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Abstract. Satellite measurements are often compared withl Introduction

higher-precision ground-based measurements as part of val-

idation efforts. The satellite soundings are rarely perfectly o ) ) _
coincident in space and time with the ground-based measurd=arbon dioxide (C@) is an important anthropogenic green-
ments, so a colocation methodology is needed to aggregafa®use gas, and quantifying the exchange op G&ween the
“nearby” soundings into what the instrument would have atmosphere and the Earth’s. surface is a crltl_cal part of the
seen at the location and time of interest. We are particularlyglobal carbon cycle and an important determinant of future
interested in validation efforts for satellite-retrieved total col- climate Gruber et al.2009. One important measure of GO
umn carbon dioxideXco,), whereXco, data from Green- is total column carbon dioxideX(co,), which is aval_lable
house Gas Observing Satellite (GOSAT) retrievals (ACOS,from ground-based Total Carbon Column Observing Net-
NIES, RemoteC, PPDF, etc.) or SCanning Imaging Absorp-Work (TCCON;Wunch et al, 20113 and from space-based
tion SpectroMeter for Atmospheric CHartographY (SCIA- §atelllte mstruments such as the Greenhouse gases Observ-
MACHY) are often colocated and compared to ground-basednd Satellite (GOSATYokota et al, 2004 Hamazaki et aJ.
column Xco, measurement from Total Carbon Column Ob- 2009 and the SCanning Imaging Absorption SpectroMe-
serving Network (TCCON). ter for Atmospheric CHartographY (SCIAMACHBovens-

Current colocation methodologies for comparing satel-mann etal.1999.
lite measurements of total column dry-air mole fractions ~Ground-based total column GOneasurements tend to
of CO, (Xco,) With ground-based measurements typically be more precise and accura.te than space-based measure-
involve locating and averaging the satellite measurement&"€nts, but ground-based stations often are sparsely located
within a latitudinal, longitudinal, and temporal window. We around the globe, and areas such as Siberia, Asia, Africa,
examine a geostatistical colocation methodology that takes £0Uth America, and the oceans have particularly poor cov-
weighted average of satellite observations depending on thgrage. Satellite instruments have much better coverage and
“distance” of each observation from a ground-based locatiorf'® able to sample the entire globe in a matter of days or
of interest. The “distance” function that we use is a mod-Weeks. Together, the ground-based and space-based CO
ified Euclidian distance with respect to latitude, longitude, OPServing instruments provide a complementary ensemble of
time, and midtropospheric temperature at 700 hPa. We appmlgh-premsmn, sparse-coverage and lower-precision, global-
this methodology toX o, retrieved from GOSAT spectraby COVerage measurements. An important component of satel-
the ACOS team, cross-validate the results to TCCRdb, lite retrieval assessment is validation relative to independent
ground-based data, and present some comparisons betweBhS!tu grounq-based sources of data n Qrder to assess Im-
our methodology and standard existing colocation methoddortant metrics such as bias and variability relative to the

showing that, in general, geostatistical colocation produced!nderlying true process. These bias and variability assess-
smaller mean-squared error. ments can in turn be used to improve the retrieval algorithm

to reduce spurious error resulting from factors such as limited
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understanding of the instrument’s calibration, uncertaintiesobservations falling within a coincident neighborhood of a
in the & and CQ absorption cross sections, and subtle er-ground-based station. The colocation methods above do not
rors in the implementation of the retrieval algorith@risp distinguish between the case where we have 10 satellite ob-
etal, 2012. servations retrieved exactly at the ground-based station and
Often, there are spatial and temporal mismatches in théhe case where the 10 observations are retrieved far away on
observed locations of the remote sensing instrument andhe edge of the neighborhood region; the colocation methods
ground-based validation instrument, and some spatial (anévould return the same colocated value in both cases.
temporal) interpolation is required in order to “colocate” the In this paper, we present a refinement of these coloca-
two sources of data before a direct comparison is possibletion methodology by modeling the correlation structure as a
We define “validation colocation” as estimating, through in- function of “distance” using geostatistics, and then weight-
terpolation using nearby satellite observations, what a remoténg nearby satellite observations by their correlation with
sensing instrument would have seen at a certain chosen locane another and correlation with the location of interest.
tion and time. In this paper, we examine a new colocationOur geostatistical methodology is motivated under an error-
methodology that is mathematically motivated in an error- minimization mathematical framework and is related to op-
minimization framework. Specifically, we are interested in timal interpolation (for more detail, see kriging @ressie
developing a colocation methodology to combine retrieved1993 Chapter 2). Our methodology has the same framework
Xco, data from GOSAT spectra using the Atmospheric,CO asZeng et al(2014), although they applied the methodology
Observations from Space (ACOS) for comparison againsin the context of gap-filling C@from regional data and not
TCCON X, data with the goal of minimizing the expected for defining colocation criteria, and they did not consider the

interpolation error. addition of non-spatial and non-temporal covariates in their
Colocation methods foK o, in the existing literature in-  model.
clude geographicallygo (Wunch et al. 20110, and model- The benefits of a geostatistical approach include explicit

based Guerlet et al.2013 colocation. Geographical coloca- specification of the underlying covariance structure, error
tion typically defines a spatiotemporal neighborhood region,propagation, and minimized expected mean-squared error.
also known as a coincidence criterion, around the location ofAll colocation methodologies are essentially interpolation
interest and then take summary statistics (e.g., mean or mdechniques, which result in an interpolation uncertainty that
dian). Examples of geographical colocation includes averagis incorporated into the variability of the colocated/validation
ing all same-day satellite observations falling withi&° of data comparison. Itis important to minimize the interpolation
a location of interestlfoue et al. 2013, averaging all ob-  error so that we can better assess the underlying variability

servations falling within 5 and+2h (Cogan et al.2012), and bias between the satellite and validation data. The geo-
and taking the monthly median of all observations within a statistical colocation methodology has the attractive theoret-
1 x 10° lat-long box Reuter et a.2013. ical property that, given the correct spatial correlation struc-

More sophisticated colocation methodologies add othetture, it has the lowest interpolation error of all linear method-
correlated geophysical covariates in constructing suchologies.
“neighborhoods” under the principle that conditioning on In Sect. 2, we describe the data from ACOS-GOSAT and
these additional correlated covariates would improve theTCCON. Section 3 contains the details of our methodology
quality of the comparisonMunch et al(2011H’s Tyqg colo- as well as the estimation procedure, and we compare the per-
cation method takes the average of all GOSAT observationgormance of our geostatistical methodology to existing colo-
falling within £30° longitude,£1(° latitude,+5 days, and cation methods in Sect. 4. Summary and discussion of the
+2 kelvin in T7go of the TCCON location of interesGuer-  methodology along with possible extensions are presented in
let et al’'s model-based method similarly takes the average ofSect. 5.
all same-day satellite values that fall withiri7.5> latitude,
+25° longitude, andt0.5 ppm of the 3-day-averaged model
Xco, data. 2 Overview of ACOS-GOSAT, TCCON, and auxiliary

All the colocation methodologies above operate on anim-  data sources
plicit assumption that observations “near” one another are
more likely to be correlated, where “nearby” indicates be- GOSAT was launched on 23 January 2009 as a joint venture
ing proximal in a coordinate space and metric. The notion ofby the National Institute for Environmental Studies (NIES),
“nearness” is captured in the definition of “neighborhood” the Japanese Space Agency (JAXA), and the Ministry of the
that they specify; however, all observations falling within Environment (MOE). It is a polar-orbiting satellite dedicated
such a neighborhood are given equal weights in the computo the observation of total-column G@nd CH;, both ma-
tation of the summary statistics. While this approach mightjor greenhouse gases, from space using reflected sun-light
be intuitive and straightforward, it fails to take further ad- spectra from the Thermal And Near-infrared Sensor for car-
vantage of the spatial information encoded within the coinci-bon Observation Fourier transform spectrometer (TANSO-
dentlocations. For instance, suppose that we have 10 satelliteTS;Hamazaki et a) 2005. It flies at approximately 665 km
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altitude, and it completes an orbit every 100 min. The satel-aerosols that were missed by the cloud-screening process
lite returns to the same observation location every 3 daygO’Dell et al, 2012, TCCON directly observes the solar
(Morino et al, 2011). disk and hence is less sensitive to errors from scattered light

Following the failure of the Orbiting Carbon Observatory (Crisp et al, 2012.

(OCO) launch in February 2009, the OCO project formed TCCON sites sample in a diverse range of atmospheric
the Atmospheric C@0bservations from Space (ACOS) task states, which include tropical and polar regions, continental
and, under agreement with NIES, JAXA, and MOE, applied and maritime, polluted and clean, providing valuable vali-
the OCO retrieval algorithm to the GOSAT spectra to com-dation link between space-based measurements and the ex-
pute column-averaged dry-air mole fractions of CQhe  tensive ground-based in situ netwoki{nch et al. 20113.
ACOS-GOSAT data processing algorithm is based on the opTCCON Xco, data in turn are validated against integrated
timal estimation approach &odgerg2000 and is described aircraft profiles YWashenfelder et al2006 Deutscher et al.

in detail inO’Dell et al.(2012. It is modified from the OCO  201Q Messerschmidt et al2011, Wunch et al. 2010 and
retrieval algorithm Bosch et al.2006 Connor et al.2008 have a precision and accuracy 0.8 ppm Wunch et al.
Boesch et a).2011) to account for the different physical 2010.

viewing geometries and properties such as instrument line We use the 2012 release version of the TCCON data
shapes and noise models. ("GGG2012") from the TCCON Data Archive (s@&CCON

In this paper, we assess the performance of different coloData Accesdn the References for more information) for the
cation methods on ACOS-GOSAT data by comparing colo-following 16 locations: Bialystok, Bremen, Darwin, Eureka,
cated values to the more precise and accurate TCCON dat&armisch, 1zafia, Karlsruhe, Lamont, Lauder (both 120HR
We use the v3.3 release of ACOS-GOSAT data, availableand 125HR), Ny-Alesund, Orleans, Park Falls, Reunion, So-
from the Goddard Data and Information Services Centerdankyla, Tsukuba (both 120HR and 125HR), and Wollon-
spanning July 2009 to April 2013 (s&«OS Data Access gong. At each TCCON location, we use all available data
in the References for notes). GOSAT data are divided intothat fall within the period of July 2009 to April 2013. A map
three categories: glint (ocean) data, land high (H)-gain datapf the TCCON locations is shown in Fig. 1. This particu-
and land medium (M)-gain data. The v3.3 data user’s guiddar version of TCCON data suffered from site-to-site biases
notes that M-gain data and ocean glint data have some dedue to a laser sampling issue inside the Bruker 125HR in-
ficiencies in that particular version and should only be usedstruments, and thus we corrected for these biases using the
with heightened cautionQsterman et al.2013. Hence in  TCCON recommended bias corrections (for more detail, see
this paper we only make use of H-gain land data. TCCON Data Acces2013.

Following the recommendation of the data user's guide, Atmospheric variability oiXco, has been shown to be cor-
we screen the v3.3 H-gain data using a set of 11 criteria taelated to the free-tropospheric potential temperature, which
obtain data suitable for scientific analysis. The set of screenean be considered as a proxy for equivalent latitudeXies,
ing criteria is reproduced in Tabte The ACOS-GOSAT data in the Northern HemisphereKéppel-Aleks et al. 2017).
have a bias that is known to be correlated with certain othein this paper, we followWunch et al.(20118 in making
variables such as air mass, blended albedo, and posteriorse of midtropospheric temperature as one of the covariates
prior surface pressure differend@/gnch et al.2011h. The  along with latitude, longitude, and time. Specifically, we use
v3.3 data user’s guide recommends a linear bias correctiothe midtropospheric temperature field at 700 hPa from the
to ACOS-GOSATX co, based on the difference between the National Centers for Environmental Prediction and the Na-
retrieved and prior surface pressure from the A-band cloudional Center for Atmospheric Research (NCEP/NCAR) re-
screen and the ratio of the signal in the strongp@®@nd to  analysis product, which uses a frozen state-of-the-art analy-
that of the QA band Osterman et al2013. However, since  sis/forecast system and performs data assimilation using past
such bias correction was done through comparison of v3.3lata Kalnay et al, 1996. The midtropospheric temperature
ACOS retrievals with models and TCCON retrievals, we re- field at 700 hPa should be directly proportional to the poten-
frain from applying the v3.3 bias correction to avoid potential tial temperature at 700 hPa for the range of temperature of
“feedback” in the comparison of our colocated v3.3 ACOS interest, and its inclusion as a covariate should allow us to
and TCCON values. construct better colocation metrics.

TCCON consists of ground-based Fourier transform spec-
trometers that record direct solar spectra in the near in2.1 Averaging kernel correction
frared. These spectra are then used to retrieve column-
averaged abundances of atmospheric constituents, includFo compare two observations obtained through optimal es-
ing COp, CHyg, N2O, HF, CO, and HO, which are directly  timation properly, the retrievals must be computed around a
comparable with the near-infrared total-column measure-common a priori profile and the averaging kernels must be
ments from space-based instrumemsifich et al. 20113. applied to account for the effect of smoothing (Rodgers and
Whereas GOSAT retrievals are susceptible to variability re-Connor, 2003). A detailed exposition on applying the aver-
sulting from contamination by optically thick clouds and aging kernel correction for a ACOS-GOSAT and TCCON
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Table 1. Annual and seasonal trend coefficients.

Intercept Slope Amplitude Phase shift

(ppm)  (ppmyear!)  (ppm) (radian)
Northern Hemisphere  385.7900 2.6061 3.2040 0.1556
Southern Hemisphere  383.5127 2.4878 0.3099 4.0978

Latitude
0
I

T T T T
-100 0 100 200

Longitude

Figure 1. Map showing the 16 TCCON locations for which we perform GOSAT/ACOS and TCCON colocation comparison.

comparison is given in Sect. 4 and Appendix AWfinch pressure weighting function; andis the Xco, averaging

etal.(2011h. kernel norm. The terny is a scaling factor that produces
Typically, to compare retrieval results from two different the best fit of the TCCON output to the spectrum, and it is

instruments with different viewing geometrics, retrieval al- approximated as a ratio between the retrieved TCCQJN,

gorithms, a priori profilesxz), and averaging kerneh(, we and the a priorXco,,

need an common ensemble profilg and covariance ma- A

trix (S); these represent the mean and variability of the at- , . 22

mosphere at the common comparison location. As an alterna- ~ za’

tive, we can use one observing system to try to retrieve what We apply Eq. 1) to TCCON data between July 2009 and

the other system would have produced as its retrieved totalk : )
column Rodaers and Conno2003. Given that TCCON re- pril 2013 at the 16 choseq TCCON Iocatlon_s. For each TC-
umn Rodg A2003. Giv ON observation, we obtain the corresponding ACOS a pri-

trievals are considered more precise and accurate, we Smooori information using the colocation neighborhood region de
the TCCON value with the ACOS-GOSAT column averag- . ) A
9 fined inWunch et al(20118; see Sect. 4 for more detail. Fig-

ing kermels to produce what ACOS-GOSAT would have pro- ure 2 displays a plot of the relationship between the original
t the TCCON locati i the T N profil d .
duced at the ocation given the TCCON profile as TCCON retrievals versus the averaging-kernel-corrected TC-

ruth”. CON data. In effect, the averaging kernel correction tends to
Fortunately, ACOS v3.3 a priori profiles and TCCON a ' ' X
. Y v priorl prot ull TCCON observations closer to the ACOS a pribeo,;

priori profiles are very similar to one another, and hence weP i o
only need to account for differences in the averaging ker_TCCON values that are higher than the ACOS a priori value

nels. We use the following averaging kernel equation 1‘romtend to be pulled d'ownwards, while TCCON values lower
: . than the ACOS a priorK co, tend to be pulled upwards. The
Appendix A of Wunch et al(2011h: - .
standard deviation of the difference between non-corrected
Z12=2za+(y — 1)Zhjaljxaj, (1)  and corrected TCCON values, aggregated over all TCCON
J sites, is 0.24 ppm.

where z5 is the a priori Xco,; Z; is the retrievedXco,,
with i =1 for ACOS and =2 for TCCON; % is the Xco,

Atmos. Meas. Tech., 7, 26312644 2014 www.atmos-meas-tech.net/7/2631/2014/



H. Nguyen et al.: A method for colocating satelliteXco, data to ground-based data 2635

Having done averaging kernel correction to put the TC- The solution to the constrained minimization problem in
CON and ACOS retrievals on the same footing, in the nextEqgs. @) and 6) can be found using the method of Lagrange
section we describe our methodology for optimally colocat- multipliers. Cressig(1993 gives the following equation for
ing ACOS-GOSAT observations to any TCCON location. the solutiora,, that satisfies Eq4) and 6),

The colocated values will then be compared to averaging-

kernel-corrected TCCON data in Sect. 4. as ) _ (6)
A
-1
3 Geostatistical colocation y(s1,s1) 0 yG1sy) 1 v (s1.50)

Our colocatlon_ mgthodology exists within a geostausngal v(sn,s1) - y(sy.sy) 1 V(5N 50)
framework, which is a part of the broader area of spatial 1 1 0 1

statistics. Here, we briefly review that framework, give some

necessary notation, and present basic derivations for estimavherea is the scalar Lagrange multiplier ang is the vector
tion in a spatial context. of kriging coefficient.

Let {Y(s) : s € D} be a hidden, real-valued spatial process An attractive property of the geostatistical approach is that
on a multidimensional domain. In the application of ACOS- the semivariogram function can be used to calculate the ex-
GOSAT and TCCON, we let = (sat, sion, 5¢, s7)" be afour-  pected estimation error at the interpolation location. The ex-
dimensional vector, specifying the latitude in degrees, longi-pression for the interpolation error is as follows:
tude in degrees, time in fractional days, and midtropospheric
temperature in kelvin at 700 hP&(), respectively, and we y(s1,50)

assumeY (s) is the Xco, process at location. We assume  ~ .\ _ ( ./ :
] _ _ () =(ay » @)
that theZ(s), Xco, retrieval at locatiors, is a sum of the v (sn,50)
true Xco, process and a retrieval-error term; that is, 1
Z(s) = Y(s)+e€(s) Estimating the fully general semivariogram model
= £(s) +v(s) +e(s), (2)  v(sn,so0) is a difficult problem that is prone to robustness

issues when the data are sparse. To make the problem more
wheret(s) is a large-scale deterministic trend term that ac- tractable, we assume that the variogram structur& o
counts for seasonal and yearly trend&) is a small-scale  isotropic under certain distance metrics. In other words, we
variability term that accounts for spatial correlation, atd  assume that the semivariogram capturing the spatial depen-
is the retrieval-error term. We also assume that we have alence between any two locatiopss;, s ;) is only dependent
variogram function 2 (s;, s ;), which describes the degree of on its “distance” as in the following equation:
spatial dependence between any two locatipresds ; as in
the following definition: ' y(sissj) =y (si =s;lp), ®)

where| - | p is a modified Euclidean distance given b
2y (si,sj) =var(Z(s;) — Z(sj)) = [-IB g y

E(12650) —1650) = (Z5) 1 5)F) s sios; €D, @) Wi 8ilE= ©)

LetZ = (Z(s1), Z(s1), ..., Z(sn))’ be the vector of satel- Gsitat=sj0a0? | (sijon —sjjon)? | (siv =5j,0% | (it —s5,7)>
lite observations taken aV¥ footprints around an interpo- / ( By + By T By )
lation pointsg, and letT = (t(s1),7(s1),...,t(sy))" be the

correspondingV-dimensional vector of trend terms. We wish

to find an estimate of (sg) as a linear combination of the de- = \/((si —5;)B(si —s})), (10)

trended retrieved co, vectorD = (Z — T') and an unknown _ _ _ _

vector of coefficients’, ; that is, andB is a diagonal 4 4 matrix whose diagonal elements
0 (1/B1,1/B2,1/ B3, 1/Bs) represent the scaling parameters

Y (s0) = #(s0) +“§oD» (4) along each of the coordinate directions: latitude, longitude,

L time, andT7qo.
such that we minimize the expected mean-squared error

R 3.1 Application to ACOS-GOSAT and TCCON data
ming, E ((¥ (s0) = ¥ (50))?). (5)
Computation of the colocated values and their corresponding
subject to the unbiasedness constraLglL =1 interpolation error in Eqs4j and (7) requires that we know
the trend (-), the scaling diagonal matri, and the semivar-
iogram functiony (-, -). In practice, these terms are unknown.

www.atmos-meas-tech.net/7/2631/2014/ Atmos. Meas. Tech., 7, 2&8144 2014
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For our application, we will assume certain parametric forms Original vs AK-Corrected TCCON
for the trend: (-) and the semivariogram functign(-, -) and
estimate the corresponding parameters along Bitiom the
retrieved data.

Unfortunately, ACOS-GOSAT data are quite sparse once
we pass the radiances through a cloud filter, retrieval selec-
tion criteria, and post-retrieval data quality filters. The rel-
ative global sparseness of the ACOS-GOSAT data makes i & -
difficult to obtain robust estimates of the scaling matsix
and the semivariogram functign(-, -). We address this prob-
lem by using CarbonTracker mod&lco, data to estimate
these spatial-temporal dependence parameters. Our assump-
tion here is that CarbonTracker and ACOS-GOSAT share
the same medium- to large-scale spatiotemporal dependence
structure forXco,. For instance, the dynamics in Carbon-
Tracker should reasonably approximate synoptic- and large-
scale dependence in moderately homogeneous areas such as
the Southern Hemisphere. Note that this assumption is not as I ] ] ]

395
|

iCorrected TCC!

385

380
|

restrictive as the assumption that CarbonTracker and ACOS- 380 385 390 395
GOSAT have the same expected valueXejo, at every lo- Original TCCON
cation.

CarbonTracker is a Cpassim“ation system deve'oped Figure 2. Matched TCCON original daily median observations vs.
by the National Oceanic and Atmospheric Administration averaging-KerngI-correpted TCCON values. The red line is the lin-
(NOAA) to keep track of the global COemissions and ear regression line, while the blue is the 1: 1 line.
uptake. The model combines surface air samples collected
around the globe and from tall towers and small aircraft in
North America with an atmospheric transport model coupled
with a Kalman filter to produce estimates of atmospheric
CO, mole fractions on a global gridPgters et a).2007).
The modelXco, data are regularly gridded at X 1° daily
resolution, making it particularly convenient for use in spa-
tial parameter estimation. We use 2 years’ worth of Carbon-; . . . !
Tracker data (CT2001 oi) between January 2009 and DeI_mear regressionArtis et al, 2007). The resulting coeffi-

: = . ) cients are displayed in Table
cember 2010 in estimating the trend), the scaling matrix Table 1 indicate that the Northern Hemisphere tends to
B and the semivariogram functign(-, -).

have highetXco, than the Southern Hemisphere. The inter-
cept term is higher for the Northern Hemisphere, indicating
that the basé& ¢, there is higher, and the slope is marginally

The trend term (-) is a deterministic term that accounts for higher as well (2.61 vs. 2.49 ppm yedy, indicating that the

the annual increase iWco, as well as the seasonal vari- Northern Hemisphere has a higher raté@b, increase. The
ations. This deterministic trend needs to be modeled, estitain differences between the hemispheres are the amplitudes
mated, and removed from the data in Eq. (2) before we carand the phase shifts of the seasonal terms. CarbonTracker in-
apply the geostatistical colocation on the remaining stochasdicates that the Northern Hemisphere has a seasonal variabil-
tic terms in Eq. 4). We assume that the trend term in E4). ( ity with an amplitude of 3.2 ppm, while the Southern Hemi-
can be modeled as a mixture of a linear constant trend and 8Phere has a much lower seasonal amplitude of 0.31 ppm.

We make a simplifying assumption that the annual
and seasonal trends are constant over the hemispheres.
We aggregate daily CarbonTrack&go, values over both
the Northern and Southern Hemisphere for the entire
2-year period, and we compute the trend coefficients
{co(s),c1(s),a(s),08(s)} using variable transformation and

3.2 Trend terms

seasonal sinusoidal trend, The phase shifts (0.16 vs. 4.10) differ by about half a year,
_ which is consistent with the opposite seasons in the hemi-
t(s) = co(s) 4 c1(s)s; +a(s) - Sin(2ms; 4-6(s)), (11)  spheres.

A plot of the sinusoidal fits versus the aggregated data is
shown in Fig.3. In general, the sinusoidal curves roughly
reproduce the linear trend and seasonal variability in the av-
eraged CarbonTracker data. The fitis not perfect, and the dif-
ference between the two might be due to small-scale spatial
variability, which will be captured in the remaining stochas-
tic terms in Eq. 4).

wherecy(s) is they intercept and1(s) the slope of the lin-
ear portiona(s) is the amplitude of the seasonal sinusoidal
variability, andé (s) is the sinusoidal phase shift. The period
for seasonal variability is assumed to be 1 year, ansl the
time as a year fraction starting at 0 for 1 January 2009.

Atmos. Meas. Tech., 7, 26312644 2014 www.atmos-meas-tech.net/7/2631/2014/
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Northern Hemisphere Mean XCO2

“|—— Trend Fit
o CarbonTracker Data

Mean CO2
384 386 388 390 392 394 396

2009.0 2009.5 2010.0 2010.5 2011.0

Year

Figure 3. Plots of averaged CarbonTracker trend versus sinusoidal trend fit for the Northern Hemisphere (left) and Southern Hemisphere

(right).

3.3 Parameter estimation

Having modeled and estimated the trend te(r), we now
estimate the scaling matr and the semivariogram func-
tion y (-, -). We model the semivariogram function with the
spherical semivariogram, which has the form

y(si,sj))=yh) =

<<3h h3
(s —n)

2r 23
whereh = |s; — s ;| p is the modified Euclidean distance be-
tweens; ands;; 1s(h) is 1 if 2 € S, and O otherwise, the
termn is the nugget, which denotes the height of the semi-
variogram at the origin wheré = 0; the terms is called
the sill, which is the limit of the semivariogram as— oo;
andr is the range, which is the distance at which the dif-

) L0, (h) + L. o0 (h)> +n, (12)

ference between the semivariogram and the sill is negligibleN

(seeCressie1993 for more detail).

Given the scaling matriB, we can estimate the semivar-
iogram parameter§s, s, r} by constructing the robust em-
pirical semivariogram estimator discussediressieg(1980
andCressig1993 Sect. 2.4) from the CarbonTracker data as
follows. Forh > 0, define

1 4
[k L 1DGm) = DisaI?
0.457+ 0494

27 (h) = (13)

’

N(h)]
whereD(s) is the detrended CarbonTracker value at location

s, andN (h) is the set of observation pairs that are separa’teoe

by a distance of,
N (h)

{($n,8m): ISp —Smlpx=h; m,n=1.. N}

In practice, the seV (k) is defined using a small tolerance
interval around, since it may not be possible to find pairs
of locations that are exactly distankeapart Cressie 1993
p. 70). The termN (k)| denotes the number of unique ele-
ments inN (h).
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We assume that the scaling matixand the semivari-
ogram functiory (-, -) are constant with respect to each hemi-
sphere and with respect to time. To estimate the scaling ma-
trix B, we construct empirical semivariograms using data
pairs that only approximately differ in one of the four co-
ordinates. This effectively sets three of the four terms on the
right-hand side of Eq.9) to zero (or very close to zero), al-
lowing us to estimate the single remaining scaling parameter,
B;. For instance, to estimate the scaling parameter along the
longitudinal direction, we search through the CarbonTracker
data for the corresponding hemisphere to obtain pairs of ob-
servations that share the same date, latitude, Tapg but
different longitudes. We then calculate the robust semivar-
iogram estimator in Eq.13), compute the corresponding
semivariogram fit to the spherical model in Efj2), and set
the scaling parametd®; equal to the resulting range
Table 2 contains the list of scaling parameters for the
orthern Hemisphere and the Southern Hemisphere. In gen-
eral, the scaling parameters agree fairly well with the coinci-
dence windows given iwWunch et al(20118’s T79o method-
ology. For the Northern Hemisphere, the scaling parame-
ters for latitude, longitude, time, ariygg are 15.1, 24.5, 3,
and 3.1, respectively; the corresponding parameters for the
Southern Hemisphere are 11.6, 19.3, 3, and 2.3. This indi-
cates thatin general the Northern Hemisphere has longer spa-
tial correlation range than the Southern Hemisphere.

Having estimated the scaling parametBrsve construct
a set of empirical semivariogram values using Ekg) (for
ach of the hemispheres and estimate the semivariogram pa-
rametergn, s, r} using an iterative Gauss—Newton fitting al-
gorithm to fit to the chosen spherical semivariogram model to
the empirical semivariogram estimat&réssie 1985. The
resulting nugget, sill, and range parameters for the Northern
and Southern Hemisphere are presented in Table

The nugget and the sill parameters indicate that in gen-
eral the Northern Hemisphere has higher variability and that
the spatial correlation structure is weaker in the Southern
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Table 2. Scaling coefficients and semivariogram parameters for8g. (

By By B3 By Nugget Sill Range
(degrees) (degrees) (days) (kelvin) =) ( (s) (r)
Northern Hemisphere 15 25 3 3 0.3 2.3 1.98
Southern Hemisphere 11 19 3 2 0.21 0.73 1.7

Hemisphere. Having estimated the parametersBoand longitudinal constraint is reduced t510° for the Tsukuba
y(si,s;), we can compute the colocated ACOS-GOSAT TCCON site to avoid inordinate influence from ACOS-
value at any TCCON location using Eg4) &nd 6). GOSAT retrievals over China. In this section, we assess
the performance ofWunch et al.(20118’s colocation cri-
. o ) terion and the geographical method relative to geostatistical
4 Comparison to existing methodologies colocation methodology between the period July 2009 and

Having outlined the geostatistical colocation methodology inAprll 2013.

Sect. 3, we now assess its performance relative to existing
methodologies, which include geographical colocation and*-1 Comparison between ACOS-GOSAT and
Wunch et al.(20118's Tygo colocation. Our primary stan- TCCON data
dard for comparison is the root-mean-squared error (RMSE)
between TCCON and colocated ACOS-GOSAT data. ThisFor the performance assessment, we use all available TC-
RMSE is the sum of the variability from various sources suchCON data from 16 locations (4 in the Southern Hemisphere,
as the underlying atmospheric variability, GOSAT and TC- 12 in the Northern Hemisphere; see Fi. between the
CON measurement errors, relative bias, and interpolation erperiod July 2009 and April 2013. Since the three coloca-
ror resulting from colocation. In this experiment, we manip- tion methodologies compute averages over large temporal
ulate the magnitude of the interpolation error by varying the spans, applying the three methodologies to individual same-
method of colocation. The resulting changes in total RMSEstation TCCON observations (which may be spaced seconds
should be indicative of the corresponding changes in interpoor minutes apart from one another) would result in a scenario
lation error. where many temporally proximal TCCON observations are
Geographical colocation methodology is perhaps the mosiatched to the same ACOS-GOSAT colocated value. We
popular colocation methodology due to its simplicity and avoid this problem by taking the daily median of TCCON
straightforwardness. Examples of geographical coincidentXco, values and using them as the standard against which
criteria include selecting all same-day satellite observationsve assess the outputs of the colocation methodologies.
falling within +5° of a location of interestlfoue et al, Having taken the daily median of the TCCOf\o, val-
2013, selecting data falling withinc30 min from about 0.5 ues, we scan the entire TCCON data set and locate corre-
to 1.5 rectangles centered at each validation sirino sponding matches using the colocation methodologies. At
et al, 201J), selecting data withinSand+2h (Butz et al, every TCCON location and every day for which we have
2011 Cogan et al.2012), selecting observations within a a daily median TCCONXco, value, we gather the corre-
10 x 10 lat-long box Reuter et al. 2013, and select- sponding ACOS-GOSAT values falling within the respec-
ing weekly data that fall within a5radius of a validation tive coincidence regions and then compute the colocated
site (Oshchepkov et gl.2012). For the performance com- value for each of the three methodologies. Some TCCON
parison in this section, we define a geographical colocatiorlocations may not have a corresponding colocated ACOS-
methodology by averaging all same-day satellite observaGOSAT value for particular days due to the fact that they do
tions falling within 500 km of a location of interest. This not have any GOSAT values within their coincidence neigh-
colocation methodology is based on the one usebh@ue  borhood. The neighborhood regions are constructed sepa-
et al. (2013, with the exception that we replace the lat-long rately for each TCCON location, and thus some ACOS-
circle with a great-distance circle to avoid warping near theGOSAT sounding may be used more than once in comput-
poles. ing the colocated values for several temporally or spatially
Wunch et al (20111 refined the geographical method by proximal TCCON daily median values.
adding midtropospheric temperature at 700 hPa as an extra Figure4 displays the colocated ACOS-GOSAT values ver-
threshold to take advantage of the correlation betwegg, sus the data from the 16 TCCON sites. Theaxis dis-
and midtropospheric temperatuteppel-Aleks et a].2011, plays the temporal range whereas thaxis displays the TC-
2012. Their colocation methodology locates and averagesCON daily median values and the colocated ACOS-GOSAT
all ACOS-GOSAT observations falling withigt30° longi- from the three colocation methodologies. In general, the
tude, £10 latitude, £5 days, andt2 kelvin in T700. The ~ Wunch et al.(20118 and geostatistical methodology have
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Figure 4. TCCON daily median (black) vslyqg (red), geostatistical (blue), and geographical (green) colocation values. Time in days is
displayed on the axis, whileXco, concentration in ppm is displayed on thexis. Reunion and Tsukubal25 data sets are omitted due to
the low number of observations.

a lot more colocated values due the fact that they use datariteria than our chosen geographical methodology, and con-
from a large spatiotemporal neighborhood surrounding a TC-sequently have more daily matched ACOS-GOSAT/TCCON
CON site. From Fig4, all colocation methodologies indi- pairs. To better examine the patterns in Tahleve display
cate that ACOS-GOSATK o, tends to be larger than TC- the main statistics (bias, standard deviation, and correlation
CON Xco, and the magnitude of this bias is between 1 andcoefficient) in graphical form in Fig, with the TCCON sta-
1.5ppm. Northern TCCON sites such as Eureka and Ny-ions listed in order of decreasing latitude.
Alesund do not have nearby ACOS-GOSAT H-gain good- In the top panel of Fig5, we examine the average bias
quality retrievals during the winter due to ice and snow is- between the three colocation methodologies versus TCCON
sues. daily medianXco, at each of the 18 TCCON data sets. The
Table 4 displays five ACOS-GOSAT/TCCON summary average bias is fairly consistent between the three method-
statistics: number of matched day¥)( mean bias, stan- ologies and range between 0.6 and 2.5 ppm. In general, the
dard deviation, correlation coefficient)( and slope. Geo- Tygpand geostatistical colocation methodologies tend to pro-
statistical andl%oo methodologies have wider coincidence duce the same bias, while the geographical method has more
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Table 3. Overall mean-squared error for the three colocation methodologies before and after averaging kernel (AK) correction on TCCON.
Units are ppm.

T700 Geographical Geostatistical

Before AK correction 1.57 1.88 1.43
After AK correction 1.45 1.60 1.22

Table 4. Overall summary statistics for the three colocation methodologies. Statistics include number of matched)daysaf bias,
standard deviation (SD), correlation coefficier) @nd slope.

Geostatistical T700 Geographical
Latitude Location N mean SD r  slope N mean SD r  slope N mean SD r slope
53.23 Bialystok 342 1.09 1.06 0.90 0.89 319 1.04 146 0.83 0.96 100 0.87 193 0.72 0.95
53.10 Bremen 185 0.67 133 0.86 0.78 167 0.85 151 0.81 0.83 66 092 165 0.77 0.86
—12.43 Darwin 325 0.39 0.87 0.79 1.05 302 0.28 0.99 0.76 1.11 84 0.80 1.10 0.81 1.22
80.05 Eureka 46 221 1.08 0.80 0.82 43 245 1.67 0.66 0.97 19 3.10 220 0.65 1.19
47.48 Garmisch 357 142 1.09 0.87 0.91 321 154 134 081 0.93 127 194 182 0.74 0.95
23.30 lzaha 156 1.58 0.89 0.88 0.96 144 190 1.14 0.82 0.99 3 3.37 050 0.95 0.99
49.10 Karlsruhe 246 0.63 111 0.86 0.81 233 0.64 120 0.83 0.83 109 1.00 1.61 0.73 0.83
36.60 Lamont 795 0.73 0.97 0.89 0.82 729 0.81 092 0.90 0.86 345 0.66 1.37 0.77 0.81
—45.05 Lauder120 146 1.12 122 0.53 0.99 136 1.23 153 0.38 0.91 31 124 195 0.16 0.62
—45.05 Lauderl25 235 1.36 055 0.76 0.91 224 1.32 131 0.34 0.89 30 1.23 187 0.21 0.92
78.92 Ny-AIesund 10 232 096 0.93 0.87 10 142 180 0.75 0.72
47.97 Orleans 208 1.13 1.14 0.89 0.83 196 1.34 136 0.84 0.86 74 1.11 179 0.79 0.87
45.94  Park Falls 590 1.20 149 0.83 0.80 550 094 152 0.82 0.87 165 1.11 166 0.81 1.06
—20.90 Reunion 10 0.88 0.70 0.20 0.12 10 141 055 0.58 0.35
67.37 Sodankyla 312 193 120 0.91 0.94 291 249 167 0.85 1.01 101 262 179 0.83 1.09
36.05 Tsukubal20 179 0.83 1.82 0.66 0.90 170 1.17 212 0.65 1.05 35 248 146 0.83 1.14
36.05 Tsukubal25 51 1.11 2.01 0-0.03 49 231 237 0 -0 13 4.07 1.08 0.28 0.45

—34.41 Wollongong 437 132 0.85 0.70 0.81 404 122 095 064 0.81 115 179 138 051 0.88

pronounced variability in the estimates of mean bias at thecharacteristics. Since the GOSAT measurements tend to have
TCCON sites. This is likely due to the fact that the geo- relatively large single-sounding uncertainties, ffygo and
graphical method has a much smaller neighborhood regionthe geostatistical colocation methods are able to take advan-
and thus does not yield enough colocated matches relative ttage of the large number of observations within the coinci-
TCCON to produce a robust bias estimate. All three method-dent neighborhood to reduce the variability through the law
ologies tend to have high bias estimates for the three northef large numbers.
ernmost TCCON sites: Sodankyla, Eureka, and Ny-Alesund. While the Tyoo and the geostatistical methods tend to have
This is likely because soundings acquired over these snowyhe same mean bias (see top panel of Big.the geosta-
and icy surfaces have low reflectivity in the 1.61 and 2.06 umtistical method tends to produce lower RMSE. TaBldis-
bands; consequently scattering by thin clouds and aerosolglays the overall RMSE aggregated over all TCCON loca-
can constitute a larger fraction of the total signal and in-tions for the three colocation methodologies using both orig-
troduce larger uncertainties in the optical path len@higp inal and averaging-kernel-corrected TCCON data. In both
etal, 2012. cases, the geostatistical methodology has the lowest RMSE
The clear delineating metric between the three methodwhile the geographical methodology has the highest. This
ologies is the RMSE (also known as standard deviation),is not surprising since the geostatistical method is explic-
which we display in the middle panel of Fi§.on a station-  itly motivated by the error-minimizing framework in Edp)(
by-station basis. The three methodologies are roughly seph other words, given that the spatial dependency structure
arated into clusters: the geographical method has on avethat we learned from CarbonTracker is correct, the geostatis-
age the highest RMSH} oo ranks in the middle, and geosta- tical methodology is guaranteed to produce the lowest root-
tistical colocation has the lowest RMSE. One might expectmean-squared interpolation error relative to the truth (here
the geographical method to have the lowest RMSE since itepresented by TCCON) of all linear methodologies. While
only accepts ACOS-GOSAT values within a fairly narrow it is unlikely that we have perfectly estimated the true spa-
spatiotemporal neighborhood (500 km same-day window)tial dependency structure of ACOS-GOSAT data from Car-
However, this is not the case since the RMSE is a function ofbonTracker, we note that the improvement in performance
both the spatial dependence structangl the retrieval error  indicates that the dependency structure that we ultimately
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Table 5. Advanced screening criteria for ACOS v3.3 L2 H-gain d&atérman et al2013 Sect. 2.5.2).

Variable Comment Criteria
RetrievalResults/outcome_flag Flag indicating full physics outcome lor2
RetrievalResults/aerosol_total_aod Retrieved total-column-integrated aerosol opfi¢Hl to 0.02

depth for all aerosol types
SoundingGeometry/sounding_altitude_stddev Standard deviation of the measure of altitude ef £G0

surface within the sounding
IMAPDOASPreprocessing/CO2_ratio_idp Ratio of retrievedb@0lumn (no scattering code) 0.995 to 1.015

in weak and strong C&band
IMAPDOASPreprocessing/4#D_ratio_idp Ratio of retrieved $O column (no scattering code) 0.92 to 1.05

in weak and strong C&band
ABandCloudScreen/surface_pressure_delta_cld Difference between surface pressure and a—{@82&rto 575

surface pressure
SpectralParameters/reduced_chi_squaredfgd  The reduceg 2 value of the @ A-band clear-sky fit < 1.5

used in determine the presence or absence of cloud

RetrievalResults/albedo_slope_strong_CO2 Retrieved spectral dependence of Lamberionscesi0.0 x 10~°
ponent of albedo within strong CG&xhannel

RetrievalResults/albedo_slope_o02 Retrieved spectral dependence of Lamberion eomt.3 x 10>
ponent of albedo within @channel

Blended Albedo A combination of two albedo terms < 0.08

derived, compared to the other colocation methodologies in  The comparisons in this section indicate that, in general,
this section, is more reflective and representative of the truggeographical colocation has low matching yield and poor ac-
underlying dependence structure. curacy performance. This is likely because the geographi-
Another way to assess the fit between ACOS-GOSAT andcal colocation used (same-day 500 km circle) lacks the large
TCCON values is through examining the correlation coeffi- coincident neighborhood to reduce the individual retrieval
cient. Since the satellite and station instruments both observeariability through averaging. Wunch et al.'s (201T)go
total-columnXco,, we expect the two to follow a linear rela- and geostatistical colocation both take advantage of a larger
tionship with a slope of 1 andyintercept equal to the mean colocation neighborhood to produce more accurate ACOS-
bias. The correlation coefficient is a good tool to examine theGOSAT colocated values.
strength and direction of the linear relationship between the While these methodologies produce roughly the same bias
ACOS-GOSAT and TCCON values, and we show the corre-estimates, geostatistical colocation produces distinctly lower
lation estimates at each of the TCCON sites in the bottomRMSE. This improvement likely comes from the fact that
panel of Fig 5. while the existing colocation methodologies tend to give
In our particular application, correlation values closer to 1 equal weights to all satellite observations falling within the
indicate stronger linear dependence. In this respect, geostaoincident window, our methodology gives different weights
tistical colocation performs marginally better th&sg colo- to the coincident satellite observations based on the distance
cation, and they both perform better than geographical colometric defined in Eq.10). Xco, in general tends to be a
cation. The correlation estimates mostly cluster within thesmoothly varying field and it can be reasonably assumed to
range of 0.75 to 0.99, with the exception being TCCON sta-follow the geographical principle that locations close to one
tions in the Southern Hemisphere. This likely results from theanother are more likely to be similar than locations far apart
fact that the Northern Hemisphere and the Southern Hemi{Tobler, 1970; therefore our methodology produces better
sphere have a different seasonal and synoptic variability raaccuracy because its spatial-dependency model is more re-
tio. In general, the ACOS-GOSAT retrievals do quite well flective and representative of the true underly)gp, field.
in capturing the overall seasonal trends in both hemispheres.
However, in the Northern Hemisphere, the seasonal variabil- .
ity amplitude is larger than the synoptic variability, and con- © Conclusions
sequently the correlation coefficient between ACOS-GOSAT i i i i i
and TCCON is larger. In the Southern Hemisphere, the Sea\_/alldatlon colocation, or the practice of interpolating satellite

sonal variability amplitude is much smaller at 0.3 ppm, thus@nd grou'nd—based vghdaﬂon data to the same spat|.oter'npo—
lowering the correlation coefficient. ral coordinate, is an important part of instrument validation

and assessment. All colocation methodologies are essentially
data interpolation, which carries with it interpolation error.
This interpolation error is an extra component in the RMSE
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ACOS-TCCON Bias In Sect. 4, we show that our geostatistical colocation
methodology has the lowest mean-squared error of the dif-
ference between colocated ACOS-GOSAT data and TCCON

£ s data when compared with two existing colocation method-

§ s . ologies. Naturally, one would expect the correlation structure
5’ . ’ . . . in ACOS-GOSATX co, to varysmoothlyas a function of dis-

< . : . c o Lt ' tance, and hence our method has better performance because

11 e T700 .
= Geostatistical

me
L]
-

its spatial correlation model is more approximate to the true

et S S E. SE underlying spatial structure. While we applied the methodol-
$2E8 888 FERERES R ogy in Sect3to ACOS-GOSAT and TCCON data, the colo-
Standard deviation cation methodology can be readily applied to other satellite
. instruments and other geophysical processes where the un-
20 .. derlying correlation structure can be reasonably assumed to
g . vary smoothly as a function of distance.
5.5 . . . In Sect. 3, we chose to use midtropospheric temperature
g . L . as a covariate to improve our interpolation; it is possible to
2ol " . . o . C . replaceT7qoo with another covariate such as 3-day-averaged

* T700
= Geostatistical
Geographical

modelXco, as in the model-based method. While the param-
eters of the resulting correlation function would change with
the replacement dfyqp, the parameter estimation procedure
in Sect. 3.3 would remain the same. We also note that the
distance metric we derived in EdL@) has value beyond per-
B : forming geostatistical colocation. It could be used as a stand-
. alone metric in assessing proximity (e.g., findihgearest
) neighbors, computing inverse distance weighting, construct-
ing Voronoi diagrams, etc.).
In this paper we assumed that ACOS-GOSAT retrievals
s can pe app.roxi_mate.d and treated as zero-area points. In
00 Geographical certain applications it may be more reasonable to assume
that a satellite observation is an average of the true geo-
physical proces¥ (-) over the area of the footprint plus a
Figure 5. Summary statistics for the comparison between ACOS measurement-error term. The resulting process of inferring a
and TCCON using three colocation methodologies (top panel: biasspatial process at one resolution from data at another resolu-
middle panel: standard deviation; bottom panel: correlation coeffi-tion, also known as the change-of-support problem, is more
cients). TCCON stations are listed in order of decreasing latitude. complex; se&otway and Young2002) for a review. In gen-
eral, there is no analytical solution for estimating the pa-

) o _rameters of standard variogram models from areal data (e.g.,
of the difference between validation and colocated data; itspherical, exponential, etc.); however, certain classes of spa-
is important to minimize the interpolation error as much asja| models provide for straightforward and seamless parame-
possible in order to better assess important instrumental angy; estimation (for instance, see spatial random effects model:
opgrati_onal metrics such as bias and variability relative to thecyessie and Johanness@008 Nguyen et al.2012.
validation data. _ o In Sect.4, we model the variogram parameters as tempo-

This paper examines a new colocation technique in comygly constant. An extension of the methodology would be
paring ACOS-GOSAT and TCCON data. We model the spa-, model temporal dependence in the variogram parameters.
tial dependence structure as being isotropic under a mOd'NaturaIIy, good models of the temporal dependence would
fied Euclidean distance metric. Our methodology is similarjmprove the colocation performance, but there is a trade-off
to previous colocation techniques (e.g., geographiEak, iy the complexity of the temporal evolution models and the
model-based) in that we assume that nearby observations aggpsiess of the parameter estimates. One possible approach
more likely to be correlated than observations far apart. HOw-y5id be to assume that the spatial-correlation structure is
ever, whereas the existing methodologies define some neighsgnstant over a season, although care would be needed in
borhood regions and then give all neighboring observationgompining data straddling different seasons. Further exam-
equal weights, our methodology weights each observationation of the trade-off between estimation robustness and

depending on the distances between the data and the inte{émporal evolution complexity would be needed.
polation location of interest.
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