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Abstract. We present a cloud-screening method based on
differential optical absorption spectroscopy (DOAS) mea-
surements, more specifically using intensity measurements
and O4 differential slant-column densities (DSCDs). Using
the colour index (CI), i.e. the ratio of the radiance at two
wavelengths, we define different sky conditions including
clear, thin clouds/polluted, fully-cloudy, and heavily pol-
luted. We also flag the presence of broken and scattered
clouds. The O4 absorption is a good tracer for cloud-induced
light-path changes and is used to detect clouds and discrim-
inate between instances of high aerosol optical depth (AOD)
and high cloud optical depth (COD).

We apply our cloud screening to MAX-DOAS (multi-axis
DOAS) retrievals at three different sites with different typ-
ical meteorological conditions, more specifically suburban
Beijing (39.75◦ N, 116.96◦ E), Brussels (50.78◦ N, 4.35◦ E)
and Jungfraujoch (46.55◦ N, 7.98◦ E). We find that our cloud
screening performs well characterizing the different sky con-
ditions. The flags based on the colour index are able to de-
tect changes in visibility due to aerosols and/or (scattered)
clouds. The O4-based multiple-scattering flag is able to de-
tect optically thick clouds, and is needed to correctly iden-
tify clouds for sites with extreme aerosol pollution. Remov-
ing data taken under cloudy conditions results in a better
agreement, in both correlation and slope, between the MAX-
DOAS AOD retrievals and measurements from other co-
located instruments.

1 Introduction

In recent years, ground-based multi-axis differential absorp-
tion spectroscopy (MAX-DOAS) has been demonstrated to
be ideally suited for the retrieval of tropospheric trace gases
and deriving information on aerosol properties (e.g.Hön-
ninger et al., 2004; Wagner et al., 2004; Frieß et al., 2006;
Clémer et al., 2010; Hendrick et al., 2014). These measure-
ments are invaluable to our understanding of the physics and
chemistry of the atmospheric system, and the impact on the
Earth’s climate.

MAX-DOAS retrievals of trace-gas columns and aerosol
optical depths typically assume clear-sky conditions in the
forward model. However, MAX-DOAS measurements are
often strongly affected by clouds, leading to significant data
quality degradation and larger uncertainties on the retrievals.
This, in turn, strongly impairs the use of ground-based re-
trievals in the context of satellite validation.

In this paper we present a cloud-screening method, based
on (MAX-)DOAS measurements, which aims at providing a
general qualification of the sky and cloud conditions during
the measurements. The data set consists of multi-year obser-
vations made at three sites with very different typical mete-
orological conditions, Xianghe (suburban Beijing, 39.75◦ N,
116.96◦ E), Brussels (50.78◦ N, 4.35◦ E) and the alpine sta-
tion of Jungfraujoch (46.55◦ N, 7.98◦ E). We focus on 90◦

elevation observations for the colour index as our simula-
tions show these are the most sensitive to the sky conditions
(see Sect.3). Moreover, they are independent of the azimuth
angle, and are very sensitive to the temporal variability of
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clouds above the instrument site. The use of the zenith mea-
surements means that the cloud-screening method is not only
limited to MAX-DOAS but can also be applied to similar in-
struments working in the zenith mode only. For the O4 mea-
surements we also use the 30–90◦ elevation measurements,
but the method can also be applied if only zenith measure-
ments are available (see Sect.4.3).

The recent paper ofWagner et al.(2013) described in de-
tail the effect of clouds on the different quantities derived
from MAX-DOAS observations, such as the radiance, colour
index, O4 absorption and the Ring effect (the filling-in of
Fraunhofer lines due to inelastic scattering on atmospheric
molecules). They developed a cloud-screening method based
on these effects and on the comparison with clear-sky ref-
erence simulations. The method was applied to observations
made during the CINDI campaign (Piters et al., 2012), where
a good agreement with sky images taken from the ground
was found. However, the total data set used contained data of
only a limited time span (12 June 2009–15 July 2009).

Our cloud-screening method is similar to the method de-
scribed inWagner et al.(2013) but uses a simpler approach.
Both methods use colour-index (CI) simulations and the tem-
poral variability of the CI and O4 absorption, but our method
is not based on radiance or O4 simulations and does not use
information from the full MAX-DOAS elevation scan but fo-
cuses on the zenith elevation (and in lesser degree the 30◦

elevation). Our approach is furthermore based on a general
simulation model of the colour index, which is used for all
different measurement sites, thereby strongly reducing the
computational cost and enhancing the general applicability
of the method.

This paper shows that a simple cloud-screening method
can be successfully applied to large data sets measured un-
der a wide variety of meteorological conditions, from the
extreme polluted atmosphere above Xianghe, the cloud-
dominated Brussels data set, to the pristine alpine skies in
Jungfraujoch.

In Sect.2 the different MAX-DOAS instruments and the
DOAS data analysis are described. In Sect.3 the concept of
the colour index and its relationship with sky and cloud con-
ditions are presented. A description of our cloud-screening
method and the definition of the cloud-screening flags can be
found in Sect.4. In Sect.5 the results from the cloud screen-
ing at Brussels with co-located thermal infrared cloud-cover
measurements are compared. Next, we apply our cloud-
screening to aerosol model retrievals. A description of the ra-
diative transfer model and co-located aerosol measurements
and the resulting effect of the cloud screening on the agree-
ment between model and measurements can be found in
Sect.6. We end with the conclusions in Sect.7.

2 MAX-DOAS measurements

The MAX-DOAS instrument is a passive DOAS instrument
that performs quasi-simultaneous measurements of scattered
sunlight for a range of different elevations, from the horizon
to the zenith (Hönninger et al., 2004; Platt and Stutz, 2008).
This results in an enhanced sensitivity to absorbing species
in the lower troposphere compared to zenith observing tech-
niques.

2.1 Instrument and site description

This study focuses on MAX-DOAS measurements at three
different sites with very different typical meteorological con-
ditions, namely Brussels, Jungfraujoch and Xianghe (subur-
ban Beijing). Xianghe is characterized by a polluted atmo-
sphere, with episodes of extreme aerosol conditions which
lead to a very low visibility. The sky over Brussels on the
other hand only suffers from mild pollution, but is strongly
affected by the presence of clouds. The alpine station of
Jungfraujoch experiences almost no aerosol pollution but can
suffer from cloudy and snowy conditions.

The instrument in Xianghe (39.75◦ N, 116.96◦ E) is lo-
cated about 60 km east of Beijing and points towards the
north azimuthal direction, with a 0.8◦ field of view. For Xi-
anghe a full MAX-DOAS scan is comprised of nine different
elevations angles (2, 4, 6, 8, 10, 12, 15, 30, and 90◦) and takes
about 15 minutes of measurement time. This instrument has
been discussed in detail inClémer et al.(2010); Hendrick
et al. (2014). It is a dual-channel instrument composed of
two grating spectrometers, covering the UV (300–390 nm)
and visible (400–720 nm) wavelength regions. The Xianghe
MAX-DOAS instrument has been designed and assembled
at the Belgian Institute for Space Aeronomy (BIRA-IASB)
in Brussels, and has been continuously running since 2010.

The mini-MAX-DOAS instrument in Brussels (50.78◦ N,
4.35◦ E), has a shorter wavelength range, limited to 290–
435 nm, again pointing north, with a 0.6◦ field of view. A full
scan goes over 11 elevation angles (2, 3, 4, 5, 6, 8, 10, 12,
15, 30, and 90◦) and requires approximately 15 minutes. It
is a commercial system from Hoffmann Messtechnik GmbH
and has been continuously running since 2011. A more de-
tailed description of the instrument can be found inMa et al.
(2013).

The alpine station of Jungfraujoch (46.55◦ N, 7.98◦ E) is
located in the Swiss Alps, with a pointing azimuth of 145◦,
at an altitude of 3570 m. A dual-channel UV (300–390 nm)
and VIS (400–560 nm) MAX-DOAS instrument has been in-
stalled by BIRA-IASB and operational there since 2010. The
configuration of the instrument is similar to the one in Xi-
anghe, but it can also reach negative elevation angles pointing
down in the valley (−10,−8,−6,−4,−2, and 0◦). However,
we do not use these negative elevation angles in this work.
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2.2 DOAS data analysis

The first step of the retrieval consists of analysing the MAX-
DOAS spectra by making use of the DOAS method (Platt
and Stutz, 2008). This method is developed to separate
narrow-band differential absorption patterns (which can be
related to specific molecules in the atmosphere) from broad-
band extinction caused by Rayleigh and Mie scattering due
to scattering on molecules and particles. The direct prod-
ucts of this technique are differential slant column densi-
ties (DSCDs), i.e. the integrated concentration of absorb-
ing molecular species along the effective light path rela-
tive to the integrated concentration along the average light
path of a reference spectrum. To analyse the MAX-DOAS
spectra the spectral-fitting software package QDOAS is used
(http://uv-vis.aeronomie.be/software/QDOAS/).

Information on aerosol characteristics, i.e. AOD and ex-
tinction profile, is obtained using O4 DSCDs (see Sect.6.1).
This is possible since the vertical distribution of O4 is well
known and nearly constant, as it varies with the square of
the O2 monomer. Deviations of the O4 DSCD from values
representative for a clear sky are often caused by aerosols or
clouds. Measurements of the O4 DSCD can therefore be used
for the retrieval of aerosols (Hönninger et al., 2004; Wagner
et al., 2004; Frieß et al., 2006). These DSCDs are retrieved
in the UV (338–370 nm) for Brussels, Jungfraujoch and Xi-
anghe, and in the VIS for Xianghe and Jungfraujoch (425–
490 nm), using the O4 cross-sections fromHermans et al.
(2003). These wavelength ranges are the most sensitive to
O4 absorption (Roscoe et al., 2010), and have minimal inter-
ference from other absorbing species. Other trace gases used
for the fitting include NO2, O3, H2O, HCHO and BrO, along
with a Ring spectrum. For the observed broad-band extinc-
tion a fifth-order polynomial is used. A detailed description
of the QDOAS setting for aerosol retrievals can be found in
Clémer et al.(2010).

3 The colour index

To characterize the sky conditions at the different measure-
ment sites we develop a cloud-screening method based on
two different measured quantities: the colour index (CI) of
the sky and the O4 DSCDs. The CI is defined as the ratio of
the intensity of a measured spectrum at two wavelengths, and
gives information on the observed colour of the sky. Since,
during the daytime, the sky colour changes from blue during
clear skies to white/gray when clouds or aerosols are present,
we can use the CI to qualify the sky condition. This becomes
increasingly difficult for high SZA values, as the sky colour
varies, even for clear skies.

The CI for Xianghe, Brussels, and Jungfraujoch are de-
fined asI405/I670, I347/I420 , andI405/I550 respectively, with
Ix the median intensity over the [x − 5 nm,x + 5 nm] wave-
length range, to reduce the effect of spectral noise on the

derived intensity values. The wavelength regions were cho-
sen to obtain the largest spectral contrast, i.e. they span the
largest wavelength range possible for the respective instru-
ment, and avoid the influence of strong atmospheric spectral
features.

As can be seen for Xianghe in Fig.1, the CI shows a
clear pattern depending on the observed meteorological con-
ditions. For clear skies the CI values are high, due to the
wavelength dependence of Rayleigh scattering, and they de-
crease with increasing aerosol load (Fig.1:day 35) since scat-
tering on aerosol and cloud particles is less wavelength de-
pendent. We also see a clear separation between the different
elevation angles of the observations. The highest CI values
can be found for spectra with the highest elevation angles,
whereas low elevation angles show lower values and spread.
In the case of an extreme aerosol load or full cloud cover, the
CI values are all clustered around a constant value (Fig.1:
days 114–115). In the case of broken or scattered clouds,
the CI shows a very variable temporal behaviour (Fig.1: day
256).

Simulations of the CI corroborate the observed decrease
of the CI in the presence of clouds and aerosols, as can
be seen in Fig.2. These simulations were made with the
DAK (doubling-adding KNMI code) radiative transfer model
(Stammes et al., 1989; Stammes, 2001, http://www.knmi.
nl/~stammes/DAK/Manual_DAKver312.pdf) under varying
aerosol and cloud optical depths, and varying parameters
such as wavelength, elevation, SZA and azimuth angle. For
the aerosols a homogeneous layer up to 1 km with a single
scattering albedo of 0.9 and asymmetry parameter of 0.7 was
used, for the clouds these values are respectively 1.0 and
0.85. The cloud base height was set at 1 km, with a total
thickness of 1 km, a surface albedo of 0.05 was used, and
atmospheric Rayleigh scattering and ozone absorption were
included. We also tested the effect of varying the cloud base
height, ranging from 1 km to 8 km, but found very little influ-
ence on the derived CI values, especially for higher elevation
angles.

These simulations show that it is very difficult to distin-
guish between aerosols and clouds using only CI informa-
tion. For this reason also information from the observed O4
DSCDs will be used, which will be discussed in a later sec-
tion (Sect.4.3).

Fig. 3, which presents simulations of the CI for the three
different wavelength ratios used for the different measure-
ment sites, shows that the CI derived from spectra with low
elevation angles have a much narrower spread regarding dif-
ferent aerosol settings, making it difficult to distinguish be-
tween the different parameters. These simulations further-
more show that the same problem of overlapping simula-
tions occurs for observations taken at SZA> 85◦. For this
reason we exclude these data from our study. The simula-
tions at 90◦ elevation show a narrower spread for lower SZA
values (. 40◦), compared to the 15◦ and 30◦ elevation an-
gle. However, at larger SZA (& 55◦) the situation is reversed.
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Figure 1. Comparison of 4 days at Xianghe with distinct meteorological conditions. The top box shows the measured AERONET AOD at
477 nm, both the non-screened (level 10) and cloud-screened (level 15) data, the middle box the measured MAX-DOAS O4 DSCDS (in
units of 1040molec2 cm−5) and the bottom box the calculated colour index. Different colours represent the different MAX-DOAS elevation
angles. Fractional day is always given in UT time.

Figure 2.Simulations of the colour index (I405/I670) under varying
aerosol optical depth (AOD) and cloud optical depth (COD). The
simulations were performed with the DAK plan-parallel radiative
transfer model (Stammes, 2001), using a cloud-layer height of 1 km.

The same result is found for simulations made under differ-
ent cloud optical depth settings.

As we only have little observations made at low SZA (<

40◦), we therefore choose the 90◦ as the best elevation for
our further study. In principle, the method can be extended
in a similar way to include CI (and O4 DSCD) information
from multiple elevation angles, with the realization that the
higher elevation angles will give the best constraints. This is
discussed briefly in Sect.6.1. We restrict ourselves to only
one elevation angle for the sake of simplicity and to show
that the method already works well with this restriction. The
zenith elevation further has the advantage of not depending
on the viewing azimuth of the instrument, which simplifies
the computational effort for the CI simulations if data sets
from instrument with different pointing direction are used.

The resulting calculated zenith CI values for the full Xi-
anghe, Brussels and Jungfraujoch data sets can be found in
Fig. 4. All sites show a frequency distribution with a clear
peak at the lowest CI values, corresponding to observations
taken under non-clear-sky conditions. For Jungfraujoch we
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Figure 3. Simulations of the colour index under varying AOD and
using the wavelengths corresponding to the three different measure-
ment sites, respectively Xianghe, Brussels and Jungfraujoch from
top to bottom. The simulations were performed with the DAK plan-
parallel radiative transfer model (Stammes, 2001), using a cloud-
layer height of 1 km and a cloud optical depth of 0.

see a more bimodal distribution, where the small peak at
higher CI values corresponds to a larger frequency of clear
days, compared to the other sites. The differences in the ob-
served CI values between the different sites are due to the
different wavelength ranges used for the CI calculation and
the differences in instrumental response.

It is important to investigate the behaviour of the CI over
time to spot variations in the CI which are due to instrumental
issues, such as a shift in instrumental response after technical
difficulties, changes in set-up, or instrument degradation. If
clear CI variations are spotted that can be linked to instru-
mental issues, it is important to correct for this.

An example of this can be seen in Fig.5: an instrumental
failure at Brussels on the 20th of May resulted in a strong
downward shift of the CI values. We corrected for this by
shifting the CI values after the failure in such a way that the
peak values of the histograms of CI values before and after
the incident coincide. It is clear that sufficient data need to be
present to make an accurate correction.

Figure 4. The calculated zenith CI values and frequency distribu-
tion for the full Xianghe, Brussels, and Jungfraujoch data sets.
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Figure 5. Illustration of the CI correction for Brussels due to an
instrumental failure on May 20th 2012. The top panel shows the
CI values and histograms before and after the incident in black and
blue respectively. The bottom panel shows the corrected CI values.
This was done by shifting the blue points in such a way that both
histograms have the same peak value.

4 The cloud-screening method

To characterize the sky conditions we define three different
flags: the sky flag, the broken-cloud flag, and the multiple-
scattering flag. The sky flag defines the general sky condi-
tions in terms of visibility – i.e. clear, mediocre, and bad.
This flag does not distinguish between a visibility reduction
due to clouds or aerosols. The broken-cloud flag denotes the
presence of broken or scattered clouds. The third flag, which
is based on the O4 DSCDs and not the CI, marks the presence
of enhanced multiple scattering in the line-of-sight, which we
attribute to the presence of thick clouds.

4.1 The sky flag

For the sky flag we define three regions of CI values which
are linked to general sky conditions in terms of visibility –
i.e. clear, mediocre, and bad. To do this the calculated CI val-
ues are normalized between 0 and 1, to remove as much as
possible of the wavelength and instrumental effects on the CI
between the different measurement sites. This can only be
done if enough data are available to have observations dur-
ing both very clear and low-visibility sky conditions, which
allows the determination of the minimum and maximum CI
values.

To constrain the three regions, the full set of normalized
CI values is compared with a grid of pre-calculated CI sim-
ulations, which we scale to give the best match with the ob-
served spread in CI. For this the plane-parallel DAK simu-
lations described in Sect.3 are used, which are calculated
for a range of different wavelengths, corresponding to the
ones used for the CI calculation at the different sites. We do

not fine-tune other model parameters such as surface albedo
to the different site characteristics to minimize the computa-
tional effort. The simulations are scaled in such a way that
the peak of the normalized CI frequency distribution cor-
responds to the clustering of simulations with high aerosol
and/or cloud optical depth (AOD/COD), and so that the
simulation with the lowest simulated aerosol optical depth
(AOD = 0.05) follows the top of the normalized measured CI
values. Additional AOD information from co-located instru-
ments, such as a Cimel sun photometer (Holben et al., 2001),
Brewer spectrophotometer (Cheymol and de Backer, 2003;
De Bock et al., 2010) or solar irradiance instruments (Nyeki
et al., 2012), is used to validate the procedure and make small
adjustments in the scaling. As can be seen in Fig.6, the dis-
tribution of scaled CI simulations corresponds well to the ob-
served CI values and measured AOD values.

We then take the scaled simulation made with AOD= 0.15
and COD= 0.0 (green-diamond line in Fig.6) as the limit
to separate the “good” and “mediocre” region, as the simu-
lation predicts that data above this curve were taken under
cloud-free conditions with an extremely low aerosol load.
This is further corroborated by comparison with co-located
AOD measurements, as explained above. CI values above
this curve are therefore flagged as made under “good” vis-
ibility conditions.

To separate between the “mediocre” and “bad” regions
we define a horizontal line in such a way that the peak of
the frequency distribution falls in the “bad” region. More
specifically, we place the line at a distance of FWHM (full
width at half maximum) from the peak position of the his-
togram. If x and y respectively denote the CI values and
the frequency distribution, then thex position of the limit
is xbad= x(ymax) + FWHM(y). Note that this is of course
only valid if the peak of measured CI values is associated
with cloudy conditions. For sites with very clear skies and
only little cloudy measurements a reverse approach could be
taken. In this case a similar definition using the peak distribu-
tion could be used to define the “good” regime and the “bad”
regime by comparing with simulations.

The resulting “good”, “mediocre”, and “bad” regions can
be seen as, respectively, the green, orange and red regions in
Fig. 7.

These regions correspond to different visibility condi-
tions. Data flagged as “good” are taken under relatively clear
conditions, i.e. very low aerosol and cloud optical depth.
“Mediocre” data represents data under sky conditions with
slightly decreased visibility, i.e. thin clouds and/or moderate
aerosol pollution. Data with a “bad” flag points to the pres-
ence of thick clouds and/or extreme aerosol conditions.

4.2 The broken-cloud flag

To determine the presence of broken (semi-continuous cloud
cover) or scattered clouds (predominantly clear sky) in the
line-of-sight of measurement, the temporal variability of the
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Figure 6. The normalized CI values (points) versus solar zenith an-
gle, together with the scaled CI simulations (coloured lines) made
under different aerosol and cloud optical depth values (left/middle
legend). We colour-marked the observed CI values with additional
AOD data if available (right legend).

CI is studied. As could already be seen in Fig.1, the CI re-
mains very stable for clear skies, skies with aerosol pollution,
and skies with a full cloud cover, but in the presence of scat-
tered clouds, the CI shows large drops in value when a cloud
passes over.

Figure 7. The normalized CI values (points) versus solar zenith an-
gle. The green, orange and red regions correspond to the “good”,
“mediocre” and “bad” regions as defined by the sky flag.

To quantify this we model the observed CI values over
time t for each day with a double-sine function of the form
f (t) = A+B sin(Ct −D)+E sin(F t −G). Outliers are then
identified as those data points with|(CI (t) − f (t))/f (t)| >

0.1. This value was derived by investigating those days with

www.atmos-meas-tech.net/7/3509/2014/ Atmos. Meas. Tech., 7, 3509–3527, 2014
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Figure 8. Results of the CI modelling (red line) to the measured CI
values (black diamonds) and outlier detection (blue crosses) for the
broken-cloud flagging, for example days in Xianghe and Brussels.

rapid temporal variability in the CI. For these days it was
found that the observed jumps in CI predominantly fall above
this cut-off value. These outliers are flagged as observations
made under scattered/broken-cloud conditions. Examples of
this modelling and outlier determination can be found in
Fig. 8.

Note that this broken-cloud (BC) flag does not give any in-
formation about the presence of a full cloud cover, since this
will not give rise to strong temporal variation in the CI val-
ues. The influence of aerosol variability on the temporal vari-
ation of the CI typically gives rise to a smoother increase or
decrease, and will not give rise to the strong temporal jumps
seen for cloud contamination.

4.3 The multiple-scattering flag

As discussed in the previous sections, the CI alone is not
enough to distinguish between the presence of visibility re-
duction due to clouds or to aerosols. To partly resolve this
problem we also define an additional constraint based on the
measured O4 DSCDs, which provide information on the ef-
fective light path of scattered photons. Clouds can have an
increasing or decreasing effect on the O4 DSCD value, with
respect to clear-sky conditions. The first typically occurs for
optically thick clouds, due to enhanced multiple scattering
in the cloud layer. Optically thin clouds at high altitudes can
also lead to an increase, but only for measurements under low
elevation angles. Thin clouds at low altitudes tend to decrease
the O4 DSCDs at all elevation angles (Wagner et al., 2011).
An increase in aerosol load will also affect the O4 DSCDs,
and will lead to a decrease in observed spread for the differ-
ent elevation angles, as can clearly be seen in Fig.1a.

Since both clouds and aerosols can thus have a very com-
plex effect on the O4 absorption, which can only be investi-
gated in detail by comparing with radiative transfer models
(as done inWagner et al., 2013), we opt to only study the
temporal variation of the measured O4 DSCDs. Strong tem-
poral variability due to enhanced multiple scattering com-
monly occurs in optically thick clouds, and is seen less for
high aerosol optical depth, as illustrated by Fig.1.

To study the temporal variability a similar procedure as for
the detection of broken clouds is applied. Since we are not in-
terested in slow and smooth changes in O4 absorption, such
as the observed diurnal trend, the DSCD measured at zenith
is subtracted from the DSCDs at lower elevation anglesα.
This technique is commonly used in MAX-DOAS retrieval
studies (e.g.Clémer et al., 2010; Hendrick et al., 2014), as
it effectively removes the (negligible) stratospheric contribu-
tion to the O4 absorption (Hönninger et al., 2004). Here, it
has the advantage of removing the very strong diurnal trend,
which hinders our modelling and outlier detection.

We then again model the resulting O4(α −90◦) DSCDs
with a double-sine functionf (t) (see Fig.9), and define an
outlier as points with|(O4(t) − f (t))/f (t)| > 0.2. We then
make the assumption that these outliers are affected by mul-
tiple scattering due to clouds. This multiple-scattering (MS)
flag can be defined for measurements at each elevation angle,
but here we will focus further only on the 30–90◦ elevation
scan, as the 30◦ elevation is closest to zenith and thus will
encounter the lowest temporal cloud variation. In the case of
zenith-pointing DOAS instruments, one could use only the
zenith O4 data, but then a model curve suited to fit the strong
diurnal variation needs to be chosen.

Atmos. Meas. Tech., 7, 3509–3527, 2014 www.atmos-meas-tech.net/7/3509/2014/
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Figure 9. Top panel: results of the O4 DSCD modelling (green
line) to the measured O4 values (black crosses) and outlier detection
(blue diamonds) for the multiple-scattering flagging, for an exam-
ple day in Brussels. For comparison we also show the results of the
CI flagging (bottom panel). The CI values (asterisks) are coloured
according to their CI flag. Outliers from the broken-cloud flagging
are marked with a blue diamond.

4.4 Flag comparison

A good agreement is found between the O4-based flag and
information derived from the CI-based flags. Both types of
flags can be used to mark cloudy data, i.e. data with enhanced
multiple scattering on the one hand and data with a “bad”
sky flag or broken-cloud flag on the other. Ideally, the same
data points should be flagged as cloudy by both flag types.
However, the multiple-scattering flag will be most sensitive
to clouds with a high optical depth, whereas the colour index
is also sensitive to clouds with a lower cloud optical depth,
as even such clouds quickly change the observed sky colour.

For Brussels this indeed seems to be the case and a good
agreement of 85 % is found; for Jungfraujoch, however, only
about 60 % of points get marked as cloudy by both flag types.

The Xianghe data set shows the limitations of cloud
screening using only the CI flags: when using the CI flags
20 % more data are marked as cloudy in comparison to the
multiple-scattering O4 flag. This is due to the fact that events
of very high aerosol optical depth (AOD> 2) are wrongly
flagged as cloudy. For sites where such events occur regu-
larly, the multiple-scattering flag seems to be a better choice
to detect thick clouds. However, since the multiple-scattering
flag requires a much larger computational effort compared to
the CI flags and it adds little additional information for low or
mild aerosol pollution, we opt not to use it for sites with low
or moderate aerosol pollution. A comparison between the ef-
fect of the different flags on the measurements can be found
in Sect.6.

As MAX-DOAS measurements have the benefit of mul-
tiple viewing angles, one could extend the zenith-viewing
method proposed here to other elevation angles. From our

simulations it is clear that the highest elevation angles are
best suited for this. Different viewing angles will mainly be
sensitive to broken or scattered clouds, as the flagging in the
case of clear or overcast days will give the same results for
each elevation angle. Sites which experience a lot of broken
clouds including CI flags from for example the 30◦ elevation
angle will therefore be more likely to correctly identify the
presence of clouds. We briefly discuss the effect on this on
our retrievals in Sect.6.

5 Comparison with infrared cloud-cover measurements

In order to validate the previously defined flags, the cloud-
screening results for Brussels are compared with thermal in-
frared cloud-cover measurements. The Brussels site has ac-
cess to an infrared pyrometer, which determines the total
cloud-cover fraction based on temperature data over a field of
view of 6◦ (Gillotay et al., 2001). The method works well to
describe most cloudy conditions, with the exception of cirrus
clouds with variable emissivity. The total cloud-cover frac-
tion is defined as the ratio between the observed cloudy solid
angle elements and clear-sky elements.

In Fig. 10 the total cloud-cover fraction values for an ex-
ample day can be seen, where we colour-marked our different
CI flagging results. High cloud-cover fractions are system-
atically flagged with a “bad” sky flag, whereas low cloud-
cover data correspond to “good/mediocre” sky flags. These
results are summarized in Fig.11 where the distribution of
cloud-cover values for the full Brussels data set (∼ 2.5 years)
is given, together with the distribution of points with corre-
sponding sky flags. In the bottom plot the fraction of our sky
flag results over the cloud-cover values are shown. Data with
high cloud-cover fractions (> 60 %) are generally flagged as
“bad” by our cloud screening, whereas& 80 % points with a
cloud-cover fraction< 20 % are flagged as “good/mediocre
with no broken clouds”.

The same exercise was performed for the multiple-
scattering flag, and we again find that data with high cloud-
cover fractions are typically flagged as having a multiple
scattering. This can again be seen in Fig.11, where the blue
line denotes the distribution of the MS flag over the cloud-
cover percentages. We find that compared to the flags de-
rived from the CI, more data with low cloud-cover values are
flagged as having multiple scattering, i.e. being cloudy.

This shows that there is a good agreement between our
cloud screening and the cloud-cover determination. One has
to take into account that the field-of-view of the thermal
infrared instrument is significantly larger than that of the
MAX-DOAS, and thus that different areas of the sky are
measured. Also, the value of our sky flag does not only de-
pend on the presence of clouds, but also on the aerosol con-
tent. This means that cloud-free measurements can still be
flagged as “mediocre” (or even “bad”) if aerosols are present.
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Figure 10. Total cloud-cover values from thermal infrared mea-
surements are given in black points. Top: overplotted in coloured
crosses are the respective CI-flag values as derived from our cloud-
screening method (green/orange/red= good/med/bad). Data with a
broken-cloud flag are marked with a magenta diamond. Bottom: in
blue asterisks we plot data points with a multiple-scattering flag.

6 Application to aerosol model retrievals

With the flags defined in the previous section we proceed
to define a cloud-screening procedure for our MAX-DOAS
retrievals. For this particular study we are interested in
the aerosol load of the atmosphere, which means data too
strongly affected by clouds need to be removed, but measure-
ments made under polluted conditions should be retained.

For this reason we investigate data with a sky flag of ei-
ther “good” or “mediocre”, since a sky flag of “bad” is most
commonly found for fully cloudy conditions. To remove data
which are affected by scattered or broken clouds, we only
keep data which are not flagged in the broken-cloud screen-
ing. This effectively removes all the cloud-contaminated data
from our data sets. However, it also removes data under ex-
treme aerosol conditions, as often found in Xianghe, as those
measurements will also be flagged as “bad” in the sky-flag
determination. To resolve this issue, we use the multiple-
scattering flag to differentiate between measurements made
under conditions with either high AOD or high COD.

6.1 AOD model retrievals and measurements

To study the effect of our cloud-screening method, AOD val-
ues retrieved by MAX-DOAS are compared to co-located
AOD measurements. For Xianghe and Brussels we use
AERONET Level 1.0 (unscreened) (and 1.5, cloud-screened)
data, and for the Brussels site we extend the comparison
with co-located Brewer spectrophotometer measurements at
320 nm (Brewer instruments #16 and #178). A detailed de-
scription of the co-located instruments and measurements
can be found inCheymol and de Backer(2003), De Bock

Figure 11.Top: distribution of the cloud-cover percentages for the
full Brussels data set in black, with the division of data points with
different sky flags. In red we plot data with a “bad” sky flag, in
orange data with a “good/med” sky flag and a broken-cloud flag,
and green denotes points with a “good/med” sky flag but no broken-
cloud flag. In blue we mark data with a multiple-scattering flag.
Bottom: fraction of total cloud-cover values as distributed over our
different flag values.

et al. (2010) andHolben et al.(2001). At Jungfraujoch no
AERONET instrument is available, so we used AOD val-
ues as measured by the Precision Filter Radiometer Network
(Nyeki et al., 2012) in the context of the Global Atmosphere
Watch – World Data Center for Aerosol (GAW-WDCA) pro-
gramme of the World Meteorological Organization (WMO)
(ebas.nilu.no).

For the MAX-DOAS aerosol retrievals the bePRO ra-
diative transfer code (Clémer et al., 2010) is used, which
is an inversion algorithm based on the optimal estimation
method (Rodgers, 2000, OEM). The model uses the observed
MAX-DOAS O4 DSCDs to derive the vertical profiles of the
aerosol extinction at different wavelengths. For Xianghe and
Jungfraujoch, we focus on the 360 and 477 nm wavelengths,
whereas for Brussels we only have access to the 360 nm
wavelength due to the shorter instrumental range. A detailed
description of the bePRO algorithm and parameters can be
found in Clémer et al.(2010). It is found that the model is
most sensitive to aerosols close to the surface, below 1 km,
and typically contains about 1–2 pieces of independent infor-
mation (DFS, degrees of freedom for signal). As discussed in
Clémer et al.(2010) a correction factor of 0.8 was applied to
the measured O4 DSCDs for the Xianghe data set. This cor-
rection factor is needed to account for the observed offset
between the simulated O4 DSCDs and the measured values.
For both the Brussels and Jungfraujoch data sets we did not
find an improvement using the 0.8 correction factor, so we
did not apply it here. At this point it is unclear what the ori-
gin is of this observed discrepancy between the measured and
modelled O4 DSCDs.
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Only those results where the retrieved O4 DSCDs have
a percentage root mean square difference (RMSD)< 50 %
from the measured DSCDs are kept for the further study,
since high RMSD values typically point to a failure of the
model during the retrieval process. We define the RMSD as√∑

(meas−retr)2∑
meas2

. For Jungfraujoch we use a more strict cut-off

value of RMSD< 30 % since we found that our modelling
was less successful and stable for this data set.

6.2 Impact on aerosol retrievals

We perform the cloud screening by defining data as cloudy
if: the sky flag is “bad” or it has a broken-cloud flag when
using the CI-based flags, or it has a multiple-scattering flag
when using the O4-based flag. These constraints generally
correctly flag the presence of thick clouds, but are less re-
liable when thin clouds are present, as the discrimination
between thin clouds and low/mild aerosol pollution is not
straightforward.

The results of our AOD retrievals and cloud screening can
be found in Fig.12and the online supplementary material. In
these figures the cloud-screened and co-located AOD mea-
surements (black) and the cloud-screened bePRO retrievals
are shown, colour-coded with the different flag values. A re-
moval of data with evidence for the presence of clouds, be it
either based on the sky and broken-cloud flag or the multiple-
scattering flag, results in a much better agreement with the
AOD measurements and retrievals. From Fig.12 it is clear
that “bad” data on average have higher AOD values. This
is due to the fact that our bePRO model tries to model the
observed optical depth increase caused by the clouds with
aerosol optical depth, as clouds are not present in the model.

For the Xianghe data set it is also clear that a cloud screen-
ing based on the colour index alone, i.e. the sky and broken-
cloud flag, often removes data under extreme aerosol condi-
tions. When using the CI flags, about 60 % of data are re-
moved, whereas the O4-based flag only removes about 35 %
of the data. Additional information from the O4 DSCDs,
i.e. the multiple-scattering flag, is needed to make sure we
can differentiate between high AOD and high COD. This
problem does not arise for Brussels and Jungfraujoch where a
similar amount of data is flagged as cloudy by both methods,
since here the AOD typically does not reach values above 1.5.
It is also clear from Fig.12 that a correct broken-cloud iden-
tification is much more important at the Brussels site, where
clouds contaminate almost 70 % of the data. The Jungfrau-
joch data set clearly shows the low aerosol levels of the alpine
site (AOD< 0.2), with significantly less cloudy conditions
(∼ 45 %) compared to Brussels. An overview of the statistics
of data removal by the cloud-screening method can be found
in Table1.

We also compared the distribution of AOD measurements
and retrievals, as presented in Fig.13. It can be seen that
the cloud screening does not drastically change the observed

shape and peak in the frequency distribution. For Xianghe
we find a significant difference in shape between the 360 and
477 nm retrievals, with the former giving bePRO retrievals
peaking at AOD= 0.05, whereas the latter peak around 0.2.
The difference between our bePRO retrievals and co-located
AERONET measurements is about 0.1, with a shift of the re-
trievals to the left for 360 nm, but to the right for the 477 nm
data. This difference in AOD for different wavelengths was
already found for a similar study of MAX-DOAS aerosol be-
PRO retrievals (Clémer et al., 2010) and could possibly be
due to fitting difficulties during the DOAS retrievals, or un-
certainties on the aerosol phase function used in the bePRO
model. For Jungfraujoch we find very low AOD values, with
a more double-peaked shape in the bePRO retrievals. For
both wavelengths the retrievals peak at AOD= 0.01–0.02,
but with a much narrower distribution at 477 nm. The co-
located AOD measurements peak at AOD= 0.005 and 0.03
respectively for 360 and 477 nm. For the Brussels data set
we again find that the cloud screening mostly removes data
at higher AOD values, changing the observed right shoul-
der of the distribution. The bePRO retrievals and co-located
measurements show a similar peak position, but the latter
show a slightly broader distribution. A more detailed descrip-
tion of the bePRO modelling and retrieved aerosol properties
for the different sites will be presented in an upcoming paper.

6.2.1 Correlation with co-located measurements

Correlation plots between our retrievals and co-located AOD
measurements (AERONET/Brewer/solar irradiance spectra)
can be found in Fig.14. For the correlation study we av-
eraged our retrievals in time steps of 0.2 h for Xianghe and
Brussels. For Jungfraujoch the co-located measurements are
hourly averages so we used the same 1 h time step. Averages
were given a “bad” sky flag if≥ 20 % of individual points
had a “bad” sky flag, and a broken-cloud flag if≥ 10 % of
points had a broken-cloud flag. For the multiple-scattering
flag we flagged the averages if more than one data point was
flagged.

It should be noted that the AOD measurements
(AERONET, Brewer, Cimel) themselves typically only op-
erate when direct-sun observations can be made, which ef-
fectively removes a large part of data to use in the correlation
study. For our correlation study we use non-cloud-screened
co-located AOD measurements, a description of which can
be found inSmirnov et al.(2000), Cheymol and de Backer
(2003), De Bock et al.(2010) andNyeki et al.(2012).

For Xianghe, about 46 % of points with coincident co-
located measurements for the correlation study remain. For
Brussels and Jungfraujoch this is around 20 %. This large
removal of data is not only due to direct-sun restrictions
but also long-time inoperativeness of the AERONET/Brewer
instruments. Another note of caution is that the MAX-
DOAS and other AOD-measuring instruments have different
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Figure 12. Example results of our bePRO AOD retrievals (crosses) compared to co-located AOD measurements (black diamonds/asterisks
for non-screened/screened respectively). The different colours used for the retrievals denote the different cloud-screening results. Data with
a “bad” sky flag are in red, data with a “good” or “mediocre” sky flag are in orange, data with a “good” or “mediocre” sky flag plus no
broken-cloud flag are in green, and data with no multiple-scattering flag are in blue. More results can be found in the online supplementary
material.

viewing directions, and might thus trace regions with slightly
different cloud and aerosol characteristics.

We find a good agreement between our cloud flagging
and the absence of AERONET/Brewer data. For Brussels
∼ 75 % of data without coincident measurements are flagged
as cloudy, for Xianghe this number goes up to 80 % and for
Jungfraujoch around 65 % of data with no co-located mea-
surements are flagged as cloudy. A large percentage of the
remaining data without co-located measurement but no cloud
flag from our method can be attributed to instrumental inop-
erability.

The correlation plots in Fig.14 show the linear regression
results using only the CI information (green/orange crosses)
and the results using only the O4 DSCD multiple-scattering
information (blue diamonds). As already mentioned above,
without the multiple-scattering flag from O4 absorption we

remove non-cloudy data under extreme aerosol conditions,
which is especially important for the Xianghe data set.

For the Xianghe data set we find high correlation coeffi-
cientsR for the non-cloud-screened data.This is due to the
fact that this site has only little influence from clouds, es-
pecially in comparison to Brussels, as can be seen in Fig-
ure12. For both 360 and 477 nm we have a correlation value
of ∼ R = 0.86, and also the linear regression slopesS are
very close toS = 1. For both wavelengths the cloud screen-
ing based on the CI (green crosses) slightly increases the
correlation, with correlation values changing fromR = 0.86
to R = 0.89. We see a difference between the two wave-
lengths: at 360 nm our model seems to overestimate the AOD
in comparison to AERONET, whereas the opposite occurs at
477 nm. Applying the cloud screening improves the slope at
477 nm (fromS = 1.21 totS = 0.91), but worsens the slope
at 360 nm (from 0.95 toS = 0.78).
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Figure 12.Continued.

For both wavelengths it can be seen that a cloud screen-
ing using the multiple-scattering flag improves the observed
correlation slightly with∼ 0.01. It is clear that this method
includes an area of high AOD values which were not cov-
ered using only the CI-based cloud screening, and that for
sites that experience high AOD levels the CI (alone) is not
enough for a correct cloud detection. Overall, the effect of
our cloud screening on the Xianghe data is only minimal,
which is mainly due to the fact that the site is not highly af-
fected by clouds.

For Brussels we find much lower correlation values be-
tween our results and AERONET data. Without cloud screen-
ing, the correlation coefficient has a value ofR = 0.37. When
we remove data with a “bad” sky flag, the correlation coeffi-
cient increases toR = 0.56, and it increases even more when
we also remove data contaminated by broken clouds, reach-
ing a value ofR = 0.62. Applying the cloud screening also
changes the observed slope fromS = 0.60 toS = 0.83 for the
0.2 h averaged time step. However, we find that even though
the O4-based cloud screening improves the correlation com-

pared to the non-cloud-screened data, it does not give as good
R values as the CI-based cloud screening.

When comparing the retrievals with the co-located Brewer
measurements we do not expect to find an exact one-to-
one correlation as the AOD values are determined at dif-
ferent wavelengths, respectively 320 nm and 360 nm for the
Brewer and MAX-DOAS measurements. However, as we ex-
pect the AOD to have similar temporal behaviour at both
wavelengths we can still study the observed correlation. We
find a strong improvement in the observed correlation after
applying our cloud screening, resulting in an increase from
R = 0.53 to 0.7.

The extremely low AOD values for Jungfraujoch make it
difficult to comment on the agreement between the modelled
AOD values and co-located GAW-WDCA measurements, as
most of the points are clustered around AOD= 0.02. Our
bePRO retrievals in some cases strongly overestimate the
AOD, which skews the observed correlation and slope to ex-
treme values ofR = 0.0–0.08 andS = 0. Applying the CI-
based cloud screening only minimally improves the retrieved
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Figure 12.Continued.

Table 1. Overview of the number of retrieval points removed by the cloud-screening procedure. We give both the statistics for CI cloud
screening based only on the zenith elevation angle (top) and cloud screening based on both the 30 and 90◦ elevation angles (bottom). The
first column shows the respective site and wavelength, the second column gives the total number of points before cloud screening, the third
column provides the percentage of data remaining after removing data with a “bad” CI flag, the fourth after removing data with a “bad” CI
flag and a broken-cloud flag. The last column gives the percentage of data remaining after removal of data with a multiple-scattering flag.

Place+ Total number CI-flag= good/med CI-flag= good/med+ No multiple scattering
wavelength of data points No broken clouds

90◦

Xianghe 360 nm 29740 46 % 36 % 63 %
Xianghe 477 nm 30780 46 % 37 % 63 %
Brussels 360 nm 29003 43 % 32 % 35 %
Jungfraujoch 360 nm 7693 72 % 51 % 55 %
Jungfraujoch 477 nm 7952 77 % 54 % 58 %

30 and 90◦

Xianghe 360 nm 29740 39 % 26 % 63 %
Xianghe 477 nm 30780 39 % 26 % 63 %
Brussels 360 nm 29003 28 % 21 % 34 %
Jungfraujoch 360 nm 7693 61 % 34 % 55 %
Jungfraujoch 477 nm 7952 66 % 37 % 58 %
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Figure 13. Histograms of our bePRO AOD retrievals and co-located AOD measurements for the three data sets. The bePRO retrievals are
plotted in full lines, with black, red, green and blue respectively the unscreened data, data with “bad” CI flag, “good” CI flag and no broken-
cloud flag, and no multiple-scattering flag. The co-located measurements are plotted in dashed lines, with magenta being the unscreened data
and dark green the cloud-screened data.

correlation toR = 0.15. We find that the O4-based cloud
screening removes a similar amount of data points but does
not drastically improves the correlation or slope. However, it
is clear that the intrinsic uncertainties of the bePRO retrievals

are too big in the case of very low AOD values to make strong
conclusions on the observed correlations.

In the supplementary material we also show the correlation
between our AOD retrievals and co-located measurements,
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Figure 14.Correlation plots of our bePRO MAX-DOAS AOD retrievals and measured AOD values for the Xianghe and Jungfraujoch data
set at 360 and 477 nm and for the Brussels at 360 nm, in time steps of 0.2 h. for Xianghe and Brussels and 1 h for Xianghe. The full non-
cloud-screening data is given by black crosses. Cloud-screened data (based on the CI) with a “good/mediocre” sky flag are marked in orange,
data with “good/mediocre” sky flag and no broken-cloud flag are marked in green crosses. Data with no multiple-scattering flag (based on
the O4 DSCDs) are marked with blue diamonds. For each sample set we also give the linear regression lines and correlation information.
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but now using cloud-screened AERONET level-15 and
Brewer data. For Jungfraujoch no such cloud-screened data
are available. We find that the AERONET cloud-screening
procedure (Smirnov et al., 2000), based on the stability of
a measured AOD triplet over a 30 sec interval and temporal
AOD hourly and diurnal variability, removes more data com-
pared to our cloud screening, leaving around 28 % for Xi-
anghe and 10 % for Brussels. This results in better correlation
and slope values for both Xianghe and Brussels, compared
to the correlation with the non-screened level-10 data, with
improvement on average of the order of 0.05–0.1 for both
R andS. As the AERONET cloud screening is based only
on temporal variability of the AOD, stable uniform clouds
and aerosol plumes can be misidentified. This could account
for differences between our cloud-screening method and the
AERONET screening, as for example seen in the first plot
of Fig. 1. For this day with a strong rise in aerosol load,
the second half of the day is flagged as mainly cloudy by
AERONET, but not by us.

We also tested the effect of extending the zenith-based
cloud flagging to extend CI flagging with information from
the 30◦ elevation angle. Statistics on this procedure can be
found in Table1. On average we find that using both eleva-
tion angles results in a removal of∼ 10 % more data points.
When we then retain only those measurements which are
flagged as cloud-free by both the 30◦ and zenith CI flags, we
find only a minor improvement in the observed correlation
with co-located measurements. The improvement is highest
for Brussels, as one would expect, since the 30◦ viewing an-
gle will mainly provide additional information in the case
of broken clouds. For Brussels we find an increase in the
observed correlation of 0.06 toR = 0.68. For Jungfraujoch
and Xianghe, the increase is 0.04 and 0.015 toR = 0.2 and
R = 0.9 respectively. We do not see a change in the observed
correlation slopes.

We conclude that our cloud screening has the largest influ-
ence on the Brussels data set, as expected due to it being the
most cloudy site. For the Brussels and Jungfraujoch sites, it
is sufficient to base the cloud screening on information from
the colour index alone, whereas for Xianghe, additional in-
formation from O4 DSCDs is invaluable for a correct cloud
identification, as the colour index alone will result in a re-
moval of non-cloudy data with high aerosol load.

7 Conclusions

We present a cloud-screening method for MAX-DOAS mea-
surements to qualify the sky and cloud conditions. The
method is based on the colour index (CI) and O4 DSCD
retrievals. We focus on colour-index observations made at
zenith elevation, whereas for the O4 DSCDs we use both
the zenith and 30◦ data, but the method can be adapted to
work only with zenith measurements. This means that the
method is not only limited to MAX-DOAS instruments, but

can also be applied to traditional zenith-sky DOAS measure-
ments The cloud screening based on the CI has the advan-
tage that it only needs two relative intensities, which can be
measured by different types of non-DOAS instruments. The
method based on the O4 DSCDs has the advantage of giving
better results for sites experiencing extreme aerosol concen-
trations and does not rely on simulations.

We use the calculated CI values combined with CI sim-
ulations to characterize the general sky conditions, in the
form of the sky flag, and define three distinct regions cor-
responding to clear sky, slightly decreased visibility (thin
clouds/aerosols), and strongly decreased visibility (thick
clouds/extreme aerosols). At this point no distinction is made
between a visibility decrease due to clouds and/or aerosols.
The temporal variation of the CI is used to identify the
presence of broken or scattered clouds, and is given by the
broken-cloud flag. The third flag, the multiple-scattering flag,
is based on the O4 DSCDs and it detects (optically thick)
clouds by tracing enhanced multiple scattering.

The values of the CI not only depend on the sky condi-
tions, but also on the instrument characteristics and wave-
length settings, and it is thus impossible to define a stan-
dardized method that is valid for all different measurement
sites. For this reason we scale the calculated observed CI
values to CI simulations. The drawback to this approach is
that a substantial amount of data, which span observations
under both good and bad sky conditions, is needed to verify
the applied scaling. Additional data, such as from Cimel or
Brewer instruments, can help resolve this issue. Ideally, all
MAX-DOAS instruments should have well-defined and fre-
quent calibration procedures, to eliminate the instrumental
effects and allow for a direct comparison of the CI.

We applied our cloud-screening method to three large
multi-year data sets of MAX-DOAS measurements in sub-
urban and rural regions, namely Xianghe, Brussels and
Jungfraujoch. All sites are characterized by different typi-
cal sky conditions: Xianghe is generally strongly polluted,
with days of extreme aerosol loads. Brussels on the other
hand shows only mild aerosol pollution but suffers from year-
round cloudy conditions. The alpine station of Jungfraujoch
shows very low aerosol pollution levels and average cloud
pollution.

We find that our method works very well to identify obser-
vations made under cloudy conditions using only the colour
index. In the case of Xianghe the method is even capable of
discriminating between high AOD and high COD by using
additional information from the O4 DSCDs. For extremely
cloud-prone sites like Brussels, our method removes up to
65 % of data after cloud screening. When we apply the cloud
filter to our aerosol retrievals we find an improvement in the
agreement with other co-located measurements, such as from
Cimel and Brewer instruments, both in correlation and slope,
which increases strongly for sites with the high cloud rates.
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