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Abstract. Radio occultation (RO) data are increasingly used
in climate research. Accurate phase (change) measurements
of Global Positioning System (GPS) signals are the basis for
the retrieval of near-vertical profiles of bending angle, mi-
crowave refractivity, density, pressure, and temperature. If
temperature is calculated from observed refractivity with the
assumption that water vapor is zero, the product is called “dry
temperature”, which is commonly used to study earth’s atmo-
sphere, e.g., when analyzing temperature trends due to global
warming. Dry temperature is a useful quantity, since it does
not need additional background information in its retrieval.
However, it can only be safely used as proxy for physical
temperature, where moisture is negligible. The altitude re-
gion above which water vapor does not play a dominant role
anymore, depends primarily on latitude and season.

In this study we first investigated the influence of water va-
por on dry temperature RO profiles. Hence, we analyzed the
maximum altitude down to which monthly mean dry temper-
ature profiles can be regarded as being equivalent to phys-
ical temperature. This was done by examining dry temper-
ature to physical temperature differences of monthly mean
analysis fields from the European Centre for Medium-Range
Weather Forecasts (ECMWF), studied from 2006 until 2010.
We introduced cutoff criteria, where maximum temperature
differences of−0.1,−0.05, and−0.02 K were allowed (dry
temperature is always lower than physical temperature), and
computed the corresponding altitudes. As an example, a tem-
perature difference of−0.05 K in the tropics was found at an
altitude of about 14 km, while at higher northern latitudes in
winter it was found at an altitude of about 9–10 km, in sum-
mer at about 11 km.

Furthermore, regarding climate change, we expect an in-
crease of absolute humidity in the atmosphere. This possi-
ble trend in water vapor could yield a wrongly interpreted
dry temperature trend. As a consequence, we performed a
model study, investigating the increase in height of the tran-
sition region between moist and dry air. We used data from
the fifth phase of the Coupled Model Intercomparison Project
(CMIP5), analyzing again monthly mean dry temperature to
physical temperature differences, now from the years 2006 to
2050. We used the highest emission scenario RCP8.5 (repre-
sentative concentration pathway), studying all available mod-
els of the CMIP5 project, analyzing one internal run per
model, with the goal to identify the altitude region where
trends in dry temperature can be safely regarded as reflecting
trends in physical temperature. From all models we there-
fore choose a selection of models (“max 8” CMIP5 models),
which showed the largest trend differences. As a result, our
trend study suggests that the lower boundary of the region
where dry temperature is essentially equal to physical tem-
perature rises about 150 m decade−1.

1 Introduction

The Radio occultation (RO) technique gains information
about the physical properties of a planetary atmosphere by
detecting a change in a radio signal when it passes through
this atmosphere. With the installment of the Global Position-
ing System (GPS) constellation this principle could be ap-
plied to scan earth’s atmosphere. Using the GPS frequencies
L1 (1575.42 MHz) andL2 (1227.62 MHz), the RO technique
provides high-quality profiles in the upper troposphere and
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lower stratosphere (UTLS) since 1995; see e.g.,Kursinski
et al. (1997). It has the advantage of all-weather capability,
high vertical resolution, and global coverage. The high data
quality and long-term stability make RO data suitable for cli-
mate applications.

The climate monitoring capability has first been demon-
strated in simulation studies (e.g.,Leroy et al., 2006; Ringer
and Healy, 2008). Due to the high consistency of RO data
from different satellites (Hajj et al., 2004; Schreiner et al.,
2007; Foelsche et al., 2011) and a comparatively small struc-
tural uncertainty (Ho et al., 2012; Steiner et al., 2013), trend
studies could already be successfully carried out based on
real data (Steiner et al., 2009; Schmidt et al., 2010; Lackner
et al., 2011). In contrast to applications in numerical weather
prediction, where parameters close to the observed quanti-
ties, such as bending angles, are used in the assimilation, in
climate applications all atmospheric parameters need to be
considered, since there are regions in the atmosphere, which
will, e.g., not show trends in the bending angle, but in temper-
ature (Foelsche et al., 2008b). In that respect it is important
to understand the various influences in trends of the atmo-
spheric parameters such as residual influences by the iono-
sphere (Danzer et al., 2013), or changing water vapor content
in the atmosphere, which is the focus of this study.

During an RO event the phase of the transmitted electro-
magnetic signal, detected at a receiving low earth orbit (LEO)
satellite, gets measured. The phase difference between the
transmitted and received signal, along with precise orbit and
velocity information of the GPS and LEO satellites, is the
starting quantity in the data analysis. The processing steps to-
wards the atmospheric parameters of the neutral atmosphere
involve geometric optics in regions where moisture is neg-
ligible (e.g.,Kursinski et al., 1997) and wave optics in re-
gions where humidity grows in importance (e.g.,Gorbunov,
2002; Jensen et al., 2003). Furthermore an ionospheric cor-
rection at bending angle level needs to be applied (Vorob’ev
and Krasil’nikova, 1994). From bending angle profiles one
can go via an Abel transform (Fjeldbo et al., 1971) to refrac-
tivity profiles, involving an integral up to infinity. However,
at higher altitudes (about≥ 35 km) the signal-to-noise ratio
gets comparably large at bending angle level. Furthermore,
the observational data have a limited extent in altitude (about
80 km). Hence, the bending angle profiles need some back-
ground information, which could be given by climatologi-
cal models or by meteorological data (e.g., European Centre
for Medium-Range Weather Forecasts, ECMWF). Continu-
ing from refractivity, it is possible to retrieve the atmospheric
parameters of the neutral atmosphere, such as density, pres-
sure, and temperature. A general and detailed description of
the RO technique and the processing chain can be found in
Kursinski et al.(1997).

In the troposphere the humidity in the atmosphere in-
creases, and hence refractivity contains temperature and hu-
midity information. In the analysis of RO data it has be-
come quite common to retrieve dry atmospheric parameters

if humidity is negligible. Dry parameters can be used as
proxy for physical parameters down to a certain altitude,
with the advantage of needing no additional background in-
formation in their retrieval. However, the retrieval of physi-
cal atmospheric profiles, like physical temperature, physical
pressure and humidity, requires always a priori information
(moist air retrieval) (Healy and Eyre, 2000).

It is reasonable to analyze dry atmospheric parameters in-
stead of physical parameters in regions where moisture is
negligible. In this study the focus lies on monthly mean
differences between dry and physical temperature profiles.
For single months a first investigation was already done by
Foelsche et al.(2008a) andScherllin-Pirscher et al.(2011),
but a systematic analysis was not yet performed. Based on
ECMWF analysis data (2006–2010) we investigated to what
extent it is valid to study dry temperature profiles as proxy for
physical temperature and we also wanted to understand spa-
tial and seasonal dependencies of differences between those
two.

Furthermore, we raised the question if changes in dry tem-
perature in observational RO data can correctly be interpreted
solely as changes in temperature, or if changes in humidity
also affect the trend results. Trends need to be studied on
a longer timescale in order to understand the changing in-
fluence of water vapor in the atmosphere. Hence, we stud-
ied Coupled Model Intercomparison Project (CMIP5) model
data from 2006 until 2050, using the highest emission sce-
nario. The goal was to understand the maximal possible de-
velopment of the height increase of the transition line, i.e., its
trend, by studying models with large humidity.

Summarized, this study aims to understand current tran-
sition height between dry and moist air and provides a safe
trend estimate for future scenarios. Section2 describes the
data sets in use for the two emphases of the investigation.
Furthermore, it introduces the dry temperature retrieval in
Sect.2.2 and the analysis method in Sect.2.3. The results
are given in Sect.3, where we also consider different averag-
ing methods for the analysis fields and discuss the minimum
to maximum deviations for transition lines for all models.
Conclusions are drawn in Sect.4.

2 Data and method

2.1 ECMWF data and CMIP5 model data

We utilized monthly mean ECMWF analysis fields from
2006 to 2010 to study differences between dry and physi-
cal temperature. The fields were used in T42L91 resolution,
since the T42 horizontal resolution matches the resolution of
RO data (∼ 300 km). They were given on 91 vertical levels
(L91), except data in January 2006 have only been available
on 60 vertical levels (L60). The extracted fields were tem-
perature (T ), specific humidity (q), and atmospheric pressure
(p), as a function of geopotential height (zg). The calculation
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Figure 1. Difference between dry and physical temperature (Tdiff ) for ECMWF mean climatological fields. January 2007 (top left),
April 2007 (top right), July 2007 (bottom left), and October 2007 (bottom right). The colored lines markTdiff = −0.1,−0.05,−0.03, and
−0.02 K.

of refractivity and dry temperature was performed with the
EGOPS (End-to-End Generic Occultation Performance and
Processing System) software version 5.5 (Fritzer et al., 2009)
analog to Sect.2.2, stored on a 2.5◦

×2.5◦ latitude–longitude
grid. Afterwards, the resulting fields were interpolated on a
200m grid, from 0 to 30km.

To estimate trends in humidity on a longer timescale, we
studied RCP8.5 (representative concentration pathway) sce-
nario simulations for the first half of the 21st century, us-
ing data from the CMIP5 data portal (http://cmip-pcmdi.llnl.
gov/cmip5/; Taylor et al., 2009, 2011; CLIVAR Exchanges,
2011). We employed the highest emission scenario RCP8.5
out of four (RCP8.5, RCP6, RCP4.5, RCP2.6), studying one
internal run per model. Components of uncertainties in long-
term-trend studies are composed of the model formulation,
the emission scenario, and internal variability. Studies for
CMIP3 (Meehl et al., 2007) showed that until the mid-21st
century, the model formulation shows the most important
fraction of uncertainty, while the contributions of emission
scenario and internal variability are smaller (see e.g., uncer-
tainty analysis over Europe byPrein et al., 2011; Hawkins
and Sutton, 2009). At the end of the 21st century the emis-
sion scenario gains in importance (see e.g., Fig. 1, byKnutti
and Sedlacek, 2013). By studying model data until 2050 we
kept the two uncertainties of emission scenario and internal
variability small.

In general, RCPs contain not only emission scenarios, but
also information about concentration of greenhouse gases
and aerosols (see detailed description of RCPs inVan Vuuren
et al., 2011). The RCP8.5 scenarios begin 2006, continuing
until 2300, having a target radiative forcing of 8.5 W m−2

in the year∼ 2100. We downloaded simulation data of alto-
gether 38 general circulation models (GCMs), given in Ta-
ble 1. After an initial study of all models, we have chosen
a selection of eight models (“max 8” CMIP5 models, high-
lighted in Table1), which had the properties in common to
show highest transition lines between dry and moist air. The
objective was not to explore the best estimate of a climate
scenario, which usually is realized by choosing models close
to a multimodel mean (Pierce et al., 2009); instead, the study
focuses on high-end simulations, i.e., the upper boundary of
the possible influence of humidity on dry temperature trends.

From the CMIP5 database we derived on a monthly
timescale data sets from 2006 until 2050 ofT , q, and zg,
given onp levels. Horizontal resolution and the number of
pressure levels depend on the modeling center, the latter
reaching typically from about 1000 to 10 hPa. The study was
performed using 10◦ zonal mean fields, converted from pres-
sure levels to geopotential height levels. Geopotential height
levels were interpolated from 0 to 30 km, on a 200 m grid.
The calculation of refractivity and dry temperature fromT ,
q, andzg was performed as explained in Sect.2.2.
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Table 1.List of all GCMs with emission scenario RCP8.5 from the CMIP5 database in alphabetical order. The bold font highlight the reduced
set of CMIP5 models (“max 8”).

GCM Modeling center Number of pressure levels

ACCESS1.0 CSIRO (Commonwealth Scientific and Industrial Research Organisation), Australia, and BOM
(Bureau of Meteorology), Australia

17: 1000 to 10 hPa

ACCESS1.3 CSIRO and BOM, Australia 17: 1000 to 10 hPa
BCC-CSM1.1 BCC (Beijing Climate Center), China Meteorological Administration, China 17: 1000 to 10 hPa
BCC-CSM1.1(m) BCC, China 17: 1000 to 10 hPa
BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China 17: 1000 to 10 hPa
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 22: 1000 to 1 hPa
CCSM4 NCAR (National Center for Atmospheric Research), USA 17: 1000 to 10 hPa
CESM1(BGC) NSF (National Science Foundation, Department of Energy), NCAR, USA 17: 1000 to 10 hPa
CESM1(CAM5) NSF and NCAR, USA 17: 1000 to 10 hPa
CESM1(WACCM) NSF and NCAR, USA 23: 1000 to 0.4 hPa
CMCC-CESM CMCC (Centro Euro-Mediterraneo per I Cambiamenti Climatici), Italy 33: 1000 to 0.01 hPa
CMCC-CM CMCC, Italy 17: 1000 to 10 hPa
CMCC-CMS CMCC, Italy 33: 1000 to 0.01 hPa
CNRM-CM5 CMCC, Italy and CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul

Scientifique), France
17: 1000 to 10 hPa

CSIRO-Mk3.6.0 CSIRO in collaboration with the Queensland Climate Change Centre of Excellence, Australia 18: 1000 to 5 hPa
EC-EARTH EC-EARTH consortium 16: 1000 to 20 hPa
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua

University, China
17: 1000 to 10 hPa

FIO-ESM The First Institute of Oceanography, SOA, China 17: 1000 to 10 hPa
GFDL-CM3 GFDL (Geophysical Fluid Dynamics Laboratory), USA 23: 1000 to 1 hPa
GFDL-ESM2G GFDL, USA 17: 1000 to 10 hPa
GFDL-ESM2M GFDL, USA 17: 1000 to 10 hPa
GISS-E2-H NASA GISS (Goddard Institute for Space Studies), USA 17: 1000 to 10 hPa
GISS-E2-R NASA GISS, USA 17: 1000 to 10 hPa
HadGEM2-AO MetOffice (Met Office Hadley Centre) (additional HadGEM2-ES realizations contributed by In-

stituto Nacional de Pesquisas Espaciais), UK
17: 1000 to 10 hPa

HadGEM2-CC MetOffice (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas
Espaciais), UK

23: 1000 to 0.4 hPa

HadGEM2-ES MetOffice (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas
Espaciais), UK

17: 1000 to 10 hPa

INM-CM4 INM (Institute for Numerical Mathematics), Russia 17: 1000 to 10 hPa
IPSL-CM5A-LR IPSL (Institut Pierre-Simon Laplace), France 17: 1000 to 10 hPa
IPSL-CM5A-MR IPSL, France 17: 1000 to 10 hPa
IPSL-CM5B-LR IPSL, France 17: 1000 to 10 hPa
MIROC5 AORI (Atmosphere and Ocean Research Institute), NIES (National Institute for Environmental

Studies), and JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Japan
17: 1000 to 10 hPa

MIROC-ESM JAMSTEC, AORI, and NIES, Japan 35: 1000 to 0.03 hPa
MIROC-ESM-CHEM JAMSTEC, AORI, and NIES, Japan 35: 1000 to 0.03 hPa
MPI-ESM-LR MPI (Max Planck Institute) for Meteorology, Germany 25: 1000 to 0.1 hPa
MPI-ESM-MR MPI for Meteorology, Germany 25: 1000 to 0.1 hPa
MRI-CGCM3 MRI (Meteorological Research Institute), Japan 23: 1000 to 0.4 hPa
NorESM1-M Norwegian Climate Centre, Norway 17: 1000 to 10 hPa
NorESM1-ME Norwegian Climate Centre, Norway 17: 1000 to 10 hPa

2.2 Retrieval of dry temperature

RO data allow for the retrieval of profiles of atmospheric
parameters such as bending angleα, refractivity N (N =

106(n−1), with n being the refractive index),p, andT . The
core RO variable,N , derived from GPS signals depends on
conditions of dry atmosphere, water vapor, ionosphere, and
on atmospheric scattering from liquid water. To first order it
is given bySmith and Weintraub(1953):

N = 77.6
p

T
+ 3.73× 105 e

T 2
− 4.03× 107Ne

f 2
+ 1.4W, (1)

wherep is the atmospheric pressure (in hPa),T is the tem-
perature (in K),e the partial pressure of water vapor (in hPa),
Ne is the electron density (in electrons m−3), f is the trans-
mitter frequency (in Hz), andW is the mass of condensed
water in the atmosphere (in g m−3). The ionospheric con-
tribution is ignored since the ionospheric correction already
happens on bending angle level (Vorob’ev and Krasil’nikova,
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Figure 2. Temporal evolution of differences between dry and physical temperature (Tdiff ) from 2006 to 2010, based on ECMWF mean
climatological fields. The left column shows the temporal evolution ofTdiff = −0.1 K, while the right column showsTdiff = −0.02 K.

1994). However, in the upper stratosphere small ionospheric
residuals remain, see e.g.,Danzer et al.(2013), but in the tro-
posphere they do not play a dominant role. The last term of
Eq. (1) can be neglected, since it is small compared to the
others. So we find the remaining two terms being the dry and
wet contribution; the former due to the induced polarization
of the dry constituents of air, and the latter due to the orien-
tation polarization of the water vapor molecules.N is now
given by

N(ϕ,λ,zg) =

77.6
p(ϕ,λ,zg)

T (ϕ,λ,zg)
+ 3.73× 105 e(ϕ,λ,zg)

T 2(ϕ,λ,zg)
, (2)

where we emphasize its dependence on latitudeϕ, longitude
λ, and geopotential heightzg.

In order to estimate the contribution of water vapor on re-
fractivity we calculated dry temperature (Tdry). We used the
parametersT , p, andq of the extracted ECMWF and CMIP5
fields to calculateN . First,e needed to be evaluated,q. The
partial pressure of water vapor is given by (for simplicity em-
phasizing only the vertical dependencezg of the fields)

e(zg) =
p(zg) · q(zg)

aq + bq · q(zg)
, (3)

with

aq =
Rdry

Rwv
and bq = 1− aq , (4)

andRdry being the specific gas constant of dry air,Rwv the
specific gas constant of water vapor, andq being the specific
humidity. Inserting Eq. (3) in Eq. (2) allowed us to calculate
the refractivity from the ECMWF and CMIP5 fields.

For the calculation of dry atmospheric parameters the sec-
ond term of Eq. (2) is neglected. We find, for dry temperature,

Tdry(zg) = 77.6
pdry(zg)

N(zg)
. (5)

In order to calculateTdry we first needed to calculate dry
pressurepdry by using the hydrostatic integral and the state
equation of an ideal gas. We obtain

pdry(zg) =
Mdry

77.6R

∞∫
zg

N(z′
g) · g(z′

g)dz′
g, (6)

where Mdry = 28.964 kg(kmol)−1 is the mean molecular
mass of dry air,R = 8.314 J(K mol)−1 is the universal gas
constant, andg(z′

g) is the acceleration of gravity, which is a
function of geographic latitude and height.

Finally, we have determined all input parameters which are
needed to calculate dry temperature, while physical tempera-
ture was obtained from the downloaded fields. From now on

www.atmos-meas-tech.net/7/2883/2014/ Atmos. Meas. Tech., 7, 2883–2896, 2014
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Figure 3. Difference between dry and physical temperature at a
geopotential height of 10 km for January 2007 (top) and July 2007
(bottom).

temperature differences were studied, where dry temperature
is always lower than physical temperature; see also,Foelsche
et al. (2008a) andScherllin-Pirscher et al.(2011). The dis-
crepancy between dry and physical temperature is small for
regions with negligible water vapor, but gets more significant
with increasing water vapor. In the next section the analysis
method for the transition height between dry and moist air
will be introduced.

2.3 Analysis of data

With the goal to identify the height region, where dry tem-
perature is a good proxy for physical temperature, we in-
vestigated temperature differences between dry and physical
temperature,

Tdiff = Tdry − T , (7)

and analyzed specific values ofTdiff = −0.1, −0.05,−0.03,
and −0.02 K, where each temperature difference is con-
nected with a specific altitude (we call it also “transition
line” between dry and moist air). We do not show results for
Tdiff = −0.01K since small water vapor fluctuations some-
times yield this specific value several times, with the conse-
quence of more than one transition height in a latitude zone.

Based on ECMWF fields, we started our analysis with
10◦ zonal climatological fields (Sect.3.1) to analyze the de-
pendence ofTdiff on latitude and season. In addition, we

investigated its longitudinal dependencies. In Sect.3.2, we
analyzed 60◦ longitudinal bins – i.e., from−180 to−120◦,
−120 to−60◦, −60 to 0◦, 0 to 60◦, 60 to 120◦, and 120 to
180◦ – and selected the bin which showed the highest transi-
tion line, in order to obtain a conservative estimate.

Based on CMIP5 data, we studied possible trends of the
transition lines. Since we observed an approximately linear
increase of the transition lines with time, we studied linear
trends on a 95 % confidence level, estimated by the method
of least squares, using the Breusch–Godfrey test (Godfrey,
1988). The trends were evaluated for 10◦ zonal mean cli-
matological fields for a period from 2006 to 2050. In gen-
eral, natural effects such as ENSO (El Niño–Southern Oscil-
lation), or QBO (quasi-biennial oscillation), only play a neg-
ligible role in such long-term-trend studies. However, natural
variability can have an impact in the linear regression anal-
ysis through the starting year and the end year. Hence, we
tested the sensitivity of the start and end years by analyzing
the trends in a period of 40 years, starting 2006, and moving
ahead 1 year, until 2010. Results showed to be insensitive
among this test, and also when comparing the trend results
to the trend results for the complete period of 45 years. In
this analysis the following two different kinds of trends were
analyzed:

1. We studied the trend of the transition lines in height for
the fixed temperature differencesTdiff = −0.1, −0.05,
−0.03, and−0.02 K from 2006 until 2050.

2. We evaluated dry temperature trends, physical
temperature trends, and their differences for the
years 2006–2050. In case of the temperature trend
differences (Temp Trend Diff) we show results for
Temp Trend Diff= −0.1, −0.05, and−0.02K.

3 Current state of the atmosphere and
future projections

3.1 Qualitative understanding of dry to physical
temperature differences

We started our analysis by calculatingTdiff according to
Eq. (7), for monthly mean 10◦ climatological ECMWF
fields. As an example, Fig.1 shows the results for 4 months:
January, April, July, and October 2007. The plots illustrate
how differences between dry and physical temperature in-
crease with decreasing height and increasing humidity, show-
ing a clear seasonal dependence. For example, temperature
differences larger in magnitude than 6K are found at al-
titudes below 8 km, illustrating seasonal dependent max-
ima. In January (southern summer) the temperature differ-
ences show maxima shifted towards the Southern Hemi-
sphere, while July (northern summer) shows maxima shifted
towards the Northern Hemisphere. Data in April and Oc-
tober are essentially symmetric. The colored contour lines
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Figure 4. Calculated maxima (solid lines) from 2006 to 2010 ofTdiff = −0.1, −0.05,−0.03, and−0.02, for every month.

highlight temperature differences of−0.1, −0.05, −0.03,
and−0.02 K. As an example, maximum temperature differ-
ences of 0.02 K (red line) occur in the tropical region be-
tween about 15 and 16 km, and at high latitudes between 10
and 12km.

Next we studied the dependence of temperature differ-
ences on time and latitude (Fig.2) based on two fixed values,
Tdiff = −0.1 K andTdiff = −0.02 K, for 2006–2010. Figure2
distinctively shows the expected seasonal cycle, which is
highly pronounced for high latitudes and decreases towards
the tropics, where seasonal variations are small. Maxima
in both hemispheres are found during the respective sum-
mer months. Overall, results forTdiff = −0.1 K (left column)
range from about 7.5 to 14 km. ForTdiff = −0.02 K the range
extends from about 10 to 16 km in the Northern Hemisphere
and from about 9 to 15.5 km in the Southern Hemisphere.
The seasonal variation is more pronounced in the Northern
Hemisphere, where the distinct seasonal temperature cycle
typically causes a strong seasonal humidity cycle as well.
Following the discussion inScherllin-Pirscher et al.(2011)
we can see that the magnitude ofTdiff depends primarily on
specific humidity, and hence it is directly related to the sea-
sonal cycle.

Figures1 and2 give a first impression how monthly mean
differences between dry and physical temperature depend on
height, latitude, and season. Next we go into more detail,

providing a sort of “guide line” for determining down to
which height dry temperature profiles can safely be analyzed
in current atmospheric conditions.

3.2 Spatial characteristics of dry to physical
temperature differences

So far we investigated only temperature differences depen-
dent on latitude, neglecting longitudinal variations. Now we
also analyze the longitudinal dependence. Figure3 shows
the geographical distribution of differences between dry and
physical temperature at geopotential heightzg = 10 km, for
a 2.5◦

× 2.5◦ ECMWF monthly mean analysis field. The top
plot illustrates results for January 2007, the bottom plot for
July 2007.Tdiff shows clear dependencies on latitude and lon-
gitude, as well as seasonal differences (January, July). Espe-
cially in July, we find evidence of the monsoon season over
India (60–120◦ E). Hence, maximum temperature differences
will be found in this particular region. In contrast, the other
regions show smaller temperature differences (e.g., 60◦ W–
0◦). Because of the spatial dependence of humidity in the at-
mosphere, we decided to analyze the fields additionally with
a 10◦ × 60◦ binning.

With the goal of providing a boundary criterion for the
transition height between moist and dry air, we plot in Fig.4
the heights ofTdiff = −0.1, −0.05, −0.03, and−0.02K,
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Figure 5. Calculated minima (dashed lines) from 2006 to 2010 ofTdiff = −0.1, −0.05,−0.03, and−0.02 K, for every month.

dependent on latitude and month. To obtain these heights we
chose the 10◦×60◦ longitude bin with maximum humidity in
the air from 5 years (2006–2010), investigating every month
and every 10◦ latitude band, aiming to obtain the highest cut-
off values and, hence, a safe estimate for the transition line.
Similar to Fig.1, smaller temperature differences are found
at higher altitudes. As expected, northern summer months
(plotted in warm colors) showed maximum altitudes in the
Northern Hemisphere, reflecting the increase in absolute hu-
midity with increasing temperature. Furthermore all plots ex-
hibited an additional bump for the northern latitudes, arising
from the Asian monsoon. The monsoon season leads to addi-
tional water vapor in the air, raising the height of the studied
transition line at low latitudes.

Furthermore, we plotted in Fig.5 the minimum value of
every bin (10◦×60◦) out of 5 years (dashed lines), in order to
illustrate the maximum to minimum variation for a given lati-
tude band. It is typically 1 km and occasionally reaches 2 km.
Zonal mean results (not shown) lie in-between the maximum
and minimum values.

We provided in Tables2 and3 a list of transition heights
from Figs.4 and 5, for January and July, respectively, for
Tdiff = −0.1 K. Additionally, we supplied information about
the corresponding longitude sector and the year, for the
maximum and minimum cases. For January we found for
the southern low-latitudes maxima (about 14km) between

120◦ E and 180◦ E, reflecting the influence of the Pacific
warm pool. For July we found maxima (about 14.5 km) from
20◦ S to 40◦ N in the sector 60–120◦ E (summer monsoon;
see Fig.3). Minima for low latitudes (about 13 km) are
mainly found in the sector 120–180◦ W (eastern Pacific). For
January, at low and middle latitudes maxima mainly occurred
for 2007, which might be due to a positive ENSO phase. No
strong temporal patterns are found for July.

3.3 Climate change and its impact on dry
temperature profiles

We discuss trends in absolute humidity, by analyzing differ-
ences between dry and physical temperature for all CMIP5
models, using 10◦ zonal mean climatological fields. We keep
in mind that longitudinal variations are on average about
1 km (cf. Figs.4, 5), resulting in an about 0.5 km difference
for zonal mean fields.

Altogether, we studied a set of 38 models. The initial anal-
ysis of the models is similar to the analysis of the ECMWF
monthly mean climatological fields. First of all we found that
the overall features (annual cycle and latitudinal variability)
of the time series are similar for all GCMs. As a represen-
tative example for the “max 8” models with highest transi-
tion lines we show in Fig.6 a time series ofTdiff = −0.1 K,
for the model BCC-CSM1.1(m) (Xin et al., 2013), from
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Figure 6. Temporal evolution of differences between dry and physical temperature (Tdiff ) for the model BCC-CSM1.1(m) from the Beijing
Climate Center. The left column shows 10◦ zonal mean climatological fields from 2006 to 2010 and the right column from 2046 to 2050, for
Tdiff = −0.1K.

Table 2.January: maximum height, corresponding longitude sector and year and minimum height, corresponding longitude sector and year
for Tdiff = −0.1K.

Latitude Max. height Long. sector Year Min. height Long. sector Year

−90 to−80◦ 9.9 −120 to−60◦ 2007 9.1 0 to 60◦ 2008
−80 to−70◦ 10.3 −120 to−60◦ 2007 9.5 60 to 120◦ 2006
−70 to−60◦ 11.1 −120 to−60◦ 2007 10.1 0 to 60◦ 2006
−60 to−50◦ 12.1 −180 to−120◦ 2006 11.5 −120 to−60◦ 2006
−50 to−40◦ 12.9 −60 to 0◦ 2007 11.9 60 to 120◦ 2006
−40 to−30◦ 13.5 −60 to 0◦ 2007 12.3 60 to 120◦ 2006
−30 to−20◦ 13.9 120 to 180◦ 2007 12.9 −60 to 0◦ 2006
−20 to−10◦ 14.1 120 to 180◦ 2007 13.2 −120 to−60◦ 2006

−10 to 0◦ 14.1 120 to 180◦ 2007 13.0 −180 to−120◦ 2009
0 to 10◦ 14.0 120 to 180◦ 2007 12.8 −180 to−120◦ 2009

10 to 20◦ 13.6 60 to 120◦ 2007 12.3 −180 to−120◦ 2006
20 to 30◦ 12.8 60 to 120◦ 2007 11.7 −180 to−120◦ 2006
30 to 40◦ 12.0 −120 to−60◦ 2007 10.4 −180 to−120◦ 2006
40 to 50◦ 11.2 −60 to 0◦ 2007 8.7 120 to 180◦ 2010
50 to 60◦ 10.2 −60 to 0◦ 2006 7.9 120 to 180◦ 2008
60 to 70◦ 9.8 −60 to 0◦ 2010 7.7 120 to 180◦ 2008
70 to 80◦ 9.2 −60 to 0◦ 2010 7.4 120 to 180◦ 2008
80 to 90◦ 8.7 0 to 60◦ 2006 7.3 −180 to−120◦ 2007
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Table 3.July: maximum height, corresponding longitude sector and year and minimum height, corresponding longitude sector and year for
Tdiff = −0.1K.

Latitude Max. height Long. sector Year Min. height Long. sector Year

−90 to−80◦ 8.5 −120 to−60◦ 2007 6.9 60 to 120◦ 2010
−80 to−70◦ 9.1 −120 to−60◦ 2007 7.7 0 to 60◦ 2006
−70 to−60◦ 9.9 −120 to−60◦ 2007 8.7 60 to 120◦ 2006
−60 to−50◦ 10.7 −120 to−60◦ 2007 9.5 60 to 120◦ 2008
−50 to−40◦ 11.5 −120 to−60◦ 2007 10.3 60 to 120◦ 2006
−40 to−30◦ 12.5 −180 to−120◦ 2007 11.1 60 to 120◦ 2006
−30 to−20◦ 13.3 120 to 180◦ 2009 12.1 0 to 60◦ 2006
−20 to−10◦ 13.7 60 to 120◦ 2006 12.7 −180 to−120◦ 2006

−10 to 0◦ 13.9 60 to 120◦ 2006 13.1 −180 to−120◦ 2008
0 to 10◦ 14.3 60 to 120◦ 2006 13.2 −180 to−120◦ 2008

10 to 20◦ 14.5 60 to 120◦ 2006 13.1 −180 to−120◦ 2008
20 to 30◦ 14.6 60 to 120◦ 2010 12.7 −180 to−120◦ 2008
30 to 40◦ 14.1 60 to 120◦ 2010 11.9 0 to 60◦ 2006
40 to 50◦ 13.2 120 to 180◦ 2008 11.9 0 to 60◦ 2008
50 to 60◦ 12.7 120 to 180◦ 2008 11.6 −60 to 0◦ 2009
60 to 70◦ 12.6 120 to 180◦ 2010 11.3 −60 to 0◦ 2009
70 to 80◦ 11.8 120 to 180◦ 2010 10.9 −120 to−60◦ 2008
80 to 90◦ 11.2 120 to 180◦ 2007 10.1 60 to 120◦ 2010

the Beijing Climate Center (http://bcc.cma.gov.cn/bcccsm/
htm/). The plot showsTdiff from the years 2006 to 2010 and
from 2046 until 2050 for the Northern Hemisphere and the
Southern Hemisphere. As in Fig.2, we find forTdiff a sea-
sonal dependence, ranging from 8 to 14.5km in the Northern
Hemisphere and from 7.5 to 15.0km in the Southern Hemi-
sphere, for 2006–2010. The panels on the right side of Fig.6
(2046–2050) show the effect of climate change, leading to a
distinct rise in the height of transition lines. For northern lat-
itudesTdiff ranges from 8.5 to 15.5 km and for southern lati-
tudes from 8 to 15.5 km. Hence, at high latitudes the transi-
tion line rose by 0.5 km, while for low latitudes by 1 km. The
rise of the height of the transition line is intensified at low
latitudes, since the effect of increasing humidity is strongest
there.

Next, in Fig.7, we show the results forTdiff = −0.1 K, for
all CMIP5 models, for January and July. The height was cal-
culated as the maximum of the first 5 years (2006–2010) and
the maximum of the last 5 years (2046–2050), plotted de-
pendent on latitude. Figure7 provided the basis from which
we chose the subset of models, showing the highest values of
the transition lines. Figure7 shows three important features.
First, we observed for all models the seasonal dependence
of the transition lines; i.e., for January low-latitude maxima
are slightly shifted towards the Southern Hemisphere, while
for July they shifted towards the Northern Hemisphere. At
high latitudes, maxima are higher in the summer hemisphere
than in the winter hemisphere. Second, we observed a lift
of the height of the transition lines for 2046–2050, com-
pared to 2006–2010. And third, by comparing the behavior
of all models, we saw that the range of the transition lines is

1–2 km. The choice of the subset of models with maximum
humidity and, hence, maximum transition lines was not an
easy task. As one can see in Fig.7, the order of models at the
upper boundary depends on the temperature difference, lati-
tude, and year. We decided to choose models with the highest
humidity content at low latitudes, based onTdiff = −0.1K.
The selected models are highlighted in Table1.

In Fig. 8 we show trends of the transition lines per decade,
for the selected subset (“max 8”) of CMIP5 models. From
top to bottom, we plottedTdiff = −0.1 K, Tdiff = −0.05 K,
and Tdiff = −0.03 K, comparing January and July. We can
observe three things: first, the trends are very similar for all
studied temperature differences, hence the specific cutoff cri-
terion does not play a dominant role for this trend study. Sec-
ond, the trend values spread quite uniformly, approximately
150 m decade−1, showing only a moderate latitudinal depen-
dence. There is a tendency to lower values in the respec-
tive winter polar regions, most pronounced for July, where
trend values decrease to about 50 m decade−1 at southern
high latitudes. Third, most individual model trends lie be-
tween 50 and 250 m decade−1. For completeness, we stud-
ied the trends in the whole set of 38 models (not shown) and
found very consistent results, with average trend values of
about 150 m decade−1 and a similar range as in the “max 8”
ensemble.

In this analysis we furthermore studied the trends in phys-
ical and dry temperature. Figure9 shows, for January and
July, altitude vs. height plots of physical temperature trends,
dry temperature trends, and their differences, based again on
the model BCC-CSM1.1(m) from the Beijing Climate Cen-
ter. For physical temperature, positive trends dominate in the
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Tdiff = -0.1 K: Jan, 2006-2010
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Tdiff = -0.1 K: Jul, 2006-2010
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Tdiff = -0.1 K: Jul, 2046-2050

Figure 7. Maximum height ofTdiff = −0.1 K for all models, from 2006 to 2010 (left column) and 2046 to 2050 (right column), for January
(top row) and July (bottom row).
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Figure 8. Height increase per decade (linear trend) and 95 % confidence interval forTdiff = −0.1 K (top), Tdiff = −0.05 K (middle), and
Tdiff = −0.03 K (bottom) for January (left) and July (right), for the “max 8” CMIP5 models.
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Fig. 9: From top to bottom: Physical temperature trend per decade (top), dry temperature trend
per decade (middle), and difference between dry and physical temperature trend per decade
(bottom) for the CMIP5 model bcc-csm1-1-m from the Beijing Climate Center, for January
(left) and July (right).
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Figure 9. Physical temperature trend per decade (top), dry temperature trend per decade (middle), and difference between dry and physical
temperature trend per decade (bottom) for the CMIP5 model BCC-CSM1.1(m) from the Beijing Climate Center, for January (left) and July
(right).

troposphere, with maxima at approximately 12 km at low lat-
itudes. In the lower stratosphere we find negative trends, most
pronounced in the respective winter polar regions. Dry tem-
perature trends at high altitudes are virtually the same but
at low altitudes the trends in dry temperature become nega-
tive, in contrast to the physical temperature trends, since the
modeled increase in water vapor overcompensates the mod-
erate increase in physical temperature. This effect results in
the familiar trend pattern of trend differences (dry temper-
ature trend minus physical temperature trend), with high-
est values in humid regions and very low values (less than
−0.02 K decade−1) above about 6 km (high-latitude winter)
and about 14km in the tropics. It is interesting to relate the
trend differences to physical temperature trends. For exam-
ple, at 11 km geopotential height, 0◦ latitude, we find in Jan-
uary a trend difference of about−0.1 K decade−1 and a phys-
ical temperature trend of about 0.7 K decade−1 leading to a
relative error of about 14 % if dry temperature were used as
a proxy for physical temperature.

Finally, we investigated at which heights prescribed differ-
ences between physical and dry temperature trends have to be
expected. Figure10shows the results for the “max 8” models
for the standard difference values (Temp Trend Diff= −0.1,
−0.05, and−0.02 K decade−1), where we find extremely
similar heights for all models in January and July. Selecting a
difference of−0.02 K decade−1, the corresponding altitude
range lies between 6 and 14 km for January and between 4
and 14 km for July.

4 Summary and conclusions

In this analysis we investigated the influence of humidity
on dry temperature profiles. The goal was to give a safe
estimate of the altitude down to which monthly mean dry
temperature climatologies can be used as a representative
for physical temperature. The transition lines were stud-
ied based on maximum-allowed temperature differences be-
tween dry and physical temperature. Their seasonal, latitudi-
nal, and longitudinal dependencies have systematically been
examined. For current atmospheric conditions we find, for
Tdiff = −0.1 K, a range of the transition line between about
8 km at high winter latitudes and up to about 15 km at low
latitudes, see Fig.4. A list of values for the transition heights
dependent on latitude, for January and July, is given in Ta-
bles2 and3.

We furthermore extended our study and analyzed the in-
fluence of increasing water vapor in the atmosphere on dry
temperature, due to climate change. We focused on high-
end simulations, with the goal of understanding the maxi-
mum impact of water vapor on future dry temperature cli-
matologies and trend studies. Data from 38 CMIP5 mod-
els have been studied from 2006 until 2050. We observed
a mean trend of the increase of the transition lines between
dry and moist air of about 150 m decade−1, with a typical
spread between about 50 and 250 m decade−1 amongst all
models. The trend values were very similar for all tempera-
ture differences. Finally, we also analyzed trends of physical
temperature and dry temperature and their differences. For
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Figure 10.Latitudinal and altitudinal dependence of differences between physical and dry temperature trends for the “max 8” CMIP5 models,
for January (left) and July (right), for−0.1 K decade−1 (top),−0.05 K decade−1 (middle) and−0.02 K decade−1 (bottom).

physical temperature positive trends dominated in the tropo-
sphere. In the lower stratosphere we found negative trends,
most pronounced in the respective winter polar regions. Dry
temperature trends at high altitudes were virtually the same,
but at low altitudes the trends in dry temperature become neg-
ative, since the modeled increase in water vapor overcompen-
sates the moderate increase in physical temperature. While
the trend patterns depend on the studied model, the trend dif-
ferences between dry temperature and physical temperature
showed a strong overlap between the models.

This analysis provides a conservative estimate of the do-
main where it is safe to use dry temperature as representa-
tive for physical temperature. The lower boundary of this do-
main can be expected to rise by about 1 km over the next 7
decades.
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