. G., Vlasenko, A., McGuire, M., Evans, G. J., and Abbatt,
J. P. D.: Simultaneous factor analysis of organic particle and gas
mass spectra: AMS and PTR-MS measurements at an urban site,
Atmos. Chem. Phys., 10, 1969–1988, doi:10.5194/acp-10-1969-
2010, 2010.

Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S.,
Buchmann, B., Ordonez, C., Prévôt, A. S. H., and Hueglin, C.:
Nitrogen oxide measurements at rural sites in Switzerland: Bias
of conventional measurement techniques, Geophys. Res. Atmos.,
112, D11307, doi:10.1029/2006jd007971s, 2007.

Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-
N., Bae, M.-S., Hung, H.-M., Hogrefe, O., Frank, B., Rattigan,
O. V., and Lin, Y.-C.: Characterization of the sources and pro-
cesses of organic and inorganic aerosols in New York City with
a high-resolution time-of-flight aerosol mass apectrometer, At-
mos. Chem. Phys., 11, 1581–1602, doi:10.5194/acp-11-1581-
2011, 2011.

Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and
Jimenez, J. L.: Interpretation of organic components from posi-
tive matrix factorization of aerosol mass spectrometric data, At-
mos. Chem. Phys., 9, 2891–2918, doi:10.5194/acp-9-2891-2009,
2009.

Watson, J. G.: Visibility: Science and regulation,
J. Air Waste Manage. Assoc., 52, 628–713,
doi:10.1080/10473289.2002.10470813s, 2002.

Wold, S., Esbensen, K., and Geladi, P.: Principal component
analysis, Chemometr. Intell. Lab., 2, 37–52, doi:10.1016/0169-
7439(87)80084-9s, 1987.

Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H.,
Canagaratna, M. R., and Jimenez, J. L.: Deconvolution and quan-
tification of hydrocarbon-like and oxygenated organic aerosols
based on aerosol mass spectrometry, Environ. Sci. Technol., 39,
4938–4952, doi:10.1021/es048568Is, 2005.

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M.,
Ng, N. L., Worsnop, D. R., and Sun, Y.: Understanding at-
mospheric organic aerosols via factor analysis of aerosol mass
spectrometry: a review, Anal. Bioanal. Chem., 401, 3045–3067,
doi:10.1007/s00216-011-5355-ys, 2011.

www.atmos-meas-tech.net/6/3649/2013/ Atmos. Meas. Tech., 6, 3649–3661, 2013

http://dx.doi.org/10.1080/02786826.2011.560211s
http://dx.doi.org/10.1093/aje/kwi075s
http://dx.doi.org/10.1016/j.scitotenv.2012.04.012s
http://dx.doi.org/10.1021/es702253ms
http://dx.doi.org/10.5194/acp-10-1969-2010
http://dx.doi.org/10.5194/acp-10-1969-2010
http://dx.doi.org/10.1029/2006jd007971s
http://dx.doi.org/10.5194/acp-11-1581-2011
http://dx.doi.org/10.5194/acp-11-1581-2011
http://dx.doi.org/10.5194/acp-9-2891-2009
http://dx.doi.org/10.1080/10473289.2002.10470813s
http://dx.doi.org/10.1016/0169-7439(87)80084-9s
http://dx.doi.org/10.1016/0169-7439(87)80084-9s
http://dx.doi.org/10.1021/es048568Is
http://dx.doi.org/10.1007/s00216-011-5355-ys

