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Abstract. The quantification of measurement uncertainty of 1  Introduction

atmospheric parameters is a key factor in assessing the un-

certainty of global change estimates given by numerical pre-

diction models. One of the critical contributions to the un- While global availability of profiling measurements of atmo-
certainty budget is related to the collocation mismatch inSPheric parameters is increasing, full exploitation of these
space and time among observations made at different locgheasurements is still far from being achieved. In fact, the
tions. This is particularly important for vertical atmospheric lack of an extensive effort, on a global scale, aimed at co-
profiles obtained by radiosondes or lidar. ordinating the operation of available measurement stations

In this paper we propose a statistical modelling approacﬁowards harmonized and traceable observations, uncertainty
capable of explaining the relationship between collocationincluded, has hampered exploitation of the data. GRUAN
uncertainty and a set of environmental factors, height and distGCOS Reference Upper-Air Networlyww.gruan.org is
tance between imperfectly collocated trajectories. The newd hetwork aiming at rectifying this issue in order to pro-
statistical approach is based on the heteroskedastic function¥jde traceable measurements of essential climate variables
regression (HFR) model which extends the standard func{ECVS), namely pressure, temperature, water vapour, wind
tional regression approach and allows a natural definition ofnd aerosol, with their uncertainty, over a long-term period
uncertainty profiles. Along this line, a five-fold decomposi- (6C0OS-112, 2007). The quantification of the uncertainty
tion of the total collocation uncertainty is proposed, giving Pudget is one of the key priorities for GRUAN (Seidel et al.,
both a profile budget and an integrated column budget. ~ 2011).

HFR is a data-driven approach valid for any atmospheric Instrumental contribution to the error budget (random and
parameter, which can be assumed smooth. It is illustrate@ystematic uncertainties) has been investigated for various
here by means of the collocation uncertainty analysis of relaS€nsors, e.g. Raman lidars (e.g. Whiteman et al., 2001), ra-
tive humidity from two stations involved in the GCOS refer- dio sondes (Immler et al., 2010) or weather radars (e.g.
ence upper-air network (GRUAN). In this case, 85 % of the O’Connor et al., 2005). On the other hand, one of the critical
total collocation uncertainty is ascribed to reducible environ-contributions to the uncertainty budget is related to the col-
mental error, 11 % to irreducible environmental error, 3.4 % location mismatch in space and time among pairs of sensors.

to adjustable bias, 0.1 % to sampling error and 0.2 % to meaé\lthough these different measurements (of the same atmo-
surement error. spheric parameter) are assumed to be nominally collocated,

there is a real physical separation between their actual mea-
surement locations and timing. This assumption is generally
true for ground-based observation, or when one is ground-
based and another satellite-based.
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Estimates of the representativeness error resulting frontollocation does not seem to play a big role in radiance
the effects of small-scale turbulence have been performednatching.
in many cases, for example, for rawinsonde wind measure- In this study, we aim at two objectives. The first is a gen-
ments (e.g. Frehlich and Sharman, 2004) or high-resolutioreral statistical modelling approach to understand the vertical
radiosonde wind shear (Houchi et al., 2010). profiles of collocation uncertainty for any climate variable,
However, there is a need for flexible statistical modelling, in relation to environmental factors, altitude of measurement
capable of assessing jointly the dynamic impact of both theand distance between trajectories. The second objective is
imperfect collocation of atmospheric observations and envi-an illustrative example based on relative humidity data from
ronmental factors on collocation uncertainty. The approachground rawinsonde measurements, which are made from two
should be flexible enough to cover atmospheric processedifferent locations at almost the same time. The case study is
characterized by regimes ranging from quasi-linear (e.g. amportant because humidity is known to have large forecast
horizontally homogeneous atmosphere) to non-linear. Thiserrors even on small time and space scales.
approach would extend the VAM approach of Pougatchev et To do this, we merge two statistical methodologies. One is
al. (2009), which is restricted to linear modelling and has noheteroskedastic regression, which has been used for calibra-
capability to model the impact of environmental factors. tion, see e.g. Bhaumik and Gibbons (2005) and Spiegelman
Radiosondes provide one of the primary data sources foet al. (2011), and financial data, see e.g. the classical
vertical atmospheric profiles (Immler et al., 2010), but they Engle (1982). According to this approach, the error vari-
are affected by uncontrolled drift once they are launchedance in a regression model is not constant but is a func-
(Seidel et al., 2011). Radiosonde data have been extensiveljon of some variables. The second methodology is statisti-
used for a wide range of applications including intercompar-cal functional data analysis, which dates back to the eight-
ison with ground-based and space-based remote sensing syies, see e.g. the primer of Ramsay and Silverman (2005). In
tems, atmospheric model evaluations, and studies of atmathe last decade these methods have been increasingly devel-
spheric variability. However, these studies have mainly as-oped and used in various scientific areas and especially in
sumed the radiosonde measurement to represent the atmiife and environment observation. For example, Ruiz-Medina
spheric conditions over a given area, as if they came from and Espejo (2012) proposed spatial interpolation of func-
fixed measurement location, and neglect the impact of theitional ocean surface temperature and Ignaccolo et al. (2013)
uncontrolled drift. In satellite validation, it is often assumed proposed regional zoning according to functional air quality
that radiosondes are spatially collocated with the satellitedata. Moreover, Sangalli et al. (2013) proposed functional
field of view. However, representativeness error can be mintegression for complex spatial configurations which are im-
imized only if the validation is performed in homogeneous portant, for example, in the study of hemodynamic forces,
conditions. If the error is small for integrated variables in see Ettinger et al. (2013). Following this statistical frame-
ideal atmospheric conditions (Vogelmann et al., 2011), quitework and developing the idea of Ignaccolo (2013), we pro-
often the uncertainty introduced by representativeness dompose the heteroskedastic functional regression (HFR) model,
inates the error budget of the validation experiment. Un-which extends the standard functional regression approach to
controlled radiosonde drift may also affect the evaluation ofcover for non-constant functional conditional variance, as an
model data when the representativeness of observations is neffective approach to understand and decompose the uncer-
quantified. These data sets should represent the range of cotainty of the atmospheric thermodynamic profiles.
ditions influencing the model prediction and not the “truth”  The rest of the paper is organized as follows: in S2ute
for the location. discuss radiosonde collocation in general and introduce the
Spatial collocation mismatch does not seem to play a bigBeltsville—Sterling data set, which is used throughout the pa-
role in the radiance matching, due to the large footprint charper as a motivating and illustrating case study. In S8ct.
acterizing these measurements. On the contrary, tempordhe HFR model for collocation uncertainty of generic at-
collocation and time interpolation are critical to achieving mospheric thermodynamic profiles is presented. Using this
these results due to the related vertical thermodynamic facgeneral modelling approach, a method for computing con-
tors (Tobin et al., 2006). ditional and marginal uncertainty profiles is proposed. In
The satellite validation community considers, as a prior- Sect.3.3, a total collocation uncertainty budget is introduced
ity, the availability of robust collocation criteria that would by means of a model-based five-fold uncertainty decompo-
increase the matches by a significant amount at an affordsition. Sectior4 illustrates the method using data from two
able cost due to data synergy. Appropriate collocation criteriaNorth American stations involved in GRUAN, and focuses
are strongly required to combine different measurements, t@n collocation uncertainty of relative humidity, which is se-
potentially reduce the overall uncertainty in the atmosphericlected because it is characterized by high vertical variability.
profile measurement (Tobin et al., 2006; Calbet et al., 2011) Section5 gives concluding remarks.
For example, in the former paper, temporal collocation and
time interpolation were critical to achieving good correla-
tion between the ground and satellite observations, although
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2 Case study introduction to be expensive, are held less frequently, and do not offer cli-
matically representative data across seasons and climates. As
Although the general statistical approach is developed inaresult, the data and opportunity for building statistics is usu-
Sect.3, a motivating example is introduced here. To do this ally limited and cross-instrument and cross-network knowl-
we present below the specific problem of sonde collocationedge transfer is limited.
and the data sets to be used with an introduction to the pa- The Beltsville—Sterling radiosonde flights are launched on
rameters considered. This is done in the context of the twaseparate balloon payloads, are operated by different opera-
GRUAN stations mentioned earlier: the Beltsville and Ster-tors, are different instruments and sample the atmospheric

ling locations. profile with some variability. Quantifying the latter is a major
issue. Traditionally, a simple averaged ensemble comparison
2.1 Collocation uncertainty for radiosonde as shown in Figl is done. The time—height matched dif-

ference between two data pairs from the Beltsville—Sterling

Data used in this work consist of radiosounding profilesflights is averaged to show temperature comparisons. The
of pressure, temperature, humidity and wind measured atemperature profile difference of sondes launched from these
the Howard University research site in Beltsville, Mary- two sites within a 3 h window did not show that large of a dif-
land, USA (39.054, —76.877, 53ma.s.l.), which is also a ference. As can be seen from the figure, the temperature dif-
GRUAN site, and the U.S. National Weather Service (NWS)ference (standard deviation) was well within about a percent.
operational site located in Sterling, Virginia, USA (38298 As expected, the water vapour mixing ratio (g#&y varied
—77.47,88ma.s.l.). greatly for the same sondes throughout the tropopause, above

These two sites, being separated by about 50 km, are sexbout 2 km. Mid-tropospheric mean differences of about fifty
lected because of their relatively close proximity, representpercent were recorded. Alternatively, comparison of the inte-
ing a similar climate regime. Moreover, they would serve asgrated column water vapour amounts between these two sta-
a good example of using one GRUAN research site to untions revealed correlation coefficients of 0.95 or better. The
derstand a non-GRUAN site, where knowledge can be transdifference in these comparative plots is a result of the mea-
ferred to a larger network represented by NWS. surement location mismatch, instrument quality, and statis-

Beltsville soundings are based on RS92-SGP sondes, matiical sampling of the atmospheric variability. These types of
ufactured by Vaisala Inc., while Sterling uses the Radiosondéstandard” statistics plots, while important in understanding
Replacement System (RRS), built by Lockheed Martin Sip-the overall characteristics of the atmospheric state variables,
pican. The latter is referred to hereafter as Mark IIA and iscannot be used to do quantitative contribution of the differ-
very similar to the LMS6 sonde (Nash et al., 2010). Differ- ent error components. The statistical “tool kit” described here
ences in the vertical sounding of the atmosphere betweehas quantitative description and separation of the different
the two sensor types are known. In dry regions of the tropo-error components as its goal. Note also that despite the per-
sphere, it has been reported amply that relative humidity deformance limitations of the RRS, we proceed with using the
rived from Mark Il1A (LMS6 sonde) shows substantial errors. Beltsville—Sterling data in our study here to demonstrate the
This limitation has been reported by Blackmore and Taub-efficacy of the statistics developed.
vurtzel (1999) to be a result of errors in calibration, sensor
hysteresis, and sensor response time. They also report that2 Beltsville-Sterling data
at low temperatures, the time response slows down signifi-
cantly, resulting in large relative humidity errors. During the For this study, we selected = 32 pairs of vertical pro-
latest WMO intercomparison of high-quality radiosonde sys-file data in the vertical range of 100 to 10000 m launched
tems (Nash et al., 2010), the RS92 version tested has showpetween July 2006 and September 2009. A flight from
systematic errors of less than 2% in relative humidity andBeltsville was matched to Sterling launch if the launch time
random errors of about 5% from the surface to the lowerwas within 3 h.
stratosphere, whereas the LMS6 exhibited significant biases In particular, we focus on collocation of relative humidity
in the upper troposphere and layers above. Moreover, thérh, in %) and we try to explain its profile uncertainty using
LMS6 sensor did reveal a day-night difference, but which covariates or predictors, which can be interpreted as environ-
is significant only in the upper troposphere; see Miloshevichmental factors, and are given by water vapour mixing ratio
et al. (2006). (mr), pressure f), temperature T), time (), wind vector

Most of the sonde-to-sonde or other comparisons reportedu, v), height above sea levet) and coordinates (lat, lon).
in the literature are a result of multi-payload sonde launchesThe differences in natural variability and collocation mis-
where two or more sondes are tethered to a single balmatch between these variables may be appreciated ir8Fig.
loon to minimize the atmospheric variability, which is com- where water vapour mixing ratio, relative humidity, wind and
monly assumed to be zero. These types of comparisons contemperature data are plotted. The collocation mismatch, plot-
mainly from coordinated and intensive field campaigns; seded as the time—height matched difference data, for relative
Miloshevich et al. (2006). These intensive operations tenchumidity and pressure is plotted in Fig,. showing quite a
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Displacement of co-located trajectories

T
NWS-WAVES 100*(NWS-WAVES)/WAVES
25 = 25

25— . 40

! L
A S 30

20 20

201

o

10r

km (North)

Height (km)

o

o

1% 50 60 70 80 90 100
km (East)

5 -2 0 2 020 4b 5‘0 ) 80
0, It i . . . . . .
T® A dlifference # of points perlayer Figure 2. The displacement of collocated trajectories is given by the

. . . . . difference of positions for two collocated instruments at the same al-
Figure 1. Comparison of radiosonde flights made at Beltsville and _. R . -~
titude. X axis is distance along parallels aridxis along meridians.

NWS-Sterling. Data pairs were matched if they were within 3 h. Distance range is 45-95 km
The temperature difference and the standard deviation of the differ- 9 ’
ence are shown as absolute difference and in percent as well as the

number of data pairs used at each layer. decomposition, an observation profile, labelled by launch
place and times;, ), i =1,...,n, is given by a random

strong variability for humidity at all altitude levels without an function

apparent pattgrn. Hence it is cr_\all_e_nging _for Fhe HFR modely,; (h) = w; (k) + i (h), (1)

to try to explain this strong variability, which is assumed to . _ . _

be a cumulative contribution of errors from the instrument Where.(h) is the profile of the physical quantity under study,
overall performance and from water vapour spatial variabil-assumed continuous, ang(h) is the corresponding error.

ity induced by the drifts shown in Fig. Note that the de-  Since the measurement ereds assumed with constant vari-

picted distances between the collocated profile trajectories i@nce, Vate(h)) = o2, and zero meank (¢(h)) =0, it fol-
between 45 and 95 km. lows that we are considering an unbiased instrument.

3.1 HFR collocation model

3 Modelling collocation uncertaint . .
g y Consider, now, measurements of the same variable from two

Let y denote the measurement of an atmospheric quaatity instruments, e.g. the radic_)soun_d_ing of relative humidity pro-

along a sonde trajectory, e.g. the profile of relative humid-files at Beltsville and Sterling, giving measuremenendy’

ity to be recorded by Beltsville balloon launches. A mea- réspectively, which can be represented by Hg.ahd have

surement at spatial point and timer is denoted here by €dual uncertainty, = oo. .

(s, 1), where the measurement positionsis (lat, lon, 4), The co_IIocatlon errorfollqws by comparn).gandy0 atthe

with measurement heighit in the rangeho—h1, which is same helght; hence., following the stochastic model approach

100-10000 m in the example considered, and measuremef{ the previous section, we have

time ist > 10, wherer is the sonde release time. Consider- Ay(h) = y(h) — yO(h) = A, (h) + Ac (). o)

ing only height, the space—time trajectory can be described

asy(h) =y (s(h),t(h)). In other words, we represent data In this formulaa, = n—ulis the collocation drift and\, =

y(s, 1) as vertical profile functions (i), whose exact space— ¢ — 0 is the collocation measurement error, with variance

time trajectory can be represented by the vector functionai = 20'82.

h— (y(h),lat(h),lon(h),t(h)). From a practical point of view the observed collocated pro-
Using the approach known as functional data analysisfiles y(h) and y°(h) are not observed exactly at the same

(FDA) described e.g. by Ramsay and Silverman (2005),height#, so the collocation erran , () is not directly com-

we consider the vertical profile of an atmospheric variableputable for every height. Vice versa,w(h) and u°(h) are

to be considered by a single object defined by a smootrcontinuous functions and , () may be easily computed for

function w(h). According to standard measurement error every height:.
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Figure 3. Thermodynamic profilesu) in Beltsville (BV) and Sterling (NWS). Top left: mixing ratio (mr); top right: relative humidity (rh);
bottom left: east-west wind component\ind); bottom right: temperaturd’(.

In this paper, we assume that measurements, conditionand the latter is given by
ally on a set ofg different environmental factors denoted ,
by x (i) = {x1(h), ..., x,(h)}, are independent random func- 0y (hlx) = exp(y (h)'x(h)). ®)
tions and we focus on modelling their conditional mean andThe choice between these skedastic models is based on the
variance as functions af(#). For example, in the Beltsville— data under study and both describe the uncertainty unac-
Sterling case study, candidate componentsxfgr) are all counted for by the locally linear componefit)'x (h) =
measured profiles of the atmospheric state introduced irzq B.(h)x ;(h). Therefore, Eqs.3) and @) or (5) define
Sect.2.2 We will address the spatial correlation among dif- a Hgtlercj)skedi';\stic functional regression or HFR model.
ferent profiles e.g. among (k) andy;(h) characterized by In the subsequent discussion, symbﬁlsand 5 denote

d'ﬁ:g:gt I\e/‘vlén(;hsgllj?:\:?tﬁgsstjﬁg] iglclgcs:;ion drift is a het- functional estimates g8 andy obtained on historical data
' as discussed in Appendix B.

eroskedastic functional regression model given by
Ay (h) = B(h) x(h) + w(h), (3) 3.2 Decomposition of collocation uncertainty

where the prime denotes matrix transposition. In this modelwe consider first the conditional collocation uncertainty pro-

we assume that the trend is locally linearly relatedtout  file given by the following conditional mean squared error:
the global relation is not assumed linear. Moreover, the error

w is assumed to be a conditionally heteroskedastic compoaiﬂ (hlx) = E(AZ|x) (6)
nent with zero mean and uncorrelated withThe term het-

eroskedasticity is derived from the ancient Greek language - (ﬂ(h)/x(h))ZJrU‘i(h'x)'
and means varying variance, which is what is assumed inrhjs equation is a direct consequence of B).gnd gives
this paper. In particular, the conditional variance, namelythe decomposition of the uncertainty profile for each value
o2(h|x) = Var(w(h)|x), is assumed to be a linear or log- of the set of factors at heighti, as the sum of the colloca-
linear function ofx. The former case is given by tion squared drif(B(h)'x (h)) plus the conditional variance

aj(h|x) =y(h)xh) 4) functionaj(h|x). In practice, the first term could be reduced
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1808 A. Fasso et al.: Collocation uncertainty in atmospheric profiles

or even cancelled by observing factoré:) and adjusting Finally the third summand of Eq8], namelyag(h), is the

the collocation mismatch accordingly, thati§ = Ay—B'x.  estimation uncertainty or sampling error and is given by

Thus, we will refer to this term as the conditional reducible

collocation error. Also, the conditional varianeg(h|x) de- o2(h)=E (x(h)’Z A(h)x(h)) ,

pends onx but this error component cannot be reduced even g

if x is known. Consequently, we will refer to this as the con-

ditional irreducible collocation error. N
Averaging the effects of environmental factarswe get ~ variance covariance matrix @f(k). When the historical in-

the (marginal) uncertainty proflleA (h) = E(AZ) lts de-  formation used for estimation is larg&, is small anda§

composition extends the heteroskedastic uncertamty decontan be neglected, otherwise this type Of random error Is irre-

where Eé(h)=Var(3(h)|x) is the estimation functional

position of Fasso et al. (2003) and is given by ducible.
Note that, in EQ.T), the functional objecﬂriv (h) gives the
GAZ}, (h)=0R, () +0% . (7)  uncertainty profile at height irrespective of the particular

value assumed by the set of factarand improves the ver-
whereagl(h) = E(Ai) is the expectation of Eq6) and de-  tical resolution of the usual grouped collocation uncertainty
fines the collocation uncertainty profile. Moreover, as dis-estimate. The latter is known to be given by
cussed in AppendipAl, this quantity is decomposed into 1 2
three terms: S2== Y (y(hj)—yo(h?)) , (11)
Mhopenza
2 2 2 2 / "
op, (h) =0y (h) +05,(h) +03(h)- (8)
whereh; and k% are matched by some proximity criterion
In this equation, similar to Eq6J, o2+ o2 defines the en-  andn; is the number of elements in the vertical lie: Ay,

vironmental error andz(h) is the samplmg error discussed With vertical size 2, which is usually between 100 and
below. 500m, as in Fig. 1; see e.g. Immler et al. (2010) and Sun

The first term on the right-hand side in E@),(namely etal. (2010).

2 . - . . . .
of, is the (marginal) reducible collocation uncertainty and is 3.3 Total uncertainty budget

given by
Summarizing the above discussion, we have the following
2 _
ox(h) =B My (B (). total profile uncertainty budget:
— AN i -
whereX, (h) = E (x(h)x(h)') is the functional second mo 02, (h) = ,BSJrGZNﬁO(h)JraaZ,(h) —|—a§(h) +O§g. (12)

ment matrix ofx (k) and, in practiceqxz(h) is computed us-

ing the estimatgs. In some cases E¢B) has a constantterm  |n order to get a simple uncertainty decomposition, B&) (
Bo which does not depend on the covariatesr on height  can be integrated along the atmospheric column, giving the
h. It is worth observing that in this cag® is the constant total column uncertainty budget
component of the collocation bias, and, if known, one can
easily adjust for it. Hence it is interesting to evaluate the rel- UA, =p5+6 Nﬂo +52+ aﬂ + GA , (13)
evance of this constant using a decomposition which sepa-
rates the impact on uncertainty of the constggfrom the  where the column uncertainti@‘e,z for I =y,x ~ Bo, w, B
non-constant covariates. Denoting this termxby Bo, we  are given by the profile averages
write .

1

_ _ 1
2=62 4+ b5 0 2= / o?(h)dh
h1—ho
ho

whose computational and theoretical details are given in the

AppendixA2. As above, in practice it is computed using an and Formula 13) gives a scalar uncertainty decomposition

estimatecbo. . o which is related to the usual concept of total uncertainty.
The second term on the right-hand side in B}, famely

05, is the irreducible collocation uncertainty and is given by 3.4  Spatial correlation
the average of the estimated skedastic functml (5), i.e.
The HFR model introduced assumes conditional indepen-

dence among different profileg(z) andy; (h). This is a con-

oj(h) =E, <&£(h|x)), (20) sequence of the natural assumption of independence among
the instrumental errors, sas ande;, and independence
with computation details shown in Appendh3. among the model erroes; andw;. This assumption is valid

Atmos. Meas. Tech., 7, 1803816 2014 www.atmos-meas-tech.net/7/1803/2014/
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Figure 4. Collocation mismatch profile& ;) given by differences BV-NWS. Left: relative humidi¢arh); right: pressuréAp).

since we are considering here only two stations and two in-each functional covariate;(2) has been decided upon the
dependent instruments. Wald-type test for zero effect of smooth components (Wood,
When profile data at many spatial sites are available, @&2013) and the comparison of the optimized REML scores.
suitable extension of the present HFR model can be devised As a result, relative humidity and the water vapour mix-
to take into account the possible spatial dependence amonigg ratio from Sterling radiosondes, respectivelyand mP,
different profilesy; () andy; (k) characterized by different and the difference in vapoutyn, have been included, while
launch places; ands;. Functional spatial statistics has been the other covariates related to the rest of the atmospheric
recently developed, see e.g. Delicado et al. (2010) and Ignadnformation as well as time, space and distance have been
colo et al. (2014), and could be used to handle such data ifiound not to be significant for this data set. This results in the

the framework of a spatial HFR model. following “water only” model for the mean of the collocation
drift:
— 5 0 5
4 Case study results Am(h) = 340+ Br(wrhl(h) + fa(ymr () (14)

+ Ba(h) Amr(h) + & (h) + Ag(lg)),

(00) 0.9

In this section, we use the data introduced in Séxt.
and model collocation uncertainty of relative humidity in
Beltsville radiosonde data as a function of the correspondwhere the standard deviations of the corresponding quantities
ing rh levels in the Sterling soundings as well as the restare given in the bracketed subscripts. The beta functions are
of the measured atmospheric variables: water vapour mixplotted in Fig.5 with 95 % confidence bands and show the
ing ratio (mr), pressurey), temperature®), time (), wind stable influence of thon the collocation drift, which hints at
vector {, v), height above sea levet) and coordinates (lat, an approximately linear relatioegteris paribusMoreover,
lon) from both collocated radiosondes. The resulting collo-the increasing behaviour ¢ compensates for the sharp de-
cation error analysis corresponds to forecasting the single rlerease inAn,| related to the behaviour of mr shown in Fgj.
sensor rather than all radiosonde ECVs. In particular, since Interestingly, an anonymous referee noted that the be-
we also use the collocation error of the mixing ratioy, haviour of B3 in Fig. 5 is consistent with the results of ap-
the heteroskedastic component (E.of this HFR model  proximations based on explicit physics modelling; see e.g.
describes the variability of relative humidity for fixed water Pruppacher and Klett (2010). Although the two pictures are
vapour content in dry air mass. similar but not equal, this is a confirmation that our general
Before using the estimation algorithm of Appendix B, to approach gives sensible results in special cases. The same
avoid scale effects and facilitate interpretation, the covariateseferee also makes the following shareable comment: “It is
data have been standardized so that the total profile averagetimt then surprising that most of the variance in the data is
zero and the total profile variance is unity. Moreover, prelim- explained by this function”. Nonetheless, modelling the re-
inary smoothing is applied tgp andx using penalized cubic ducible error component of the HFR model, in addition to
B splines with regularly spaced knots every 50 m and a smalls, allows one to assess the role @4, 81 and 82 and, in
smoothing factok = 1 giving small errore,, with the worst  principle, of any other environmental factor for which data
case arising for relative humidity whesg = 0.64 %. are available. Moreover, we also consider the heteroskedastic
Then, model selection involved fitting and testing a large component», which is not covered by the above-mentioned
number of alternative models for various combinations of explicit physics and needs to be estimated based on data.
different covariates. To do this, the inclusion/exclusion of For the case study considered, the latter gives an uncertainty
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Figure 5. Beta functions for the Beltsville relative humidity (rh) col- Figure 6a. Gamma functions of collocation errar? for relative
location drift model {4). Top left: Sterling relative humidity (4); humidity in Beltsville using model15). Top left: Sterling pressure
top right: Sterling mixing ratio (nf); bottom left: difference in mix- (p9); top right: Sterling temperatur@©); bottom left: Sterling rel-
ing ratio (Amr). ative humidity(rh®); bottom right: difference in pressutap).

(alon) (amr)

10
10

guota about 10% of the total, whilst the sampling error is
limited to 0.1%. In general, we believe that our approach E:
goes beyond previous analyses, increasing the knowledgez _
about the components of the total uncertainty budget of N
Eq. @2).

It is worth observing that, after accounting for the above 05
“water only” covariates, the collocation drift mean does not
depend on the distance of the paired trajectories. The in-
tercept termpBp = 3.40 characterizes the constant colloca- 21
tion bias between Beltsville and Sterling radiosoundings, and _ =
could be used for adjusting collocated measurements in prac< © |
tice. 27

With an adjusted determination coefficieRE = 0.886,
this model misses only 11.4% of the collocation uncer- ° 21 ¢ 1 & /S S S S
tainty which is covered by 2(h). The latter is estimated f T
by the functlongl logarithmic regression mOdAel applied to Figure 6b. Gamma functions of collocation erres? for relative
tAhe squares of first-order model functional erréfs= (. — humidity in Beltsville using modell(5). Top left: difference in lon-
B'x)2. In doing this we find that the irreducible uncertainty of gitude (Alon); top right: difference in mixing ratigAmn); bottom
relative humidity depends on pressup€), temperatureq©) left: difference in windu direction (Au); bottom right: difference
and relative humidity () in Sterling radiosondes, and the in wind, v direction(Av).
difference in pressuréA ), longitude(Ajqn), water vapour
(Amp) and wind(A,, Ay). This gives the functional model
of Eg. (15), whosey functions are given in Figgaand b.

Note that, whilst the mean part of the HFR model given

height (km)

height (km|
4
height (km)

and the prevailing wind direction. After accounting for all the
above, the resulting estimated skedastic equation is given by

by Eq. (14) is a “water only” model, the heteroskedastic |og2(h) = 2.68 + P1(h) p°(h) + P2(h) T°(h) (15)
component of Eq.15) has a number of other environmen- 0.17)

tal variables which are statistically significant. In particular, + Pa(h)rh°(h) + Pa(h) A, (h) + P5(h) Aton(h)

the east-west distana®p, is important especially at lower + 960h) Ame(h) + P70 Ay () + T8 () Ay ().

altitudes, below 3000 m, within the boundary layer, where

the variability of water vapour is large. The north—south di- The model given by Eqsl1d) and (5) is used to com-
rection was not significant in the model, which is consistentpute the profile and column budgets given by E42) énd
with both the marked trajectory anisotropy shown by Rig. (13), respectively. In particular, Fig. clearly shows that the
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o Table 1.Budget of total collocation uncertainty for relative humid-
S

N = — apy(h) ity (Arh) in Beltsville—Sterling, using the HFR model of Eq&4)
E --=- Ons and @5).
© -
: Source of uncertainty 52 5% 5
i ox-p(h) -
— A S e [ — c Total uncertainty Ay 343.8 100% 18.54
E o - \ Bo J
< E Collocation drift A, 3430 ~ 1852
E, i Bias (adjustable) Bo 116 34% 340
QL < U Environ. error (reducible) x~pp 293.2 855% 17.12
i Environ. error (irreducible) o 37.1 10.8% 6.09
! Sampling error B 021 041% 0.6
N E Measurement error Ag 0.81 0.2% 0.90
o 4 ' S

to the collocation difference of water vapour content in the
dry air mass, as shown by Eq.4) and Fig.5. Note that this
collocation difference of water vapour content stems from
a combination of the short-term variability of water vapour
Figure 7. Square root total uncertainigs ) budget for relative ~ and the sensor response to that variability: it is instructive
humidity collocation mismatch, including natural variabiligya , ), to find this known fact through purely statistical model for-
measurement errdpe ), sampling errora ), irreducible environ-  mulations. The second appreciable source of uncertainty is
mental error(o,,), reducible environmental errgsy~g,) and con-  the irreducible environmental error (10.8 %), which has been
stant errof(og, = o). shown to depend partly on distance along parallels. More-
over, it can be observed that the measurement ego& 0.9

and estimation uncertainlzyﬁ =0.46 are quite small. Last

major part of the uncertainty is related to the observed atmo-bUt not least, a simple constant bias correction for these data

I i 0,
spheric conditions as described by Eq4)( Moreover, we would reduce the collocation uncertainty by about 3.4 %. As

. . . mentioned above, the small size of the measurement error
can see that the environmental eregris smaller inside the

boundary layer, so the environmental tremchas a greater o¢ is a confirmation of the appropriateness of the smooth-
uncertainty con,tribution at these altitudes ing used. From the statistical point of view, this is also con-

It is worth noting that, after fixing the atmospheric con- firmed by the effective degrees of freedom of all components

ditions as in model ¥4), the collocation drift does not de- of model (4~(15), which are always smaller than 20 and

pend on the distance between paired trajectories. Neverthé © computed byngey which is discussed in Appendix B.

less, the conditional uncertainty, mod#b), depends on the

distance along parallel#\() as mentioned above. Figuse

shows that this estimate is less precise below 2000 m. Inothes  conclusions
words, after adjusting for the other environmental factors, the

distance cannot be used as a correction factor for the relativgnis paper proposes a new and general statistical method
humidity collocation error but is a determinant of the col- for defining and computing the total collocation uncertainty
location uncertainty, especially above 2000 m. Moreover, forp,gget of an ECV. The output is presented both as a pro-
these stations, the distance along meridians is not a key factajje uncertainty budget and an integrated total column bud-
in relative humidity collocation uncertainty. From a technical get. The model used is based on an extension of the classical
point of view, it should be noted that in Fig.the total un-  fynctional regression model, which is able to cover for het-
certaintyo,, is not directly computed on the data, becausegroskedasticity and allows the decomposition of total uncer-
y and y? from Beltsville and Sterling cannot be matched tainty up to five different components, namely constant bias,
exactly for every height and we avoid binning as in for- reducible and irreducible environmental errors, sampling er-
mula (11). Instead, thanks to the model-based approach, weor and measurement error. Moreover, the conditional uncer-
computedaiy (h) for all h using Egs. 7) and (L3); see also  tainty may be computed for any set of environmental condi-
the discussion in AppendiXl. tions, providing, inter alia, more information about the fac-
Taking averages of the uncertainty profiles, Tebfhows  tors determining the collocation uncertainty.

the role of the various components in the uncertainty bud- The proposed method is self-assessing, in the sense that it
get for this particular data set. The major source of uncer-s able to consider the information content of the data for the
tainty is given by the reducible environmental error which model and evaluate the size of the sampling error with respect
is related to the water vapour mixing ratio at Sterling andto the other uncertainty components. Although smoothing of

Standard Error Delta-RH
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vertical profiles is applied, this is data adaptive and the verti-found that the collocation drift strongly depends on the di-
cal resolution is higher than similar literature on this topic. rection of air mass advection and not on the distance of the

When available, an explicit physics approximation gives paired trajectories. Moreover, the collocation error has an ad-
results which are expected to be consistent with the meaifustable constant bias amounting to 3.4 % of the total colloca-
collocation drift given by the first part of the HFR model. In tion uncertainty. The model performed better below 3000 m
addition to this, the HFR model can assimilate any other en-of altitude and, globally, it missed only 11.4 % of the colloca-
vironmental covariate and, more importantly, thanks to thetion uncertainty for relative humidity. The latter uncertainty,
heteroskedastic component, it can quantify the various connamed irreducible environmental uncertainty, is related to
tributions to uncertainty, giving a new and detailed budget. wind and distance in the east—west direction.

This approach has been tested on radiosounding profiles of From the presented case study, we conclude that the collo-
humidity provided by the GRUAN site at Beltsville, Mary- cation uncertainty of relative humidity is related to physical
land, and the NWS operational site located in Sterling, Vir- quantities and, in principle, could be reduced by inclusion of
ginia, USA. Although, as mentioned above, the method isauxiliary information.
quite general and data driven, for the sites considered, we
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Appendix A practice, it is easy to adjust for this collocation bias and its

relevance may be evaluated by decomposifigs in Eq. 9)
This appendix considers some mathematical details aboujith 5)62 fo = 5XZ —ﬂg- Note that, if we are using a centered
~ 0 1

uncertainty computations of Se8t2and the uncertainty de-
composition of Eqs.®) and @). To do this, we simplify the .
functional notation: = 2(h) and observe that, in practice, ~ Sition exactly separatesand o, as it givessZ_, = 5;2- In
andw are estimated on suitable historical data/bynd @
respectively. Moreover, the decomposition for the constan
term 8o of Eq. () is discussed.

design withE (x (h)) = 0, this apparently obvious decompo-

general, an interaction term betwq@;nandfé, which is usu-
tally small, remains embeddedé’rjwﬂo. In fact, using simple
algebra, we can see that

Al Mean estimation and marginal uncertainty

2
. . . . . ~2 52, =2
In this section, we discuss the uncertainty decomposition ofx = 5o ‘H’; + h1

Eq. @8), focusing onu and ignoring the heteroskedastic struc-
ture ofw, which is considered in Appendi3. In particular
we consider the estimation error A3 Conditional variance estimation and marginal

- . uncertainty
B=B—-B

) ) ) _ In this appendix, Eq.10) is considered for both linear
so that the total collocation error is defined by adding thegnq |oglinear heteroskedastic mode# &nd ). Consid-
sampling error as follows: ering first the linear case, according to the conditional het-
Ay=Bx+o+ A, +B'x. eroskedastic literature (see e.g. Chatfield, 1995), we write

hi
d Oh / B (h)'E (x(h)) dh.
0
ho

~ ~ 2_ 2.,
Note that, sinced’x = B'x + B'x, adding the latter term to @~ =1 (¥ X+,

. - ~ Vi - / . . .
Ay |sfthAe silme az usmg:; |%st§ad Of_ﬂg n the_%efm; where n and ¢ are zero mean and independent random
t'orl 0 e ow observe thak (A |x) = (‘_"|x) =van variables, both independent of with n also unit variance
E(Bwlx) is neglectable for large sample sizes under weakang symmetrically distributed. This motivates the assump-
assumptions. Hence, we have tions we made in this paper an, namely E (w|x) = 0 and

- 2 — P :
E(Ailx) ~ g'xx'B JrUaz)(x) +G§€ + x'Var(Blx)x E(w¢|x) = y’x. Now, by simple algebra we write
2__ ot 2., 5y 2
and Eq. 8) follows the taking expectation oE(A§|x), "=y x+ 0y —y)x+nL

namely In this expression, using approximate unbiasednegs ibf

~ 2, _ 5 ~ H H
E(Ai)%ﬂ’Exﬂ+oaz,+o§E +E(x’Var(ﬂ|x)x> follows thatEn<y — y|x) = 0. This entails

2 ~
=0l +ol+o}, +ol. E(’x)=y'x

Note that, in prac'[icecrx2 is computed forB =B and =, and

is suitably estimated on the historical data. Similarlyis ~
_ i Var(w) =y E(x),
computed using suitable formulas. For example, under least
square estimation, we have which in practice is computed for = and E(x) as the
historical mean of the covariates.

P ~2 1
Var(Blx) = 65(X'X)™, Similarly in the log-linear case, we have

whereX is the functional design matrix. Var(olx,y) = E (exp(y’x))

A2 Uncertainty for constant bias term . . .
and using a second-order expansion of (Qyp— V) x) we

If Eg. (3) has a constant terify, it may be written as get
pa ° 1 ’ l -~
Au(h) = Bot+ B () x (h) +w(h), Var(w|y) = EE (exp(y'x) - x'Var(p|x)x),
wherex (h) = (1, x (h)")’ andg(h) = (,30,/§ h'y. which in practice is computed fgr = y. When enough data

Note thatg, is an identifiable coefficient since no instru- are available, Vat) may be estimated using the sample vari-
mental bias has been assumed in the previous section and, ance of the residuals in EqL3).
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Appendix B Note that the number of knots and, hence, the size of the
parameter vectoe are large; then, in order to avoid over-

In this Appendix we consider the estimation of the functional fitting and excessive wiggliness @ffunctions, a penalized

coefficientsg(h) andy (h) in Egs. @) and @) or (5) using  maximum likelihood approach is used. To this end, the fol-

historical data given by pairs of vertical profiles. lowing criterion function is introduced:
As a preliminary step, observed profiles fprand x are

smoothed and transformed to continuous functions using cu- 1 ,

bic B splines. The smoothing error is used to compige  2(©) "’Z’\J’CSJ'C’ (B3)
and to assess the smoothing bias. Then, using the smoothed j=1

variables, the error-free collocation mismatch is computethereD is the deviance of modeBQ) under Gaussian as-

giving A, (h) for all h. Note that the possible vertical mis- g, mptions¢’s; cincreases with the size of the second deriva-
alignment between imperfectly collocated profiles is auto-4;eg of 8;, anda.; are the smoothing parameters, which con-

matically overcome by this method. _ trol the trade-off between fidelity to the raw data and smooth-
The estimation o3 andy functions is now made in two  ,a5¢ ofg; functions.
steps. Firs{8 is obtained using thengcv package (Wood, Now, ¢ and A are estimated according to the maximum
2012) as described below. _ , likelihood principle, which is implemented by nested itera-
The basic idea of this approach is to re-write E&.for  tions of two optimization algorithms. In particular, for fixed
each error trajectorp, ;, i =1,...,n, as a generalized ad- ; "ihe inner iterations optimize EqB8) using the so-called
ditive model (GAM) where th? smooth components are Mul-penalized Iteratively Reweighted Least Squares (P-IRLS),
tiplied by covariates; ; (h) fori =1.....nandj =1.....q.  \hich givest, at convergence. Moreover, the outer iterations
To do this, each functiofi; (1) is expanded as optimize for A using the Restricted Maximum Likelihood

K Estimation (REML) algorithm of Wood (2011). At conver-
. _ ' gence, we have estimatées 4, 8;) wherepB; functions are
B = ;“f*’(h)cf*” B Sbtained by Eq.81). ! !

- The second step is related to estimation déinctions and
wherea; ;(t) are the above-mentioned cubic B-spline basiswe focus here on modeb). To do this, using the estimates
functions, computed &t; knots on the vertical dimensidn B, the log errors log? = log(u — B'x)? are computed and
Moreover,c;; are the related coefficients, or model parame-used to estimate moded)with the same algorithm described
ters, to be estimated on data. Then we substitiitg; (h) = above wherg is replaced by andA , is replaced by logb)
aj(h)x; j(h) and Eq. B1) into Eq. @). This gives the fol-  as input tomgcv
lowing standard additive model representation:

g Kk
Apith)y =Y "> A ja(h)eji+wi(h), (B2)
j=1

=1

where A; ;;(h) are the known quantities defined above,
and the model coefficient vector to be estimated is
{e1,....cq} Wherecj ={cj1,...,cjk;},andj=1,....q.
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