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Abstract. The quantification of measurement uncertainty of
atmospheric parameters is a key factor in assessing the un-
certainty of global change estimates given by numerical pre-
diction models. One of the critical contributions to the un-
certainty budget is related to the collocation mismatch in
space and time among observations made at different loca-
tions. This is particularly important for vertical atmospheric
profiles obtained by radiosondes or lidar.

In this paper we propose a statistical modelling approach
capable of explaining the relationship between collocation
uncertainty and a set of environmental factors, height and dis-
tance between imperfectly collocated trajectories. The new
statistical approach is based on the heteroskedastic functional
regression (HFR) model which extends the standard func-
tional regression approach and allows a natural definition of
uncertainty profiles. Along this line, a five-fold decomposi-
tion of the total collocation uncertainty is proposed, giving
both a profile budget and an integrated column budget.

HFR is a data-driven approach valid for any atmospheric
parameter, which can be assumed smooth. It is illustrated
here by means of the collocation uncertainty analysis of rela-
tive humidity from two stations involved in the GCOS refer-
ence upper-air network (GRUAN). In this case, 85 % of the
total collocation uncertainty is ascribed to reducible environ-
mental error, 11 % to irreducible environmental error, 3.4 %
to adjustable bias, 0.1 % to sampling error and 0.2 % to mea-
surement error.

1 Introduction

While global availability of profiling measurements of atmo-
spheric parameters is increasing, full exploitation of these
measurements is still far from being achieved. In fact, the
lack of an extensive effort, on a global scale, aimed at co-
ordinating the operation of available measurement stations
towards harmonized and traceable observations, uncertainty
included, has hampered exploitation of the data. GRUAN
(GCOS Reference Upper-Air Network,www.gruan.org) is
a network aiming at rectifying this issue in order to pro-
vide traceable measurements of essential climate variables
(ECVs), namely pressure, temperature, water vapour, wind
and aerosol, with their uncertainty, over a long-term period
(GCOS-112, 2007). The quantification of the uncertainty
budget is one of the key priorities for GRUAN (Seidel et al.,
2011).

Instrumental contribution to the error budget (random and
systematic uncertainties) has been investigated for various
sensors, e.g. Raman lidars (e.g. Whiteman et al., 2001), ra-
dio sondes (Immler et al., 2010) or weather radars (e.g.
O’Connor et al., 2005). On the other hand, one of the critical
contributions to the uncertainty budget is related to the col-
location mismatch in space and time among pairs of sensors.
Although these different measurements (of the same atmo-
spheric parameter) are assumed to be nominally collocated,
there is a real physical separation between their actual mea-
surement locations and timing. This assumption is generally
true for ground-based observation, or when one is ground-
based and another satellite-based.
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Estimates of the representativeness error resulting from
the effects of small-scale turbulence have been performed
in many cases, for example, for rawinsonde wind measure-
ments (e.g. Frehlich and Sharman, 2004) or high-resolution
radiosonde wind shear (Houchi et al., 2010).

However, there is a need for flexible statistical modelling,
capable of assessing jointly the dynamic impact of both the
imperfect collocation of atmospheric observations and envi-
ronmental factors on collocation uncertainty. The approach
should be flexible enough to cover atmospheric processes
characterized by regimes ranging from quasi-linear (e.g. a
horizontally homogeneous atmosphere) to non-linear. This
approach would extend the VAM approach of Pougatchev et
al. (2009), which is restricted to linear modelling and has no
capability to model the impact of environmental factors.

Radiosondes provide one of the primary data sources for
vertical atmospheric profiles (Immler et al., 2010), but they
are affected by uncontrolled drift once they are launched
(Seidel et al., 2011). Radiosonde data have been extensively
used for a wide range of applications including intercompar-
ison with ground-based and space-based remote sensing sys-
tems, atmospheric model evaluations, and studies of atmo-
spheric variability. However, these studies have mainly as-
sumed the radiosonde measurement to represent the atmo-
spheric conditions over a given area, as if they came from a
fixed measurement location, and neglect the impact of their
uncontrolled drift. In satellite validation, it is often assumed
that radiosondes are spatially collocated with the satellite
field of view. However, representativeness error can be min-
imized only if the validation is performed in homogeneous
conditions. If the error is small for integrated variables in
ideal atmospheric conditions (Vogelmann et al., 2011), quite
often the uncertainty introduced by representativeness dom-
inates the error budget of the validation experiment. Un-
controlled radiosonde drift may also affect the evaluation of
model data when the representativeness of observations is not
quantified. These data sets should represent the range of con-
ditions influencing the model prediction and not the “truth”
for the location.

Spatial collocation mismatch does not seem to play a big
role in the radiance matching, due to the large footprint char-
acterizing these measurements. On the contrary, temporal
collocation and time interpolation are critical to achieving
these results due to the related vertical thermodynamic fac-
tors (Tobin et al., 2006).

The satellite validation community considers, as a prior-
ity, the availability of robust collocation criteria that would
increase the matches by a significant amount at an afford-
able cost due to data synergy. Appropriate collocation criteria
are strongly required to combine different measurements, to
potentially reduce the overall uncertainty in the atmospheric
profile measurement (Tobin et al., 2006; Calbet et al., 2011).
For example, in the former paper, temporal collocation and
time interpolation were critical to achieving good correla-
tion between the ground and satellite observations, although

collocation does not seem to play a big role in radiance
matching.

In this study, we aim at two objectives. The first is a gen-
eral statistical modelling approach to understand the vertical
profiles of collocation uncertainty for any climate variable,
in relation to environmental factors, altitude of measurement
and distance between trajectories. The second objective is
an illustrative example based on relative humidity data from
ground rawinsonde measurements, which are made from two
different locations at almost the same time. The case study is
important because humidity is known to have large forecast
errors even on small time and space scales.

To do this, we merge two statistical methodologies. One is
heteroskedastic regression, which has been used for calibra-
tion, see e.g. Bhaumik and Gibbons (2005) and Spiegelman
et al. (2011), and financial data, see e.g. the classical
Engle (1982). According to this approach, the error vari-
ance in a regression model is not constant but is a func-
tion of some variables. The second methodology is statisti-
cal functional data analysis, which dates back to the eight-
ies, see e.g. the primer of Ramsay and Silverman (2005). In
the last decade these methods have been increasingly devel-
oped and used in various scientific areas and especially in
life and environment observation. For example, Ruiz-Medina
and Espejo (2012) proposed spatial interpolation of func-
tional ocean surface temperature and Ignaccolo et al. (2013)
proposed regional zoning according to functional air quality
data. Moreover, Sangalli et al. (2013) proposed functional
regression for complex spatial configurations which are im-
portant, for example, in the study of hemodynamic forces,
see Ettinger et al. (2013). Following this statistical frame-
work and developing the idea of Ignaccolo (2013), we pro-
pose the heteroskedastic functional regression (HFR) model,
which extends the standard functional regression approach to
cover for non-constant functional conditional variance, as an
effective approach to understand and decompose the uncer-
tainty of the atmospheric thermodynamic profiles.

The rest of the paper is organized as follows: in Sect.2 we
discuss radiosonde collocation in general and introduce the
Beltsville–Sterling data set, which is used throughout the pa-
per as a motivating and illustrating case study. In Sect.3,
the HFR model for collocation uncertainty of generic at-
mospheric thermodynamic profiles is presented. Using this
general modelling approach, a method for computing con-
ditional and marginal uncertainty profiles is proposed. In
Sect.3.3, a total collocation uncertainty budget is introduced
by means of a model-based five-fold uncertainty decompo-
sition. Section4 illustrates the method using data from two
North American stations involved in GRUAN, and focuses
on collocation uncertainty of relative humidity, which is se-
lected because it is characterized by high vertical variability.
Section5 gives concluding remarks.
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2 Case study introduction

Although the general statistical approach is developed in
Sect.3, a motivating example is introduced here. To do this
we present below the specific problem of sonde collocation
and the data sets to be used with an introduction to the pa-
rameters considered. This is done in the context of the two
GRUAN stations mentioned earlier: the Beltsville and Ster-
ling locations.

2.1 Collocation uncertainty for radiosonde

Data used in this work consist of radiosounding profiles
of pressure, temperature, humidity and wind measured at
the Howard University research site in Beltsville, Mary-
land, USA (39.054◦, −76.877◦, 53 m a.s.l.), which is also a
GRUAN site, and the U.S. National Weather Service (NWS)
operational site located in Sterling, Virginia, USA (38.98◦,
−77.47◦, 88 m a.s.l.).

These two sites, being separated by about 50 km, are se-
lected because of their relatively close proximity, represent-
ing a similar climate regime. Moreover, they would serve as
a good example of using one GRUAN research site to un-
derstand a non-GRUAN site, where knowledge can be trans-
ferred to a larger network represented by NWS.

Beltsville soundings are based on RS92-SGP sondes, man-
ufactured by Vaisala Inc., while Sterling uses the Radiosonde
Replacement System (RRS), built by Lockheed Martin Sip-
pican. The latter is referred to hereafter as Mark IIA and is
very similar to the LMS6 sonde (Nash et al., 2010). Differ-
ences in the vertical sounding of the atmosphere between
the two sensor types are known. In dry regions of the tropo-
sphere, it has been reported amply that relative humidity de-
rived from Mark IIA (LMS6 sonde) shows substantial errors.
This limitation has been reported by Blackmore and Taub-
vurtzel (1999) to be a result of errors in calibration, sensor
hysteresis, and sensor response time. They also report that
at low temperatures, the time response slows down signifi-
cantly, resulting in large relative humidity errors. During the
latest WMO intercomparison of high-quality radiosonde sys-
tems (Nash et al., 2010), the RS92 version tested has shown
systematic errors of less than 2 % in relative humidity and
random errors of about 5 % from the surface to the lower
stratosphere, whereas the LMS6 exhibited significant biases
in the upper troposphere and layers above. Moreover, the
LMS6 sensor did reveal a day–night difference, but which
is significant only in the upper troposphere; see Miloshevich
et al. (2006).

Most of the sonde-to-sonde or other comparisons reported
in the literature are a result of multi-payload sonde launches
where two or more sondes are tethered to a single bal-
loon to minimize the atmospheric variability, which is com-
monly assumed to be zero. These types of comparisons come
mainly from coordinated and intensive field campaigns; see
Miloshevich et al. (2006). These intensive operations tend

to be expensive, are held less frequently, and do not offer cli-
matically representative data across seasons and climates. As
a result, the data and opportunity for building statistics is usu-
ally limited and cross-instrument and cross-network knowl-
edge transfer is limited.

The Beltsville–Sterling radiosonde flights are launched on
separate balloon payloads, are operated by different opera-
tors, are different instruments and sample the atmospheric
profile with some variability. Quantifying the latter is a major
issue. Traditionally, a simple averaged ensemble comparison
as shown in Fig.1 is done. The time–height matched dif-
ference between two data pairs from the Beltsville–Sterling
flights is averaged to show temperature comparisons. The
temperature profile difference of sondes launched from these
two sites within a 3 h window did not show that large of a dif-
ference. As can be seen from the figure, the temperature dif-
ference (standard deviation) was well within about a percent.
As expected, the water vapour mixing ratio (g kg−1) varied
greatly for the same sondes throughout the tropopause, above
about 2 km. Mid-tropospheric mean differences of about fifty
percent were recorded. Alternatively, comparison of the inte-
grated column water vapour amounts between these two sta-
tions revealed correlation coefficients of 0.95 or better. The
difference in these comparative plots is a result of the mea-
surement location mismatch, instrument quality, and statis-
tical sampling of the atmospheric variability. These types of
“standard” statistics plots, while important in understanding
the overall characteristics of the atmospheric state variables,
cannot be used to do quantitative contribution of the differ-
ent error components. The statistical “tool kit” described here
has quantitative description and separation of the different
error components as its goal. Note also that despite the per-
formance limitations of the RRS, we proceed with using the
Beltsville–Sterling data in our study here to demonstrate the
efficacy of the statistics developed.

2.2 Beltsville–Sterling data

For this study, we selectedn = 32 pairs of vertical pro-
file data in the vertical range of 100 to 10 000 m launched
between July 2006 and September 2009. A flight from
Beltsville was matched to Sterling launch if the launch time
was within 3 h.

In particular, we focus on collocation of relative humidity
(rh, in %) and we try to explain its profile uncertainty using
covariates or predictors, which can be interpreted as environ-
mental factors, and are given by water vapour mixing ratio
(mr), pressure (p), temperature (T ), time (t), wind vector
(u,v), height above sea level (h) and coordinates (lat, lon).
The differences in natural variability and collocation mis-
match between these variables may be appreciated in Fig.3,
where water vapour mixing ratio, relative humidity, wind and
temperature data are plotted. The collocation mismatch, plot-
ted as the time–height matched difference data, for relative
humidity and pressure is plotted in Fig.4, showing quite a
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Figure 1. Comparison of radiosonde flights made at Beltsville and
NWS-Sterling. Data pairs were matched if they were within 3 h.
The temperature difference and the standard deviation of the differ-
ence are shown as absolute difference and in percent as well as the
number of data pairs used at each layer.

strong variability for humidity at all altitude levels without an
apparent pattern. Hence it is challenging for the HFR model
to try to explain this strong variability, which is assumed to
be a cumulative contribution of errors from the instrument
overall performance and from water vapour spatial variabil-
ity induced by the drifts shown in Fig.2. Note that the de-
picted distances between the collocated profile trajectories is
between 45 and 95 km.

3 Modelling collocation uncertainty

Let y denote the measurement of an atmospheric quantityµ

along a sonde trajectory, e.g. the profile of relative humid-
ity to be recorded by Beltsville balloon launches. A mea-
surement at spatial points and timet is denoted here by
y(s, t), where the measurement position iss = (lat, lon, h),
with measurement heighth in the rangeh0–h1, which is
100–10 000 m in the example considered, and measurement
time is t ≥ t0, wheret0 is the sonde release time. Consider-
ing only height, the space–time trajectory can be described
as y(h) = y (s(h), t (h)). In other words, we represent data
y(s, t) as vertical profile functionsy(h), whose exact space–
time trajectory can be represented by the vector function
h 7→ (y(h), lat(h), lon(h), t (h)).

Using the approach known as functional data analysis
(FDA) described e.g. by Ramsay and Silverman (2005),
we consider the vertical profile of an atmospheric variable
to be considered by a single object defined by a smooth
function µ(h). According to standard measurement error

Figure 2.The displacement of collocated trajectories is given by the
difference of positions for two collocated instruments at the same al-
titude.X axis is distance along parallels andY axis along meridians.
Distance range is 45–95 km.

decomposition, an observation profile, labelled by launch
place and time(si, ti), i = 1, . . .,n, is given by a random
function

yi(h) = µi(h) + εi(h), (1)

whereµ(h) is the profile of the physical quantity under study,
assumed continuous, andεi(h) is the corresponding error.
Since the measurement errorε is assumed with constant vari-
ance, Var(ε(h)) = σ 2

ε , and zero mean,E(ε(h)) = 0, it fol-
lows that we are considering an unbiased instrument.

3.1 HFR collocation model

Consider, now, measurements of the same variable from two
instruments, e.g. the radiosounding of relative humidity pro-
files at Beltsville and Sterling, giving measurementsy andy0

respectively, which can be represented by Eq. (1) and have
equal uncertaintyσε = σε0.

The collocation error follows by comparingy andy0 at the
same height; hence, following the stochastic model approach
of the previous section, we have

1y(h) = y(h) − y0(h) = 1µ(h) + 1ε(h). (2)

In this formula1µ = µ−µ0 is the collocation drift and1ε =

ε − ε0 is the collocation measurement error, with variance
σ 2

1ε
= 2σ 2

ε .
From a practical point of view the observed collocated pro-

files y(h) and y0(h) are not observed exactly at the same
heighth, so the collocation error1y(h) is not directly com-
putable for every heighth. Vice versa,µ(h) andµ0(h) are
continuous functions and1µ(h) may be easily computed for
every heighth.

Atmos. Meas. Tech., 7, 1803–1816, 2014 www.atmos-meas-tech.net/7/1803/2014/
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Figure 3. Thermodynamic profiles(µ) in Beltsville (BV) and Sterling (NWS). Top left: mixing ratio (mr); top right: relative humidity (rh);
bottom left: east–west wind component (vWind); bottom right: temperature (T ).

In this paper, we assume that measurements, condition-
ally on a set ofq different environmental factors denoted
by x(h) =

{
x1(h), . . .,xq(h)

}
, are independent random func-

tions and we focus on modelling their conditional mean and
variance as functions ofx(h). For example, in the Beltsville–
Sterling case study, candidate components forx(h) are all
measured profiles of the atmospheric state introduced in
Sect.2.2. We will address the spatial correlation among dif-
ferent profiles e.g. amongyi(h) andyj (h) characterized by
different launch placessi andsj in Sect.3.4.

Here, we assume that the collocation drift is a het-
eroskedastic functional regression model given by

1µ(h) = β(h)′x(h) + ω(h), (3)

where the prime denotes matrix transposition. In this model,
we assume that the trend is locally linearly related tox but
the global relation is not assumed linear. Moreover, the error
ω is assumed to be a conditionally heteroskedastic compo-
nent with zero mean and uncorrelated withx. The term het-
eroskedasticity is derived from the ancient Greek language
and means varying variance, which is what is assumed in
this paper. In particular, the conditional variance, namely
σ 2

ω(h|x) = Var(ω(h)|x), is assumed to be a linear or log-
linear function ofx. The former case is given by

σ 2
ω(h|x) = γ (h)′x(h) (4)

and the latter is given by

σ 2
ω(h|x) = exp

(
γ (h)′x(h)

)
. (5)

The choice between these skedastic models is based on the
data under study and both describe the uncertainty unac-
counted for by the locally linear componentβ(h)′x(h) =∑q

j=1βj (h)xj (h). Therefore, Eqs. (3) and (4) or (5) define
a heteroskedastic functional regression or HFR model.

In the subsequent discussion, symbolsβ̂ and γ̂ denote
functional estimates ofβ andγ obtained on historical data
as discussed in Appendix B.

3.2 Decomposition of collocation uncertainty

We consider first the conditional collocation uncertainty pro-
file given by the following conditional mean squared error:

σ 2
1µ

(h|x) = E(12
µ|x) (6)

=
(
β(h)′x(h)

)2
+ σ 2

ω(h|x).

This equation is a direct consequence of Eq. (3) and gives
the decomposition of the uncertainty profile for each value
of the set of factorsx at heighth, as the sum of the colloca-
tion squared drift

(
β(h)′x(h)

)2 plus the conditional variance
functionσ 2

ω(h|x). In practice, the first term could be reduced
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or even cancelled by observing factorsx(h) and adjusting
the collocation mismatch accordingly, that is1∗

y = 1y−β ′x.
Thus, we will refer to this term as the conditional reducible
collocation error. Also, the conditional varianceσ 2

ω(h|x) de-
pends onx but this error component cannot be reduced even
if x is known. Consequently, we will refer to this as the con-
ditional irreducible collocation error.

Averaging the effects of environmental factorsx, we get
the (marginal) uncertainty profileσ 2

1y
(h) = E(12

y). Its de-
composition extends the heteroskedastic uncertainty decom-
position of Fassò et al. (2003) and is given by

σ 2
1y

(h) = σ 2
1µ

(h) + σ 2
1ε

, (7)

whereσ 2
1µ

(h) = E(12
µ) is the expectation of Eq. (6) and de-

fines the collocation uncertainty profile. Moreover, as dis-
cussed in AppendixA1, this quantity is decomposed into
three terms:

σ 2
1µ

(h) = σ 2
x (h) + σ 2

ω(h) + σ 2
β̂
(h). (8)

In this equation, similar to Eq. (6), σ 2
x + σ 2

ω defines the en-
vironmental error andσ 2

β̂
(h) is the sampling error discussed

below.
The first term on the right-hand side in Eq. (8), namely

σ 2
x , is the (marginal) reducible collocation uncertainty and is

given by

σ 2
x (h) = β ′(h)6x(h)β(h),

where6x(h) = E
(
x(h)x(h)′

)
is the functional second mo-

ment matrix ofx(h) and, in practice,σ 2
x (h) is computed us-

ing the estimatêβ. In some cases Eq. (3) has a constant term
β0 which does not depend on the covariatesx or on height
h. It is worth observing that in this caseβ0 is the constant
component of the collocation bias, and, if known, one can
easily adjust for it. Hence it is interesting to evaluate the rel-
evance of this constant using a decomposition which sepa-
rates the impact on uncertainty of the constantβ0 from the
non-constant covariates. Denoting this term byx ∼ β0, we
write

σ̄ 2
x = σ̄ 2

x∼β0
+ β2

0, (9)

whose computational and theoretical details are given in the
AppendixA2. As above, in practice it is computed using an
estimatedβ̂0.

The second term on the right-hand side in Eq. (8), namely
σ 2

ω, is the irreducible collocation uncertainty and is given by
the average of the estimated skedastic function (4) or (5), i.e.

σ 2
ω(h) = Ex

(
σ̂ 2

ω(h|x)
)
, (10)

with computation details shown in AppendixA3.

Finally the third summand of Eq. (8), namelyσ 2
β̂
(h), is the

estimation uncertainty or sampling error and is given by

σ 2
β̂
(h) = E

(
x(h)′6

β̂
(h)x(h)

)
,

where 6
β̂
(h) = Var(β̂(h)|x) is the estimation functional

variance covariance matrix of̂β(h). When the historical in-
formation used for estimation is large,6

β̂
is small andσ 2

β̂

can be neglected, otherwise this type of random error is irre-
ducible.

Note that, in Eq. (7), the functional objectσ 2
1y

(h) gives the
uncertainty profile at heighth irrespective of the particular
value assumed by the set of factorsx and improves the ver-
tical resolution of the usual grouped collocation uncertainty
estimate. The latter is known to be given by

S(h)2
=

1

nh

∑
hj ∈h±1h

(
y(hj ) − y0(h0

j )
)2

, (11)

wherehj andh0
j are matched by some proximity criterion

andnh is the number of elements in the vertical binh ± 1h,
with vertical size 21h which is usually between 100 and
500 m, as in Fig. 1; see e.g. Immler et al. (2010) and Sun
et al. (2010).

3.3 Total uncertainty budget

Summarizing the above discussion, we have the following
total profile uncertainty budget:

σ 2
1y

(h) = β2
0 + σ 2

x∼β0
(h) + σ 2

ω(h) + σ 2
β̂
(h) + σ 2

1ε
. (12)

In order to get a simple uncertainty decomposition, Eq. (12)
can be integrated along the atmospheric column, giving the
total column uncertainty budget

σ̄ 2
1y

= β2
0 + σ̄ 2

x∼β0
+ σ̄ 2

ω + σ̄ 2
β̂

+ σ 2
1ε

, (13)

where the column uncertainties̄σ 2
I for I = y,x ∼ β0,ω, β̂

are given by the profile averages

σ̄ 2
I =

1

h1 − h0

h1∫
h0

σ 2
I (h)dh

and Formula (13) gives a scalar uncertainty decomposition
which is related to the usual concept of total uncertainty.

3.4 Spatial correlation

The HFR model introduced assumes conditional indepen-
dence among different profilesyi(h) andyj (h). This is a con-
sequence of the natural assumption of independence among
the instrumental errors, sayεi and εj , and independence
among the model errorsωi andωj . This assumption is valid
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Figure 4. Collocation mismatch profiles(1µ) given by differences BV–NWS. Left: relative humidity(1rh); right: pressure(1p).

since we are considering here only two stations and two in-
dependent instruments.

When profile data at many spatial sites are available, a
suitable extension of the present HFR model can be devised
to take into account the possible spatial dependence among
different profilesyi(h) andyj (h) characterized by different
launch placessi andsj . Functional spatial statistics has been
recently developed, see e.g. Delicado et al. (2010) and Ignac-
colo et al. (2014), and could be used to handle such data in
the framework of a spatial HFR model.

4 Case study results

In this section, we use the data introduced in Sect.2,
and model collocation uncertainty of relative humidity in
Beltsville radiosonde data as a function of the correspond-
ing rh levels in the Sterling soundings as well as the rest
of the measured atmospheric variables: water vapour mix-
ing ratio (mr), pressure (p), temperature (T ), time (t), wind
vector (u,v), height above sea level (h) and coordinates (lat,
lon) from both collocated radiosondes. The resulting collo-
cation error analysis corresponds to forecasting the single rh
sensor rather than all radiosonde ECVs. In particular, since
we also use the collocation error of the mixing ratio,1mr,
the heteroskedastic component (Eq.5) of this HFR model
describes the variability of relative humidity for fixed water
vapour content in dry air mass.

Before using the estimation algorithm of Appendix B, to
avoid scale effects and facilitate interpretation, the covariates
data have been standardized so that the total profile average is
zero and the total profile variance is unity. Moreover, prelim-
inary smoothing is applied toy andx using penalized cubic
B splines with regularly spaced knots every 50 m and a small
smoothing factorλ = 1 giving small errorsσε, with the worst
case arising for relative humidity whereσε = 0.64 %.

Then, model selection involved fitting and testing a large
number of alternative models for various combinations of
different covariates. To do this, the inclusion/exclusion of

each functional covariatexj (h) has been decided upon the
Wald-type test for zero effect of smooth components (Wood,
2013) and the comparison of the optimized REML scores.

As a result, relative humidity and the water vapour mix-
ing ratio from Sterling radiosondes, respectively rh0 and mr0,
and the difference in vapour,1mr, have been included, while
the other covariates related to the rest of the atmospheric
information as well as time, space and distance have been
found not to be significant for this data set. This results in the
following “water only” model for the mean of the collocation
drift:

1rh(h) = 3.40
(0.15)

+ β̂1(h)rh0(h) + β̂2(h)mr0(h) (14)

+ β̂3(h)1mr(h) + ω̂(h)
(σω)

+ 1ε(h)
(0.90)

,

where the standard deviations of the corresponding quantities
are given in the bracketed subscripts. The beta functions are
plotted in Fig.5 with 95 % confidence bands and show the
stable influence of rh0 on the collocation drift, which hints at
an approximately linear relation,ceteris paribus. Moreover,
the increasing behaviour of̂β3 compensates for the sharp de-
crease in|1mr| related to the behaviour of mr shown in Fig.3.

Interestingly, an anonymous referee noted that the be-
haviour of β̂3 in Fig. 5 is consistent with the results of ap-
proximations based on explicit physics modelling; see e.g.
Pruppacher and Klett (2010). Although the two pictures are
similar but not equal, this is a confirmation that our general
approach gives sensible results in special cases. The same
referee also makes the following shareable comment: “It is
not then surprising that most of the variance in the data is
explained by this function”. Nonetheless, modelling the re-
ducible error component of the HFR model, in addition to
β3, allows one to assess the role ofβ0,β1 and β2 and, in
principle, of any other environmental factor for which data
are available. Moreover, we also consider the heteroskedastic
componentω, which is not covered by the above-mentioned
explicit physics and needs to be estimated based on data.
For the case study considered, the latter gives an uncertainty
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Fig. 5. Beta functions for Beltsville relative humidity (rh) collocation drift model (14). Top left: Sterling relative humidity
(
rh0

)
; top right:

Sterling mixing ratio
(
mr0

)
; bottom left: difference in mixing ratio (∆mr).

Fig. 6. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model (15). Top left: Sterling pressure
(
p0
)
; top

right: Sterling temperature
(
T 0

)
; bottom left: Sterling relative humidity

(
rh0

)
; bottom right: difference in pressure (∆p). Figure 1 of 2.

Figure 5.Beta functions for the Beltsville relative humidity (rh) col-
location drift model (14). Top left: Sterling relative humidity (rh0);
top right: Sterling mixing ratio (mr0); bottom left: difference in mix-
ing ratio(1mr).

quota about 10 % of the total, whilst the sampling error is
limited to 0.1 %. In general, we believe that our approach
goes beyond previous analyses, increasing the knowledge
about the components of the total uncertainty budget of
Eq. (12).

It is worth observing that, after accounting for the above
“water only” covariates, the collocation drift mean does not
depend on the distance of the paired trajectories. The in-
tercept termβ̂0 = 3.40 characterizes the constant colloca-
tion bias between Beltsville and Sterling radiosoundings, and
could be used for adjusting collocated measurements in prac-
tice.

With an adjusted determination coefficientR2
= 0.886,

this model misses only 11.4 % of the collocation uncer-
tainty which is covered byσ 2

ω(h). The latter is estimated
by the functional logarithmic regression model applied to
the squares of first-order model functional errorsω̂2

= (µ −

β̂ ′x)2. In doing this we find that the irreducible uncertainty of
relative humidity depends on pressure (p0), temperature (T 0)
and relative humidity (rh0) in Sterling radiosondes, and the
difference in pressure(1p), longitude(1lon), water vapour
(1mr) and wind(1u,1v). This gives the functional model
of Eq. (15), whoseγ functions are given in Fig.6aand b.

Note that, whilst the mean part of the HFR model given
by Eq. (14) is a “water only” model, the heteroskedastic
component of Eq. (15) has a number of other environmen-
tal variables which are statistically significant. In particular,
the east–west distance1lon is important especially at lower
altitudes, below 3000 m, within the boundary layer, where
the variability of water vapour is large. The north–south di-
rection was not significant in the model, which is consistent
with both the marked trajectory anisotropy shown by Fig.2
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Fig. 6. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model (15). Top left: Sterling pressure
(
p0
)
; top

right: Sterling temperature
(
T 0

)
; bottom left: Sterling relative humidity

(
rh0

)
; bottom right: difference in pressure (∆p). Figure 1 of 2.

Figure 6a. Gamma functions of collocation errorω2 for relative
humidity in Beltsville using model (15). Top left: Sterling pressure
(p0); top right: Sterling temperature(T 0); bottom left: Sterling rel-
ative humidity(rh0); bottom right: difference in pressure(1p).

A. Fassò et al.: Collocation uncertainty in atmospheric profiles 11

Fig. 7. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model (15). Top left: difference in longitude
(∆lon); top right: difference in mixing ratio (∆mr); bottom left: difference in wind, u-direction (∆u); bottom right: difference in wind,
v-direction (∆v). Figure 2 of 2.

Fig. 8. Squareroot total uncertainty
(
σ∆y

)
budget for relative humidity collocation mismatch, including: Natural variability

(
σ∆µ

)
, mea-

surement error (σε), sampling error
(
σβ̂

)
, irreducible environmental error (σω) reducible environmental error (σx∼β0) and constant error

(σβ0 = β0).

Figure 6b. Gamma functions of collocation errorω2 for relative
humidity in Beltsville using model (15). Top left: difference in lon-
gitude(1lon); top right: difference in mixing ratio(1mr); bottom
left: difference in wind,u direction(1u); bottom right: difference
in wind, v direction(1v).

and the prevailing wind direction. After accounting for all the
above, the resulting estimated skedastic equation is given by

logω2(h) = 2.68
(0.17)

+ γ̂1(h)p0(h) + γ̂2(h)T 0(h) (15)

+ γ̂3(h)rh0(h) + γ̂4(h)1p(h) + γ̂5(h)1lon(h)

+ γ̂6(h)1mr(h) + γ̂7(h)1u(h) + γ̂8(h)1v(h).

The model given by Eqs. (14) and (15) is used to com-
pute the profile and column budgets given by Eqs. (12) and
(13), respectively. In particular, Fig.7 clearly shows that the
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Figure 7. Square root total uncertainty(σ1y
) budget for relative

humidity collocation mismatch, including natural variability(σ1µ
),

measurement error(σε), sampling error(σ
β̂
), irreducible environ-

mental error(σω), reducible environmental error(σx∼β0) and con-
stant error(σβ0 = β0).

major part of the uncertainty is related to the observed atmo-
spheric conditions as described by Eq. (14). Moreover, we
can see that the environmental errorσ 2

ω is smaller inside the
boundary layer, so the environmental trendµ has a greater
uncertainty contribution at these altitudes.

It is worth noting that, after fixing the atmospheric con-
ditions as in model (14), the collocation drift does not de-
pend on the distance between paired trajectories. Neverthe-
less, the conditional uncertainty, model (15), depends on the
distance along parallels (1lon) as mentioned above. Figure6b
shows that this estimate is less precise below 2000 m. In other
words, after adjusting for the other environmental factors, the
distance cannot be used as a correction factor for the relative
humidity collocation error but is a determinant of the col-
location uncertainty, especially above 2000 m. Moreover, for
these stations, the distance along meridians is not a key factor
in relative humidity collocation uncertainty. From a technical
point of view, it should be noted that in Fig.7 the total un-
certaintyσ1y is not directly computed on the data, because
y and y0 from Beltsville and Sterling cannot be matched
exactly for every heighth and we avoid binning as in for-
mula (11). Instead, thanks to the model-based approach, we
computedσ 2

1y
(h) for all h using Eqs. (7) and (13); see also

the discussion in AppendixA1.
Taking averages of the uncertainty profiles, Table1 shows

the role of the various components in the uncertainty bud-
get for this particular data set. The major source of uncer-
tainty is given by the reducible environmental error which
is related to the water vapour mixing ratio at Sterling and

Table 1.Budget of total collocation uncertainty for relative humid-
ity (1rh) in Beltsville–Sterling, using the HFR model of Eqs. (14)
and (15).

Source of uncertainty σ̄2 σ̄2% σ̄

Total uncertainty 1y 343.8 100 % 18.54

Collocation drift 1µ 343.0 – 18.52
Bias (adjustable) β0 11.6 3.4 % 3.40
Environ. error (reducible) x ∼ β0 293.2 85.5 % 17.12
Environ. error (irreducible) ω 37.1 10.8 % 6.09
Sampling error β̂ 0.21 0.1 % 0.46
Measurement error 1ε 0.81 0.2 % 0.90

to the collocation difference of water vapour content in the
dry air mass, as shown by Eq. (14) and Fig.5. Note that this
collocation difference of water vapour content stems from
a combination of the short-term variability of water vapour
and the sensor response to that variability: it is instructive
to find this known fact through purely statistical model for-
mulations. The second appreciable source of uncertainty is
the irreducible environmental error (10.8 %), which has been
shown to depend partly on distance along parallels. More-
over, it can be observed that the measurement errorσ1ε = 0.9
and estimation uncertaintȳσ

β̂
= 0.46 are quite small. Last

but not least, a simple constant bias correction for these data
would reduce the collocation uncertainty by about 3.4 %. As
mentioned above, the small size of the measurement error
σε is a confirmation of the appropriateness of the smooth-
ing used. From the statistical point of view, this is also con-
firmed by the effective degrees of freedom of all components
of model (14)–(15), which are always smaller than 20 and
are computed bymgcv, which is discussed in Appendix B.

5 Conclusions

This paper proposes a new and general statistical method
for defining and computing the total collocation uncertainty
budget of an ECV. The output is presented both as a pro-
file uncertainty budget and an integrated total column bud-
get. The model used is based on an extension of the classical
functional regression model, which is able to cover for het-
eroskedasticity and allows the decomposition of total uncer-
tainty up to five different components, namely constant bias,
reducible and irreducible environmental errors, sampling er-
ror and measurement error. Moreover, the conditional uncer-
tainty may be computed for any set of environmental condi-
tions, providing, inter alia, more information about the fac-
tors determining the collocation uncertainty.

The proposed method is self-assessing, in the sense that it
is able to consider the information content of the data for the
model and evaluate the size of the sampling error with respect
to the other uncertainty components. Although smoothing of
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vertical profiles is applied, this is data adaptive and the verti-
cal resolution is higher than similar literature on this topic.

When available, an explicit physics approximation gives
results which are expected to be consistent with the mean
collocation drift given by the first part of the HFR model. In
addition to this, the HFR model can assimilate any other en-
vironmental covariate and, more importantly, thanks to the
heteroskedastic component, it can quantify the various con-
tributions to uncertainty, giving a new and detailed budget.

This approach has been tested on radiosounding profiles of
humidity provided by the GRUAN site at Beltsville, Mary-
land, and the NWS operational site located in Sterling, Vir-
ginia, USA. Although, as mentioned above, the method is
quite general and data driven, for the sites considered, we

found that the collocation drift strongly depends on the di-
rection of air mass advection and not on the distance of the
paired trajectories. Moreover, the collocation error has an ad-
justable constant bias amounting to 3.4 % of the total colloca-
tion uncertainty. The model performed better below 3000 m
of altitude and, globally, it missed only 11.4 % of the colloca-
tion uncertainty for relative humidity. The latter uncertainty,
named irreducible environmental uncertainty, is related to
wind and distance in the east–west direction.

From the presented case study, we conclude that the collo-
cation uncertainty of relative humidity is related to physical
quantities and, in principle, could be reduced by inclusion of
auxiliary information.
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Appendix A

This appendix considers some mathematical details about
uncertainty computations of Sect.3.2and the uncertainty de-
composition of Eqs. (7) and (8). To do this, we simplify the
functional notationµ = µ(h)and observe that, in practice,µ

andω are estimated on suitable historical data byµ̂ and ω̂

respectively. Moreover, the decomposition for the constant
termβ0 of Eq. (9) is discussed.

A1 Mean estimation and marginal uncertainty

In this section, we discuss the uncertainty decomposition of
Eq. (8), focusing onµ and ignoring the heteroskedastic struc-
ture ofω, which is considered in AppendixA3. In particular
we consider the estimation error

β̃ = β̂ − β

so that the total collocation error is defined by adding the
sampling error as follows:

1y = β ′x + ω + 1ε + β̃ ′x.

Note that, sincêβ ′x = β ′x + β̃ ′x, adding the latter term to
1y is the same as usinĝβ ′x instead ofβ ′x in the defini-
tion of 1y . Now observe thatE(1ε|x) = E(ω|x) = 0 and
E(β̃ω|x) is neglectable for large sample sizes under weak
assumptions. Hence, we have

E(12
y |x) ∼= β ′xx′β + σ 2

ω(x) + σ 2
1ε

+ x′Var(β̃|x)x

and Eq. (8) follows the taking expectation ofE(12
y |x),

namely

E(12
y)

∼= β ′6xβ + σ 2
ω + σ 2

1ε
+ E

(
x′Var(β̃|x)x

)
= σ 2

x + σ 2
ω + σ 2

1ε
+ σ 2

β̂
.

Note that, in practice,σ 2
x is computed forβ = β̂ and 6x

is suitably estimated on the historical data. Similarlyσ 2
β̂

is

computed using suitable formulas. For example, under least
square estimation, we have

Var(β̂|x) = σ̂ 2
ω(X′X)−1,

whereX is the functional design matrix.

A2 Uncertainty for constant bias term

If Eq. (3) has a constant termβ0, it may be written as

1µ(h) = β0+
◦

β (h)′
◦
x (h) + ω(h),

wherex(h) = (1,
◦
x (h)′)′ andβ(h) = (β0,

◦

β (h)′)′.
Note thatβ0 is an identifiable coefficient since no instru-

mental bias has been assumed in the previous section and, in

practice, it is easy to adjust for this collocation bias and its
relevance may be evaluated by decomposingσ̄ 2

x as in Eq. (9)
with σ̄ 2

x∼β0
= σ̄ 2

x − β2
0. Note that, if we are using a centered

design withE(
◦
x (h)) = 0, this apparently obvious decompo-

sition exactly separates
◦
x andβ0, as it givesσ̄ 2

x∼β0
= σ̄ 2

◦
x

. In

general, an interaction term betweenβ0 and
◦
x, which is usu-

ally small, remains embedded inσ̄ 2
x∼β0

. In fact, using simple
algebra, we can see that

σ̄ 2
x = β2

0 + σ̄ 2
◦
x

+
2β0

h1 − h0

h1∫
h0

◦

β (h)′E(x(h))dh.

A3 Conditional variance estimation and marginal
uncertainty

In this appendix, Eq. (10) is considered for both linear
and loglinear heteroskedastic models (4) and (5). Consid-
ering first the linear case, according to the conditional het-
eroskedastic literature (see e.g. Chatfield, 1995), we write

ω2
= η2(γ ′x + ζ ),

where η and ζ are zero mean and independent random
variables, both independent ofx, with η also unit variance
and symmetrically distributed. This motivates the assump-
tions we made in this paper onω, namelyE(ω|x) = 0 and
E(ω2

|x) = γ ′x. Now, by simple algebra we write

ω2
= γ̂ ′x + (η2γ − γ̂ )′x + η2ζ.

In this expression, using approximate unbiasedness ofγ̂ it
follows thatEη2γ − γ̂ |x) ∼= 0. This entails

E(ω2
|x) ∼= γ ′x

and

Var(ω) ∼= γ ′E(x),

which in practice is computed forγ = γ̂ and E(x) as the
historical mean of the covariates.

Similarly in the log-linear case, we have

Var(ω|x,γ ) = E
(
exp(γ ′x)

)
and using a second-order expansion of exp

(
(γ − γ̂ )′x

)
we

get

Var(ω|γ ) ∼=
1

2
E

(
exp(γ ′x) · x′Var(γ̂ |x)x

)
,

which in practice is computed forγ = γ̂ . When enough data
are available, Var(ω) may be estimated using the sample vari-
ance of the residuals in Eq. (13).
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Appendix B

In this Appendix we consider the estimation of the functional
coefficientsβ(h) andγ (h) in Eqs. (3) and (4) or (5) using
historical data given byn pairs of vertical profiles.

As a preliminary step, observed profiles fory andx are
smoothed and transformed to continuous functions using cu-
bic B splines. The smoothing error is used to computeσ 2

ε

and to assess the smoothing bias. Then, using the smoothed
variables, the error-free collocation mismatch is computed
giving 1µ(h) for all h. Note that the possible vertical mis-
alignment between imperfectly collocated profiles is auto-
matically overcome by this method.

The estimation ofβ andγ functions is now made in two
steps. Firstβ̂ is obtained using themgcvpackage (Wood,
2012) as described below.

The basic idea of this approach is to re-write Eq. (3) for
each error trajectory1µ,i , i = 1, . . .,n, as a generalized ad-
ditive model (GAM) where the smooth components are mul-
tiplied by covariatesxi,j (h) for i = 1, . . .,n andj = 1, . . .,q.
To do this, each functionβj (h) is expanded as

βj (h) =

kj∑
l=1

aj,l(h)cj,l, (B1)

whereaj,l(t) are the above-mentioned cubic B-spline basis
functions, computed atkj knots on the vertical dimensionh.
Moreover,cj,l are the related coefficients, or model parame-
ters, to be estimated on data. Then we substituteAi,j,l(h) =

aj,l(h)xi,j (h) and Eq. (B1) into Eq. (3). This gives the fol-
lowing standard additive model representation:

1µ,i(h) =

q∑
j=1

kq∑
l=1

Ai,j,l(h)cj,l + ωi(h), (B2)

where Ai,j,l(h) are the known quantities defined above,
and the model coefficient vector to be estimated isc =

{c1, . . . ,cq} wherecj = {cj,1, . . . ,cj,kj
}, andj = 1, . . . ,q.

Note that the number of knots and, hence, the size of the
parameter vectorc are large; then, in order to avoid over-
fitting and excessive wiggliness ofβ functions, a penalized
maximum likelihood approach is used. To this end, the fol-
lowing criterion function is introduced:

D(c) +

q∑
j=1

λj c′Sj c, (B3)

whereD is the deviance of model (B2) under Gaussian as-
sumptions,c′Sj c increases with the size of the second deriva-
tives ofβj , andλj are the smoothing parameters, which con-
trol the trade-off between fidelity to the raw data and smooth-
ness ofβj functions.

Now, c and λ are estimated according to the maximum
likelihood principle, which is implemented by nested itera-
tions of two optimization algorithms. In particular, for fixed
λ, the inner iterations optimize Eq. (B3) using the so-called
Penalized Iteratively Reweighted Least Squares (P-IRLS),
which givesĉλ at convergence. Moreover, the outer iterations
optimize for λ using the Restricted Maximum Likelihood
Estimation (REML) algorithm of Wood (2011). At conver-
gence, we have estimates (ĉ, λ̂, β̂j ) whereβ̂j functions are
obtained by Eq. (B1).

The second step is related to estimation ofγ functions and
we focus here on model (5). To do this, using the estimates
β̂, the log errors loĝω2

= log(µ − β̂ ′x)2 are computed and
used to estimate model (5) with the same algorithm described
above whereβ is replaced byγ and1µ is replaced by log(ω̂)

as input tomgcv.
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