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Abstract. We investigate the ability of column-integrated
trace gas measurements from a geostationary satellite to con-
strain surface fluxes at regional scale. The proposed GEO-
CARB instrument measures CO2, CO and CH4 at a max-
imum resolution of 3 km east–west× 2.7 km north–south.
Precisions are 3 ppm for CO2, 10 ppb for CO and 18 ppb
for CH4. Sampling frequency is flexible. Here we sample
a region at the location of Shanghai every 2 daylight hours
for 6 days in June. We test the observing system by cal-
culating the posterior uncertainty covariance of fluxes. We
are able to constrain urban emissions at 3 km resolution in-
cluding an isolated power plant. The CO measurement plays
the strongest role; without it our effective resolution falls to
5 km. Methane fluxes are similarly well estimated at 5 km
resolution. Estimating the errors for a full year suggests such
an instrument would be a useful tool for both science and
policy applications.

1 Introduction

It is now widely agreed that satellite measurements of green-
house gas concentrations in the atmosphere can help answer
important biogeochemical questions (Rayner and O’Brien,
2001; Houweling et al., 2004; Miller et al., 2007; Kuze et al.,
2009). Measurements from the Greenhouse Gas Observing
Satellite (the first purpose-built instrument to do this) have
required careful attention but are now beginning to yield im-
portant science (e.g.,Parazoo et al., 2013). This science has
important policy implications since it can provide the miss-
ing baseline for the natural CO2 removal, a baseline against
which any climate mitigation policy must be assessed.

The direct role of these measurements in greenhouse gas
mitigation is less clear. For this any measurement needs to
allow attribution of a change in a flux at a scale and precision
compatible with carbon policy.Hungershoefer et al.(2010)
showed how difficult this could be at the national scale us-
ing the current generation of low-earth orbit satellites such
as GOSAT. They showed that the precision of national esti-
mates required relatively long missions to observe the mag-
nitudes of flux changes agreed, for example, under the Kyoto
Protocol. The relatively sparse coverage of the low-earth or-
bit missions such as the 16-day revisit time for the Orbiting
Carbon Observatory (OCO) (Miller et al., 2007) presumably
made the problem even more severe at smaller scales if gov-
ernments wished to regionally attribute emission changes.

One proposal to improve this was not to change the revisit
time but to introduce a limited imaging capability. The first
generation of CO2 satellites used their detector area to spa-
tially oversample a small swath, improving their signal-to-
noise ratio.Bovensmann et al.(2010) proposed CarbonSat
as a second-generation instrument where the swath is broad-
ened. It produces a so-called push-broom sample with a 2 km
resolution over a 500 km swath width. This capability has
since been tested by airborne measurements (Krings et al.,
2011).

CarbonSat’s imaging capability gives it the capacity to lo-
calize sources. This capacity can be strengthened by captur-
ing high-frequency variations of the concentration field. This
idea was introduced to carbon-cycle estimation in the theo-
retical study ofLaw et al. (2003). They showed that an in
situ measurement at a point could constrain the structure of
surrounding sources simply because changing flow sampled
different parts of the source field at different times. This idea
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has been demonstrated in studies likeLauvaux et al.(2009b)
andSchuh et al.(2013), who showed that not only regional
totals but the regional structure of emissions could be deter-
mined from limited numbers of in situ instruments coupled
with regional transport models.

The foregoing discussion suggests that an instrument that
can map aspects of a tracer field at high temporal reso-
lution might provide strong constraints on regional fluxes.
The arrival of geostationary measurements in the thermal in-
frared seems promising at first glance since these often con-
tain channels sensitive to greenhouse gases such as CO2 and
CH4. Unfortunately previous work with their low-earth orbit
counterparts shows that such measurements do not constrain
tracer distributions in the lower atmosphere (Engelen et al.,
2009) or surface fluxes (Chevallier et al., 2009). Any pro-
posed approach must couple the imaging capability of these
geostationary instruments with the sensitivity to CO2 near
the surface of the near-infrared instruments such as OCO and
GOSAT.

This instrumental challenge is addressed by an instru-
ment concept described inKumer et al.(2013) and analyzed
in Polonsky et al.(2013). The instrument compensates the
greater distance from the observation enforced by its geosta-
tionary position by a longer time spent accumulating photons
from each scene. The greater altitude of the geostationary or-
bit also limits the horizontal resolution of the instrument and
increases the field of view compared to OCO-2 (although it is
still substantially smaller than GOSAT).Kumer et al.(2013)
describe an instrument which measures CO2, CH4 and CO si-
multaneously. Given these characteristics, what kind of reso-
lution and precision can we obtain on regional fluxes? What
is the complementary role of simultaneous measurement in
attributing sources, especially for complete and incomplete
combustion? This paper attempts to answer these two ques-
tions.

The outline of the paper is as follows: Sects.2 and3 de-
scribe the various tools we use, a recap of the instrument
characteristics relevant to the study, a description of the sim-
plified and efficient regional transport model we have de-
veloped for the study and the methods we use to estimate
the density of observations such an instrument is likely to
obtain. Section4 describes a case study of an urban region
with a power plant to assess both the resolution and attribu-
tion. Section5 describes a case study for methane emissions.
Section6 considers the generality and limitations of the case
studies.

2 Methods and tools

Our task here is to calculate the posterior uncertainty for
the multivariate distribution of fluxes. For example, we fol-
low Enting et al.(1995), Rayner et al.(1996), andRayner
and O’Brien (2001). Assuming a linear mapping between
sources and concentrations (correct for inert tracers under

atmospheric transport) and Gaussian probability distribu-
tions for all statistical quantities, we can use the analytic ex-
pression

C−1(S) = C−1
0 (S) + JT C−1(D)J, (1)

where C represents an uncertainty covariance matrix,S

sources,D data (here column-integrated concentration),J
the Jacobian or sensitivity ofD to S and the subscript 0 rep-
resents a prior estimate. Equation (1) states that the informa-
tion available on a quantity (the inverse of the uncertainty co-
variance) is given by that available a priori plus that obtained
from the data. We make use of the fact that Eq. (1) does not
depend on prior estimates or data so that we can carry out the
calculations before any measurements are made provided we
can define the error statistics and the sensitivity or Jacobian.
The rest of this section describes these components.

For CO the above development is an approximation. This
is because we solve for the CO emission factor as well as the
CO2 flux. Thus the CO concentration is given by

DCO = JSE, (2)

whereE is a CO emission factor which may vary at the same
scale asS; that is we solve for a separate emission factor for
every grid cell. Linearizing this expression around the prior
value, we obtain

∂DCO

∂S
= JE0

∂DCO

∂E
= JS0. (3)

Note that we use the sameJ for CO and CO2. This implic-
itly assumes CO is chemically inert on the timescale of our
observations, which is only a few hours.

2.1 Instrument

The uncertainty covariance for dataC(D) has contributions
both from the measurement uncertainty and that of the trans-
port model (Tarantola, 2004, Eq. 1.104). The measurement
uncertainty is in turn determined by the properties of the in-
strument and the capability of the retrieval to estimate green-
house gas concentration. Instrumental characteristics also de-
termine the sampling density and frequency.

Kumer et al.(2013) describe the general characteristics of
the instrument. For our purposes there are three key charac-
teristics.

2.1.1 Sampling density

This refers to the distance between the centers of adjacent
measurements on the ground. For GEOCARB it is 3 km in
the east–west and 2.7 km in the north–south directions at the
subsatellite point.
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2.1.2 Resolution

This refers to the size of a viewing pixel on the ground. For
GEOCARB it is 5 km in the east–west and 4 km in the north–
south directions at the subsatellite point. These distances rep-
resent the full width at half maximum. The relationship be-
tween the resolution and sampling density means that adja-
cent pixels will overlap. Both the pixel size and spacing in-
crease as we move away from the subsatellite point accord-
ing to the projection of a fixed viewing angle onto the surface
of the Earth, i.e., as 1/cos(ζ ), whereζ is the satellite zenith
angle.

2.1.3 Precision

This refers to the expected error of a single sounding. Anal-
ysis in Kumer et al.(2013) andPolonsky et al.(2013) sug-
gests precisions better than 3 ppm for CO2, 10 ppb for CO
and 18 ppb for CH4. We use these precisions in subsequent
analyses to allow some role for errors in the transport model.

2.2 The SatPlume model

For the theoretical studies of this paper, we need an efficient
model to calculateJ at high resolution. It is not necessary that
the model captures the details of the relationship between a
particular source and observation for given atmospheric con-
ditions, but it should capture the statistics of this relationship
– questions like the rate of diffusion of a plume of tracer as it
is advected, the variability of the direction of advection etc.
We will use the shorthand SatPlume to denote the model.
While there is a great deal of collective experience in mod-
eling tracer plumes, the target is almost always a concentra-
tion at a point. Our task of modeling column-integrated con-
centration has received much less attention and has almost
no observational constraint. The high resolution of the satel-
lite sampling means we cannot ignore the three-dimensional
nature of the plume since the slant path of the sun–earth–
satellite ray will traverse plumes from many sources at the
resolution we use.

We seek the tracer distribution from a single source which
is emitted continuously over some time interval. Note that the
source could be smaller than a single grid cell in the model.
We represent the tracer distribution by a Gaussian plume.
The plume is represented by a curve in three dimensions de-
scribing the trajectory of its centroid and a transverse spread.
The concentration is described by a series of piecewise, two-
dimensional Gaussian functions defined between successive
positions of the centroids. Thus if the centroid is located at
the pointX1 at timet1 andX2 at timet2, we define the con-
centration as

c(x,y,z) =
Q

Lσξσζ

exp

[
−

ξ2

σ 2
ξ

−
ζ 2

σ 2
ζ

]
, (4)

whereQ is a normalization constant which guarantees that
the integrated mass equals the integrated emission,L is the
Euclidean distance betweenX1 andX2, ξ andζ are the trans-
verse and vertical distances, respectively, from the line con-
nectingX1 andX2.

The spread has two dimensionsσξ andσζ since we need
the vertical extent of the plume as well as its horizontal ex-
tent. The centroid is advected by the wind as

x(t + δt) = x(t) + δtu, (5)

wherex(t) is the position at timet , u is the three-dimensional
wind andδt is the model time step.

There are three processes responsible for the spread of the
plume: turbulence, divergence and shear. For divergence and
shear we use a linear growth model

6(t + δt) = 6(t) + δt [φS(t) + φD(t)] , (6)

where 6 is the two-dimensional vector representing the
Gaussian plume spread andφD andφS are the rates of dis-
persion due to divergence and shear, respectively.

The divergence of the local wind will serve to dilute the
plume. The two components we care about here are the ver-
tical and the transverse. It is important to note that mass con-
tinuity for total air mass means the local concentration may
not change but the plume structure may well. This is most
clearly seen for subsidence near the ground where the verti-
cal plume extent may be suppressed while the required hori-
zontal divergence means the plume may spread horizontally.
The divergence of the plume in the direction of advection
is automatically treated by the advection equation since, if
the centroids become further apart, the linear density of the
plume will reduce (this is the role ofL in Eq.4).

The vertical shear of the horizontal wind will act to spread
the plume as different levels are effectively advected in dif-
ferent directions. We only consider velocities normal to the
local direction of advection. Thus

φS =

√√√√√ ∞∫
0

µ(z)
∂u′

∂z

2

dz, (7)

whereµ(z) is the fraction of the plume mass at altitudez,
andu′ is the component of the horizontal velocity normal to
the current direction of advection of the centroid.

For the spreading due to turbulence, we use a simple ran-
dom walk model. This means that the square of the spread
(the plume variance) grows linearly with time as

62(t + δt) = 62(t) + δt8T(t), (8)

where 8T is the rate of spread of variance which is the
relevant component of the turbulent velocity. The Weather
Research and Forecasting (WRF) (Skamarock et al., 2005)
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model we use to drive SatPlume explicitly calculates turbu-
lent kinetic energy (TKE) as

TKE =
1

2
uT · uT, (9)

whereuT is the turbulent velocity vector. Assuming isotropic
turbulence all components ofuT are thus equal:

φT =

√
2TKE

3
. (10)

One complication we do not address here is the finite
size of most sources. Equation (4) applies to point sources.
Strictly speaking it must be integrated over all points in a fi-
nite source region. For large source regions this will yield a
plume which, close to the source, has more sharply cut-off
edges than a Gaussian from a point source. For the source
resolutions we consider here this is not a major problem.

2.3 Satellite observation operator

The observation operator is the mathematical function (or
computer code) which maps simulated concentrations in the
model to a simulated satellite observation. Two properties of
this operator are important in a theoretical study like this:
how many samples will be obtained and how much smooth-
ing of the concentration field is performed by the measure-
ment process.

2.3.1 Sampling density

The viewing geometry of a geostationary measurement cou-
pled with the albedo of water in the near-infrared precludes
any useful measurements over water. We also assume no
measurements are possible at solar zenith angles> 70◦. Be-
yond this we need to estimate the number of scenes with low
enough cloud and aerosol optical depth to allow a good re-
trieval. Following experience from GOSAT (O’Dell et al.,
2012), we set an optical depth threshold of 0.3. To elimi-
nate cloud shadowing effects, we also require clear sky (with
the same threshold) between the entry and exit points of the
sun–scene–satellite ray. We use an effective scale height of
the atmosphere at 10 km. We must calculate the distance be-
tween the entry and exit points of the sun–earth–satellite path
at this scale height. This will change greatly with time of day
depending on whether the bearing of the satellite and sun are
opposed or similar.

We need the sampling statistics relevant to our study
period rather than any particular realization. To calculate
these statistics we use backscatter measurements from the
CALIPSO lidar. The high resolution of the CALIPSO data
allows us to calculate the probability that all scenes within
a given distance will meet the threshold. Note that under
this criterion, the cloud shadowing constraint is stronger than
that of the actual instrument footprint. One limitation of the

CALIPSO data is its limitation to one time of day. The dif-
ferent solar zenith angles at different times will still impose
a diurnal cycle of sampling density.

2.3.2 Smoothing

The satellite measurement is of absorption along the sun–
scene–satellite light path, and so we must integrate along
this path in the model. For traditional global inversion stud-
ies (e.g.,Rayner and O’Brien, 2001) where the model lay-
ers are very thin compared to their horizontal extent, this is
equivalent to a vertical integral since few paths will cross into
neighboring columns. We cannot make this assumption.

One aspect which unambiguously degrades the ability to
localize sources is the point spread function (PSF) of the
instrument. This function accounts for the fact that the in-
strument does not measure at a point or even in a model
grid cell (for the scales considered here), but the measure-
ment integrates spatially with a defined weighting. We repre-
sent this with a two-dimensional double exponential function
with length scales represented by the full width at half maxi-
mum as defined in Sect.2.1.

In concrete terms, the viewing geometry is invariant for
a given time of day and a sufficiently small domain since
the elevation and bearing of the sun and satellite do not vary
with position. Thus we calculate a three-dimensional weight-
ing function representing the PSF (assumed constant with
height) and the light path. We assume an invariant weight-
ing function with pressure. To apply the observation operator
we convolve this weighting function with the concentration
distribution defined by a plume’s position and extent.

3 Behavior of plume model

Figure 1 shows a snapshot after 6 h of emitting a tracer at
1 kgC m−2 year−1 from a 3× 3 km grid cell near the center
of the domain. This plume has been sampled with a simple
column-integrated weighting function (left) and the GEO-
CARB observation operator (right). We can understand the
peak value of the plume by calculating the steady-state re-
sponse to such a source in the presence of a 3 m s−1 column-
averaged wind (close to the low-level wind speed for this pe-
riod). For this calculation we convert the source into a mix-
ing ratio tendency (effectively dividing by atmospheric mass)
and multiply it by the residence time of an air parcel over our
3×3 km source grid. This yields a value of 7.6× 10−3 ppm,
rather similar to the values for both observation operators.

We see that the simple column-integral produces stronger
and more focused responses than the GEOCARB observa-
tions. Discontinuities in the plot of this plume arise when it is
advected more than one footprint in a single model time step.
Differences are particularly clear near the source where the
plume is narrow. The slantwise viewing geometry is a greater
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Figure 1. Concentration (ppm) arising from source in a single 3× 3 km grid cell sampled according to the simple column-integrated (left)
or instrumental (right) observation operator. The source has an emission rate of 1 kgC m2 year−1. Concentration is sampled after continuous
emissions for 6 h. The source has dimension 3 km× 3 km and is centered atx = y = 101.5 km. The 200 km× 200 km domain is centered at
the location of Shanghai (31.2◦ N, 131.5◦ E). We plot only the southwest part of the domain.

cause of spreading than the PSF. Once the plume becomes
sufficiently broad, the two observation operators are similar.

The plume broadening for this case is somewhat slower
than the model used byBovensmann et al.(2010). The main
cause of the broadening is the impact of horizontal wind
shear which tilts the plume with height and thus increases
its projection on the ground. We have already noted there are
few measurements of the rate of spread of column-integrated
plumes. Testing our simple model at least against complete
transport models such as WRF-Chem is an important topic
for future work.

4 Urban case

4.1 Experimental setup

Our chosen domain is a 200× 200 km grid occupying the
latitude and longitude of Shanghai. We make no attempt to
mimic the structure of Shanghai, only the sampling condi-
tions that would prevail there. Our test source uncertainty
field is shown in Fig.2. We stress again that only the
prior uncertainties are shown. The domain consists of a
nonurban region with low uncertainty (1 kgC m−2 year−1)
surrounding an urban region of 100× 100 km with un-
certainty of 10 kgC m−2 year−1. Within this city is one
power plant which is a point source with an uncertainty of
0.9 MtC year−1. Both the power plant and the nonurban hin-
terland have no CO source (we assume the power plant is
combusting its fuel efficiently). The CO emission factor for
the urban region is one of the variables we solve for in the
inversion (see Sect.2).

We observe this domain from a satellite in geostationary
orbit at 110◦ E. This generates a satellite zenith angle of
37◦ and increases the footprint of satellite measurements to
6.3 km in the east–west and 5.1 km in the north–south. Use of

Figure 2. Prior flux uncertainty (kgC m−2 year−1). The un-
certainty values are 1 kgC m−2 year−1 for the hinterland,
10 kgC m−2 year−1 for the urban box and 100 kgC m−2 year−1

for the idealized power plant. The 200 km× 200 km domain is
centered at the location of Shanghai (31.2◦ N, 131.5◦ E).

the zenith angle and CALIPSO backscatter filters generates
13 056 measurements during the 6-day study period.

We solve for sources on a 3× 3 km grid. For CO2 sources
we divide the day into four 6 h blocks (starting at 00:00,
06:00, 12:00 and 18:00 UTC) while we assume the CO emis-
sion factor is constant for each location. Our study period is
6 days, and we solve for average sources and emission fac-
tors over the 6 days. We assume we only make measurements
over the urban zone in the center of the domain. This is not
realistic since the instrument scan covers a large domain, but
we wish to investigate the impact of running inversions re-
gionally for which there are always unknown fluxes outside
the domain which may impact measurements we are using.
We can always improve our knowledge of these following
eitherLauvaux et al.(2009a) or Rödenbeck et al.(2009).
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Figure 3. Reduction in uncertainty of 6-day averaged fluxes for the
time 00:00–06:00 UTC (100× (1−

σPOST
σPRIOR

)) for CO2 fluxes in the
case with both CO and CO2 measurements. The red star shows the
location of the power plant. The 200 km× 200 km domain is cen-
tered at the location of Shanghai (31.2◦ N, 131.5◦ E).

For CO we assume a CO2 emission factor of
50 ppb ppm−1 with an uncertainty of 10 %. As noted in
Sect.2.2 the impact of the uncertainty in the emission factor
depends on the value of the CO2 emissions themselves. We
set these at 10 times the uncertainty for the urban box; both
the power plant and the biospheric hinterland have no CO
emissions.

Driving meteorology is taken from a 6-day run of WRF.
This model was run for the period 6–12 June 2012 for a do-
main which includes the latitude and longitude of Shanghai.
We are not attempting to replicate conditions at Shanghai it-
self, so we have not excluded any measurements over water.
WRF was run in a three-level nested configuration at resolu-
tions 18 km, 6 km and 2 km. The meteorological variables at
the outer boundaries were nudged towards analyses from the
European Centre for Medium Range Weather Forecasting In-
terim Reanalysis (ERA-Interim) (Dee et al., 2011). Our sim-
ple plume model requires the three velocity components and
turbulent kinetic energy from WRF. These are output every
30 min on the inner 200× 200 km domain.

4.2 Results

Figure3 shows the reduction of uncertainty afforded by com-
bined measurements of CO2 and CO. The targeted emission
is from 00:00 to 06:00 UTC and averaged over 6 days. The
structure is similar to that of the prior uncertainty in Fig.2.
This reflects the general result that reduction of uncertainty
favors higher uncertainties. If we calculated absolute uncer-
tainty instead, the biospheric hinterland would still have the
lowest uncertainty even after the inversion. Within the urban
box there is a gradual weakening of uncertainty reduction
as we move from northeast to southwest. This follows from
the prevailing wind direction already noted in Fig.1; tracers

from sources in the northeast quadrant have a longer trajec-
tory over the observed region than those from the southwest.
As might be expected the strongest reduction occurs for the
strong point source mimicking a power plant.

To interpret the magnitude of these reductions, we can
compare them with the uncertainties produced byPolonsky
et al. (2013). They estimated the source strength of an iso-
lated power plant with a set of measurements representing
several snapshots of its plume. They achieved an uncertainty
of about 10 % of their 3.5 MtC year−1 source. Our initial
uncertainty of 0.9 MtC year−1 is reduced by about 35 % to
about 0.6 MtC year−1. This is nearly twice that ofPolonsky
et al. (2013), a difference almost entirely due to the con-
founding impact of the thousands of other source compo-
nents in our case. These add noise to any attempt to retrieve
the power-plant emission alone.

4.3 Tests of observability

We can get some sense of the constraint of individual
measurements by propagating the uncertainty in a prior
source into the space of observations and comparing its
magnitude with the observational uncertainty. For exam-
ple, with the steady-state response calculated earlier, an un-
certainty of 1 kgC m−2 year−1 translates into an uncertainty
of ≈ 0.007 ppm. The observational error on CO2 is set to
3 ppm, so it is clear that it will be hard to constrain un-
certainties beyond this value. For a prior uncertainty of
10 kgC m−2 year−1, the projected signal is 0.07 ppm. It will
take approximately 1600 measurements to reduce the obser-
vational uncertainty to the same magnitude. For CO the case
is quite different. For the 10 kgC m−2 year−1 CO2 source and
the emission factor of 50 ppb ppm−1, the projected signal
is 3.5 ppb. With an observational uncertainty of 10 ppb, this
only requires about 10 measurements to produce an observ-
able signal. Thus it is clear that the CO measurements play
a vital role in constraining combustion sources. The uncer-
tainty in the emission factor, coupled with a reasonable prior
value for the source, produces another uncertainty which
must be added quadratically to the observational uncertainty.
With a source of 100 kgC m−2 year−1 and an emission fac-
tor uncertainty of 5 ppb ppm−1, this contributes 3.5 ppb extra
uncertainty, only making a small additional contribution.

The above calculations give guidance to what we can ex-
pect from an inversion, but they are a pessimistic analysis of
the problem. That is because the inversion does not depend
on individual measurements but rather the detection of struc-
tures in the concentration which are signatures of particular
source components. Here, as in many inverse calculations,
the system can make reliable inferences about an unknown
when its imprint on any single observation is smaller than
the observational noise.
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Figure 4. Reduction in uncertainty of 6-day averaged fluxes for the
time 00:00–06:00 UTC (100× (1−

σPOST
σPRIOR

)) for CO2 fluxes in the
case with only CO2 measurements. The red star shows the location
of the power plant. The 200 km× 200 km domain is centered at the
location of Shanghai (31.2◦ N, 131.5◦ E).

4.4 Using CO2 only

The preceding analysis highlights the importance of the CO
measurements to the uncertainty reduction and suggests the
problem will be difficult with only CO2 measurements. This
indeed turns out to be the case. Figure4 shows the same er-
ror reduction calculation using only CO2 measurements and
for the same period but at a source resolution of 5× 5 km.
This raises the residence time and hence the steady-state re-
sponse and similarly produces stronger Jacobians from the
plume model. We reduce the intensity of the power plant so
that its integrated uncertainty remains at 0.9 MtC year−1. The
uncertainty reduction on the power plant is about two-thirds
as strong as for the combined measurement case, but the
constraint on the weaker urban sources is much poorer. The
difference in the power-plant constraint occurs because the
combined case can constrain the other urban sources which
confound the estimate of the power plant.

5 Methane case

For simplicity we use the same meteorological drivers for
our methane case. Our test domain here is a compromise be-
tween constraining emissions from rice agriculture and in-
dustrial methane sources. The uncertainty in methane emis-
sions for rice agriculture is listed by the UNFCCC guidelines
as 12.9 kg CH4 km−2 h−1. Work of Karion et al.(2013) sug-
gested much larger emissions (and consequently uncertain-
ties) for a natural gas field. We thus chose a prior uncertainty
3 times the UNFCCC value. Following the CO2-only exam-
ple we solve for a source resolution of 5× 5 km. We retain
most other aspects of the measurement system, particularly
the unmeasured zone at the edge of the domain.

Figure 5. Reduction in uncertainty of 6-day averaged fluxes for the
time 00:00–06:00 UTC (100× (1−

σPOST
σPRIOR

)) for CH4 fluxes. The
200 km× 200 km domain is centered at the location of Shanghai
(31.2◦ N, 131.5◦ E).

5.1 Results

Using the same calculation for the steady-state response as
for CO2 sources, we expect a signal of≈ 4 ppb. Comparing
this to the 18 ppb observational error, we see an observability
close to the CO measurement. The actual error reductions are
shown in Fig.5 (again for the 6-day average from 00:00 to
06:00 UTC) with values, indeed, close to those for the com-
bined measurement case.

6 Discussion

The foregoing results seem to offer some promise for the
detection of regional emissions from a feasible satellite in-
strument. As usual, there are many questions that need to
be answered if we move towards implementing such an in-
strument. The first of these, already noted in the exploratory
paper ofRayner and O’Brien(2001), concerns the informa-
tion content of suites of GEOCARB measurements. This is
particularly critical here where we have noted the large dis-
parity between the observational error and the propagation
of source uncertainties into concentration space (Sect.4.3).
At large scale the impact of observational biases (e.g.,Crisp
et al., 2012) seems rather serious (e.g.,Chevallier et al.,
2007). There are two reasons for optimism in the GEOCARB
case. Firstly, although we have used 3 ppm as our observa-
tional error, the study ofPolonsky et al.(2013) produced
much smaller scatter in their retrievals. Secondly the retrieval
bias is largely driven by aerosol. If the aerosol is homoge-
neous over the domain of our inversion, this will be mani-
fested in a global offset which we can include in the inver-
sion. Using this assumption would require rigorous analy-
sis of residuals to detect when it was breaking down. How
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aerosol contamination will affect retrievals at different scales
is an important topic for future work.

The next question concerns the modeling. We cannot as-
sess this properly with SatPlume which only tries to cap-
ture the statistics of plumes. We need to ensure that we can
backtrack the column-integrated observation of a plume to
its source. One way to test this is in forward experiments
where we compare measurements and models of concentra-
tion near an isolated power plant. An example was presented
by Utembe et al.(2013). They found that in situ measure-
ments showed strong signatures of the power-station plume
but were hard to model with several current generation trans-
port and plume dispersion models. This was mainly due to
the difficulty of simulating plume touchdown, an example of
the difficulties of modeling vertical transport. Ground-based
column-integrated measurements produced higher signal-to-
noise ratio once these model errors were accounted for and
consequently produced more accurate inverse estimates of
the power-plant emission.

Another modeling problem is the use of CO as a combus-
tion tracer. Although we made only weak assumptions about
the spatial structure ofE in Eq. (2), we did assume a 10 %
uncertainty on this value and no temporal variability. To test
the importance of this assumption, we repeated the baseline
case with a 100 % uncertainty onE. Uncertainty reduction
was weakened by about 2 % for the power plant and about
20 % for the urban grid points. Uncertainty onE itself was
reduced from the 100 % prior value. In an operating inver-
sion system, improved information onE would be used in
subsequent inversions. Improved knowledge of variations in
E is a matter for future research.

The limitation of the measurements to daytime poses a
problem for their use in any regulatory framework. There is
an obvious possibility of “hiding” emissions at night. One
ameliorating factor is the ability to constrain area-integrated
emissions even at night. This occurs because the concentra-
tion arising from an area-integrated source (such as a city) is
still visible the next morning, even if the rate of plume spread
means individual sources within the city can no longer be de-
termined. This will depend on whether the city is sufficiently
isolated to separate its area-integrated plume from neighbor-
ing sources.

The same problem occurs seasonally. The limit of 70◦ on
the solar zenith angle means that no observations will be
made beyond 50◦ in the winter hemisphere. This problem
is common to all passive instruments and highlights the need
for multiple complementary measurement approaches.

7 Conclusions

We have investigated the capacity of trace gas measure-
ments from a geostationary satellite to constrain regional
sources and sinks. Specifically, measurements of CO2, CO
and CH4 taken with feasible precision and sampling density

can significantly improve knowledge of fluxes at scales from
10 to 30 km2. The improvement comes despite the fact that
individual measurements have a poor signal-to-noise ratio
when compared to the signal projected from most sources.
The reason is the imaging capability of the system which is
capable of discerning the structure of plumes in apparently
noisy observations.

The most powerful measurement is the CO which, despite
weak assumptions about the emission factor, provides a bet-
ter signal-to-noise ratio on combustion sources than the CO2
measurement. The CO measurement also allows clearer iden-
tification of the power-plant emissions despite the fact that
we assume the plant does not emit CO. Overall, the strength
of the regional constraint suggests such measurements could
play an important role in both carbon cycle science and pol-
icy in future.
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