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Abstract. This paper reports initial results from an Ozone
Mapping and Profiler Suite (OMPS) Nadir Mapper cloud
pressure and cloud fraction algorithm. The OMPS cloud
products are intended for use in OMPS ozone or other trace-
gas algorithms. We developed the OMPS cloud products us-
ing a heritage algorithm developed for the Ozone Monitor-
ing Instrument (OMI) on NASA’s Aura satellite. The cloud
pressure algorithm utilizes the filling-in of ultraviolet solar
Fraunhofer lines by rotational Raman scattering. The OMPS
cloud products are evaluated by comparison with OMI cloud
products that have been compared in turn with other col-
located satellite data including cloud optical thickness pro-
files derived from a combination of measurements from the
CloudSat radar and MODerate-resolution Imaging Spectro-
radiometer (MODIS). We find that the probability density
functions (PDFs) of effective cloud fraction retrieved from
OMPS and OMI measurements are very similar. The PDFs of
the OMPS and OMI cloud pressures are comparable. How-
ever, OMPS retrieves somewhat higher pressures on average.
The current NASA total ozone retrieval algorithm makes use
of a monthly gridded cloud pressure climatology developed
from OMI. This climatology captures much of the variabil-
ity associated with the relevant cloud pressures. However, the
use of actual cloud pressures retrieved with OMPS in place
of the OMI climatology changes OMPS total column ozone
estimates locally (presumably in the correct direction) only
in areas with large differences between climatological and
actual cloud pressures. The ozone differences can be up to
5 % in such areas.

1 Introduction

The Ozone Mapping and Profiler Suite (OMPS), flying on
the Suomi National Polar-orbiting Partnership (NPP) satel-
lite, launched by the US National Aeronautics and Space Ad-
ministration (NASA) on 28 October 2011, consists of two
nadir sensors and a limb profiler. The OMPS nadir sensors,
the Nadir Mapper (NM) and the Nadir Profiler (NP), are de-
signed to provide operational retrievals of total column ozone
and ozone profiles. In the initial ground processing design
phase, cloud pressure was not envisaged to be an opera-
tional OMPS product; it was planned that cloud information
from the Visible Infrared Imaging Radiometer Suite (VIIRS)
would be utilized within the ozone algorithms.

Following the conception of the initial OMPS ozone algo-
rithms, much has been learned about how clouds behave with
respect to solar backscatter measurements such as those from
OMPS. The launch of the Ozone Monitoring Instrument
(OMI) on NASA’s Aura satellite within the “A-Train” (Af-
ternoon Train) Constellation has provided a unique opportu-
nity to compare cloud pressures derived from solar backscat-
ter measurements with other nearly coincident cloud mea-
surements including cloud optical thickness profiles retrieved
from the CloudSat radar and MODerate-resolution Imaging
Spectroradiometer (MODIS) radiances. For example, it is
now clear that cloud pressures derived from solar backscatter
measurements (henceforth referred to as cloud optical cen-
troid pressures or OCPs) are appropriate for use in trace-
gas retrievals from similar instruments (e.g.,Vasilkov et al.,
2004; Joiner et al., 2009); cloud top pressures (CTPs) derived
from thermal measurements are not equivalent to OCPs and
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do not provide good estimates of solar photon path lengths
through clouds that are needed for trace-gas retrievals from
ultraviolet and visible wavelength solar backscatter measure-
ments (Joiner et al., 2006; Vasilkov et al., 2008; Ferlay et al.,
2010; Joiner et al., 2012). The cloud OCP can be thought of
and modeled as a reflectance-averaged pressure level reached
by backscattered photons (Joiner et al., 2012). As clouds are
vertically inhomogeneous, the OCP will not necessarily be
in the geometrical center of the cloud, but rather in the so-
called optical centroid of the cloud (Vasilkov et al., 2008;
Ziemke et al., 2009; Joiner et al., 2012); this is why we re-
fer to the pressure as OCP. Cloud pressure information from
solar backscatter measurements can be used to detect multi-
layer clouds either alone (Rozanov et al., 2004) or in com-
bination with thermal infrared measurements (Joiner et al.,
2010).

The current NASA OMPS total ozone algorithm
(McPeters et al., 2013) makes use of a monthly gridded cli-
matology of cloud OCP derived from OMI rotational Raman
scattering (RRS) retrievals. In this work, we apply the OMI
RRS algorithm to OMPS radiances. Although the OMPS and
OMI instruments are similar in some respects, there are sub-
stantial differences in the detailed specifications of these in-
struments including spectral and spatial resolutions. It was
not clear at the onset whether OMPS would achieve the same
level of performance as OMI with respect to the RRS cloud
retrieval. We evaluate the OMPS cloud retrievals by com-
parison with OMI. Since the instruments are in similar but
not identical orbits, we compare the retrieved cloud parame-
ters using probability distribution functions. We then exam-
ine whether simultaneously derived cloud OCPs from OMPS
improve total column ozone retrievals as compared with the
use of the OMI cloud climatology. A goal of the paper is to
demonstrate that a cloud algorithm first designed for a high
spectral resolution instrument like OMI can be applied to a
lower-resolution instrument like OMPS and that the OMPS
cloud products have sufficient quality to be used in opera-
tional OMPS trace-gas algorithms. We also document several
instrumental issues that are important for others who may
process OMPS data.

The paper is structured as follows: following a brief de-
scription of the OMPS NM instrument in Sect.2, Sect.3 re-
ports details of the development of the OMPS RRS cloud
algorithm. Section4.1describes the evaluation of the OMPS
cloud products. Effects of the use of actual OMPS-derived
cloud OCPs on total column ozone retrievals are shown in
Sect.4.2. Conclusions are given in Sect.5.

2 The OMPS Nadir Mapper (NM)

The OMPS NM employs a 2-D charge-coupled device
(CCD) that samples spectrally in one dimension and spatially
in the other. It has spectral coverage from 300 to 380 nm.
The spectral bandpass has a full-width at half maximum

(FWHM) of ∼ 1.0 nm and the sampling is 0.42 nm (Flynn
et al., 2006). The optical projection onto the CCD creates
a “spectral smile” across the CCD where, for a given spa-
tial row, the wavelength changes by approximately 0.2 nm
from one edge of the CCD to the center, then approximately
0.2 nm back to the other edge. The spectral bandpass also
varies across the swath. For comparison, OMI has spectral
coverage from 270–500 nm with a FWHM of∼ 0.5 nm and
a spectral smile on the order of 2.0 nm from the edge to the
center of the CCD and back to the other edge (Levelt et al.,
2006).

The OMPS NM has a 2800 km swath width. It has a nadir
footprint of 50 km× 50 km in its nominal configuration and
36 pixels in the cross-track dimension. The satellite motion
provides spatial sampling in the along track direction. The
spatial sampling in the across and along track directions can
be adjusted. During the instrument commissioning phase,
the instrument was operated at its highest possible spatial
resolution (∼ 2.5 km across track× 10 km along track); now
once per week, the instrument is operated in a high spatial
resolution mode (10 km× 10 km). In this work, we focus
on data from the nominal operating mode. The OMI swath
width for comparison is 2600 km, and it provides 60 pix-
els in the cross-track direction with a nadir footprint size of
∼ 12 km× 24 km.

3 OMPS RRS cloud algorithm

3.1 Basic approach

Our OMPS cloud algorithm is essentially a slightly modified
version of an algorithm that was developed for OMI as de-
scribed inJoiner et al.(2004), Joiner and Vasilkov(2006),
and Vasilkov et al. (2008). The algorithm uses the mixed
Lambert-equivalent reflectivity (MLER) concept that treats
both cloud and ground as horizontally homogeneous opaque
Lambertian-reflecting surfaces (McPeters et al., 1996; Ah-
mad et al., 2004; Stammes et al., 2008). The measured top-
of-the-atmosphere (TOA) radiance (normalized by the solar
flux), Im, is calculated as a sum of the clear-sky and over-
cast (cloudy) sub-pixel radiances,Ig and Ic, respectively,
weighted by an effective cloud fractionf , i.e.,

Im = Ig(Rg) × (1− f ) + Ic(Rc) × f, (1)

where Rg and Rc are the ground and cloud Lambertian-
equivalent reflectivities, respectively.Rc is assumed to be
80 %; the same assumption is used in the OMPS total column
ozone algorithm. This value produces the observed amount
of Rayleigh scattering (Ahmad et al., 2004) or atmospheric
absorption (Koelemeijer et al., 2001) within the context of
the MLER model.Rg is taken from a climatology developed
from Total Ozone Mapping Spectrometer (TOMS) data with
correction for areas of sunglint (C. Ahn, personal communi-
cation, 2009).
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The first step in the cloud retrieval is to determinef

by inverting Eq. (1) at a wavelength not substantially af-
fected by rotational Raman scattering or atmospheric absorp-
tion (354.1 nm). We then retrieve the cloud OCP using the
measured amount of filling-in and depletion of solar Fraun-
hofer line structure caused by RRS. Cloud pressure is derived
from the high-frequency structure of the normalized radiance
caused by RRS on molecules in the atmosphere. RRS is an
inelastic process that redistributes energy between spectral
points. RRS produces a filling-in effect within the core of so-
lar Fraunhofer lines and can produce a depletion-type effect
in the spectral peaks in the wings of the lines. To describe this
effect quantitatively,Joiner et al.(1995) introduced a quan-
tity called a “filling-in factor” that was defined as a percent-
age ratio of the difference between the total scattered radi-
ance (i.e., measured radiance) and elastically scattered radi-
ance to the elastically scattered radiance. The filling-in factor
can be negative at wavelengths where the depletion effect oc-
curs. We will use the filling-in factor term or simply “filling-
in” to describe the RRS effect.

Clouds screen the atmosphere below and thus reduce RRS
in the entire atmosphere and therefore the amount of filling-
in of Fraunhofer lines. This reduction of the filling-in as com-
pared with clear skies is related to the cloud pressure.Joiner
et al. (1995, 2004) showed that the amount of the filling-in
is approximately proportional to a pressure level at which
a cloud, treated as a Lambertian surface in our approach,
is placed. This proportionality is observed from the surface
to top of the troposphere (from 1000 to 100 hPa) for so-
lar zenith angles less than 80◦. The cloud OCP is derived
by a minimum-variance spectral fitting technique that min-
imizes the differences between the observed and computed
high-frequency structure of TOA reflectance in the 345.5–
354.5 nm range.

3.2 Rotational Raman scattering

The RRS spectral effects decrease with instrument spectral
resolution. The OMPS NM sensor has a lower spectral res-
olution than the OMI. Therefore, the OMPS SO2 and O3 al-
gorithms are less sensitive to effects of RRS than their OMI
counterparts. The cloud OMPS RRS algorithm will also be
less sensitive to cloud pressure than OMI for a given signal-
to-noise ratio.

Figure 1 compares the computed filling-in at the OMI
and OMPS spectral resolutions. We compute inelastic RRS
using the LInearized Discrete Ordinate Radiative Transfer
(LIDORT-RRS) code (Spurr et al., 2008). LIDORT-RRS al-
lows for accurate radiative transfer (RT) calculations in the
presence of cloud/aerosol scattering. The RT computations
were done for a solar zenith angle (SZA) of 45◦, observation
at nadir, and surface albedo of 0.05. Figure1 clearly shows
that the OMI filling-in is significantly higher than that com-
puted at the OMPS resolution. However, even at the OMPS
spectral resolution, the RRS filling-in is not negligible.
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Figure 1.Comparison of OMI and OMPS RRS filling-in. Plus signs
show the wavelengths used in the OMPS total ozone (TO) algo-
rithm.

To compute the spectral effects of RRS, we use the fast
table lookup approach that is implemented in the OMI al-
gorithm and based on the approach ofJoiner et al.(1995).
In this approach, the fractional amounts of the various com-
ponents of the radiance (according to a Lambertian surface
model) are computed and stored for each iteration of scatter-
ing for a range of satellite and solar zenith angles, azimuth
angles, and wavelengths (see Eq. 31 inJoiner et al., 1995).
These radiance components are then linearly interpolated be-
tween nodes of the table. The radiative transfer calculations
are carried out with the TOMRAD (TOMS RADiative trans-
fer model) code based on successive iterations of the auxil-
iary equation in the theory of radiative transfer (Dave, 1964).
The dependence upon surface reflectivity can be accounted
for on the fly as described inJoiner et al.(1995) (see Eq. 31)
and eliminates the need for an additional dimension in the
table. This significantly reduces the amount of interpolation
(and thus computational expense) needed for the table lookup
approach.

Because the table parameters vary slowly and smoothly
with wavelength, it is not necessary to provide them at high
spectral resolution or sampling. The dependence of RRS
filling-in on spectral resolution is accounted for by gener-
ating a secondary table for each individual instrument of the
single scattered filling-in based on its measured solar irra-
diance spectrum as outlined inJoiner et al.(1995). In this
approach, explicit knowledge of the instrument slit response
function is not needed.

3.3 Detailed approach

While the determination of both the effective cloud frac-
tion and OCP uses normalized Sun-normalized radiances, the
construction of a lookup table for RRS filling-in requires the
use of a measured or estimated solar spectrum. For OMPS,
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the measurement requirement for solar irradiance and nor-
malized radiance differ substantially (see below). Because
we require both normalized radiance measurements and ir-
radiance spectral estimates, we examined both from OMPS.
Here, we detail our findings that lead to the use of a synthetic
solar spectrum in place of a measured solar spectrum; this is
a change from our application to OMI that used a measured
solar spectrum.

Figure2 (top) shows the post-launch solar flux measure-
ment from the OMPS NM sensor for the wavelength region
used in our RRS cloud OCP retrieval. This measurement rep-
resents the average values of a series of solar flux measure-
ments for the 36 cross-track fields of view (FOVs) taken ev-
ery week during the first year of observation; since no dis-
cernible degradation in the diffuser was seen during this time
period, the average provides a representative set of solar ir-
radiance values. In deriving the average, the Sun–Earth dis-
tance was accounted for, and the resulting measurement was
normalized to 1 astronomical unit (AU). Additionally, be-
cause the solar flux is taken off a diffuser that is stepped over
seven different positions in order to illuminate the full CCD,
measurements from the seven different positions had to be
stitched together using data from overlapping illuminated re-
gions for each position. A circular (loop) pattern is clearly
evident in the measurements shown in Fig.2. This pattern is
due to combination of the spectral smile mentioned earlier,
the change in bandpass across the CCD, and the accuracy of
the irradiance measurements themselves.

If there were no spectral smile, each of the 36 FOVs
would measure irradiance at the same 196 wavelengths. Fur-
thermore, if, for a given wavelength, the bandpass was the
same for each FOV, we would expect to see irradiance mea-
surements corresponding to 196 wavelengths from 300 to
380 nm; assuming no error in the measurements, each FOV
would measure the same irradiance for each wavelength, and
we would see a set of 196 points. Because of the spectral
smile, the measurements do not correspond to a set of 196
wavelengths but are spread across an interval corresponding
the smile (±0.2 nm) about each of the 196 wavelengths at the
center of the CCD, and the measured irradiance are spread
out over the entire 300 to 380 nm range. The loops seen in the
measurement are due to a combination of bandpass changes
across the FOV and errors in the irradiance measurements
from the different FOVs.

To further separate effects due to the change in band-
pass from errors inherent in the measurements themselves,
we produced a synthetic OMPS solar irradiance spectrum
by convolving a high-resolution solar spectrum (Chance and
Kurucz, 2010) with the wavelengths and bandpasses mea-
sured before launch for each cross-track FOV. The expected
OMPS solar flux is shown in Fig.2 (bottom) using dots for
each cross-track position. The small loop pattern seen in this
figure is solely due to the fact that, for a given wavelength, the
bandpass changes across the CCD and, therefore, is different
for each FOV. We should emphasize that if the bandpass did

344 346 348 350 352 354 356
Wavelength (nm)

600

800

1000

1200

1400

M
ea

su
re

d 
so

la
r 

flu
x 

(m
W

/m
2 /n

m
)

344 346 348 350 352 354 356
Wavelength (nm)

600

800

1000

1200

1400

C
om

pu
te

d 
so

la
r 

flu
x 

(m
W

/m
2 /n

m
)

Fig. 2. OMPS-measured solar flux (top) and high resolution solar flux convolved with the measured OMPS

NM band-passes (bottom). Dots are for different cross-track positions. Note that many dots (due to the spectral

smile) can fuse together to visually simulate a line.
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Figure 2. OMPS-measured solar flux (top) and high-resolution so-
lar flux convolved with the measured OMPS NM bandpasses (bot-
tom). Dots are for different cross-track positions. Note that many
dots (due to the spectral smile) can fuse together to visually simu-
late a line.

not change, we would not see a loop pattern at all but, rather,
a smooth irradiance spectrum from 300 to 380 nm that re-
flects the spectral smile.

A comparison of the calculated with measured solar flux
indicates that the larger loop pattern seen in the measurement
is mostly a reflection of the relatively lax 7 % pre-launch
specification for irradiance accuracy. We also note that the
pre-launch specification for radiance measurements was a
similarly lax 8 %. It should be noted that the radiance and
irradiance measurements are designed to be used together, as
the ratio of radiance to irradiance, to form a normalized radi-
ance. Since the solar diffuser precedes the same optics used
in the Earth radiance measurements, many systematic errors,
including sensor effects such as spectral smile, cancel in the
normalized radiance, and a stricter pre-launch specification
of 2 % was therefore placed on this quantity. Post-launch
analysis performed with the OMPS NM sensor indicates that
the normalized radiance generally falls within this specifi-
cation (Seftor et al., 2014). This analysis also shows a shift
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(0.06 nm or less) in wavelength between the radiance and ir-
radiance measurements that, if left uncorrected, will cause
errors in the normalized radiance. We account for this shift
through a term in our fitting algorithm; results from this term
agree well with results shown inSeftor et al.(2014). Fur-
thermore, analysis of the resulting Level 2 ozone products
validate their performance as well (Kramarova et al., 2013).

We attempted cloud OCPs retrievals using secondary RRS
filling-in lookup tables computed with both the measured
and synthetic solar spectra. We obtained superior results us-
ing the tables generated with the synthetic solar spectrum
because the sensor characteristics (including calibration er-
rors) discussed above were not taken out of the measured
solar flux. Cloud pressure retrievals with the lookup tables
generated with the measured solar spectrum exhibited more
artifacts, e.g., negative values of retrieved OCPs, than with
the tables generated using the synthetic spectrum. Therefore,
all results shown here are derived using the tables generated
with the synthetic solar spectra.

Other modifications to the original OMI RRS algorithm
were needed in order to obtain comparable results. For ex-
ample, OMPS has a more coarse wavelength sampling as
compared with OMI. The use of a spline scheme for the in-
terpolation of the radiance and irradiance data to the table
wavelength grid was needed for OMPS, whereas a faster lin-
ear scheme can be used for OMI. A key element of the RRS
cloud algorithm is a so-called soft calibration of measured
TOA radiances. A general approach to the soft calibration
is to use a radiative transfer model to compute radiances for
scenes where we assume that all parameters are known. As
has been done with OMI, we select pixels over highly reflect-
ing ice-covered land in Antarctica where reflectivities are rel-
atively constant. In particular, the Antarctic plateau region
has very high surface reflectivity, low aerosol loading during
quiescent periods, and very small amounts of cloud cover.
Here, we use 1 day of data near solstice in December 2012 to
compute the spectral radiance residuals (i.e., observed minus
computed filling-in) for OMPS.

Figure3 shows spectral residuals for different cross-track
positions. An overall envelope is apparent with a few posi-
tions having larger residuals at a few wavelengths. The enve-
lope pattern in the residuals is due primarily to errors caused
by interpolating the OMPS normalized radiances to the pre-
defined table wavelengths. Note again that the OMPS wave-
lengths vary as a function of cross-track position. Similar pat-
terns are seen in OMI-derived radiance residuals (Joiner and
Vasilkov, 2006).

4 Results

4.1 Comparison of OMI and OMPS cloud products

Figure 4 (top) shows a map of cloud OCPs retrieved from
OMPS measurements on 7 January 2013. Data with effective
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Figure 3. Spectral residuals/corrections that are applied to mea-
sured TOA OMPS radiances as derived from data over Antarctica.
Each curve is for a particular OMPS cross-track position.

cloud fraction greater than 0.05 are shown, as cloud pressure
retrievals are not performed for cloud fractions< 0.05. Sim-
ilarly, Fig. 4 (bottom) shows a map of cloud OCP retrieved
from OMI measurements on the same day. OMI data affected
by so the called “row anomaly” were removed. The row
anomaly affects the quality of the level 1b radiance data for
particular viewing directions of OMI (cross-track positions)
and consequently the cloud products for those cross-track
positions. More information about the OMI row anomaly
can be found athttp://www.knmi.nl/omi/research/product/
rowanomaly-background.php. A visual comparison of two
maps suggests that there is good qualitative agreement be-
tween the spatial distribution of OCP derived from OMI and
OMPS. For instance, areas with high-altitude clouds over the
northern part of the Pacific, Mexico, northern part of the At-
lantic Ocean, northern China, etc., look quite similar. How-
ever, there are some quantitative differences, for instance, in
the oceanic tropics where OMI displays more low pressure
OCPs than OMPS.

Figure4 (top) shows that the rightmost OMPS swath po-
sition has a significant error (unrealistically low cloud pres-
sures). The precise cause of this error is related to an insuffi-
cient number of OMPS pixels in the rightmost swath position
available for soft calibration over the Antarctic plateau near
solstice.

To compare the cloud products retrieved from OMPS and
OMI quantitatively, we use probability density functions
(PDFs) of effective cloud fraction (ECF) and OCP calculated
for different latitude and ECF bins. A collocation of OMI
pixels to OMPS pixels is not possible; therefore, we do not
provide scatter plots. OMI flies at 705 km altitude; OMPS
is at 824 km altitude. Although they have roughly the same
local equator crossing time, the difference in altitude means
that they have coincident orbits on the Earth’s surface every

www.atmos-meas-tech.net/7/2897/2014/ Atmos. Meas. Tech., 7, 2897–2906, 2014
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Figure 4. OCP (in hPa) from OMPS measurements (top) and OMI
measurements (bottom) on 7 January 2013. Every pixel on the maps
is represented by a color dot. OMI has 60 cross-track pixels while
OMPS has 36 pixels. More pixels leads to a visual effect of the OMI
map being brighter than the OMPS map.

8 days or so. And, even though the orbit can coincide, the
times and spatial resolutions are still somewhat different.

Figure 5 shows a comparison of PDFs of OMPS and
OMI effective cloud fractions for the tropics. It should be
noted that the ECF values in Fig.5 start at the zero value
even though we do not report OCPs for ECF< 0.05 because
of substantially increasing errors in OCP with decreasing
ECF. The PDFs of OMPS and OMI effective cloud fractions
are practically identical for ECFs higher than approximately
0.1–0.2. Even if we assume that radiometric calibration of
both OMI and OMPS is perfect, we can expect differences in
the derived ECFs owing to the different sizes of the OMI and
OMPS footprints. It is reasonable to anticipate more cases of
higher cloud fraction for the smaller OMI footprints. Indeed,
noticeable differences are observed for low ECFs with more
clear scene pixels for OMI than for OMPS because OMI has
more smaller pixels. Small differences in the PDFs of ECFs
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Figure 5.Probability density functions of OMPS and OMI effective
cloud fractions for the tropics.

for ECF> 0.1–0.2 could be explained by the fact that a sig-
nificant fraction of the OMI smallest-size pixels near nadir
are excluded from the comparison due to the row anomaly.
Therefore, we compare PDFs of ECF for OMPS and OMI
pixels with similar sizes.

Figure6 shows a comparison of PDFs of OCP retrieved
from OMI and OMPS over the tropics and northern and
southern mid-latitudes for scenes with ECF> 0.3. OMI pix-
els affected by the row anomaly were excluded from the com-
parison. The comparison of the PDFs is similar to that carried
out inJoiner et al.(2012); it is intended to evaluate the OMPS
OCP retrievals for moderately to highly cloudy conditions.
In general, the PDFs from OMI and OMPS cloud pressures
qualitatively agree. However, OMPS retrieves higher cloud
pressures more often that OMI does. Particularly, this is true
for the tropics. A simple visual comparison of the maps in
Fig. 4 reveals lower OMI cloud pressures in the tropics.

A possible cause of higher cloud pressure retrieved by
OMPS could be related to the effects of stray light contri-
butions to TOA radiances in OMPS. The algorithm is not
sensitive to radiometric calibration errors if they are spec-
trally smooth because the algorithm makes use of a poly-
nomial fit similar to DOAS (Differential Optical Absorption
Spectroscopy) algorithms. The algorithm is indeed sensitive
to stray light. The TOA radiance measured by the OMPS NM
sensor is not corrected for stray light contributions, whereas
a stray light correction is applied for OMI. Stray light is
an additive error to the measured TOA radiance and leads
to erroneous filling-in of Earthshine Fraunhofer lines. Cloud
pressures retrieved from Raman scattering are approximately
proportional to the filling-in of solar Fraunhofer lines (Joiner
et al., 1995). Stray light increases the filling-in; if not prop-
erly accounted for, stray light can thus lead to erroneous
cloud pressures.
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Figure 6. Probability density functions of OMPS and OMI cloud
pressures for three latitude bins: southern mid-latitudes (top), trop-
ics (middle), and northern mid-latitudes (bottom).

We ran an additional experiment using a version of the
OMPS level 1b data with a proposed stray light correction.
We found that the PDFs were not substantially different from
those in Fig.6. This means that stray light in OMPS is likely

not the root cause of the differences between OMPS and OMI
cloud pressures.

OMI RRS OCP retrievals have also been compared with
coincident OMI retrievals using oxygen dimer absorption
(Sneep et al., 2008; Joiner et al., 2012) and predicted val-
ues based on a fast simulation using cloud optical thickness
profiles derived from CloudSat radar reflectivity profiles and
radiances from the MODerate-resolution Imaging Spectrora-
diometer (Vasilkov et al., 2008; Joiner et al., 2012). Although
these comparisons were qualitatively good, some differences
(within the range of the OMI and OMPS differences seen
here) were noted. Those differences could be attributed to er-
rors in the instruments and algorithms. Unfortunately, there
is no clearly defined gold standard for validation. We sim-
ilarly attribute the OMI–OMPS cloud pressure differences
seen here to errors in the instruments and algorithms.

To evaluate the OMPS-derived OCP product, it is useful
to analyze differences between surface pressure and OCP,
1P = Ps−Pc, for mostly clear-sky conditions where a scene
pressure is retrieved. For those conditions, the retrieved OCP
should be close to the surface pressure, i.e., this difference
should be small. We calculated a mean1P of −1.7 hPa
and standard deviationσ = 46.2 hPa using OMPS cloud re-
trievals from the Antarctic plateau region on 7 January 2013.
The small mean value indicates that the soft calibration of
TOA radiances (based on OMPS data of 21 December 2012)
works well. In comparison, for OMI we find a mean1P of
−15.3 hPa andσ = 36.0 hPa, indicating slightly lower ran-
dom errors in OMI as compared with OMPS.

4.2 Effects of the OMPS-retrieved cloud OCP on
total column ozone

The current NASA OMPS research total ozone algorithm
is based on the heritage algorithm designed for the TOMS
series of satellite instrument and also applied to OMI
(McPeters et al., 2013). Initial studies show that the al-
gorithm is performing with expected quality for OMPS
(Kramarova et al., 2013; Flynn et al., 2014), similar to that of
the well-validated OMI-TOMS algorithm (McPeters et al.,
2008). The NASA OMPS total ozone algorithm currently
makes use of a monthly gridded cloud OCP climatology
derived from OMI-retrieved cloud OCPs. This climatology
was also developed for use in the reprocessing of historical
TOMS data.

Here, we compare OMPS total column ozone retrievals
derived with the cloud OCP climatology and actual cloud
OCPs. Figure7 shows percentage differences between the
standard NASA OMPS total ozone product and total ozone
retrieved using OMPS-derived cloud OCPs. For comparison,
the OMPS-derived reflectivity is also shown, indicating areas
of heavy cloud cover. We note that ozone differences are very
small for the overwhelming majority of the globe. Ozone dif-
ferences are mostly positive and can be up to∼ 5 %. They
are well correlated with bright clouds over the ocean as can
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Figure 7. Total ozone differences (in %) due to the use of retrieved
cloud OCPs instead of the OMI cloud OCP climatology (top) and
OMPS-derived reflectivity (in %) at 331 nm for 7 January 2013
(bottom).

be seen from a visual comparison in Fig.7. Negative ozone
differences over the northern Atlantic Ocean are also corre-
lated with bright clouds. All of the total ozone differences
in Fig. 7 are caused by the fact that the actual cloud OCPs
deviate from the monthly gridded climatology.

Figure8 compares OMPS and OMI total ozone retrievals
where OMPS retrievals are performed with either the OMI
cloud OCP climatology (top) or using actual OMPS-derived
cloud OCPs (bottom). For total column ozone, having an ex-
act match-up in both time and space is not as critical as it is
for cloud retrievals. The comparison is performed for 7 Jan-
uary 2013 in locations not affected by the OMI row anomaly.
Because the standard NASA OMPS retrievals use a different
set of ozone cross sections than those used for the OMI re-
trievals, we reprocessed OMPS data with the Bass and Paur
cross sections (Bass and Paur, 1985) used in the OMI ozone
algorithm. The left panels of Fig.8 show the spatial distribu-
tion of the percentage differences between OMPS and OMI
total ozone retrievals and the right panels show histograms
of those differences along with an approximation of the his-
tograms using a Gaussian function.
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Figure 8. Total ozone differences between OMPS and OMI on
7 January 2013 with the use of the cloud OCP climatology (top)
and the retrieved cloud OCP (bottom). The left panels show spatial
distributions of the total ozone differences; the right panels show
histograms of total ozone differences and their approximation with
a Gaussian function.

The mean ozone difference in both cases is well within
1 %, becoming slightly worse with the use of collocated OCP
retrievals. This is most likely due to the fact that, as discussed
above, the OMPS-derived OCP is higher on average than the
OMI-derived OCP; this, in turn, slightly reduces the ozone
retrieved by OMPS in comparison with that from OMI. How-
ever, it should also be noted that the width of the difference
distribution decreases slightly when the collocated OCPs are
used, from 1.09 to 1.05 %. Furthermore, areas with heavy
cloud cover (e.g., over the Pacific Ocean and South Amer-
ica) visually show smaller OMPS–OMI differences in Fig.8
when the collocated OCP retrievals are used. In those areas,
reduction of the OMPS–OMI ozone differences can be up to
2 %.

5 Conclusions

We have reworked the OMI cloud OCP algorithm to handle
OMPS data. Key elements of the OMPS cloud pressure al-
gorithm include the use of soft calibration of TOA radiances,
the use of a synthetic high-resolution solar flux for genera-
tion of the RRS lookup tables, and spline interpolation of the
TOA radiances over the lookup table wavelength grid. We
find that the PDFs of effective cloud fraction retrieved from
OMPS and well-validated OMI measurements are very close
to each other. Some differences in the derived ECFs are ex-
pected owing to the different sizes of the OMI and OMPS
footprints. Such small differences in the PDFs of ECF are
explained by the fact that a significant fraction of the OMI
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smallest-size pixels near nadir are excluded from the com-
parison due to the row anomaly that leads to a comparison of
OMPS and OMI pixels with similar sizes. The PDFs of the
OMPS and OMI OCPs are similar; however, OMPS retrieves
somewhat higher OCPs on average.

The use of actual OMPS cloud OCPs, as compared with
the use of an OMI-derived monthly gridded cloud OCP cli-
matology, changes OMPS total column ozone estimates lo-
cally (presumably in the correct direction) only in areas with
large differences between climatological and actual OCPs.
The ozone differences can be up to 5 % in such areas. How-
ever, the monthly gridded OMI cloud OCP climatology cap-
tures much of the variability in OCP. Total column ozone
from OMPS appears to be quite good (by comparison with
well-validated OMI retrievals) when the OMI-based cloud
OCP climatology is used.
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