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Abstract. In recent years low molecular weight alkylamines
have been recognized to play an important role in particle for-
mation and growth in the lower atmosphere. However, major
uncertainties are associated with their atmospheric processes,
sources and sinks, mostly due to the lack of ambient mea-
surements and the difficulties in accurate quantification of
alkylamines at trace level. In this study, we present the eval-
uation and optimization of two analytical approaches, i.e.,
gas chromatography–mass spectrometry (GC-MS) and ion
chromatography (IC), for the determination of alkylamines in
aerosol particles. Alkylamines were converted to carbamates
through derivatization with isobutyl chloroformate for GC-
MS determination. A set of parameters affecting the analyti-
cal performances of the GC-MS approach, including reagent
amount, reaction time and pH value, was evaluated and op-
timized. The accuracy is 84.3–99.1 %, and the limits of de-
tection obtained are 1.8–3.9 pg (or 0.02–0.04 ng m−3). For
the IC approach, a solid-phase extraction (SPE) column was
used to separate alkylamines from interfering cations be-
fore IC analysis. 1–2 % (v/v) of acetone (or 2–4 % (v/v) of

acetonitrile) was added to the eluent to improve the separa-
tion of alkylamines on the IC column. The limits of detection
obtained are 2.1–15.9 ng (or 0.9–6.4 ng m−3), and the accu-
racy is 55.1-103.4 %. The lower accuracy can be attributed
to evaporation losses of amines during the sample concen-
tration procedure. Measurements of ambient aerosol particle
samples collected in Hong Kong show that the GC-MS ap-
proach is superior to the IC approach for the quantification of
primary and secondary alkylamines due to its lower detection
limits and higher accuracy.

1 Introduction

Organic nitrogen (ON) is ubiquitous in the atmosphere,
and yet a poorly characterized component of atmospheric
aerosols. Compared to oxygenated organics which have been
extensively studied in the past decade (Hallquist et al., 2009;
Hoffmann et al., 2011), much less attention has been de-
voted to ON in atmospheric aerosols, and thus the sources,
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composition and atmospheric processes of ON are poorly
constrained. Addition of nitrogen to an organic structure can
increase the potential carcinogenic and mutagenic effects
(Kameda, 2011) as well as the extinction coefficient of a
compound (Nguyen et al., 2011). It can also increase the
hygroscopicity of aerosols and thereby the ability to act as
cloud condensation nucleus because several organic nitrogen
groups (e.g., amines and nitrates) have high water solubility.
Therefore, it is crucial to understand the ON composition in
order to get better knowledge of aerosol effects on health, air
quality and climate.

Among a wide variety of ON, amines are unique in their
base-stabilization capacity. Especially, low molecular weight
aliphatic amines such as dimethylamine and ethylamine can
substantially enhance the ternary nucleation of sulfuric acid
particles by a stepwise accretion of the basic molecules and
concomitant addition of acid molecules in the critical clusters
(Kirkby et al., 2011). The formation of aminium salts from
heterogeneous reactions of amines with organic and inor-
ganic acids can further contribute to post-nucleation growth
of nanoparticles, which increases the particle number con-
centration by preventing coagulation from pre-existing parti-
cles (Angelino et al., 2001; Murphy et al., 2007; Wang et al.,
2010; Smith et al., 2010). The reactive uptake of amines and
subsequent displacement of ammonium on the particles pro-
vide an additional pathway for gas-to-particle conversion of
amines (Qiu et al., 2011; Chan and Chan, 2012). The mech-
anisms discussed above support the observations of ambient
particle-phase amines in various domains such as in boreal
forests (Mäkelä et al., 2001; Smith et al., 2010), in urban and
rural areas (Pratt et al., 2009; Smith et al., 2010; VandenBoer
et al., 2011; Huang et al., 2012), and in the remote marine
boundary layer (Facchini et al., 2008; Miyazaki et al., 2011).

Amines have been measured so far in atmospheric ultra-
fine and fine particles by a number of online mass spectro-
metric techniques including compact time-of-flight aerosol
mass spectrometry (C-TOF-AMS) (Sorooshian et al., 2008),
aerosol time-of-flight mass spectrometry (ATOFMS) (Huang
et al., 2012), atmospheric pressure interface time-of-flight
mass spectrometry (APi-TOF-MS) (Junninen et al., 2010),
and thermal desorption chemical ionization mass spectrom-
etry (TDCIMS) (Smith et al., 2010). However, these mass
spectrometric observations cannot provide quantitative de-
termination of specific amines. For example, AMS response
factors for various aminium salts have been reported to vary
as much as 10 times that of ammonium nitrate depending on
the composition of the salt, which limit the method to amine
identification only (Silva et al., 2008). The TDCIMS analysis
reported the levels of amines as the molar ratio of average ion
abundance for each aminium compound to the total average
ion abundance observed, rather than as the absolute concen-
trations (Smith et al., 2010).

Quantitative determination of amines in ambient aerosol
particles is mainly based on chromatographic techniques
such as ion chromatography (IC) (Henning et al., 2003;

Facchini et al., 2008; Erupe et al., 2010; VandenBoer et
al., 2011; Praplan et al., 2012), gas chromatography (GC)
(Akyüz, 2008) and high-performance liquid chromatography
(HPLC) (Yang et al., 2005; Müller et al., 2009; Ruiz-Jiménez
et al., 2012). IC allows the determination of low molecular
weight alkylamines including tertiary amines without deriva-
tization. However, certain amines are often co-eluted as a
single peak (e.g., diethylamine and trimethylamine) or inter-
fered by other abundant cations present in aerosol particles
(e.g., NH+

4 and K+) (VandenBoer et al., 2011) due to the low
separation efficiency and resolution of IC. For determination
with GC and HPLC, the derivatization of amines is generally
mandatory to improve the separation efficiency and the de-
tection limits. The typical derivatization reagents for amines
includeo-phthaldialdehyde, dansyl chloride, isobutyl chloro-
formate, and 4-nitrophenyl trifluoroacetate (Pan et al., 1997;
Akyüz 2008; Huang et al., 2009; Ruiz-Jiménez et al., 2012).
Nevertheless, the derivatization reagents are suitable only for
primary and secondary amines, but not for tertiary amines
due to the absence of a replaceable hydrogen atom.

In this paper, we present two analytical approaches (i.e.,
gas chromatography–mass spectrometry (GC-MS) and IC)
for the determination of alkylamines in aerosol particles. We
focused on C1-C6 alkylamines because these low molecular
weight alkylamines are thought to release to the atmosphere
in the largest quantity. The parameters affecting the analyti-
cal performances of both methods are extensively evaluated
and optimized.

2 Experimental

2.1 Standards and PM2.5 samples

A 2.0 mg mL−1 stock standard solution was prepared in
0.1 M HCl aqueous solution, which contains a mixture of
the hydrochloride salts of methylamine (MA, 99 %, J&K
Scientific), dimethylamine (DMA,> 99 %, Aladdin Chemi-
cal), trimethylamine (TMA,> 98 %, Sigma Aldrich), ethy-
lamine (EA, > 98 %, Tokyo Chemical Industry), diethy-
lamine (DEA, > 98.5 %, Tokyo Chemical Industry), tri-
ethylamine (TEA,> 98.5 %, Tokyo Chemical Industry),n-
propylamine (PA,> 99 %, Acros) andn-butylamine (BA,
> 98 %, Tokyo Chemical Industry). A series of working
standard solutions was prepared by sequential dilution of
the stock standard solution. The alkaline methanol solution
was prepared by dissolving KOH in methanol until satura-
tion, followed by filtration through a 0.45 µm filter. All other
chemicals used were of analytical reagent grade. Deionized
water (18 M� cm) was used for preparation of all aqueous
solutions.

The 24-hour integrated PM2.5 (particulate matter with an
aerodynamic diameter< 2.5 µm) samples were collected on
pre-fired (500◦C, 3 h) quartz filters (8′′ ×10′′) in August and
November 2011 and February and May 2012 (24 samples
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and 4 field blanks) in Tung Chung, Hong Kong (22◦17′20′′ N,
113◦56′37′′ E) by using high-volume air samplers. A portion
was taken from each filter and placed into a 15 mL screw
capped brown vial to which 5 mL 0.1 M HCl was added. The
samples were extracted in an ultrasonic bath at room temper-
ature for 15 min. This extraction procedure was repeated 3
times. Finally, the extracts were combined for each filter and
filtered with 0.2 µm syringe filter (PTFE membrane).

2.2 GC-MS analysis

The sample extracts and standard solution were subjected
to derivatization before the GC-MS analysis. To 15 mL of
filtered extracts (or standard solution), 5 mL of phosphate
buffer (pH 10), 5 mL of toluene and 200 µL of isobutyl chlo-
roformate (IBCF) were added. The solution was shaken in
a mechanical shaker at room temperature for 15 min. The
toluene extracts containing the target analytes were then
transferred to another vial and concentrated to 1 mL under
a gentle N2 stream at room temperature; 500 µL of alkaline
methanol was added to the concentrated extracts, and the
mixture was shaken for 5 min for removal of the excess of
IBCF. 1.5 mL of 1 M NaOH was subsequently added, and the
mixture was shaken for another 5 min.

The mixture was centrifuged and 1.0 µL of the toluene
extracts was injected into a GC-MS system (Shimadzu QP
2010 Plus, Shimadzu, Japan). A fused-silica capillary col-
umn (30 m× 0.25 mm i.d.,df : 0.25 µm, Rxi-5MS, Shimadzu,
Japan) was used for chromatographic separation. High-purity
helium (99.999 %) was used as a carrier gas at a constant flow
of 1.0 mL min−1. The temperature of the injector was set to
280◦C, and the transfer line was 280◦C. The temperature of
the GC oven was programmed as follows: initial temperature
80◦C (hold 3 min), 5◦C min−1 to 140◦C (hold 3 min), and
then 30◦C min−1 to 200◦C (hold 3 min). The MS was op-
erated in the electron impact (EI) ionization mode with an
acceleration energy of 70 eV. A solvent delay of 4.0 min pre-
ceded the MS spectra acquisition in the full-scan mode (in the
rangem/z 30–450) or in the selected ion monitoring (SIM)
mode in the following sequence: 4.00–6.15 min,m/z: 57,
58, 116; 6.15–6.50 min,m/z: 72, 130, 145; 6.50–7.86 min,
m/z: 57, 72, 130; 7.86–9.25 min,m/z: 57, 158, 173; 9.25–
10.69 min,m/z: 57, 86, 144; 10.69–12.56 min,m/z: 57, 100,
173. The use of SIM mode is an advantage for eliminating
potential interference from sample matrix (or from the sam-
ple pretreatment steps) because it greatly enhances the se-
lectivity (by monitoring characteristicm/z fragments) and
sensitivity of the method. The analytes are identified when
the following two criteria are met: (1) the chromatographic
peaks for the unknown and standard samples coincide in re-
tention time, and (2) the intensity ratios of the characteristic
m/z of the unknown and standard peaks agree within±15 %.

2.3 IC analysis

15 mL aliquots of filtered extracts were passed through a
cleaned and conditioned cation-exchange solid-phase extrac-
tion column (SPE, Oasis MCX, Waters). The analytes were
eluted using 3 mL of NH3/methanol (5: 95, v/v) solutions.
The resulting eluate was adjusted to pH 8.8 and then concen-
trated to 1 mL under a gentle N2 stream at room tempera-
ture. A 25 µL aliquot of the concentrated eluate (or standard
solution) was injected into a Metrohm 861 IC analytical sys-
tem with non-suppressed detection (Metrohm, 861 Advanced
Compact IC). The IC was equipped with a dual-piston pump,
a degas assembly and digital conductivity detection. Analysis
was accomplished with a Metrosep C4 (150 mm× 4 mm i.d.)
with Metrosep C4 guard column, which was chosen due to its
advantage in the analysis of amines and common inorganic
cations with non-suppressed conductivity detection. The op-
timized eluent solution contained 6 mM HNO3/1.0 % (v/v)
acetone solution at a flow rate of 0.4 mL min−1. Separation
was carried out under isocratic conditions and at a room tem-
perature of approximately 20◦C. Data processing was per-
formed with IC Net 2.3 software.

2.4 Quality assurance

For every 10 samples, a procedural blank and a spiked
sample – namely, real ambient samples spiked with known
amounts of standard solution of amines to be analyzed – were
measured to check for interference and cross-contamination.
External standard method was used for quantitative determi-
nation of the analytes. Because carbamates are not commer-
cially available, the calibration curves were made by deriva-
tizing the standard solutions of amines following the same
procedures used for real samples. It may minimize poten-
tial artifacts from the sample pretreatment steps, where both
standard solutions and real samples are subjected to same ar-
tifacts (if any). The limits of detection are defined as the min-
imum detectable peaks of individual species with a signal-to-
noise (S / N) ratio of 3: 1. The recoveries were determined by
the analysis of the spiked samples: we first measured a filter
punch without spike and then measured the second punch
from the identical filter that was spiked with known amounts
of standard solution of amines. The differences between
these two measurements were divided by amounts of amines
spiked to calculate the recoveries of individual amines. This
recovery test also provides an indication of potential ma-
trix effect. The reproducibility (relative standard deviation,
RSD) was determined by measuring five identical samples
that were subjected to the same pretreatment procedure. Four
field blank samples were collected and measured, giving
the average field blank values as follows: 0.04 ng m−3 MA,
1.10 ng m−3 DMA, < 0.03 ng m−3 EA, 1.22 ng m−3 DEA,
0.29 ng m−3 PA, and 0.28 ng m−3 BA. All data reported here
were corrected for the field blanks.
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Figure 1. Typical GC-MS chromatograms for the analysis of alky-
lamines in ambient aerosol sample before(a) and after(b) derivati-
zation with the derivatizing agent IBCF. Peak assignments: (1) MA,
(2) DMA, (3) EA, (4) DEA, (5) PA and (6) BA.

3 Results and discussion

3.1 Determination of amines with GC-MS

3.1.1 Effect of pH on the derivatization

The low molecular weight alkylamines are not detectable
without derivatization when injected into a nonpolar GC col-
umn (5 % diphenyl 95 % dimethylpolysiloxane) (see Fig. 1a),
due to their high volatilities and high polarities as re-
flected in their boiling points and oil–water partition co-
efficients logPo/w (see Table 1). The formation of carba-
mate derivatives via reactions with isobutyl chloroformate
(IBCF) (Akyüz, 2008) can significantly improve the chro-
matographic properties of primary and secondary amines,
leading to well-resolved peaks on the GC chromatogram
(Fig. 1b), because the carbamates have lower volatilities
and polarities as well as higher thermal stabilities compared
to the amines. The derivatization proceeds rapidly in aque-
ous alkaline media since it promotes the deprotonation of
aminium (Reaction R1). The latter are the most likely form
of amines in ambient aerosol particles. High pH values also
shift the derivatization reaction to the product side through
neutralization of the H+ formed in this reaction (R2).

RR
′

NH+

2

pKa
� RR

′

NH + H+(R = alkyl,R′
= alkyl or H) (R1)

RR
′

NH + ClCOOCH2CH(CH3)2 →

RR
′

NCOOCH2CH(CH3)2+H+
+ Cl−. (R2)

Figure 2 shows the effect of pH values on the derivatiza-
tion efficiencies of MA, DMA, EA, DEA, PA and BA. When
the pH value is below 7, most amines remain in the proto-
nated form that cannot react with IBCF to form the carba-
mate derivatives. The derivatization proceeds progressively
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Fig. 2. Effect of pH on the derivatization efficiency of different alkyl amines. The pH of the 5 
solution was adjusted with 1 M HCl or 1 M NaOH and measured with a pH meter. 6 
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Figure 2. Effect of pH on the derivatization efficiency of different
alkylamines. The pH of the solution was adjusted with 1 M HCl or
1 M NaOH and measured with a pH meter.
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Fig. 3. Effect of the IBCF amount on the derivatization efficiency of different alkyl amines. 5 
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Figure 3.Effect of the IBCF amount on the derivatization efficiency
of different alkylamines.

with the increase of the pH value and reaches the maximum
efficiencies for all investigated alkylamine when the pH val-
ues are higher than 9. This pH threshold is somewhat lower
than the theoretical values (pKa+1, i.e., 11.58–12.09), where
the amines are mostly present in the neutralized form that can
react with IBCF. This phenomenon can be explained by the
removal of derivatives from the aqueous solution by toluene
which, together with the neutralization of the H+ formed,
accelerates the shifting of reactions (R1 and R2) to the right.
Therefore, pH 10 was selected as the optimized value in this
study.

3.1.2 Effect of reagent amount and reaction time on the
derivatization efficiency

Figure 3 shows that, compared to the theoretical molar ratio
of 1 : 1 for the derivatization of amines with IBCF, a much
higher IBCF / amine ratio is needed to ensure a sufficient ef-
ficiency. Interestingly, the derivatization efficiency for DMA,
DEA, PA and BA is much higher than for MA and EA at
a low IBCF / amine ratio. For example, at the IBCF / amine
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Table 1.The physicochemical parameters of alkylamines.

Alkyl- Boiling Vapor pressure, pKa, Oil water distribution
amine point,◦C kPa at 20◦C 25◦C coefficient, logPo/w

MA −7 186.1 10.66 −0.173
DMA 7 170.3 10.73 −0.38
TMA 3.5 91.7 9.8 −0.152
EA 17 116.5 10.8 −0.177
DEA 56 26.0 11.09 −0.109
TEA 90 6.9 10.24 1.45
PA 49 33.0 10.58 −0.184
BA 77.8 9.1 10.62 3.56
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Figure 4. Time-dependent derivatization of different alkylamines.

molar ratio of 5–10, the efficiency is around 80 % for DMA,
DEA, PA and BA, but only about 20 % for MA and EA.
This can be attributed to the increased number and/or chain
length of the alkyl group(s) in DMA, DEA, PA and BA,
which enhances the electron density at the nitrogen atoms
of these amines and thereby their nucleophilic reactivity to-
wards the derivatization agent IBCF. The DMA, DEA, PA
and BA approach their maximum derivatization efficiencies
at the IBCF / amine molar ratios> 100, while the molar ra-
tios are> 250 in the case of MA and EA. Given that IBCF
can also react with certain amino acids (Sobolevsky et al.,
2004), an equivalent molar ratio of IBCF / amine of 500 was
selected for the analysis of real samples.

With the optimized pH value and IBCF / amine molar ra-
tio, the derivatization of amines with IBCF is very efficient.
The temporal behavior of the derivatization efficiency is
shown in Fig. 4. Quantitative determinations were achieved
for DMA, DEA, PA and BA after about 5 min and for MA
and EA after 10 min, respectively. Again, the faster derivati-
zation of DMA, DEA, PA and BA, compared to that of MA
and EA, is due to their enhanced nucleophilic reactivity to-
wards IBCF.

3.2 Determination of amines with IC

3.2.1 Effect of eluent solution on the separation

IC has been used for the determination of amines in atmo-
spheric samples in previous studies (Facchini et al., 2008;
Erupe et al., 2010; VandenBoer et al., 2011; Praplan et al.,
2012). However, measurements of the full range of species
investigated in this study have not been reported so far. The
commercial IC columns are designed for the separation of
inorganic cations, limiting their ability to fully resolve pro-
tonated organics such as alkylamines from inorganic cations.
Baseline resolution of alkylamines is particularly challenging
due to their similar solvation characteristics. For example,
VandenBoer et al. (2011) observed the co-elution of DMA
and NH+

4 on the Dionex CS12A column and the co-elution
of DEA and TMA on the Dionex CS17 column. When us-
ing 6 mM HNO3 aqueous solution as eluent solution, we
also observed poor separation and poor peak shape of DEA,
TMA and BA on the Metrosep C4 column (see Fig. 5a),
leading to difficulties in retrieving accurate peak area inte-
grations. However, improved resolution was realized with
the addition of 2–4 % (v/v) acetonitrile to the eluent solu-
tion. The addition of acetonitrile also led to the detection of
TEA which, compared with other investigated alkylamines,
has the strongest interaction with the stationary phase of the
IC column and thus was not eluted within the time window
of 20 min with HNO3 eluent alone. Further increase of the
acetonitrile fraction (5–8 %) in the eluent solution resulted
in poor resolution for MA, EA, PA and DEA (Fig. 5a). We
observed similar effects from acetone on the separation of
alkylamines: the best resolution was achieved when 1–2 %
of acetone was added to the eluent solution (6 mM HNO3),
but the resolution became progressively worse when the ace-
tone fraction was increased from 3 to 10 % (Fig. 5b).

3.2.2 Influence of interfering cations

A common issue associated with IC analysis of alkylamines
is the interference from inorganic cations such as Na+, K+,
Mg2+, Ca2+ and NH+

4 , which are typically 1–3 orders of
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Fig. 5. Effect of the addition of acetonitrile (a) and acetone (b) in eluent solution (6 mM HNO3) 3 
on the IC separation of alkyl amines. Peak assignments: (1) MA, (2) EA, (3) DMA, (4) PA, (5) 4 
BA, (6) DEA, (7) TMA and (8) TEA. Note that PA was not studied on the panel (b) because its 5 
concentration is very low in the ambient samples of this study (≤0.4 ng m-3), as measured by 6 
the GC-MS method. 7 
 8 

Figure 5.Effect of the addition of acetonitrile(a) and acetone(b) in
eluent solution (6 mM HNO3) on the IC separation of alkylamines.
Peak assignments: (1) MA, (2) EA, (3) DMA, (4) PA, (5) BA,
(6) DEA, (7) TMA and (8) TEA. Note that PA was not studied in
(b) because its concentration is very low in the ambient samples of
this study (≤ 0.4 ng m−3), as measured by the GC-MS method.

magnitude more concentrated than alkylamines (Müller et
al., 2009; VandenBoer et al., 2011). Co-elution of these in-
terfering cations with the analytes may be problematic for
the quantification of alkylamines. As shown in Fig. 6a, MA
and K+, DMA and Mg2+, and BA and Ca2+ co-elute on
the Metrosep C4 column. To minimize such interference
the solid-phase extraction (SPE) cartridges were used be-
fore IC analysis. It was found that the Oasis MCX cation-
exchange cartridges can efficiently remove most of the in-
terfering cations (Fig. 6b). However, it was also observed
that some alkylamines were lost by evaporation during the
concentration step after SPE treatment. The evaporation loss
is particularly significant for MA (∼ 40 %), DMA (∼ 35 %)
and TMA (∼ 85 %), most probably because they are much
more volatile than other alkylamines. Interestingly, the loss
for MA and DMA is smaller than that for TMA although
the former two species have higher vapor pressure compared
to TMA. One explanation for this observation is the poten-
tial interaction of MA (DMA) with solvent molecules by
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Figure 6. IC chromatograms of alkylamines before(a) and after
(b) SPE pre-separation to minimize the interfering ions. Peak as-
signments: (1) Na+, (2) NH+

4 , (3) MA, (4) K+, (5) EA, (6) DMA,

(7) Mg2+, (8) Ca2+, (9) BA, (10) DEA, (11) TMA and (12) TEA.
Note that∼ 85 % of TMA (estimated by testing 10-, 20- and 30-
factor concentrated TMA standard solutions) was lost by evapora-
tion during the concentration step after SPE, reflected in the absence
of TMA peak in(b).

hydrogen bonding, which compensates for their high volatil-
ity. The evaporation loss can be reduced by decreasing the pH
value of the solution due to the transformation of alkylamines
to their protonated salts, which significantly decreases the
volatility. The optimized pH value is 8.8, where the inter-
ference from NH3 (pKa 9.25) and losses of alkylamines are
minimized.

3.3 Comparison of the methods

Table 2 shows the reproducibility, recovery and limit of de-
tection (LOD) of the IC and GC-MS methods. The precision
of the IC (2.4–15.7 % RSD) and GC-MS (1.7–6.2 % RSD)
methods can be considered to be very satisfactory in view of
multiple sources of error that contributed to total RSD values
(e.g., error from sample pretreatment and error of the IC and
GC-MS detection). The recoveries, determined by analyzing
ambient samples spiked with known amounts of amine stan-
dards, range from 84.3 % to 99.1 % for the GC-MS method
and from 55.1 % to 103.4 % for the IC method. The good
recoveries provided by the GC-MS method indicate high
derivatization efficiency and low sample matrix effect. The
relatively low recoveries of the IC method for MA, DMA
and TMA can be attributed to evaporation losses during
the concentration procedure as discussed above. The LODs
(S / N= 3) of the GC-MS method (1.8–3.9 pg) are about 3
orders of magnitude lower than those of the IC method (2.1–
15.9 ng; see Table 2).

Figure 7 shows the concentrations of ambient particulate
alkylamines at a background site in Hong Kong, measured
by both GC-MS and IC methods. The concentrations mea-
sured by the GC-MS method are slightly higher than those
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Table 2.The analytical performance of GC-MS and IC method.

Alkylamine
GC-MS IC

Reproducibility Recovery LOD (pg), LOD∗, Reproducibility Recovery LOD (ng), LOD∗

% % injection volume ng m−3 % % injection volume ng m−3

(n = 5) (n = 3) 1 µL (n = 6) (n = 5) (n = 3) 25 µL (n = 6)

MA 2.6 86.4± 2.8 3.8 0.04 12.2 55.1± 8.6 2.1 0.9
DMA 3.6 99.1± 4.1 1.8 0.02 15.7 60.2± 9.7 3.8 1.6
EA 2.1 96.0± 1.8 2.5 0.03 4.3 88.5± 1.9 2.2 0.9
DEA 1.7 98.6± 2.1 3.7 0.04 4.6 95.9± 1.5 4.1 1.7
TEA – – – – 5.1 101.3± 1.6 15.9 6.4
PA 2.0 84.3± 1.7 3.7 0.04 – – – –
BA 6.2 93.0± 4.9 3.9 0.04 2.4 103.4± 2.3 3.8 1.4

∗ For analyzing a 30 cm2 punch of filters collected with high-volume samplers (sampling at 1.13 m3 min−1 for 24 h on8′′
× 10′′ filters).
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Figure 7. Comparison of GC-MS with IC for the determination of
alkylamines in PM2.5. The samples were collected in Tung Chung,
Hong Kong.

measured by the IC method (factor between 1.0 and 1.8).
This can be attributed to evaporation losses of amines dur-
ing the sample concentration and SPE separation procedures
that are required to minimize interference from other cations
for IC quantification of alkylamines. Nevertheless, data from
both methods show that DMA and DEA are dominant alky-
lamines. The seasonal variation of particulate alkylamines
measured at this background site in Hong Kong, their sources
and atmospheric implications will be published in a separate
paper.

4 Conclusions

Two analytical approaches, based on GC-MS and IC, for the
determination of alkylamines in atmospheric aerosol parti-
cles have been evaluated thoroughly in this study. The IC
method is subjected to a lower accuracy (55.1–103.4 %) and
a higher limit of detection (2.1–15.9 ng, or 0.9–6.4 ng m−3)

for all alkylamines investigated, due to the lower sensitiv-
ity of the conductivity detector and evaporation losses of
amines during the sample pretreatment procedure. Compared

with the IC method, a significantly higher accuracy (84.3–
99.1 %) and a much lower limit of detection (1.8–3.9 pg, or
0.02–0.04 ng m−3) were achieved for the GC-MS method,
although the latter is not capable of measuring tertiary
amines (an inherent disadvantage of the derivatization GC-
MS method). The two approaches have been applied to the
quantification of low molecular weight alkylamines in the
PM2.5 samples collected in Tung Chung, Hong Kong. The
application of the GC-MS method revealed slightly higher
amine concentrations compared to the IC method. In gen-
eral, the GC-MS method is superior to the IC method, con-
sidering its higher accuracy and lower detection limits, which
are crucial for the quantification of alkylamines that are of-
ten present at trace levels (from subng m−3 to some hun-
dred ng m−3) in ambient aerosol particles (Ge et al., 2011,
and references therein).
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