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Abstract. The aim of this study is to investigate the role
of the assimilation of Doppler weather radar (DWR) data
in a mesoscale model for the forecast of a heavy rainfall
event that occurred in Italy in the urban area of Rome from
19 to 22 May 2008. For this purpose, radar reflectivity and
radial velocity acquired from Monte Midia Doppler radar are
assimilated into the Weather Research Forecasting (WRF)
model, version 3.4.1. The general goal is to improve the
quantitative precipitation forecasts (QPF): with this aim, sev-
eral experiments are performed using the three-dimensional
variational (3DVAR) technique. Moreover, sensitivity tests
to outer loops are performed to include non-linearity in the
observation operators.

In order to identify the best initial conditions (ICs), sta-
tistical indicators such as forecast accuracy, frequency bias,
false alarm rate and equitable threat score for the accumu-
lated precipitation are used.

The results show that the assimilation of DWR data has a
large impact on both the position of convective cells and on
the rainfall forecast of the analyzed event. A positive impact
is also found if they are ingested together with conventional
observations. Sensitivity to the use of two or three outer loops
is also found if DWR data are assimilated together with con-
ventional data.

1 Introduction

The initial conditions (ICs) are a key term for a success-
ful forecast performed using a high-resolution numerical
weather prediction (NWP). Generally, localized mesoscale
features are not well represented in the ICs. The assimila-
tion of local observations into the ICs may produce a fore-
cast improvement. In the last 80 years, different methods of
data assimilation have been investigated: the successive cor-
rections method (SCM), the optimal interpolation (OI), the
variational methods 3DVAR and 4DVAR, and the Kalman fil-
ter (KF) are some notable examples. During the last decade,
high-resolution mesoscale models initialized using varia-
tional data assimilation techniques (3DVAR/4DVAR) are be-
ing increasingly applied to study meteorological phenomena
(Kalnay, 2003). One of the reasons for the variational anal-
ysis becoming more and more popular is the ability to di-
rectly incorporate some non-conventional observations such
as satellite radiance, radar reflectivity and radial velocity
into numerical models (Kalnay, 2003; Barker et al., 2004),
through the use of a proper operator.

Doppler weather radar (DWR) data may improve weather
analyses and forecasts because of their high temporal and
spatial resolution. In the last decade, high-resolution data
together with a sophisticated technique of data assimila-
tion have been chosen to improve the predictability of both
convective cells and mesoscale convective systems. Fur-
thermore, the assimilation of radar reflectivity and radial
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velocity has shown the potential for very short-range numer-
ical weather prediction of rapidly developing convective sys-
tems. It is well known that reflectivity is related to the num-
ber of falling drops per unit volume, and it depends on the
number and size of hydrometeors, whereas the vertical com-
ponent of radial velocity contains information on vertical at-
mospheric motions. Both are important for the triggering and
development of convection. However, radial velocity’s con-
tribution to its vertical component is variable, and it depends
on the elevation of the radar antenna and variations in the
atmospheric refractive index. The latter might produce vari-
ations in the radar ray paths with respect to those expected
under standard atmosphere conditions. In this work, a stan-
dard atmosphere is assumed, and this means that radar ray
paths propagate in a straight line (Bech et al., 2003).

The first radar data assimilation system for the storm
scale was developed based on the four-dimensional varia-
tional data assimilation (4DVAR) technique and a bound-
ary layer fluid dynamics model for the retrieval of the three-
dimensional wind and temperature (Sun et al., 1991). This
system, known as VDRAS (the Variational Doppler Radar
Analysis System), was later expanded to include microphys-
ical retrieval, as well as short-term forecasts initialized by
these retrieved fields (Sun and Crook, 1997, 1998). Another
variational-based radar data assimilation system was devel-
oped by Gao et al. (2004) using a three-dimensional varia-
tional data assimilation (3DVAR) technique in the framework
of the ARPS (Advanced Research and Prediction System,
Xue et al., 2003) model. A so-called 3.5-dimensional varia-
tional radar data assimilation based on the navy’s COAMPS
(Coupled Ocean/Atmosphere Mesoscale Prediction System)
was developed and verified through a number of studies
(Zhao et al., 2006; Xu et al., 2010). These variational systems
showed great potential in the use of radar observations for
initializing high-resolution numerical models through sev-
eral case studies and real-time demonstrations (Sun et al.,
2010; Xue et al., 2010).

These results motivated the development of a radar data as-
similation scheme in the WRFVAR variational data assimila-
tion system of the ARW-WRF (Advanced Research Weather
Research and Forecasting) community model.

The operators for radial velocity (Xiao et al., 2005) and
reflectivity (Xiao et al., 2007; Xiao and Sun, 2007) data
were added to the three-dimensional variational data as-
similation system (Barker et al., 2003, 2004; Skamarock
et al., 2008) developed at the National Center for Atmo-
spheric Research (NCAR) laboratories for both the fifth-
generation Penn State/NCAR Mesoscale Model (MM5) and
the Weather Research Forecasting (WRF) model. WRFVAR
includes both 3DVAR and 4DVAR components. The radar
DA scheme was first developed for WRF–3DVAR (Xiao et
al., 2005, 2007) and recently expanded to 4DVAR (Wang et
al., 2013; Sun and Wang, 2012).

Xiao et al. (2005) assimilated radial velocities from a sin-
gle Doppler radar into MM5 using the 3DVAR scheme for
a heavy rainfall event. The vertical velocity increments were
included via Richardson’s balance equation, and an observa-
tion operator for radial velocity was developed. The results
suggested that the scheme for the radial velocity assimilation
is stable and robust in a cycling mode using high-frequency
radar data. Moreover, continuous assimilation with 3 h up-
date cycles was important for improving heavy rainfall.

A radar reflectivity data assimilation scheme was also de-
veloped within the MM5–3DVAR system, as described by
Xiao et al. (2007). They showed that the intensity and track
of Typhoon Rusa (2002) were better predicted through the
combined assimilation of both radar radial velocity and re-
flectivity. Xiao and Sun (2007) used the WRF model and its
3DVAR data assimilation module to ingest data from a net-
work of Doppler radars in order to study a squall-line convec-
tive system. They found that the assimilation of both radial
velocity and reflectivity improved the quantitative precipita-
tion forecast (QPF) skills with respect to using only one of
the two radar variables. Further improvements to QPF were
obtained by the assimilation of more than one radar site using
the cycling procedure.

A few studies on the impact of radar data assimilation
were also performed for the European area using different
forecast models: AROME (Application of Research to Op-
erations at MEsoscale) in France and HIRLAM (HIgh Res-
olution Limited Area Model) in Sweden. Montmerle and
Faccani (2009) applied the 3DVAR assimilation technique
for assimilating radial velocities from Doppler radars of the
French ARAMIS (Application Radar la Météorologie In-
fraSynoptique) network. They found a positive impact of
radar wind data on the analyses and on precipitation fore-
casts. Lindskog et al. (2004) also assimilated radial wind ve-
locity. They used the velocity–azimuth display (VAD) tech-
nique that provides vertical profiles of horizontal winds from
the Doppler radar raw radial wind and the Doppler radar ra-
dial wind superobservations (SOs), which is based on spatial
averaging. They found improvements in the wind and tem-
perature forecasts of the low and middle troposphere using
either VAD or SOs data.

The aim of this paper is to assess the impact of the as-
similation of radar radial velocity and reflectivity data on the
precipitation forecast, by using 3DVAR and WRF numeri-
cal models. For this purpose, a heavy rainfall case that oc-
curred in central Italy is analyzed: the Aniene event (Rome,
19–22 May 2008). To explore the impact of radar data as-
similation, several numerical experiments using different ICs
are performed using the WRF model. A comparison between
experiments with and without radar data is performed; more-
over, to investigate the role of non-linearity in the observation
operators, the number of outer loops is increased. Therefore,
the novelty of this study resides in the assimilation of radar
data in a complex orography area such as the Mediterranean
one, where the forecast is still a challenging task.
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Figure 1. European Center for Medium-Range Weather Forecasts (ECMWF) analyses at 06:00 UTC on 19 May 2008:(a) temperature and
geopotential height, at 500 hPa, and(b) mean sea level pressure and surface wind in m s−1; ECMWF analyses at 06:00 UTC on 20 May 2008:
(c) temperature and geopotential height, at 500 hPa, and(d) mean sea level pressure and surface wind in m s−1.

This paper is organized as follows. In Sect. 2, the case
study and the radar data used for the assimilation are de-
scribed. A brief explanation of the WRF–3DVAR system and
the radar data operator is presented in Sect. 3. The 3DVAR
experiments and the corresponding forecast results are dis-
cussed in Sects. 4 and 5, respectively. The impact of outer
loops is analyzed in Sect. 6, whereas summary and conclu-
sions are given in Sect. 7.

2 A heavy rainfall case: the meteorological situation

From 19 to 22 May 2008, a heavy rainfall event occurred
in the urban area of Rome. In the first hours of 19 May,
a cyclonic circulation on the southern Mediterranean Sea
(Fig. 1b) associated with an intrusion of cold air from Scan-
dinavia (Fig. 1a) caused instability on the Italian peninsula.
On 20 May, a deep low-pressure system developed in the
Genoa Gulf (Fig. 1d), causing severe weather conditions.
Southwesterly flow started to blow over the Tyrrhenian Sea,
advecting warm and humid air toward the area of Rome
(Fig. 1c), further destabilizing the atmosphere.

To understand the meteorological evolution of the event
better, the surface rainfall intensity (SRI) product (in
mm h−1) estimated by the Italian national radar network
(Vulpiani et al., 2008) is shown in Fig. 2. In the early after-
noon of 20 May, the precipitation is detected both in the ur-
ban area of Rome and over the Tyrrhenian Sea (RM, Fig. 2a).
Later, local showers are observed in the southeastern part of
RM and over the Tyrrhenian Sea (Fig. 2b). Moderate pre-
cipitation lasted until the evening around Rome (Fig. 2c),
whereas at 22:00 UTC, the rainfall moved eastward, reach-
ing L’Aquila (AQ, Fig. 2d).

3 WRF–3DVAR

3.1 Brief description of WRF–3DVAR

The WRF–3DVAR system is based on the MM5–3DVAR
system (Barker et al., 2004); further developments and
progress can be found in Skamarock et al. (2008). The WRF–
3DVAR system is based on the multivariate incremental for-
mulation (Courtier et al., 1994), where the preconditioned
control variables are stream functionψ , velocity potentialχ ,
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Figure 2. Estimated surface rainfall intensity (mm h) by the national radar network in central Italy on 20 May 2008:(a) SRI at 14:00 UTC;
(b) SRI at 16:00 UTC;(c) SRI at 20:00 UTC;(d) SRI at 22:00 UTC. Only the highlighted areas were covered by the national radar network
in 2008 (courtesy of the Italian Civil Protection Department).

Figure 3. The panel shows the location of the Monte Midia radar
between the Abruzzo (to the right) and Lazio (to the left) regions,
its coverage (gray circle), and the rain gauge network (red crosses)
used for calibration of the estimated rain.

unbalanced pressurepu and total water mixing ratioqt. The
aim of the three-dimensional variational approach is to pro-
duce the best compromise between an a priori estimation of
the analysis field and observations through the iterative so-
lution that minimizes a cost functionJ . Most leading assim-
ilation schemes do not perform the minimization process in
the model space, but they use atransformedor control vari-
able spacethat is the space allowed for the corrections to the
background. This new space is chosen to have a special and
desirable property when the background field is represented
in this space: its errors are uncorrelated, and variances are of
unit size (the problem is said to bepreconditioned).

The cost function for 3DVAR is

J (x)= J b
+ J o

=
1

2

{[
yo

− H (x)
]T R−1 [

yo
− H (x)

]
+(x− xb)

T
B−1

(
x− xb

)}
, (1)
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Figure 4. Model configuration for WRF simulations using two domains:(a) overlapping of 12 and 3 km;(b) the high-resolution D02
(1x = 3 km) includes the Monte Midia radar (red dot in the figure).
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Figure 5. PDM sounding at 00:00 UTC, 20 May 2008.

wherexb is the generic variable of an a priori state (first
guess),yo is the observation, andH is the operator that con-
verts the model state to the observation space. This cost func-
tion J measures the distance of a fieldx from the obser-
vationsyo and from the backgroundxb: these distances are
scaled through the matricesR andB, the observation and the
background error covariance matrices, respectively. A cor-
rect evaluation of the error covariance matrices, bothB and
R, is crucial to a good-quality final analysis. The observa-
tion covariance error matrixR is usually diagonal, because
the correlations between different instruments are assumed

equal to zero. The background error correlation matrixB
determines the spreading of information among observation
locations, providing balanced information in data-void re-
gions. That is why it plays an important role mainly in data-
sparse areas. A straightforward estimation ofB is not pos-
sible, as the correlations between the variables have never
been observed. Therefore, it has to be estimated using a sta-
tistical method, such as the National Meteorological Center
(NMC) method (Parrish and Derber, 1992) or the ensem-
ble one (Fisher et al., 1999). The first method is commonly
used for the evaluation ofB in the WRF–3DVAR system. It
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Figure 6. WRF sounding at 00:00 UTC on 20 May 2008 at PDM for(a) CTL, (b) CON, (c) RAD, and(d) ALL.

averages differences, valid at the same timet0, between two
forecasts, one of them starting several hours later than the
other (e.g., month-long series of 24 h minus 12 h forecasts
valid at the same time). The only requirement is that the time
t0 is large enough to avoid any problem related to the model
spin-up. A detailed description of the 3DVAR system can be
found in Barker et al. (2003, 2004).

3.2 Radar data assimilation methodology

Doppler radar data contain important high-resolution mete-
orological features. Radial velocity produces information on
the atmospheric motions that is important for the onset of
convection; moreover, it is well known that radar reflectivity
is a measurement of the amount of precipitating hydrome-
teors (rain, snow, etc.). However, due to the complexity of
coding, such variables are not included in most of the data
assimilation schemes.

On the contrary, the WRF–3DVAR operator for the assim-
ilation of Doppler radar data accounts for both reflectivity
and the vertical velocity component of radial velocity. Ver-
tical increments are estimated, including a balance equation
based on Richardson (1922). This is the so-called linearized
Richardson equation, which combines a continuity equation,
an adiabatic thermodynamic equation, and a hydrostatic re-
lation: it becomes important when radar data are included in
the analysis.

Moreover, the total waterqt is used as the moisture con-
trol variable instead of the pseudo relative humidity for the
assimilation of radar reflectivity (Xiao et al., 2007). The
“pseudo” relative humidity is the water vapor mixing ratio
divided by its saturated value in the background state. To as-
similate radar radial velocity and reflectivity associated with
warm rain, vertical velocity and the microphysical parame-
ters of cloud water and rainwater must be added as control
variables.

Atmos. Meas. Tech., 7, 2919–2935, 2014 www.atmos-meas-tech.net/7/2919/2014/
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Figure 7. (a)VMI (dBZ) from the Monte Midia radar at 14:00 UTC, 20 May 2008 (courtesy of Centro Funzionale of the Abruzzo region).
The solid red circle and the red arrow indicate the precipitation patterns selected for the analysis.(b) Geostationary MSG map taken at
14:00 UTC at the visible channel.(c) Geostationary MSG map taken at 14:00 UTC at the infrared channel. The “banana-shaped” cloud
structure is clearly evident over the central Tyrrhenian Sea.

Data from the Monte Midia radar (42◦03′28′′ N,
13◦10′38′′ E) are provided by the Centro Funzionale of
the Abruzzo region, and they are assimilated to improve
high-resolution initial conditions. The Monte Midia radar
is a C-band Doppler radar located on the border between
the Abruzzo and Lazio regions. It is part of the national
radar mosaic, and it is placed at 1710 m above the sea level
(1660 m plus a tower of 50 m). It covers most of central Italy,
including the Abruzzo interior and the urban area of Rome,
as shown in Fig. 3. Reflectivity and radial velocity are
detected every 15 and 30 min, respectively, at a 500 m
horizontal resolution with four antenna elevation angles (0,
1, 2, and 3◦).

It is well known that radar observations can be affected by
several sources of errors, mainly due to ground clutter, at-
tenuation and radio interferences. Particularly, weather radar
operating in complex orography may be affected by a signif-
icant beam blockage that can strongly degrade the monitor-
ing capabilities and accordingly the rainfall estimation at the
ground.

For this reason, a preliminary procedure to correct ac-
quired radar data is applied before the assimilation proce-
dure. Echoes produced by a non-meteorological source such
as mountain clutter returns, WLAN (wireless local area net-
work) interference signals and other impairments have been
removed by applying a Doppler filter and a suitable texture
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Figure 8. WRF reflectivity (dBZ) at 14:00 UTC on 20 May 2008 for experiments(a) CTL, (b) CON, (c) RAD and(d) ALL.

Figure 9. 12 h accumulated rainfall between 10:00 and 22:00 UTC
on 20 May 2008 estimated by the Monte Midia radar.

filter. Partial beam blockage is corrected by adopting a com-
pensating technique (Fulton et al., 1998), while attenuation
is mitigated by means of rain path-integrated attenuation
(PIA) techniques (Picciotti et al., 2006). Once corrected,
both reflectivity and velocity data are ready for ingestion
into 3DVAR. Typical errors of 5.0 m s−1 for radial velocity
and 5.0 dBZ for reflectivity are assumed. The assimilation
window has been set to±5 min at the analysis time. Finally,
a total number of 344 160 radar observations were ingested
into the model.

3.3 Radar observation operators: radial velocity
and reflectivity

To assimilate radar observations, the following observation
terms are added to the existing cost function:

J =Jold +
1

2

∑k

k=0

[(
Vrk − V o

rk

)T R−1
v

(
Vrk −V o

rk

)
+

1

2

(
Zk − Zo

k

)T R−1
z

(
Zk − Zo

k

)]
, (2)

where Jold is used to represent the existing cost function
before radar data assimilation is developed. The variables
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Figure 10. 12 h accumulated rainfall ending at 22:00 UTC on 20 May 2008 estimated by WRF experiments:(a) CTL, (b) CON, (c) RAD
and(d) ALL.

Vr stand for the radial velocity andZ for the reflectivity
factor. The superscript “o” indicates the observations. The
symbolsR−1

v and R−1
z stand for observation error covari-

ance matrices for radial velocity and reflectivity, respectively
(Sun and Wang, 2013). Note that the summation over the ob-
servation time levelsk is not needed in the case of 3DVAR.
As explained previously, the observation operatorH in the
cost function (1) links the model variables in a model coordi-
nate to the observation variables in an observation space. For
the radar radial velocity, this linkage is formulated with the
three-dimensional wind field (u, v, andw), the hydrometeor
fall speed or terminal velocityvt, and the distancer between
the location of a data point and the radar antenna:

Vr = u
x− xi

ri
+ v

y− yi

ri
+ (w− vt)

z− zi

ri
, (3)

where (x,y,z) represents the location of the observation
point and (xi,yi,zi) represents the location of the radar sta-
tion.

Following the algorithm of Sun and Crook (1998), the ter-
minal velocity is given by

vt = 5.40a · q0.125
r , (4)

where “a” is a correction factor defined as follows:

a =
(
p0

/
p̄
)0.4

, (5)

wherep̄ is the base-state pressure andp0 is the pressure at
the ground.

The formulation of the reflectivity operator is not as
straightforward, because it depends on the assumption of
drop size distribution in a microphysical parameterization
scheme and the classification of hydrometeors. To assimi-
late radar reflectivity directly, the total water mixing ratioqt
was chosen as a control variable, and a warm rain process
was introduced (Dudhia, 1989) into the WRF–3DVAR sys-
tem. This allowed the increments of moist variables linked
to the hydrometeors to be produced, such as the water vapor
mixing ratioqv, the cloud water mixing ratioqc, and the rain-
water mixing ratioqr. Once the 3DVAR system produces the
qc andqr increments, the setup of the observation operator
for the assimilation of reflectivity is obtained.

Following Sun and Crook (1997), Xiao et al. (2007) used
the following relation for WRF–3DVAR:

Z = 43.1+ 17.5 log(ρqr) , (6)
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Figure 11.ACC (top left), FBIAS (top right), ETS (bottom left) and FAR (bottom right) as a function of threshold. The red line shows CTL,
the green line CON, the violet line RAD, and the cyan line ALL.

whereZ is the radar reflectivity expressed in dBZ,ρ is the
air density (kg m−3) and qr is the rain water mixing ra-
tio (g kg−1). This relation was derived analytically by assum-
ing a Marshall–Palmer distribution of raindrop size with in-
terceptN0 = 8×106 mm−4, and no contribution of ice phases
to the reflectivity is accounted for.

Equation (6) was used in cost function (2) to assimilate re-
flectivity in the WRF–3VAR developed by Xiao et al. (2007).

4 Experimental setup

4.1 Model setup

WRF model version 3.4.1 (Wang et al., 2011) is used for
this study. Two domains (D0i), running independently, are
used (Fig. 4). The outer domain (D01) has a resolution of
12 km with a number of horizontal grid points of 263× 185.
It is initialized using ECMWF analysis, and the boundary
conditions are upgraded every 6 h. The inner domain (D02)
has a horizontal grid spacing of 3 km (445× 449), and it is
initialized using WRF–ARW output at 12 km. 37 eta vertical
levels are used for all domains. The model top is at 50 hPa.

Atmos. Meas. Tech., 7, 2919–2935, 2014 www.atmos-meas-tech.net/7/2919/2014/
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Figure 12.Reflectivity (dBZ) simulated by the ALL_2OL(a) and ALL_3OL (b) experiments with two and three outer loops, respectively,
at 14:00 UTC, 20 May 2008.

The new Thompson et al. scheme (Thompson et al., 2008)
for microphysics, the Kain–Fritsch scheme (Kain, 2004)
for cumulus convection, for D01 only, the Mellor, Yamada,
Nakanishi and Niino level 2.5 (Nakanishi and Niino, 2006)
for planetary boundary layers, the rapid radiative transfer
model (Mlawer et al., 1997) and the Goddard (Chou and
Suarez, 1994) schemes for longwave and shortwave radia-
tion, respectively, are used for all the experiments. The Noah
land surface model (LSM; the successor to the OSU (Oregon
State University) LSM described by Chen and Dudhia, 2001)
for land surfaces is used.

Besides the first guessxb and the observationsyo, as
explained in Sect. 3.1, another important input for WRF–
3DVAR is the background error covariance matrixB. This is
computed using the NMC method, and a domain-specificB
has been generated (CV5 option) using the empirical orthog-
onal function (EOF) to represent the vertical covariance.

To estimate the NMC-based error statistics, two forecasts
have been performed every day for a period of 1 week (Sug-
imoto et al., 2009) starting on 15 May 2008: a 24 h fore-
cast (starting at 00:00 UTC) and a 12 h forecast (starting at
12:00 UTC) valid at the same time. The differences between
the two forecasts att+24 andt+12 are used to calculate the
domain-averaged error statistics.

4.2 Experimental design

Several experiments are performed with the aim of improv-
ing ICs. The GTS (Global Telecommunication System) con-
ventional observations – SYNOP (surface synoptic obser-
vations) and TEMP (upper-level temperature, humidity and
winds) – are used with and without non-conventional radar
data. The assimilation window for conventional data is set
to ±1 h, whereas the one for radar data is set to±5 min
at the analysis time. To verify the impact of radar data, a

total of four WRF experiments are performed for the high-
resolution domain (3 km): in the control experiment (CTL),
no data assimilation is performed; in the CON experiment,
the assimilation of SYNOP and TEMP observations is per-
formed at 00:00 UTC, 20 May 2008; in the RAD experi-
ment, the assimilation of Monte Midia radar data (both re-
flectivity and radial velocity) is performed; in the ALL ex-
periment, both conventional data (SYNOP and TEMP) and
radar data are ingested. A specific background error covari-
ance matrix calculated for the highest-resolution domain is
used for CON, RAD and ALL. For these above simulations,
one outer loop is used as the default. Two additional exper-
iments (ALL_2OL and ALL_3OL) are carried out similarly
to ALL, but using two and three outer loops, respectively,
during the assimilation procedure. The multiple outer loop
strategy (Rizvi et al., 2008) allows for the inclusion of non-
linearity in the observation operators and for the assessment
of the influence of observations entering for each cycle. The
non-linear problem is solved iteratively as a sequence of lin-
ear problems by running more than one analysis outer loop,
so the assimilation system is able to ingest more observa-
tions.

All experiments last 24 h, from 00:00 UTC, 20 May 2008
until 00:00 UTC, 21 May. They are summarized in Table 1.

5 Results

5.1 Initial conditions

To evaluate the impact of 3DVAR on the initial condi-
tions, a comparison between the model and the observed
vertical sounding at Pratica di Mare (PDM) at 00:00 UTC
on 20 May 2008 is performed. This comparison is carried
out using a few meteorological indexes, such as convective
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Figure 13.Outer loop sensitivity: ACC, FBIAS, ETS and FAR for ALL, ALL_2OL and ALL_3OL. The red line refers to one loop, the green
line to two loops, and the violet line to three loops.

available potential energy (CAPE), useful for assessing the
instability of the atmosphere and therefore the possibility of
triggering convection, a lifted index (LI), which measures the
severity of the thunderstorm, and theK index, which gives
an indication of the thunderstorm occurrence. The CAPE at
Pratica di Mare suggests a weakly unstable environment and
that severe thunderstorms are unlikely to occur (small LI). No
significant differences are found between the experiments,
except for the LI listed in Table 2. The CAPE is significantly
underestimated for all simulations, whereas the LI is overes-
timated. The WRFK index is in good agreement with the
observed one.

The observed and WRF radio soundings at Pratica Di
Mare at 00:00 UTC, 20 May 2008 (Figs. 5 and 6, respec-
tively) clearly show no large differences between the WRF

simulations (CTL, CON, RAD and ALL) below 500hPa. On
the other hand, the assimilation of conventional data slightly
improves the vertical profile of the dew point temperature.
Both RAD and ALL produce a slightly dryer PBL than the
observed one. The sharp variation in the dew point content
as well as the small temperature inversion between 600 and
300 hPa are completely missed by all the WRF simulations.
The strong wind shear between 500 and 400 hPa and the one
at 300 hPa are both underestimated by WRF. Finally, above
300 hPa, a still drier atmosphere than the one observed is pro-
duced by WRF.
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Table 1.List of experiments and related description.

Expt Description

CTL No data assimilation, using WRF–ARW at 12 km to initialize the highest-resolution domain at 3 km.
CON SYNOP and TEMP data assimilation at 00:00 UTC on 20 May 2008 at 3 km resolution, using a previous WRF forecast

lasting 24 h as FG.
RAD Radar data assimilation at 00:00 UTC on 20 May 2008 at 3 km resolution, using a previous WRF forecast lasting 24 h

as FG.
ALL Conventional and radar data assimilation at 00:00 UTC on 20 May 2008 at 3 km resolution, using a previous WRF

forecast lasting 24 h as FG.

Table 2. Values of the CAPE, LI, andK indexes for PDM sound-
ing and those produced by the model at the same time (00:00 UTC,
20 May 2008) and location (41◦65′ N, 12◦43′ E).

Index PDM CTL CON RAD ALL

CAPE (J Kg−1) 47.7 0 0 0 0
LI (◦C) −0.1 0.6 1.2 0.6 0.6
K (◦C) 33 32 32 32 32

5.2 Impact on radar reflectivity and rainfall

The impact of Monte Midia radar data assimilation on the
forecast is evaluated by comparing the observed reflectivity
and the estimated rain rate with those produced by the WRF
experiments.

5.2.1 Impact on the precipitation forecast

The VMI (vertical maximum intensity) reflectivity of the
Monte Midia radar at 14:00 UTC on 20 May clearly shows
the precipitation in central Italy (Fig. 7a) and on the seaside
near the Lazio coast. Precipitation can also be inferred from
the cloudiness derived from the Geostationary MSG (Me-
teosat Second Generation) satellite images (Fig. 7b, c), where
a “banana-shaped” cloud structure is also clearly shown over
the central Tyrrhenian Sea. Aligned cells are also detected
inland near Rieti (Fig. 7a, red circle). The Monte Midia radar
highlights this last feature: a reflectivity of approximately
50–55 dBZ at 14:00 UTC associated with a few small con-
vective cells oriented north–south between Rome (RM) and
Rieti (RI) (solid red oval in Fig. 7a) is clearly detected by the
radar. Another area of moderate precipitation (about 40 dBZ
on the border between Lazio and Abruzzo) was also detected
(red arrow in Fig. 7a).

The CTL simulation clearly shows (Fig. 8a) a large area of
reflectivity over the sea that is overestimated both in amount
and the affected area. Moreover, an attempt to reproduce the
small convective cells between Rome and Rieti is also found,
but these small cells are wrongly oriented and the reflectiv-
ity is underestimated. The assimilation of conventional data
(Fig. 8b) removes part of the north–south oriented area of
reflectivity north of Viterbo (VT), making it closer to the

observed one. The CON simulation produces an enlargement
of the area covered by the cells near Rieti, but they are not
yet correctly aligned. The RAD simulation (Fig. 8c) partly
reduces the areal distribution of the reflectivity over the sea-
side, showing an attempt to separate the two elongated areas
of reflectivity as they can be deduced by the satellite image
(Fig. 7b, c). Moreover, RAD both reduces the convection in
the Viterbo area and correctly generates aligned cells north of
Rome near Rieti (Fig. 8c, red oval), as the Monte Midia radar
detected (Fig. 7a). The assimilation of radar and conventional
data (ALL, Fig. 8d) shows a distribution of the reflectivity
over the Tyrrhenian Sea even closer to the one deduced by
the satellite images than by RAD, but an over-reduction of
the structure and reflectivity of the cells north of Rieti is also
found. The previous analysis suggests that the assimilation
of radar reflectivity and radial velocity largely impacts the
forecast even if only one radar is assimilated. Moreover, the
assimilation of either the radar data only or the radar and
convectional data together reduces the differences between
the forecast and the observation.

Similar to the reflectivity, a comparison between the ob-
served (Fig. 9) and the WRF 12 h accumulated rainfall
(Fig. 10) is now performed.

The estimated surface rainfall intensity (mm h−1) by the
national radar network in central Italy on 20 May 2008
(Fig. 2) clearly shows precipitation over the sea near the
coast of Lazio. The “banana-shaped” structure detected by
the satellite is clearly reproduced by the rainfall structure at
the end of the day (Fig. 2d). The control simulation (CTL,
Fig. 10a) correctly reproduces the structure of the precipi-
tation over the sea, but clearly shows an overestimation of
the precipitation both over the sea and inland on the western
side of the Apennines ridge. On the other hand, the precipi-
tation is correctly restrained on the western side of the Apen-
nines. The assimilation of conventional data (CON, Fig. 10b)
clearly corrects the precipitation forecast by producing a re-
duction in both the areal distribution and the amount of the
precipitation, both on the sea and inland. Moreover, an in-
crease in the precipitation in the urban area of Rome is found.
The RAD simulation (Fig. 10c) correctly produces a reduc-
tion in the accumulated precipitation over the sea and in the
urban area of Rome; on the other hand, no large differences
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are found for the precipitation inland between CTL, CON
and RAD. This last one is the sole simulation able to pro-
duce a red spot in the Rieti area (Fig. 10c) like the observed
one (Fig. 9) clearly related to the aligned cells discussed pre-
viously. Similarly to CTL and CON, ALL (Fig. 10d) does not
produce the red spot of precipitation in the Rieti area, but the
precipitation between RM and FR is correctly reproduced, as
for CTL and RAD.

In summary, the precipitation forecast also clearly shows
an impact of the radar data assimilation by producing a pre-
cipitation pattern closer to the observed one.

5.3 Statistical evaluation

In order to compare the experiments carried out for the
Aniene event objectively, four statistical indicators are used
(Wilks, 1995): forecast accuracy (ACC), false alarm rate
(FAR), frequency bias (FBIAS) and equitable threat score
(ETS).

The ACC index shows the accuracy of the forecast; a per-
fect forecast has ACC= 1. FAR estimates the forecast fre-
quency failures; a perfect forecast has FAR= 0. FBIAS gives
information on the correctness of a precipitation forecast:
values greater than 1 indicate an overestimation in the num-
ber of forecast events; the perfect value is FBIAS= 1. ETS
represents the fraction of the events reproduced correctly,
taking into account random hit chance; the best value is 1.
The ETS index may have values lower than or near zero if
the forecasts are wrong, so values of 0.5/0.6 are fairly good.

Figure 11 shows the results for the previous indexes for the
12 h accumulated rainfall as a function of different thresh-
olds. The WRF simulations show no large differences be-
tween them, but ACC clearly shows improvements for CON
(Fig. 11, green line) with respect to other experiments for
thresholds between 5 and 30 mm/12 h; accordingly, the FAR
index for CON shows values lower than the others for the
same thresholds. Moreover, CON produces the best values
for ETS at all thresholds, even though it rapidly degrades for
the higher ones. Vice versa, FBIAS gives the worst values
for CON between 5 and 20 mm/12 h, whereas it improves
for higher thresholds between 30 and 40 mm/12 h. More-
over, the values of FBIAS are close to the best value of 1
for thresholds lower than 30 mm/12 h for all the simulations,
whereas this index has values greater than 1 for all the exper-
iments.

These results do not support completely the previous find-
ing that the RAD and ALL experiments produce a better
forecast; this disagreement is probably produced by the rain
gauge location. In fact, the highest density of surface stations
is nearby Rome (Fig. 3), where the CON simulation produces
rainfall in good agreement with the observation.

6 Impact of outer loops on precipitation

Based on the previous results, a set of sensitivity tests for
WRF–3DVAR is performed for the ALL experiment only.
These new experiments are carried out using two and three
outer loops during the assimilation procedure (Table 3). All
the experiments performed using 3DVAR (CON, RAD and
ALL) discussed previously are carried out using one outer
loop. The multiple outer loop strategy (Rizvi et al., 2008)
allows for the inclusion of non-linearity in the observation
operators and for the assessment of the influence of obser-
vations entering for each cycle. The non-linear problem is
solved iteratively as a sequence of linear problems by run-
ning more than one analysis outer loop, so the assimilation
system is able to ingest more observations.

As already pointed out in Sect. 5.2.1, ALL (Fig. 8d) pro-
duces a reduction in the differences between the forecast and
the observed reflectivity. Using two outer loops during the
assimilation procedure, a strong areal attenuation of the dBZ
over Viterbo is obtained (Fig. 12a), but at the same time, the
aligned cells near Rieti are not reproduced exactly. Adding
one more loop (ALL_3OL, Fig. 12b), the reflectivity near
Viterbo is increased again, whereas the cells north of Rieti
are reproduced better: they are similar to what ALL produces
and to what the Monte Midia radar detected. Finally, the
“banana-shaped” structure over the central Tyrrhenian Sea
is well defined. These results suggest that the increase in the
number of outer loops may positively impact the forecast for
heavy rainfall.

To evaluate the impact of outer loops better, ACC, FAR,
FBIAS and ETS are used again. From the ACC index graph,
no large differences are highlighted between the three exper-
iments. On the other hand, FBIAS shows small differences
for thresholds between 10 and 30 mm/12 h for ALL_2OL
and ALL_3OL (Fig. 13, upper right, green and violet curves,
respectively): both have values close to 1. The ETS index
produces better scores for ALL_3OL (violet curve, Fig. 13,
bottom left) for thresholds lower than 30 mm/12 h. Finally,
FAR gives a quite good response for the two experiments
if using more than one outer loop (green and violet curves,
Fig. 13, bottom right) for very low thresholds between 0 and
5 mm/12 h.

The previous results confirm that the increase in the num-
ber of outer loops may positively impact the forecast for
heavy rainfall.

7 Summary and conclusions

This study investigates the impact of radar data assimila-
tion on the WRF forecast of a heavy rainfall event that
occurred in the urban area of Rome. In order to improve
the model’s initial conditions, high-resolution information
is used: radar radial velocity and reflectivity and conven-
tional observations are assimilated using the WRF–3DVAR
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Table 3.Description of the experiments performed using 3DVAR with multiple outer loops.

Expt Description

ALL_2OL As expt ALL, setting 2 outer loops during the assimilation procedure.
ALL_3OL As expt ALL, setting 3 outer loops during the assimilation procedure.

scheme. Several experiments, including sensitivity tests to
multiple outer loops, are performed to assess the impact of
radar data assimilation.

The comparison between the observed and model reflec-
tivity allows the assessment of a better performance of both
the simulation-assimilating radar data alone (RAD) and to-
gether with conventional observations (ALL). If using more
than one outer loop, for the ALL experiment only, a positive
impact is obtained for two and three outer loops (ALL_2OL
and ALL_3OL, respectively). Statistical indicators are used
to compare the model simulations objectively. The statistical
results do not support the previous finding, mostly because
the surface stations are concentrated near the urban area of
Rome. Obviously, the assimilation of these stations (CON)
drives the results toward them. Statistical indicators are also
used to investigate the outer loop impact: in this case, statis-
tics confirm the model results. This is because the multiple
outer loop technique allows the assimilation of a larger num-
ber of observations progressively into WRF–3DVAR.

In conclusion, the assimilation of radar radial velocity
and reflectivity data shows a positive impact on precipitation
forecasts, also if they are ingested together with conventional
observations and if the outer loop strategy is used.

Finally, to evaluate the previous results properly, it has also
to be considered that the WRF–3DVAR radar data assimila-
tion scheme has a few limitations:

1. the lack of the ice phase in the 3DVAR microphysics;

2. the estimation of theB matrix for high-resolution data
assimilation can be improved by using the ensemble ap-
proach or by the combined use of an ensemble Kalman
filter.

Moreover, the lack of radar coverage on the Tyrrhenian coast-
line from where the system approaches it is also a limiting
factor in the assimilation process.

Finally, the technique of multiple outer loops will be inves-
tigated further by tuning length-scale and observation error
parameters, and thinning of radar data has to be undertaken
either to reduce the observation-error spatial correlation or
the computational cost of the assimilation (Montmerle and
Faccani, 2009). Moreover, following Wang et al. (2013), the
new observation operator that, instead of assimilating radar
reflectivity directly, assimilates retrieved rainwater and wa-
ter vapor derived from radar reflectivity, could be applied.
Wang et al. (2013) showed that one of the problems of as-
similating the reflectivity is in the use of a linearizedZ− qr
(reflectivity–rainwater) equation as the observation operator

and of the warm-rain partition scheme. On the other hand,
the assimilation of the estimated water vapor is expected to
provide a favorable environment that supports convection.

In the future, additional case studies will be carried out to
quantify the percentage of success of WRF–3DVAR in as-
similating DWR data to improve precipitation forecasts, as
well as using data from several operative radars located in
central Italy, also including dual-polarization systems.
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