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Abstract. The Total Carbon Column Observing Network
(TCCON) is a global ground-based network of Fourier
transform spectrometers that produce precise measurements
of column-averaged dry-air mole fractions of atmospheric
methane (CH4). Temporal variability in the total column
of CH4 due to stratospheric dynamics obscures fluctuations
and trends driven by tropospheric transport and local surface
fluxes that are critical for understanding CH4 sources and
sinks. We reduce the contribution of stratospheric variability
from the total column average by subtracting an estimate of
the stratospheric CH4 derived from simultaneous measure-
ments of hydrogen fluoride (HF). HF provides a proxy for
stratospheric CH4 because it is strongly correlated to CH4
in the stratosphere, has an accurately known tropospheric
abundance (of zero), and is measured at most TCCON sta-
tions. The stratospheric partial column of CH4 is calculated
as a function of the zonal and annual trends in the relation-
ship between CH4 and HF in the stratosphere, which we de-
termine from ACE-FTS satellite data. We also explicitly take
into account the CH4 column averaging kernel to estimate the
contribution of stratospheric CH4 to the total column. The re-
sulting tropospheric CH4 columns are consistent with in situ
aircraft measurements and augment existing observations in
the troposphere.

1 Introduction

The most abundant hydrocarbon in the atmosphere, methane
(CH4) is a driver of background tropospheric chemistry and
a significant radiative forcing gas. However, the long-term
trends of atmospheric mixing ratios and fluctuations in the
annual growth rate remain unexplained due to an incomplete
understanding of its sources and sinks.

Analyses of temporal and geospatial trends of CH4 require
precise, continuous measurements with adequate spatial cov-
erage. Several such monitoring networks, such as World
Meteorological Organization (WMO) Global Atmospheric
Watch and National Oceanic and Atmospheric Administra-
tion (NOAA) Global Monitoring Division, have measured
methane for decades. These sites are often in locations
primarily intended for background observations, and mea-
surements are confined to the surface, primarily within the
boundary layer. The Total Carbon Column Observing Net-
work (TCCON), a ground-based network of near-infrared
(NIR) Fourier transform spectrometers (FTS), measures dry-
air mole fractions (DMFs) of several atmospheric trace gases,
including CH4, integrated over the entire atmospheric col-
umn. The column measurements are sensitive to the free
troposphere in addition to the surface, which can allow for
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better separation of transport from local emissions. Addition-
ally, total column measurements are less sensitive to verti-
cal transport and mixing, and thus meridional or zonal gra-
dients in column measurements can be used to characterize
regional-scale fluxes (Yang et al., 2007; Wunch et al., 2011a;
Keppel-Aleks et al., 2011). Several TCCON stations are near
in situ sites that provide surface, tall tower, and aircraft mea-
surements, which we use to compare the final tropospheric
column-averaged CH4 DMFs.

Tropospheric trends of CH4 are obscured in total col-
umn measurements by variability originating in the strato-
sphere, especially by vertical shifts of the tropopause. Sev-
eral methods for accounting for stratospheric variability have
been proposed, including incorporating the compact relation-
ship between CH4 and another chemical tracer in the strato-
sphere (e.g.,Washenfelder et al., 2003; Payne et al., 2009;
Angelbratt et al., 2011; Sepúlveda et al., 2012, 2014; Wang
et al., 2014). Washenfelder et al.(2003) estimate the contri-
bution of variations in stratospheric CH4 as the product of
the hydrogen fluoride (HF) column-averaged DMF and the
CH4–HF relationship, calculated from the Halogen Occulta-
tion Experiment (HALOE) satellite and the JPL MkIV Inter-
ferometer data.Wang et al.(2014) similarly use the relation-
ship between stratospheric nitrous oxide (N2O) and CH4 and
the fact that tropospheric N2O is well known to infer strato-
spheric variations in N2O, and hence CH4. Angelbratt et al.
(2011) remove the Network for the Detection of Atmospheric
Composition Change (NDACC) CH4 total column variability
with a multiple regression model that parameterizes anoma-
lies of several measurements, including HF, carbon monox-
ide, ethane, and tropopause height.Sepúlveda et al.(2012)
use the retrieval algorithm PROFFIT to infer vertical CH4
profiles directly from the absorption line shapes of the mid-
infrared (MIR) FTS spectra measured within NDACC, com-
paring the resulting tropospheric columns with those calcu-
lated with a HF proxy method. Extending this study to ad-
ditional sites,Sepúlveda et al.(2014) estimate a precision of
0.5 % and a systematic error of 2.5 % for daily mean values
of tropospheric CH4 derived from profile retrievals on the
MIR NDACC measurements.

Vertical profile retrievals using the TCCON spectra are
more difficult than those using NDACC MIR spectra because
the NDACC measurements apply spectral filters to narrow
the spectral coverage, yielding higher signal-to-noise ratios
at higher spectral resolution, at the expense of making simul-
taneous measurements of some other gases. In addition, the
line strengths in the MIR are generally higher and doppler
widths are smaller, allowing more degrees of freedom in the
vertical retrieval. Nevertheless, profile retrievals are more
sensitive to error in the instrument and assumed spectro-
scopic line shapes than profile-scaling retrievals. Quantifying
the variability of stratospheric CH4 via a chemical tracer is,
however, not without challenge, as this method is sensitive to
errors in the representation of the relationship between that
tracer and CH4 in the stratosphere and knowledge of their

respective averaging kernels. In addition, this method pro-
vides no information about vertical structure within the tro-
posphere.

To determine the stratospheric CH4 component of the
FTS-retrieved total column, we propose to use its relation-
ship with HF, which is measured at almost all TCCON sites.
Stratospheric CH4 has a nearly linear inverse relationship
with HF, which exists almost exclusively in the stratosphere
(Luo et al., 1995; Washenfelder et al., 2003). The photodis-
sociation of chlorofluorocarbons (CFCs) and the resulting
carbonyl products produce free fluorine, which can then in
turn react with CH4 and water vapor (H2O) to produce HF,
the most stable reservoir species of fluorine in the strato-
sphere (Luo et al., 1994). The reactions producing HF oc-
cur in the middle-high stratosphere, leading to a uniformly
increasing vertical profile (Luo et al., 1995). CH4, by con-
trast, is transported from the troposphere and is destroyed by
O(1D), hydroxyl, and chlorine free radical-initiated oxida-
tion. The resulting nearly linear relationship between HF and
stratospheric CH4, which is seasonally and zonally consis-
tent, makes HF a useful proxy for the contribution of strato-
spheric variability to the CH4 total column.

2 Derivation of tropospheric CH4 columns

TCCON FTS retrievals are conducted with the GFIT nonlin-
ear least-squares fitting algorithm, which determines a verti-
cal scale factor (γ ) of an a priori vertical profile (xa) based on
the best spectral fit of the solar absorption signal. The scaled
profile is then vertically integrated, and the resulting column
abundance is divided by the vertical column of dry air, cal-
culated using the retrieved column of oxygen (O2) (Wunch
et al., 2010, 2011a).

The retrieved integrated column of CH4 can be expressed
as a first order Taylor expansion about the solutionγCH4c

a
CH4

(Rodgers and Connor, 2003) such that,

ĉCH4 = γCH4 · ca
CH4

+ a
§
CH4

(xCH4 − γCH4x
a
CH4

), (1)

whereĉ is the retrieved column,γCH4 is the retrieved profile
scale factor of CH4, x is the true profile, andxa

CH4
andca

CH4
are the a priori vertical profile and column-integrated CH4,
respectively. We define § as an operator that represents the
pressure-weighted integration of the profile:

a§x =

N∑
i=1

ai · hi · xi, (2)

wherea is the FTS column averaging kernel, dependent on
solar zenith angle and pressure,h is the pressure-weighting
function, such that̂c = hT x̂ (Connor et al., 2008; Wunch
et al., 2011b), andi is the index of pressure levels from the
surface to the highest level,N . When the vertical column
includes water vapor, such as in the case of the priors, the
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pressure-weighting function incorporates the H2O profile to
convertx to dry-air mole fractions.

To isolate the tropospheric column of CH4, we assume a
linear relationship between CH4 and HF in the stratosphere
such that

xCH4 = c
trop
CH4

u + βxHF, (3)

wherec
trop
CH4

represents the pressure-weighted DMF averaged
over the tropospheric column,u is a unity vector the length
of the number of vertical levels in the total column retrieval
integration, andβ is the time-dependent CH4–HF slope in
the stratosphere. Integrating the vertical profiles, the column-
averaged form of this relationship becomes

cCH4 = c
trop
CH4

+ βcHF, (4)

where c is the total column DMF of the respective trace
gases. TheβcHF term is negative and represents the amount
of CH4 that has been destroyed in the stratosphere, rather
than the stratospheric partial column of CH4. We also assume
that the a priori CH4 profiles can be approximated using the
linear relationship between CH4 and HF.

By combining Eqs. (3) and (4), as well as their analogs for
the a priori profiles, into Eq. (1), we derive a tropospheric
column-average DMF:

c
trop
CH4

= ĉCH4

− β
(
γCH4 · ca

HF + a
§
CH4

(xHF − γCH4x
a
HF)

)
. (5)

Ideally,xHF would be derived from the equivalent of Eq. (1)
for HF, but doing so would require inverting the pressure-
weighted averaging kernel, which does not have a unique so-
lution. Thus, in order to solve Eq. (5), we must assume that
xHF = x̂HF = γHFxa

HF and, accordingly, that the shape of the
HF profile is known. In general, this is a reasonable assump-
tion because the vertical profile is governed mainly by well-
characterized chemical production, and, as previously stated,
increases uniformly. However, this solution has limitations
when the scaled profile deviates from the true profile, such
as in the polar vortex.

SubstitutingγHFxa
HF for xHF, the tropospheric column of

CH4 is derived as follows:

c
trop
CH4

= ĉCH4 − β
(
γCH4 · ca

HF + a
§
CH4

xa
HF(γHF − γCH4)

)
. (6)

All of the terms on the right hand of the equation can be gen-
erated from the TCCON data set except forβ, which we de-
rive from satellite data. Equation (6) can be applied to deter-
mine tropospheric DMFs of trace gases other than CH4 that
are correlated with HF in the stratosphere because it does not
require assumptions about the relationship between the av-
eraging kernels of the respective gases and is thus a more
general approach than that ofWashenfelder et al.(2003).

2.1 Measurement uncertainties

The c
trop
CH4

error is calculated by propagating the uncertain-
ties of the retrievals, which in Eq. (6) are associated with the
vertical scale factors, andβ, which is described in Sect.2.2.
These errors are propagated as the sum of the squares of the
standard errors for each term. Because the vertical scale fac-
tor errors are derived assuming that the residuals from the
spectral fits have a Gaussian distribution, systematic artifacts
that are stable from spectrum to spectrum inflate the errors
calculated from the spectral fit. To derive the measurement
precision, the uncertainties are scaled to account for the vari-
ations in DMFs calculated from successive spectra within
5 min. The mean and median tropospheric CH4 precisions
vary from 0.04–1 and 0.01–0.03 %, respectively, at individ-
ual sites and are 0.1 and 0.004 % across all sites and years.
By comparison, the precision inWashenfelder et al.(2003) is
0.5 %, although this improvement is partially attributable to
advancements in the retrieval methodology and instrumenta-
tion.

The data have been corrected for laser sampling errors
(Dohe et al., 2013; Messerschmidt et al., 2010), and the as-
sociated uncertainties of those corrections are summed in
quadrature with the measurement precision.

2.2 Determination of CH4–HF slope

Vertical profiles of CH4 and HF mole fractions were devel-
oped from level 2, version 3.0 and 3.5 retrievals from the At-
mospheric Chemistry Experiment Fourier Transform Spec-
trometer (ACE-FTS) instrument on the Canadian SCISAT-
1 satellite. SCISAT-1 orbits in low Earth orbit with an in-
clination of 74◦, offering coverage of tropical, mid-latitude
and polar regions from 85◦ N to 85◦ S (Bernath, 2005; De
Mazière et al., 2008; Mahieu et al., 2008; Waymark et al.,
2014). Data were taken from February 2004 through Septem-
ber 2010 for version 3.0 and October 2010 through Decem-
ber 2012 for version 3.5. These data sets differ only in that
the a priori pressure and temperature profiles in the latter
are taken from the global Canadian Meteorological Center
model rather than the regional one, which began to provide
unphysical profiles starting October 2010 (Waymark et al.,
2014). The ACE-FTS profiles are additionally filtered to ex-
clude occultations with physically unlikely profiles and all
individual CH4 and HF retrievals with statistical fitting er-
rors above 5 %. Because the HF abundance in the tropo-
sphere is essentially zero, any coincident retrievals of CH4
and HF were assumed to reside in the stratosphere; there-
fore we did not designate a pressure level threshold to isolate
the stratosphere. Data above 70 km were excluded for consis-
tency with TCCON retrievals, although CH4 concentrations
are generally depleted at that altitude. The CH4–HF relation-
ship exhibits a strong altitude dependence, with steeper CH4–
HF slopes in the upper stratosphere (Fig.1). Annual slopes
follow the long-term trend fromWashenfelder et al.(2003),
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Figure 1. CH4 (ppb,y axis) vs. HF (ppb,x axis) from ACE-FTS measurements taken between 2004–2012, binned by zonal bands. The
slopes of the linear regression are in the upper right-hand corner, and number of data points (N ) are listed below each plot.

given the expected trajectory of HF concentrations in the
stratosphere (Fig.2).

Tracer–tracer relationships in the stratosphere tend to be
dependent on latitude, with the tropics exhibiting different
slopes than the mid-latitude “surf zone” and the polar regions
(Luo et al., 1995). While ACE-FTS coverage at high lati-
tudes is extensive, tropical coverage is sparse; thus, to ensure
a large enough number of data points in the tropics for robust
statistical analysis, we binned CH4 and HF mole fractions in
30◦ zonal bands. The tracer relationship demonstrates a clear
zonal trend: the slopes are less steep in lower latitudes, and
the Northern Hemisphere slopes are more steep than their
zonal counterparts in the Southern Hemisphere (Figs.1, 2).
To determine statistically robust values forβ, the CH4–HF
slope was computed for bootstrap subsamples of 1000 indi-
vidual retrievals from each year and zonal band. In order to
minimize the effect of outliers in the determination of the
slope, we applied an iteratively re-weighted least squares re-
gression with a Tukey’s bi-weight function, weighting data
points by pressure (Hoaglin et al., 1983). The means and 2σ
standard deviations of the resulting probability distributions
were taken respectively as the values and errors ofβ (Ta-
ble 1). For 2013, we calculated the annual growth rate of
the CH4–HF ratio in the northern mid-latitude region (30–
60◦ N), chosen because the surf zone is well-mixed and thus
has the most robust tracer relationships, and added it to the
respective zonal values for 2012. The error forβ in 2013
was computed as the sum in quadrature of the error forβ in
2012, the standard error of the annual growth rate, and the
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Figure 2.Long-term CH4–HF slopes derived byWashenfelder et al.
(2003) and annual-mean slopes from ACE-FTS measurements. The
inset shows the time series of zonal pressure-weighted ACE-FTS
slopes (β), with error bars denoting the 2σ standard error. For each
year, zonal slopes are offset from each other for clarity.

2σ standard deviations of the interannual variability of each
zonal band. While temporal trends inβ do indicate seasonal
variability, the impact on the slopes is not sufficiently sta-
tistically robust from year to year to incorporate a seasonally
varyingβ. The sensitivity of the tropospheric methane calcu-
lation toβ differs by site, but generally varies by 0.1–1 ppb
for 1β of 10.
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Table 1.Annual zonal values (2σ uncertainties) ofβ.

60–90◦ S 30–60◦ S 0–30◦ S 0–30◦ N 30–60◦ N 60–90◦ N

2004 −719 (7) −706 (10) −674 (28) −714 (17) −739 (7) −756 (5)
2005 −739 (5) −729 (7) −701 (18) −633 (22) −740 (6) −748 (4)
2006 −742 (6) −725 (9) −648 (25) −690 (18) −752 (7) −758 (5)
2007 −738 (6) −730 (9) −684 (31) −620 (50) −742 (8) −754 (5)
2008 −743 (6) −732 (8) −665 (25) −705 (23) −734 (6) −749 (4)
2009 −727 (6) −721 (10) −635 (36) −661 (28) −743 (9) −755 (6)
2010 −706 (5) −709 (7) −658 (22) −656 (27) −716 (7) −737 (4)
2011 −746 (5) −735 (9) −596 (61) −607 (25) −704 (6) −731 (4)
2012 −714 (7) −705 (8) −624 (51) −641 (24) −722 (7) −724 (5)
2013 −712 (23) −703 (20) −622 (63) −639 (63) −720 (16) −722 (11)

2.3 Validation of methodology

Equation (6) incorporates two major assumptions: that the
CH4–HF relationship is linear, and that the retrieved HF col-
umn is a close approximation to the true HF column. To test
these assumptions, we compared tropospheric CH4 DMFs
derived directly from ACE-FTS CH4 profiles to those cal-
culated by substituting the most recent TCCON priors (GGG
2014) and ACE-FTS CH4 and HF profiles into Eq. (5). For
this analysis, the ACE-FTS trace gas profiles up to 70 km in-
terpolated onto a 1 km vertical grid were considered the true
profilesxHF andxCH4, and assumingγCH4 ≈ 1, we solved
Eqs. (1) and (5) for c

trop
CH4

. Because the minimum retrieval
altitudes were at least 5.5 km and on average 9.5 km, mole
fractions of CH4 and H2O near the surface were extrapolated
using TCCON priors. Occultations with individual CH4, HF
and H2O errors greater than 10 % were excluded for lat-
itudes poleward of±30◦. In the tropics, the error thresh-
old was relaxed to 40 % in order to ensure a large enough
data set for results to be meaningful. We then compared the
calculated tropospheric methane column-averaged DMF to
the ACE-FTS CH4 profiles integrated to the tropopause. For
the intercomparison, the integrated ACE-FTS profiles were
smoothed with the TCCON CH4 averaging kernel and priors
(Connor et al., 2008; Wunch et al., 2011b). The tropopause
altitude was calculated using National Centers for Envi-
ronmental Prediction/National Center for Atmospheric Re-
search (NCEP/NCAR) Reanalysis local noon temperature
profiles(Kalnay et al., 1996), from which the TCCON priors
are generated, for consistency.

As Fig.3 illustrates, the temporal and zonal dependencies
of the tropospheric methane calculation are well character-
ized, with a few notable exceptions. The consistency of the
bias across years (slope = 0.99–1) indicates that the annual
variability of β is accurate, although the asymmetric scatter
of the residuals in the northern tropics could be a result of
the smaller number of data points included in the determi-
nation ofβ. Additionally, the seasonal variability associated
with descent within the polar vortices, not currently captured
by the HF priors, accounts for the outliers apparent in higher

latitudes. Because the southern polar vortex is stronger and
more persistent than in the north, the calculated tropospheric
column exhibits a much larger spread in the southern polar
zonal band.

The underestimation of tropospheric CH4 in the Northern
Hemisphere and slight overestimation in the Southern Hemi-
sphere is partially a result of several assumptions that are
necessary because coincident TCCON measurements do not
exist for all zonal regions over the time series. TCCON aver-
aging kernels are highly dependent on the solar zenith angle
and surface pressure at the time of measurement; however,
the solar zenith angles at the surface during ACE-FTS occul-
tations are close to 90◦, and the surface pressure is unknown.
To address the latter, we assume that the pressure at the low-
est point in the ACE-FTS profile is the surface pressure. We
also use the solar zenith angle calculated at the latitude, lon-
gitude and time of the occultation, which, while accurate,
does not test one of the main advantages of this methodol-
ogy, which is to adjust the tropospheric CH4 calculation for
seasonality and latitude, which impacts each zonal band dif-
ferently and thus creates an offset.

The method validation also requires the assumption that
γCH4 = 1 in Eqs. (1) and (5). A bias in the a priori pro-
files between the Northern and Southern Hemispheres would
lead to differences in the retrieved values ofγCH4, indicating
that the TCCON a priori profiles are slightly too low in the
Southern Hemisphere relative to the Northern Hemisphere.
While γCH4 is generally within 1 % of 1, TCCON measure-
ments tend to have larger values forγCH4 in the Southern
Hemisphere compared to the Northern Hemisphere, and a
difference of 0.01 between hemispheres can shift the resid-
uals from the one-to-one line by up to 4 ppb, or about one
quarter of the offset in the mid-latitudes. Because of the low
sensitivity of the tropospheric CH4 calculation to changes in
β, inter-hemispheric biases inβ determined from ACE-FTS
would have to be considerable to explain the offset.
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Figure 3. Validation of the tropospheric column-averaged CH4 derivation using HF as a proxy. The calculated tropospheric CH4 (y axis)
uses the TCCON priors, CH4 averaging kernel and ACE-FTS vertical profiles to determine the value that the ground-based FTS would
retrieve. The integrated tropospheric CH4 (x axis) applies the pressure-weighting function and TCCON CH4 averaging kernel and priors to
the extrapolated tropospheric ACE-FTS profile of CH4. The black lines depict the one-to-one line (solid) and the linear regression of the
calculated vs. integrated tropospheric CH4 with a zeroedy intercept (dashed). Ther2 values correspond to the linear regression. Note the
different DMF ranges in the Northern vs. Southern Hemispheres.

Table 2.TCCON sites, coordinates, altitudes, and locations used in this analysis.

Site Latitude Longitude Elevation (km) Location

Sodankylä 67.4 26.6 0.18 Sodankylä, Finland
Bremen 53.1 8.85 0.03 Bremen, Germany
Park Falls 45.9 −90.3 0.44 Park Falls, WI
Lamont 36.6 −97.5 0.32 Lamont, OK
Izaña 28.3 −16.5 2.37 Tenerife, Canary Islands
Darwin −12.4 130.9 0.03 Darwin, Australia
Wollongong −34.4 150.9 0.03 Wollongong, Australia
Lauder −45.0 169.7 0.37 Lauder, NZ

3 Results

Tropospheric column-averaged DMFs were calculated for
TCCON sites in Sodankylä (Fig.4a), Bremen (Fig.4b), Park
Falls (Fig. 4c), Lamont (Fig.4d), Izaña (Fig.4e), Darwin
(Fig. 4f), Wollongong (Fig.4g) and Lauder (Fig.4h) using
the 2012 version of the GGG software. Location information
for each of these TCCON sites can be found in Table2. As
we would expect, the tropospheric column-averaged DMFs
of CH4 are higher than the total column DMFs. Many of
the low outliers in the total column that are a result of the
stratospheric variability no longer appear in the tropospheric
DMFs. The intraday variability of the tropospheric DMFs are
generally equivalent to those of the corresponding total col-
umn DMFs, although the tropospheric standard deviations
are, in some cases, significantly larger than those of the total
column. Sites in the tropics are especially susceptible to both

larger errors for a single measurement and larger daily vari-
ances due to the higher HF errors caused by H2O interfer-
ence (e.g., Darwin, Fig.4f). Additionally, the tropospheric
calculation removes most of the effects of the seasonal cycle
of stratospheric variability. While the magnitude of the im-
pact on the seasonal cycle of CH4 varies from site to site, the
tropospheric column calculation generally shifts the peak of
CH4 from late fall to winter and the minimum from spring to
late summer (Fig.5). At Lamont and Park Falls, this impact
is especially apparent, with 2-month lags in the maxima and
minima in the tropospheric versus total columns. The de-
trended seasonal cycles of the tropospheric CH4 also exhibit
fewer short-term fluctuations, except in the case of Izaña,
which is located on a mountain at about 2.4 km and thus is
more sensitive to the free troposphere.
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Figure 4. Daily median and standard deviation (shading) total (blue, open circles) and tropospheric (green, closed circles) column-averaged
DMFs of CH4 at (a) Sodankylä, Finland,(b) Bremen, Germany,(c) Park Falls, Wisconsin, USA,(d) Lamont, Oklahoma, USA,(e) Izaña,
Tenerife, Canary Islands,(f) Darwin, Australia,(g) Wollongong, Australia and(h) Lauder, New Zealand. Only days with more than 10
measurements of tropospheric CH4 with errors of< 1 % are shown. Both the 120 HR (June 2004–December 2010) and 125 HR (Febru-
ary 2010–December 2012) instruments are plotted for Lauder.
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Figure 5. De-trended seasonal cycles of CH4 for total (blue,
dashed) and tropospheric (green, solid) columns averaged over all
years.

3.1 Comparison to Washenfelder method

The derivation introduced here improves on the previous
calculation ofWashenfelder et al.(2003) by explicitly in-
cluding the CH4 averaging kernels in the estimate of strato-
spheric loss and including the recent ACE-FTS satellite data
set, which allows for the analysis of temporal and zonal de-
pendencies. To assess the impacts of these additions to the
tropospheric CH4 column, we calculated the tropospheric
CH4 DMFs using theWashenfelder et al.(2003) derivation
(Eq.4) and the annual northern mid-latitude values ofβ (Ta-
ble 1, column 6) for all sites. The daily standard deviations
tend to decrease modestly with the updated methodology
(Fig. 6), although intraday variability is reduced by up to
40 ppb. The inclusion of the CH4 averaging kernel adjusts
the air-mass dependence of the tropospheric CH4 calcula-
tion, thereby reducing the amplitude of the CH4 seasonal cy-
cle. This improvement is especially apparent during winter
at the high-latitude sites (Fig.7), because the solar zenith an-
gles are large and, therefore, the CH4 averaging kernels have
a strong dependence on altitude. Additionally, calculating
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Figure 6.The differences between daily tropospheric CH4 standard
deviations using theWashenfelder et al.(2003) and updated meth-
ods. (Positive values correspond to largerWashenfelder et al.(2003)
standard deviations.) Box ends, midline and whiskers illustrate the
quartiles, medians and twice the interquartile ranges, respectively.
Outliers beyond the the range are denoted by diamonds.
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Figure 7.Daily median tropospheric column-averaged DMFs at So-
dankylä using theWashenfelder et al.(2003) method (black) vs. the
updated method (green). Tropospheric column DMFs are the same
as in Fig.4.

the CH4–HF relationship as a function of latitude allows for
more meaningful geospatial comparisons.

3.2 Comparison to in situ measurements

Following the method for numerical integration of in situ
profiles derived inWunch et al.(2010), smoothed column-
averaged DMFs determined for from several aircraft cam-
paigns (Table3). Additional information on the TCCON cal-
ibration, including instruments, can be found inWunch et al.
(2010), and the WMO calibration scales used for the instru-
ments can be found inDlugokencky(2005). Aircraft profiles
were integrated to the tropopause, determined using the flight
temperature profiles. Aircraft errors are calculated as the sum
in quadrature of the respective 2σ instrument errors and the
estimated uncertainties associated with the profile not reach-
ing the tropopause and the surface. FTS columns were calcu-
lated with the aircraft calibration factors for CH4 determined
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Table 3.Aircraft Overflights. TCCON site locations and aircraft campaign dates and altitude ranges are listed.

Site Location Campaign Date Altitude Range

Bremen 53◦ N, 9◦ E IMECC 9 Oct 2009 0.5–13.2 km
Park Falls 46◦ N, 90◦ W INTEX 12 Jul 2004 0.7–10.1 km

START08 12 May 2008 1.2–9.4 km
Lamont 37◦ N, 98◦ W HIPPO 30 Jan 2009 0.4–13.0 km

Learjet 31 Jul; 2, 3 Aug 2009 0.5–12.9 km
Wollongong 34◦ S, 151◦ E HIPPO 15 Nov 2009 0.1–12.6 km
Lauder 45◦ S, 170◦ E HIPPO 20 Jan 2009 0.7–14.6 km

in Wunch et al.(2010) applied to the tropospheric column
and thus do not include the spectroscopy bias that exists in
the total column. FTS errors are calculated as the standard
deviation of tropospheric DMFs with individual errors of less
than 1 % measured within 1 hour of each flight. Both the
slope and associated error are calculated considering both
the aircraft and FTS errors, assuming those errors are inde-
pendent of each other, following the method outlined inYork
et al.(2004). Additionally, because the derivation method is
predicted to vary linearly, we calculate the slope assuming
ay intercept of zero.

The FTS tropospheric columns show general agreement to
each other (Fig.8), with a slope close to within error of the
one-to-one line and a slope and error similar to that of total
column CH4 (Wunch et al., 2010). The tropospheric column
calibration curve has a slight hemispheric bias, with Southern
Hemisphere sites above the fit line and Northern Hemisphere
sites below, with the INTEX-NA campaign, over Park Falls,
WI, as the only exception.

Additionally, we compared the tropospheric CH4 to long-
term in situ flask measurements collected at the Atmospheric
Radiation Measurement Program (ARM), Southern Great
Plains (SGP) site, near the Lamont TCCON station, and
analyzed by the NOAA Earth System Research Laboratory
(ESRL). Surface measurements are collected from a 60 m
tower, typically once per week on one afternoon, and air-
craft samples are collected approximately biweekly with
a flight path centered over the tower. The integrated aircraft
DMFs are generally higher than the TCCON tropospheric
columns, which provide a lower bound to the flask measure-
ments (Fig.9a). The partial aircraft columns, restricted to the
free troposphere (approximately 3–7 km), are more consis-
tent with the TCCON tropospheric columns. The calibration
curve reinforces the distinction between the aircraft tropo-
spheric and partial tropospheric columns when compared to
the FTS DMFs at Lamont (Fig.9b); while the best fit slopes,
calculated as in (Fig.8), are equal within measurement error,
the slope of the free troposphere partial column has a smaller
offset from the FTS-aircraft one-to-one line.

In situ measurements at the surface are also useful for
regions without large local surface sources and if the tro-
posphere is well-mixed, as in New Zealand. We compared
Lauder FTS measurements to in situ data at the Baring Head
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Figure 8. Tropospheric CH4 column comparison for TCCON vs.
aircraft profiles. Error bars denote the 2σ standard deviation from
the daily median (FTS) and the estimated instrument errors and tro-
pospheric uncertainty of the measurements (aircraft).

National Institute of Water and Atmospheric Research of
New Zealand (NIWA) facility, about 600 km northeast of
the TCCON site (41.4◦ S, 174.9◦ E, 85 m a.s.l.). The Baring
Head flask measurements are collected on a stationary plat-
form at a sampling height of 10 m, analyzed with a flame ion-
izing detector, and calibrated with the NOAA04 scale (Lowe
et al., 1991). The surface measurements are similar to the
tropospheric columns, both in terms of the DMF values and
the timing of the seasonal cycle (Fig.10). The Lauder tropo-
spheric columns are somewhat higher in the late summer and
early fall, which could be a function of local CH4 sources
near Lauder, changing wind directions impacting the covari-
ance between the two sites, or seasonal HF variability not
captured in the tropospheric column derivation. Given the
relatively large discrepancy of about 10 ppb between the two
data sets during those months and the low sensitivity of the
tropospheric column to small changes inβ, the last of these
explanations is the least likely.
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4 Conclusions

Inadequate constraints on the global CH4 budget have been
a long-standing problem, and understanding recent trends de-
pends on reliable and frequent observations of tropospheric
CH4 concentrations. By explicitly taking into account the av-
eraging kernels of CH4 and incorporating temporally and

spatially varying estimates of the CH4–HF relationship,
the methodology described here refines earlier tracer proxy
methods for estimating stratospheric CH4. The tropospheric
column measurements of CH4 derived from TCCON total
column-averaged DMFs provide a useful addition to existing
data sets used to analyze the global methane cycle and verify
chemical transport models.
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While the CH4–HF relationship is robust, the calculation
of β still has limitations. The slight non-linearity and sea-
sonal variability of the CH4–HF relationship could impact
the estimation of stratospheric CH4 loss. Further analysis of
ACE-FTS and other high-frequency stratospheric measure-
ments could produce a statistically significant seasonal cycle
to apply toβ.
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