Articles | Volume 7, issue 5
Atmos. Meas. Tech., 7, 1245–1257, 2014
https://doi.org/10.5194/amt-7-1245-2014
Atmos. Meas. Tech., 7, 1245–1257, 2014
https://doi.org/10.5194/amt-7-1245-2014

Research article 13 May 2014

Research article | 13 May 2014

Peroxy radical detection for airborne atmospheric measurements using absorption spectroscopy of NO2

M. Horstjann, M. D. Andrés Hernández, V. Nenakhov, A. Chrobry, and J. P. Burrows M. Horstjann et al.
  • Institute of Environmental Physics, University of Bremen (IUP-UB), Otto-Hahn-Allee 1, 28359 Bremen, Germany

Abstract. Development of an airborne instrument for the determination of peroxy radicals (PeRCEAS – peroxy radical chemical enhancement and absorption spectroscopy) is reported. Ambient peroxy radicals (HO2 and RO2, R being an organic chain) are converted to NO2 in a reactor using a chain reaction involving NO and CO. Provided that the amplification factor, called effective chain length (eCL), is known, the concentration of NO2 can be used as a proxy for the peroxy radical concentration in the sampled air. The eCL depends on radical surface losses and must thus be determined experimentally for each individual setup. NO2 is detected by continuous-wave cavity ring-down spectroscopy (cw-CRDS) using an extended cavity diode laser (ECDL) at 408.9 nm. Optical feedback from a V-shaped resonator maximizes transmission and allows for a simple detector setup. CRDS directly yields absorption coefficients, thus providing NO2 concentrations without additional calibration. The optimum 1σ detection limit is 0.3 ppbv at an averaging time of 40 s and an inlet pressure of 300 hPa. Effective chain lengths were determined for HO2 and CH3O2 at different inlet pressures. The 1σ detection limit at an inlet pressure of 300 hPa for HO2 is 3 pptv for an averaging time of 120 s.

Download