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Abstract. The collection of real-time air quality measure- A time-series-based method of estimating background con-
ments while in motion (i.e., mobile monitoring) is currently centrations was shown to produce similar but slightly lower
conducted worldwide to evaluate in situ emissions, local airestimates than a location-based method. For the complete
quality trends, and air pollutant exposure. This measuremendata set the estimated contributions of the background to the
strategy pushes the limits of traditional data analysis withmean pollutant concentrations were as follows: BC (15 %),
complex second-by-second multipollutant data varying as dJFPs (26 %), CO (41%), Ppb_10 (45%), NQ (57 %),
function of time and location. Data reduction and filtering PM;g (60 %), PM 5 (68 %). Lastly, while temporal smooth-
techniques are often applied to deduce trends, such as poiRg (e.g., 5s averages) results in weak pair-wise correlation
lutant spatial gradients downwind of a highway. However, and the blurring of spatial trends, spatial averaging (e.g.,
rarely do mobile monitoring studies report the sensitivity 10 m) is demonstrated to increase correlation and refine spa-
of their results to the chosen data-processing approachesial trends.

The study being reported here utilized 40-h%40 000 ob-
servations) of mobile monitoring data collected on a road-
way network in central North Carolina to explore common 1  |ntroduction

data-processing strategies including local emission plume

detection, background estimation, and averaging techniqueair quality research has been revolutionized in recent years
for spatial trend analyses. One-second time resolution meapy the development and application of mobile platforms ca-
surements of ultrafine particles (UFPs), black carbon (BC),pable of resolving air pollutant concentrations in real time.
particulate matter (PM), carbon monoxide (CO), and ni- These platforms — including instrumented cars, vans, bicy-
trogen dioxide (NQ@) were collected on 12 unique driv- cles, and handheld devices — have been enabled by advance-
ing routes that were each sampled repeatedly. The routenents in air monitoring instrumentation, such as higher time
with the highest number of repetitions was used to com-resolution and greater portability, as well as improvements in
pare local exhaust plume detection and averaging methodsecation resolution using commercially available global po-
Analyses demonstrate that the multiple local exhaust plumesitioning systems (GPSs). The mobile measurement strategy
detection strategies reported produce generally similar rehas been utilized for a diverse range of applications, which
sults and that utilizing a median of measurements takercan be loosely categorized as (1) emissions characterization,

within a specified route segment (as opposed to a mean)) near-source assessment, and (3) general air quality sur-
may be sufficient to avoid bias in near-source spatial trendsveying (Tablel).
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Table 1. Mobile monitoring example applications.

Category Example investigations Measurement platform  Data-processing steps applied References
Emissions Determining and comparing Electric vehicle Local exhaust plume detection, Park et al(2011)
uantification emissions factors from temporal smoothing
q vehicles under various driving
conditions
Evaluating change in emissionsVehicle Local exhaust plume detection, Wang et al(2009

factors after traffic intervention

Characterizing hydrocarbon  Vehicle

emissions

background standardization,
temporal smoothing

Local exhaust plume detection

Pétron et al(2012

Near-source air
quality gradients
and mitigation
strategy evaluation

Roadside barrier impacts Electric vehicle

Near-road gradients Electric vehicle

Assessing contribution of traffic Backpack
in street canyons to
concentration above
background
Characterizing spatial and Recreational vehicle
temporal variation of near-road

gradients

Local exhaust plume detection,

background standardization,
spatial smoothing

Time alignment optimization,

Hagler et al(2012

lockbzawa et al.(2009,

exhaust plume detection, backgroundChoi et al.(2012

standardization, spatial smoothing

Background standardization,

spatial smoothing

Temporal and spatial smoothing

Zwack et al(2011ab)

Padré-Martinez et al.
(2012

General air quality
surveying

Change in air quality in city of Van
Hamilton, 2005-2010
Characterizing pollution in Handheld
low-income neighborhoods in

Ghana

Spatial variability of urban air Bicycle
quality

Background standardization,
temporal smoothing

Background standardization,

spatial smoothing

Background standardization,
spatial smoothing

Adams et al. (2012,
Wallace et al(2009

Arku et al. (2008,
Dionisio et al.(2010

Van Poppel et a(2013

Characterizing exposure zones  Electric vehicle Local exhaust plume detection Hu et al.(2012

Mobile monitoring is often chosen over other methods for et al, 2008 Choi et al, 2012 Durant et al. 201Q Ha-
its ability to efficiently obtain data at a high spatial resolution gler et al, 2012 Kozawa et al.2009 Zwack et al, 20113
under a variety of different conditions. Vehicle emission fac- Rooney et a|.2012 Westerdahl et §l2005 Drewnick et al,
tor estimation can be conducted using a number of method2012 Massoli et al. 2012. Broader surveys of ambient air
including chassis dynamometer experiments, tunnel studieqquality are also frequently conducted using mobile monitor-
and remote sensing, but mobile monitoring methods are ofing on a scale ranging from neighborhood to country in order
ten selected because they enable researchers to charactertpecharacterize regional concentrations or locate previously
in-use emissions of individual vehicles under a variety of op-unknown hotspotsHagler et al. 2012 201Q Arku et al,
erating conditionsRark et al.201% Wang et al.2011, 2012 2008 Adams et al.2012 Farrell et al, 2013 Drewnick et al,
Westerdahl et al2009 Wang et al.2009. 2012 Van Poppel et al2013 Hu et al, 2012.

In near-source environments and general air quality sur- In this study we considered three components of mobile
veys, pollutant concentrations attributable to local sourcesnonitoring data: (1) local exhaust plumes (i.e., tail pipe ex-
can vary on the scale of tens of meters or smaller. To charhaust near the sampling inlet), (2) local air pollution (e.g.,
acterize this spatial variation, dense networks of stationarytraffic-related air pollution), and (3) urban—suburban back-
monitors can be deployed, but mobile monitoring is often ground (i.e., ambient air quality in the area sampled). Gas and
preferred because of the increased spatial flexibiBgidauf ~ aerosol concentrations change in a continuum of spatial and
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Background Local Emission
Standardization Plume Detection

Design Collect Time Data
Study Data Alignment pad Analysis
Smoothing: Temporal P
and/or Spatial
—— Emissions Quantification* — Near-source air quality gradients
(same route covered each day)
— General Air Quality Surveying (comparison of —— Near-source air quality gradients
routes covered on different days)* (multiple routes covered on different days)

*Dashed lines represent optional alternative paths

Figure 1. Mobile data-processing steps.

temporal scales, from the point of emissions to ultimate fate Isolation of local exhaust plumes is of interest for studies
in the environment. Our definitions of local exhaust plumes,that seek to estimate emission factors but also to minimize
local air pollution, and background were derived from the the impact of sporadic proximate exhaust when determining
various investigations that have utilized mobile monitoring spatial trends of near-source air pollution. For spatial trend
(Table 1). Local exhaust plumes are defined as short-termanalysis, a variety of strategies have been utilized to mini-
events characterized by extremely high pollutant concentramize bias from incidental local exhaust (Tal2g including
tions that can be attributed to directly sampling exhaust fromusing summary statistics less affected by outliers (e.g., per-
a nearby vehicle. Local air pollution is defined here as well-centiles) or algorithms developed to detect brief excursions
mixed air that is affected by one or more known sources andn the time series. Estimating background is a second key
modulated by local wind, such as air flow from a major high- feature of interest to isolate in mobile air monitoring time se-
way to local residential areas. Finally, urban—suburban backries. Background air quality often varies diurnally and daily
ground, henceforth called “background” for simplicity, is de- due to meteorology and long-distance transport of pollution.
fined on the scale of the route (5-20 km) as representative of\ccounting for the variable background may be conducted
ambient air quality conditions without detectable impact of athrough optimal sampling design where an area representa-
nearby source. tive of background is frequently sampled (eXfan Poppel
With this study’s primary focus on spatial air pollution et al, 2013. However, when a route completion exceeds the
trend analysis to characterize general air quality trends andime frame within which the regional background changes or
near-source air pollution, analyses to follow demonstratecomparisons are being made between multiple routes mea-
the effects of various data-processing strategies on resultingured on different days, additional strategies are needed. An
trends. In order to extract meaningful information from mo- alternative approach is to assume the baseline of the time se-
bile monitoring data, the full design of the experiment from ries — represented simply as a low percentile of the data range
the point of monitoring route selection to data-processingor a more sophisticated time-varying baseline — is represen-
strategies needs to be taken into account. For example, isdative of background.
lation of local air pollution trends may be simplified by site  As a final data-processing step, temporal or spatial
selection in an environment where roadways surrounding thesmoothing is often applied either to reduce variation due to
source of interest have no traffic and the route incorporateghanges in the atmosphere or more effectively display trends
a section representative of the background. However, sucliWesterdahl et al2005 Weijers et al. 2004 Pirjola et al,
ideal conditions are rare and often studies need to comper2012. Applying a rolling median or mean can be used to
sate for local exhaust plumes or imperfect sampling of themaintain the temporal resolution while reducing the amount
background. To isolate key features of interest, past studiesf instrument noise and influence of extreme outliers. Ag-
have employed a myriad of post-processing strategies (Tagregating the data to a longer time window can be used to
ble 1) to isolate local exhaust plumes, account for the back-reduce the degree of autocorrelation among the measure-
ground, and reduce data for visual representation of trendanents. Types of spatial smoothing include calculating me-
The selection of post-processing strategies depends on th@ian or mean values along fixed length intervals of the route
experimental design and research questions driving the anabr within a fixed radius of locations of interest.
ysis (Fig.1). Recently, efforts have been made to study the mobile mon-
itoring approach. For exampléd/an Poppel et al(2013
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Table 2. Mobile data-processing methods.

Category Method description References
Designation of background zone Hagler et al.(2012, Van Poppel et al.
Background (2013
estimation Average of fixed monitoring sites Arku et al.(2008), Dionisio et al(2010
1 min or 5 min 5th percentile Bukowiecki et al.(2002

Assumption that all of the measurements lower than the most ~ Kolb et al.(2004
frequent measurement are background

Inclusion of a smooth function of time over each sampling shift @&wack et al.(2011h a)
aterm in a linear regression

Calculate standard deviation of measurements below the mediarewnick et al.(2012
(op). Flag any measurement more thas, Jreater than the pre-

vious measurement. Flag all measuremen&, + /1 x op from

the last non-flagged measurement, wheig the number of points

since the last non-flagged measurement (3rpsl ch).

Local exhaust
plume detection

Modified 5 s running coefficient of variance, with maximum valuédagler et al(2012

of 2 (UFP$)
Smoothed rolling minimum (Cg) NO°) Kolb et al.(2004
Rolling 25th percentile (UFPsNOS, PB—PAHY, cd, PM%S) Choi et al.(2012

Video records checked at times when pollution concentratiok®zawa et al(2009
peaked at> 2 observed background concentrations $BEOC,
UFP$, PB—PAHY)

2 Ultrafine particles € 100 nm),b carbon dioxideC nitric oxide,d particle-bound polycyclic aromatic hydrocarbofidlack carbonf carbon monoxide, an® particulate
matter € 2.5pm).

evaluated how many sampling route repeats were requiredummer of 2012 as part of the Research Triangle Area Mo-
to develop a representative data set. However, a rigorous exile Source Emission Study (RAMSES). Measurements were
amination of mobile monitoring data-processing steps anccollected using a converted all-electric PT Cruiser. Six instru-
the implications for the derived results is needed. This studyments were securely installed on board the vehicle: an en-
utilizes a robust multipollutant mobile monitoring data set gine exhaust particle sizer (EEPS) (model 3090, TSI, Shore-
collected on a roadway network in North Carolina, USA, to view, MN, USA) which provided size-resolved ultrafine and
evaluate common data-processing methods, including locahccumulation-mode particle counts, an aerodynamic parti-
exhaust plume detection, background estimation, and spatiale sizer (APS) (model 3321, TSI, Shoreview, MN, USA)
and temporal smoothing. The data set consists of 40 h of mofor size-resolved particle counts in fine to coarse mode, a
bile monitoring data collected during weekday morning rushportable Aethalometer (AE42, Magee Scientific, Berkeley,
hour on 24 days and spanning 12 routes that covered ared3A, USA) that measured black carbon (BC), a dual quan-
of traffic delay, high traffic volume, transit routes, and urban tum cascade laser (QCL) (Aerodyne Research Inc., Billerica,
background. MA, USA) that measured carbon monoxide (CO), a cavity-
attenuated phase shift (CAPS) monitor that measured nitro-
gen dioxide (NQ) (Aerodyne Research Inc., Billerica, MA,

2 Methods USA), and a nondispersive infrared (NDIR) gas analyzer that
measured carbon dioxide (GLI-COR 820, LI-COR Bio-
2.1 Experimental data sciences, Lincoln, NE, USA). Due to an observation that the

CO, data exhibited inexplicable periodic substantial drops in

An intensive mobile monitoring campaign was conductedconcentration during some of the runs, it was not incorpo-
in the Research Triangle area of North Carolina in therated into the analyses.
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Calibration checks were routinely performed before and2.2 Data-processing methods
after each run. All instruments utilized minimal tubing length
(<2m) and pulled from manifolds connected to two colo- Mobile monitoring data were processed and displayed us-
cated inlets mounted through a side passenger window locang MATLAB (2012, ArcGIS (ESRI 2011, and R ver-
tion. Particle instruments utilized antistatic tubing with min- sion 2.15.1 R Core Team2012 along with the R packages
imal bends to avoid particle loss. Further information on ggplot2 Wickham 2009, openair Carslaw and Ropkins
the general sampling vehicle setup is availableHiagler 2012, and mcgv \(Vood, 2003. A noise-reduction algorithm
et al. (2010. Wind speed and direction were measured with was applied to black carbon concentrations to reduce the fre-
a highly sensitive three-dimensional ultrasonic anemometeguency of negative valuesi@gler et al.2011). Examples of
(model 81000, RM Young Company, Traverse City, Michi- near-source air quality gradients and general air quality sur-
gan) placed at a stationary sampling site on each route. veying were selected to illustrate the implications of the fol-
For the current instrument setup, the time between a contowing data-processing steps: background standardization,
centration change (high-efficiency particulate air filter for local exhaust plume detection, spatial smoothing, and tem-
particle instruments, gas standard for gas instruments) at thporal smoothing.
inlet and visual inspection of instrument response ranged Four methods of removing the influence of local exhaust
from 0 to 5s for both real-time gas and particle instruments.plumes were compared: the running coefficient of variation
The response time of the QCL (CO) and APS (particle count(COV) method used bidagler et al(2012), the standard de-
in fine to coarse range) was less than 1s, the CAPSINO viation of the background (SD) method used Dgewnick
and Aethalometer (BC) was 4 s, and the EEPS (UFPs) wast al.(2012), the rolling 25th percentile method used®kioi
5s. et al. (2012, and aggregating the data by route segment us-
After applying the lags determined using the concentra-ing outlier-resistant statistics such as the median. The first
tion change at the inlet, the correlation between the measurdawo methods — the COV metho#idgler et al.2012 and the
ments at various time lags was used to fine-tune the alignSD method Drewnick et al, 2012 — are both methods of de-
ment. Because the pollutants are co-emitted, the best esttecting and flagging local exhaust plumes. For studies char-
mate of the difference in response times between the instruacterizing near-source air pollution spatial gradients, one ap-
ments can be assumed to correspond with the lag time thatroach may be to remove these flagged periods to avoid con-
produces the maximum correlation coefficie@hpi et al, founding influence from side-road traffic. Studies focused on
2012. CO was chosen as the reference measurement becaupersonal or localized exposure, however, may not want to re-
the quantum cascade laser was the most sensitive instrumentove the influence of the local exhaust plumes. For stud-
with the fastest response time. Because the primary sources emphasizing emissions characterization, the time periods
of CO and BC in the study area was vehicle exhaust, it wasvhere local exhaust is detected may be of most interest to iso-
assumed that the maximum correlation would occur whenlate and further analyze. These methods are most effective for
the measurements were perfectly aligned. The measured B€onditions where an individual vehicle’s emissions causes a
concentration was found to lag the CO concentration by 3 ssignificant deviation in an otherwise low-emissions environ-
The other particle instruments were also found to lag the COment, such as a truck passing the mobile monitoring vehicle
measurement by 3s. The only pollutant measured that waen a low-traffic residential road. In recent history, these ap-
not strongly correlated with CO at a specific lag time was proaches have been developed specifically for understanding
NOo; however, NQ was strongly correlated with UFPs at a local-scale air pollution effects from a nearby source, such
lag of 0's, so the lag used for UFPs (3 s) was also applied t@s a major roadway, with the mobile sampling vehicle be-
NO;. ing driven along low-traffic side roads. Applying these ap-
The campaign included 12 routes within Wake, Durham, proaches in environments with higher traffic, such as while
and Orange counties, North Carolina (FB). The routes driving on highways, likely only detects major outliers as
covered areas that had previously been classified using modhe within-source pollutant levels are likely consistently high
eled traffic data as areas of traffic delay, high traffic vol- and dynamic. Measurements of local exhaust tend to be both
ume, transit routes, high signal light density, and urbanhigher and more variable than measurements of well-mixed
area. Mobile monitoring was conducted during morning rushair. Both the COV methodHagler et al. 2012 and the SD
hour (07:00-10:30) on 24 weekdays between 23 August andnethod Drewnick et al, 2012 rely on the high variability
11 October 2012. Each run consisted of approximately aras well as the magnitude of measurements of local exhaust.
hour and a half of mobile sampling and 45 min of station- The running COV methodHagler et al. 2012 was devel-
ary sampling. Each route was covered on two sampling daysped using UFP concentrations and consists of calculating
with at least three laps per day. The routes ranged from 5.2he rolling 5 s standard deviation (2 s before and after the cen-
to 18.1 km in length. ter data point) and dividing it by the mean concentration of
the sampling run. The 99th percentile of the calculated COV
is used as a threshold (iagler et al.(2012 the threshold
COV for UFPs was 2) and any data points with a COV above
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Figure 2. Map of all routes and designated background areas. Background areas were designated for 8 of the 12 routes that had identifiable
low-traffic roads distant from known sources. Routes are labeled A-L.

this threshold are flagged along with the data points 2 s betransect running at an angle to the highway with moderate

fore and after. In the SD methoB{ewnick et al, 2012, the traffic (AADT 32 000), a low-traffic road considered urban

standard deviation of measurements (UFPs op)d&@low  background, and a shorter transect (FHa). As an illustra-

the median is calculatedr). Any measurement more than tion, gradients of CO, UFPs, BC, and N@long the longer

3oy, greater than the previous measurement is flagged. Sultransect were used to compare the effect of the local exhaust

sequently, all measurements with concentrafipthat meets  plume removal methods on the 50 m mean concentrations

the following criteria are flagged as local exhaust plumes: and with the 50 m median concentration of the unfiltered
data.

Ci > Cut +3ob ++/n x op, (1) Estimating background concentrations presents a chal-

whereCy is the concentration of the last unflagged measure/énge for mobile monitoring studies. For most research
ment and: is the number of measurements betwegpand ~ 9roups, replicating the identical instruments (e.g., an engine
C;. exhaust particle sizer for ultrafine particles or quantum cas-
The rolling 25th percentile metho@hoi et al, 2012 does ~ cade laser for ca_rborj monoxid_e) and positioning .the.m ina
not detect the local exhaust plumes but is used to reduce thefackground location is not feasible. Using alternative instru-
effect on spatial gradients and involves calculating the 25thments for comparison can introduce error into the analysis
percentile of various time window€hoi et al.(2019 useda  — for example, from the use of a slower and less sensitive
53 s time window (26 s before and after the center data pointjnstrument as the benchmark. An alternate approach used
when the sampling vehicle was more than 1 km from away!n Previous mobile monitoring studiesiggler et al. 2012
from a freeway, 31s (15 s before and after) for distances beYan Poppel et al.2013 is the location-based method. This
tween 300m and 1km, and 3s (1 s before and after) withinmethod involves defining areas along the route that have low
300 m of a freeway. Because the majority of the data used ifraffic and are far from any known source as background. The
this comparison were between 300m and 1km, a 31s wininéan or median concentrations measured in the designated
dow was used for the entire data set to simplify the calcy-background sections are considered representative of back-
lation. One final method of reducing the effect of local ex- 9round concentrations. Another approach is a time-series-
haust plumes on spatial gradient estimations is to use outlie?ased method which relies on elements of the time series

resistant statistics when aggregating data by route segmeffgelf. One time-series-based method is to calculate a single
such as the median instead of the mean. value for each sampling run to be used to normalize the con-

A single run conducted on 11 October 2012 on route B’centrations. This value can be a fixed concentration such as
was chosen to compare these methods because of the lar§e€ 1st or 10th percentile of the measuremeBtskpwiecki
number of laps conducted (12) and favorable wind condi-et al. 2009. A rolling minimum Is a time series-based ap-
tions (from the highway towards the transect). The meanProach that produces a time-varying backgroucalig et al,
wind speed during mobile sampling was 0.56Th and the 2009. Zwack et al(2011ab) also used a time-varying back-

mean wind direction was 28%from the NW). The route in-  ground estimation based on the time series alone, but in-
cluded a section of highway with an annual average dailyStéad of estimating background concentrations separately, a

traffic (AADT) amount of 109 000, an approximately 900 m Smooth function of time over each sampling run was included
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Figure 3. Map of route B used to compare methods detecting local exhaust plumes and smoothing te¢ahiquessured CO concentra-
tions(b), and measured UFP concentrations (c°1)1during a portion of a sampling ruie). Circles represent local exhaust plumes identified
using the COV methodHagler et al.2012.

as a term in the linear regression used to determine concerne missing before the spline-of-minimums method was ap-

tration differences. plied. The results were then compared to the location-based
The spline of minimums, which is a time-series-basedmethod.

method explored in this study, consists of three steps: (1) ap- Ultimately, the results of spatial and temporal smoothing

plying a rolling 30s mean to smooth the measurementswere compared using all of the measurements collected on

(2) dividing the time series into discrete 10 min windows route B. The average speed of the monitoring vehicle on the

and locating the minimum concentration in each window, route was approximately 10 m% The smoothing intervals

and (3) fitting a smooth thin plate regression spline throughchosen for comparison were 10, 50, and 100 m segments; the

the minimum concentrations. Through the use of a single rurtime intervals necessary to traverse each distance at the aver-

conducted on 21 September 2012 on route B with 14 laps, thage speed equate to 1 (raw data), 5, and 10s, respectively.

spline of 10 min minimums was compared with the location- Spearman correlation coefficients were calculated for CO,

based method and other time-series-based methods: the uB&, UFPs, NQ, and PM 5 before and after temporal and

of a low percentile Bukowiecki et al, 2002, a rolling mini-  spatial smoothing.

mum, and the spline of 5 min minimums (Fi§). The spline

of 10 min minimums was further compared to the location-

based method using the eight routes with designated backs Results and discussion

ground areas. To investigate how well the spline of mini-

mums could estimate the background if the route did not in-The results described in this paper focus on data from a few
clude QeS|gnateq background areas, the concentrations Megt the routes and the implications of various data-processing
sured in the defined background areas were artificially seteps. Route B, which had the highest number of repetitions,

www.atmos-meas-tech.net/7/2169/2014/ Atmos. Meas. Tech., 7, 21883 2014
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Figure 4. Comparison of the effect of methods of removing the influence of exhaust plumes on transect gradient@pflEPs(b),

BC (c), and NG (d). Lines represent 50 m means (except for the line which represents the medians) of measurements from the entire run

(12 laps). Box plots represent unfiltered concentrations measured on the highway.

was used to compare local exhaust plume detection and spavith increased distance from the highway (Fy.However,
tial and temporal smoothing methods. Eight of the 12 routeshe mean 50 m concentrations along the transect are clearly
— those which had designated background sections — weraffected by local exhaust plumes, as is evidenced by the
utilized to compare how background may be estimated usimean concentrations of UFPs, BC, Bl@nd CO at 250 m
ing a purely time-series-based approach versus a locationdig. 4). Using any of the methods of separating measure-
based approach. The entire data set (12 routes) was utilizeshents of well-mixed air from local exhaust plumes substan-
to estimate overall background contribution to the measuredially reduces the influence of these events. The 25th per-
concentration of each pollutant. The complexity of the pre-centile methodChoi et al, 2012 results in the lowest esti-
processing and analysis of mobile monitoring data precludesnates of concentrations along the transect because it affects
a detailed assessment of all study results in this paper. all of the measurements, not just those influenced by local
exhaust. The 25th percentile filte€lfoi et al, 2012 also
results in the smoothest estimate of the gradient along the
transect (Fig4).

Another important consideration is that different exhaust
plumes contain different pollutant mixtures. For example,
the plume that was encountered at 250 m caused spikes in

) all four exhaust indicators, while the plume encountered at
etal.(201, the SD method used tyrewnick et al(2012), 800 m caused increases in CO and UFPs but not in BC or

the rolling 25th percentile method used@kioi et al (2012, NO; (Fig. 4). The measurements used as indicators of local

and aggregating the data by route segment using outlier-
. o . o exhaust must be chosen carefully to adequately remove the
resistant statistics such as the median. FiQuHestrates the y q y

X .__spikes while retaining the majority of the data. For this run,

potentlal of local exhausfc plumes to affect the characterlza-by using both CO and UFPs as indicators, the spikes in NO

tion of near-source spatial trends. Using the COV methOdand BC were successfully removed

(Hagler et al. 2012 for both CO and UFPs, several local ’

exhaust plumes were identified (F&pb and c). Spatially ag-

gregating the measurements without removing the influencé-2 Comparison of background estimation methods

of the plumes at 07:46 and 07:53 may erroneously lead to the

conclusion that concentrations are generally greater along th8everal time-series-based methods of estimating background

transect than on the highway (Fig). were compared with the location-based method. One time-
For near-source air monitoring studies, a common anal-series-based method is to calculate a single value for each

ysis is to consider concentrations as a function of distancesampling run using a low percentile of the measurements.

from the source of interest (e.g., edge of rodtBrher et al. However, in the present study over the course of a 2h sam-

2010. Similar to previous studies, elevated concentrationspling period, the baseline of the CO time series decreased

of mobile source pollutants were observed on the highwayfrom 400 to 200 ppb (Figb). During this run, the wind speed

(box plots in Fig4), and measured concentrations decreasedncreased from a mean of 0.3 misduring the first half hour

3.1 Comparison of methods of local exhaust
plume detection

Four methods of removing the influence of local exhaust
plumes were compared: the COV method usedHagler
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Figure 5. Background estimation method&) example time serieqb) time series methods: running minimum and 10th percentile;

(c) location-based method (mean and standard deviation of background areas) and time series methods: spline of 5min minimums anc
spline of 20 min minimums. Gaps in the time series are due to quality control checks. Legend definitions are consistent across panels. The
limits of the y axis of(b) and(c) have been reduced to more clearly display the baseline.

to a mean of 0.7mg for the last half hour and the wind The spline of 10 min minimums was used to estimate the
direction was fairly consistently from the southwest; meanbackground of six pollutants: BC, CO, NOPM, 5, PMp,

wind direction was 217 and 24Quring the first and last and UFPs on a total of 16 runs covering 8 routes. The
half hour, respectively. The decrease in background concenbackground concentrations were estimated using the spline
trations over the 2 h time span is likely related to an increaseof minimums and compared with the median concentration
in the atmospheric mixing height during the morning period; measured during each pass of the background @igrhe
however further analysis would be required to fully explore spline-of-minimums estimates were positively correlated but
the causes of background variation. Depending on the reeonsistently underestimated the median of measured back-
search question and the pollutant of interest, using a singlground concentrations. The strongest agreement was be-
value to normalize the data may introduce unnecessary errotween the PM5 estimates, likely due to the fact that B

A rolling minimum did not appear to be a good alternative concentrations are least likely to be influenced by inciden-
to a fixed concentration. A 60 s rolling minimum is a bet- tal traffic in the background areas. Despite the use of the
ter descriptor of variation in well-mixed air concentrations an outlier-resistant statistic, the occurrences of median mea-
than variation in the background (Fifb). A 300s rolling  sured background values that are significantly higher than the
minimum results in a more drastic stair-step pattern whichbackground estimated by the spline of minimums are likely
is not descriptive of the change in background over time,a result of traffic in the designated background area or other
which generally changes very gradually. The spline of mini- local sources (e.g., lawnmower emissions).

mums best represented the smooth change in the time seriesTo investigate whether the spline-of-minimums method
baseline over time (Fighc), and the choice of time window could be applied to routes that did not include identifi-
(5 min versus 10 min) did not cause a noticeable difference. able background areas, the concentrations measured in the
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background areas were artificially removed (set to miss-In contrast, CO, BC, and UFPs can all be classified as co-
ing) and the background was reestimated. The spline-ofemitted pollutants with low regional background concentra-
minimums method was still able to estimate the back-tions (Table3).
ground concentrations with the results more evenly dis- Kimbrough et al. (2013, in a near-road study conducted
tributed around the = x line (Fig.6). in Las Vegas, Nevada, also found that the background con-
The spline of minimums proved to be an effective methodtribution of NGO, to the total concentration was higher than
for routes spanning a range of distances and under a varithe background contribution of CO and BC, with measured
ety of meteorological conditions. The average wind speedupwind concentrations approximately 69, 63, and 44 % of
measured during the runs with designated background ardownwind concentrations for N CO, and BC, respec-
eas ranged from 0.4 to 1.3 m% The wind direction ranged tively. The background contributions measured Kin-
from fairly consistent to highly variable with an average stan- brough et al(2013 are higher than those calculated for the
dard deviation of wind directionvamarting 1984 ranging  current study, likely because the downwind measurements
from 30 to 86. The effectiveness of the spline-of-minimums made byKimbrough et al (2013 were collected 20 m from
method at estimating the background concentrations for multhe road, while many of the measurements in the current
tiple pollutants across various routes and meteorological constudy were collected on the highway or on roads with high
ditions will enable researchers to compare routes measurettaffic volume, causing the total concentrations to be higher
on different days. One of the difficulties in using the location- and the fraction attributable to regional background to be
based method is determining whether the inclusion of a backlower. Upwind concentrations of UFPs measuredHagler
ground section in the route is feasible given the study prior-et al.(2009 were roughly 30 % of the nearest downwind site
ities. By using the spline-of-minimums method, the analysisand about 50 % of the levels observed at 100 m from the road.
is simplified. To compare the variation in background concentrations
To illustrate the possibility of comparing different routes estimated using the spline-of-minimums method, the mean
sampled on different days, we standardized the backgrounfackground value for each run was calculated and the
of the concentrations measured on four routes on eight differbetween-run standard deviation (SD) was determined from
ent days by subtracting the estimates produced by the splindghe resulting 24 mean background values. Additionally, the
of-minimums method from the measured concentrations. Wewithin-run SDs of the estimated background concentrations
then compared the PM concentrations with and without were calculated by first calculating the SD of the background
background standardization. Before background standardizazoncentrations for each run and then taking the range of those
tion, the regional background variation obscured the varia-values (Table3). The large differences in within-run SD are
tion in PMy 5 due to the highway (I-40) (Figra). The PM s likely due to variations in meteorological conditions. For this
concentrations measured on route B on a highway with arreason, the range is given instead of the mean. For CO and
AADT of 109 000 were below the 50th percentile when com- NO», the between-run SD was greater than all of the within-
pared with all of the measurements made over the course afun SDs (Table8), indicating that the between run variation
the field campaign, while measurements collected on routef these pollutants was greater than the hourly variation. For
A on a road with an AADT of 18 000 and route C on a road the rest of the pollutants measured, the between-run SD fell
with an AADT of 17 000 were all above the 50th percentile within the range of the within-run SD.
(Fig. 7a). After the background was standardized, the influ-
ence of the highway traffic, which is an established source o8.-3 Temporal and spatial smoothing methods
PM, 5, became much more evident: the majority of the mea-

surements collected on highways (AADTL00 000) fall in The influence of temporal anq spatial_ smoothing on the es-
the higher percentiles of PA concentrations, and measure- timates of the N@ concentration gradient along the 900 m

ments made on roads with less traffic fall in the lower per-Nighway transect in route B (analyzed in Sect. 3.1) was also
centiles of the data set (Figb). compared. The data shown were collected on 21 Septem-

s.ber 2012 and 11 October 2012, comprising a total of 26 laps,

Background standardization will have the greatest e ' g
fect on measurements of pollutants that have a high re@nd werefiltered using the COV methddegler etal.2012.

gional background concentration relative to the concentra©On 21 September 2012 winds were generally calm, with a

tions emitted by the source of interest. The mean of theM&an wind speed of 0.4 m$. On 11 October 2012 winds

were slightly stronger and generally from the highway, with

background concentration of all 24 runs and the contribu- ! by _ : ‘
tion of the background to the total concentration was calcu-2 Mean wind speed of 0.56 msand mean wind direction of

lated for BC, UFPs, CO, N® PMyo, and PM 5 using the 2853 (from the NW). The model N@= m xlog(distance+b

background estimated using the spline-of-minimums methodVas fit for each smoothing case because previous studies
(Table3). Of the mobile source pollutants measured in this have found that pollutant concentrations tend to decrease ex-

study, PM s, PMho, and NQ all fall into the category of co- ponentially with distance from a major sourd&afner et al,

emitted pollutants with high regional background concentra-2010-
tions (> 50 % of the mean measured concentrations, Table
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Figure 6. Comparison of location-based (median of measured background concentrations) and time-series-based (spline of minimums)
background estimates. Time-series-based estimates were calculated using all of the data and after the measurements in areas designatec
background had been removed. Dashed black lines represent

Table 3. Summary comparison of pollutant background concentration and variation.

Mean of background ~ Within-run S&  Between-run SB  Contribution of
background to

total
BC (ug m3) 0.48 0.01-0.50 0.40 15%
UFPs (cnT3) 4990 20-2620 1570 26%
CO (ppb) 298 3-57 75 41%
NO (ppb) 8.8 0.1-2.2 2.4 57%
PMyg (g n3) 6.1 0.1-2.9 2.0 60%
PMs 5 (ug m—3) 3.7 0.1-2.6 1.6 68%

a Standard deviatior? calculated by first calculating the SD of the estimated background for each run and then taking the range of
those valuesS calculated by determining the mean background value for each run and determining the standard deviation of the
resulting 24 mean background values, Sndean of estimated background for all 24 runs divided by mean measured concentration of
all runs multiplied by 100.

When compared to the raw data (F8g), spatial smooth- concentrations at 500 m is due to a busy intersection at this
ing alone clarified the spatial trend (Figb). In contrast, location.
although temporal smoothing reduces the number of data The same data set comprising 26 laps was used to com-
points, the spatial trend was still obscured (F8g). Fur- pare the effect of smoothing on pollutant correlations. The
thermore, while spatial smoothing alone resulted in a fairlyresults indicated that both spatial and temporal smoothing
smooth gradient and the degree of spatial smoothing did notauses pollutant concentrations to become more correlated
have a significant effect on the fitted curve (R8), aggre- as measured by the Spearman correlation coefficients (Ta-
gating the data to a larger timescale before applying spable 4). The average speed of the car on this route was ap-
tial smoothing introduces additional variation (Fagl). This proximately 10 ms?. The Spearman correlation coefficients
variation is due to the error introduced into the estimation ofwere calculated for BC, CO, NQ PM,5, and UFPs af-
location by using a longer timescale. The slight increase inter applying the COV filter ljagler et al. 2012 and after
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Figure 7. Spatial distribution of PM 5 before(a) and after(b) background standardization. Points represent median 50 m values from
eight sampling runs with each route measured on two days. Points are coloredypektentile.

Table 4. Effect of temporal and spatial smoothing on pollutant Spearman correlation coefficients.

Temporal smoothing Spatial smoothing

Filtered raw data 5s 10s 10m 50m 100m
N = 8386 N=1801 N =921 N=529 N=105 N=52

NO> (ppb) and PM 5 (g m3) 0.07 0.10 0.12 0.77 0.85 0.86
NO> (ppb) and BC (ug m4) 0.11 0.12 0.12 0.76 0.81 0.80
CO (ppb) and NG (ppb) 0.16 0.18 0.18 0.81 0.85 0.85
UFPs (cn3) and P 5 (ug mi—3) 0.41 0.53 0.57 0.83 0.89 0.89
UFPs (cn3) and BC (ug n13) 0.47 0.53 0.58 0.80 0.85 0.86
BC (ug ni3) and PN 5 (ug m—3) 0.54 0.69 0.74 0.77 0.82 0.84
NO (ppb) and UFPs (cm?) 0.56 0.60 0.62 0.88 0.87 0.87
CO (ppb) and UFPs (cr?) 0.58 0.63 0.65 0.88 0.92 0.92
CO (ppb) and PM s (ug m—3) 0.61 0.73 0.76 0.84 0.86 0.86
CO (ppb) and BC (ug m3) 0.69 0.74 0.76 0.81 0.85 0.87

calculating 5 and 10 s averages (discrete windows), dividingd.7. After 50 m averaging, all of the correlation coefficients
the route into 10, 50, and 100 m segments, and calculatingvere greater than 0.8, but increasing the averaging interval
the average of the measurements in each segment. Spati@ 100 m did not change any coefficients by more than 0.02.
smoothing resulted in much stronger correlations comparedbpatial smoothing results in a smaller sample size used to de-
to temporal smoothing (Tablg. After 10 m averaging, all of  termine the correlations compared with temporal smoothing
the pollutants were correlated with coefficients greater thardue to the repeated laps. While a smaller sample size does

Atmos. Meas. Tech., 7, 2162183 2014 www.atmos-meas-tech.net/7/2169/2014/



H. L. Brantley et al.: Mobile air monitoring data-processing strategies and effects

2181

This study investigated the sensitivity of final analysis results

A () A 282 to the data-processing steps chosen.
g - X 100m A variety of research questions and the corresponding
o data-processing strategies were discussed, and a framework
« for deciding which strategies to apply was presented. Re-
&1 moving the influence of local exhaust plumes can substan-
9 - XOBE M6 0 B tially change a near-source gradient, but the various methods
— o | g compared resulted in similar results. A times-series based
2" method for estimating background concentrations was com-
S pared with the location-based estimation of background. The
o | (d) - 5s+10m time-series-based method was found to slightly underesti-
< Z ﬁ 1851 égm mate the background concentrations when compared with
® ST the location-based method, possibly due to traffic in the des-
& “ . . ignated background areas. Background standardization was
g - e PRI particularly important for pollutants with a high background
o | o S GAE Sem concentration relative to the total concentration, and esti-
- Kﬁ@ij& %“r_ mated background concentrations were shown to vary with
< st A*A*’ANZ time. Spatial averaging (50 m) resulted in smoother concen-
0 - . tration gradients and stronger correlations than temporal av-
0 200 400 600 800 O 200 400 600 800 eraging (55s).

The results demonstrate the vast amount of information
_ _ _ contained in data sets collected using mobile monitoring and
Figure 8. Comparison of the effect of temporal and spatial smooth- {ne myriad of research questions that can be answered using

ing on NG, measurements collected on the 900 m transect of routgpage (ata, as well as the sensitivity of the conclusions to the
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