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Abstract. One of the main challenges for meteorological and
hydrological modelling is accurate rainfall measurement and
mapping across time and space. To date, the most effective
methods for large-scale rainfall estimates are radar, satel-
lites, and, more recently, received signal level (RSL) mea-
surements derived from commercial microwave networks
(CMNs). While these methods provide improved spatial res-
olution over traditional rain gauges, they have their limita-
tions as well. For example, wireless CMNs, which are com-
prised of microwave links (ML), are dependant upon exist-
ing infrastructure and the ML’ arbitrary distribution in space.
Radar, on the other hand, is known in its limitation for accu-
rately estimating rainfall in urban regions, clutter areas and
distant locations. In this paper the pros and cons of the radar
and ML methods are considered in order to develop a new
algorithm for improving rainfall measurement and mapping,
which is based on data fusion of the different sources. The
integration is based on an optimal weighted average of the
two data sets, taking into account location, number of links,
rainfall intensity and time step. Our results indicate that, by
using the proposed new method, we not only generate more
accurate 2-D rainfall reconstructions, compared with actual
rain intensities in space, but also the reconstructed maps are
extended to the maximum coverage area. By inspecting three
significant rain events, we show that our method outperforms
CMNs or the radar alone in rain rate estimation, almost uni-
formly, both for instantaneous spatial measurements, as well
as in calculating total accumulated rainfall. These new im-
proved 2-D rainfall maps, as well as the accurate rainfall
measurements over large areas at sub-hourly timescales, will
allow for improved understanding, initialization, and calibra-

tion of hydrological and meteorological models mainly nec-
essary for water resource management and planning.

1 Introduction

The need for reliable, high-resolution rainfall measurement
and mapping is increasing, as such data are the principle
drivers for hydrometeorological models, climate studies, ur-
ban planning and flood warning systems. Current methods
such as rain gauges, radar, microwave links (ML), and even
satellites can provide measurements, yet the ability to gener-
ate high-resolution maps from them is limited. Rain gauges,
which provide the most reliable estimates, are limited due
to their point location measurements, which cannot provide
accurate spatial estimates, especially in areas of complex to-
pography or high spatial variability (Rayitsfeld et al., 2012).

Other methods which have been adopted to overcome this
spatial challenge, include radar estimates and, more recently,
measurements from wireless ML networks (Messer et al.,
2006). Naturally, due to both environment and technologi-
cal limitations, the estimates from such sources may have
high levels of uncertainty and errors (e.g.Mackenzie et al.,
1993). For meteorologists and hydrologists attempting to use
this information to either better understand storm dynamics
or to inform infrastructure planning, each of these methods
has unique information. Given this plethora of data, it has re-
cently been acknowledged that precipitation estimates with
a spatial and temporal resolution of 4 km and 30 min, respec-
tively, are realistic target levels useful for many researches
and applications (Sorooshian et al., 2011). This is particu-
larly true for estimation of orographic rainfall distribution
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on the high-meso-gamma-scale resolution, as reviewed by
Alpert et al.(1994). Unfortunately, the formats of the data,
as well as the varying scales and limitation on their availabil-
ity, make it difficult to use them in a complementary way.

In this study we present a new technique for integrating
between radar and commercial microwave networks (CMNs)
data in order to improve the accuracy and reliability of rain-
fall estimates. The integration of multiple sources allows for
weighing the estimates appropriately in line with the ad-
vantages and disadvantages of the multiple rain sources in-
cluded. This design leaves room for the incorporation of
other data sources (e.g. satellites) in the future.

Furthermore, this paper also demonstrates how the integra-
tive approach provides better instantaneous as well as cumu-
lative rainfall estimates, both spatially and temporally, when
compared with actual rain measurements provided by rain
gauges over the same area. Specifically, we analysed three in-
tense rain events which occurred over Israel in January 2010,
January 2013 and December 2009.

This paper is organized as follows: Sects.1.1 and1.2 de-
scribe the different measurement sources used in this paper.
Sect.1.3covers the study area and the details surrounding the
chosen rain events. In Sect.2 we provide a full description of
the newly developed integrative approach. This is followed
by results and performance evaluations of such an integra-
tive tool, detailed in Sect.3. Finally, conclusions and future
developments of the application are provided in Sect.4.

1.1 The weather radar

Over a period spanning more than half a century, start-
ing in the late 1940s, radars have been used for estimat-
ing rainfall measurements, as initially proposed byMarshall
et al.(1947). Among these radars, short-range weather radars
have also been a subject of increasing interest by many re-
searchers, even to this day (Charvat et al., 2014). The well-
known empirical relation between the radar reflectivity and
the rainfall intensity is shown in Eq. (1):

Z = arb, (1)

wherer is the rain rate (in mm h−1), Z is the radar reflectivity
(in mm6 m−3), anda andb are known constants, which are
mainly a function of the drop size distribution (DSD). These
parameters may vary according to different rain types both
between and within storms, which can lead to high levels
of error and uncertainty in the radar, as discussed inMorin
et al. (2003). Additional sources of the radar uncertainties
(Germann et al., 2006) include attenuation at C and X bands,
bright band contamination, and clutter regions.

Additionally, the spatial expansion effect of the radar beam
results in an increase in the reflective volume by up to a few
kilometres, which may lead to partial beam filling; this in
turn may result in over (or under) estimation of the rain rates.
Moreover, radar measurements aloft are uncertain estimates
of near-ground rainfall due to ground clutter and changes in

DSD as a function of height due to evaporation, coalescence,
raindrop collection and breakup (Prat and Barros, 2009). In
order to deal with these uncertainties, different approaches
have been proposed including the use of a polarimetric and
Doppler weather radars (e.g.Bringi and Chandrasekar, 2001;
Doviak et al., 1979). Such systems use the shape of the
rain drops and allow for improvement in rain rate estimation
(Meischner et al., 1991).

Another limiting factor in the radar accuracy is the loca-
tion of the radar. The received signal can provide reasonable
rainfall estimation for up to around 100 km, though this is
also dependent upon topography and the height of the radar
beam. Thus, for objects too close to the radar (i.e.< 1 km),
or too far (i.e.> 100 km), the reconstruction is characterized
by much uncertainty. In cases where the distance is greater
than 150 km, the radar cannot provide an estimation. In other
words, the weather radar inaccuracy increases as the distance
to the target area grows (with respect toR2). This fact can
also be derived from the radar equation (Skolnik, 1962)

Pr = PtτG2λ2θ2 c

512π2

η

R2
∝

Const

R2
, (2)

wherePr is the received power,Pt is the transmitted power,
τ is the temporal duration of a pulse,G is the gain of the
transmitting antenna,λ indicates the radar wavelength,θ is
the beam width (in radians),c is the speed of light, andη
(in dB km) is the radar cross section (RCS) of the target area
(Mackenzie et al., 1993). R is the distance from the transmit-
ter to the target area. One can see that the more distant the
area (target) is from the radar, the lower the received signal
(denoted asPr) is, and hence the increase in inaccuracy.

1.2 Microwave links – ML

A wireless microwave signal’s strength, also known as RSL
(received signal level), is greatly affected by precipitation
(mainly rain). The well-known empirical attenuation–rain-
rate relation is given by (Olsen, 1978)

A = αRβL, (3)

whereA (expressed in dB) is the measured RSL;R (ex-
pressed in mm h−1) is the path averaged rain rate (along the
microwave link);L (expressed in km) is the link length; and
α and β are constants, depending mainly on the link fre-
quency and DSD, as discussed inÖrs et al.(1999).

The RSL is measured by a variety of antennas distributed
in space (e.g. Fig.1), with typical frequencies of 18–23 GHz,
and lengths that vary by between 1 and 20 km. The measure-
ments are given in a preset temporal resolution, with a known
quantization level. Because the goal is to reconstruct accu-
rate rain field maps, we inspect only significant rain events;
thus, we may assume that the RSL has very high signal-to-
noise ratio (SNR). A typical such RSL is shown in Fig.2.
In the figure, the RSL is provided with a magnitude resolu-
tion of 0.1 dB, at 15 min sampling rate, for a link located in
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Figure 1. Left: 96 ML in space divided into 6 areas of interest. Black lines indicate the links, and the blue dashed lines indicate the convex
of each area of interest. Right: the radar coverage area, where the blue “+” sign indicates the radar coordinates – Bet Dagan. The radar’s 50,
100 and 150 km radius distances are also indicated.

the centre of Israel (between Ramle and Hasmonaim; pro-
vided by Cellcom Ltd.). In order to overcome non-linearities
in the measurements, the RSL is presented after a preprocess-
ing stage, as detailed in the M.Sc. thesis ofLiberman(2013).

Since the use of commercial ML for rainfall monitoring
was first suggested byMesser et al.(2006), multiple method-
ologies for rainfall estimation and mapping have been sug-
gested (e.g.Goldshtein et al., 2009; Overeem et al., 2013).
Furthermore, the use of ML for precipitation monitoring in
general and rainfall monitoring in particular has been a sub-
ject of interest for many researchers all around the world
since 2006, and remains so to this day (e.g.Chwala et al.,
2012; Overeem et al., 2014, and references therein).

In this paper, a novel algorithm which has been recently
developed for recovering instantaneous rainfall maps using
RSL measurements is used in the proposed integration algo-
rithm. The basis of this algorithm is described as follows, and
more details can be found inLiberman and Messer(2014).

For any given set of RSL measurements from ML, the goal
is to construct the most accurate approximation of the rain
rate along the links, and then to reconstruct the rain field
in the link’s vicinity. Suppose we have a set of observed
rainfall-induced RSL attenuations fromM ML in a given
geometry (denoted asAj , for j = 1, . . . ,M). By modifying
Eq. (3), each link’s RSL can be written as

Aj = αjR
βj

j Lj =

∫
Lj

αj r
βj (x)dx, (4)

wherer(x) (expressed in mm h−1) is the true instantaneous
rain rate at a pointx along the link,Lj (expressed in km)
is thej th link length, andαj andβj are the knownj th link
constant parameters (Örs et al., 1999). Now, by dividing each
link into nj (small enough) equal segments, we may approx-
imate the integral in Eq. (4) and derive the following non-
linear relation between each link’s RSL and the actual rain
rate along it (i.e. along an arbitrary line in space):

Aj ≈ αj

∑nj

i=1
r
βj

ij lij , (5)

wherelij (lij � Lj ) is the length of theith segment for each
j th link andrij is the unknown rain rate in eachlij segment.

In order to solve Eq. (5), the algorithm uses the fact that
the rain field is generally represented in a sparse manner, as
has often been observed in the literature (e.g.Morin et al.,
2006). This means that, for some extent of the rain field, it is
reasonable to assume that the solution for eachrij (denoted
as the rain rate for eachj th link in eachith segment where
the ML are available) is mostly sparse. Therefore, the opti-
mizationL1 problem (as discussed inChen et al., 1998) can
be solved. By doing so, a unique and optimal recovery of the
rain rates along the ML can be guaranteed if some regular-
ity conditions, mainly regarding the links distribution and the
derived solution for theL1 problem, are satisfied.

The next step is to construct a 2-D rain field map from the
estimated solution of Eq. (5). That can be achieved by using
either parametric or non-parametric interpolation methods.
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Fig. 1. left: 96 ML in space divided into 6 areas of interest. Black lines indicate the links, and the blue

dashed lines indicate the convex of each area of interest. Right: The radar coverage area, where the blue ”+”

sign indicates the radar coordinates - Bet Dagan. The radar’s 50, 100, and 150 km radius distances are also

indicated.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
−90

−85

−80

−75

−70

−65

−60

Time

A
tt

e
n

u
a

ti
o

n
 (

d
B

)

24 hours Of Measured RSL [db], With 0.1 (dB) quantization

Fig. 2. Example of 24 hours of measured RSL (dB), during a rain event which occurred on 07-January-2013,

for a single 14 km link, operating at a frequency of 21.8 GHz.

17

Figure 2. Example of 24 h of measured RSL (dB), during a rain
event which occurred on 7 January 2013, for a single 14 km link
operating at a frequency of 21.8 GHz.

1.3 Available data and coverage area

The coverage area of the radar includes all the coordinates in
space that lie within 0.1 ≤ Ri ≤ 150km from the radar loca-
tion, whereRi indicates the radar radius distance from each
[xi, yi] coordinate. In this study, the data from the weather
radar, which is located in Bet Dagan (32.007◦ N, 34.814◦ E),
is provided by the Israel Meteorological Service (IMS – see
Fig. 1). The measurements from the radar are provided at
a resolution of 1 km2 every 5 min. Though the radar em-
ployed in Israel has “automatic clutter removal” (Skolnik,
1962), dominant clutters can still be observed, mainly in the
north of Israel, where many hilly areas are found (e.g. in Ra-
mat HaGolan: 32.58◦ N, 35.44◦ E).

Regarding the ML, we define the covered areas dependent
upon the location of the specific ML. Here, operational ML
data in central-southern Israel was provided by Cellcom Ltd.
(i.e. 96 operating microwave links) and Pelephone Ltd. (30
operating microwave links), as shown in Fig.1. The ML op-
erate at frequencies of 18–23 GHz and are horizontally or
vertically polarized, with lengths that range from 3 to 20 km
and with magnitude resolutions of 0.1 dB for Cellcom Ltd.
and 1 dB for Pelephone Ltd., which may cause a degradation
in the accuracy of the estimated rainfall using ML. Still, be-
cause we analysed only heavy rain events in this study (high-
SNR data, Sect.1.2), the effect of the magnitude resolu-
tion on the reconstruction accuracy is negligible. In addition,
15 min time intervals of minimum and maximum RSL val-
ues were provided by Cellcom and 1 min of temporal resolu-
tion data were provided by Pelephone Ltd. In this study, three
major rain events were chosen for the analysis: event 1, 18–
19 January 2010 (24 h of rain); event 2, 7–10 January 2013
(96 h of rain); and event 3, 30 December 2009 (24 h of rain).

Rainfall estimates from the set of events 1, 2 and 3 were
validated against a network of 70 tipping-bucket rain gauges
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Figure 3. Distribution of the 70 available rain gauges; each orange
asterisk indicates a rain gauge location.

distributed throughout the region (as illustrated in Fig.3)
recording at a time resolution of 10 min, where each rain
gauge provides ground truth (accumulated) rain measure-
ments in millimetres, i.e. water volume per m2.

2 The integrative approach

In this section, we detail the stages of the integration tech-
nique, whose main goal is to combine the different rainfall
measurements in a way which optimally weights the pros
and cons of the various methods. As mentioned above, the
radar data are provided by the IMS, while the RSL data are
provided by the cellular companies Cellcom and Pelephone.

Data assimilation is widely used in many environmen-
tal fields, particularly in weather modelling (e.g.Chahine
et al., 2006) and in hydrological modelling (e.g.McLaughlin,
2002). In data assimilation, we are required to form a rela-
tionship between the state we want to estimate (e.g. the 2-D
distribution of rainfall intensity) and the different observa-
tion sources (e.g. radar and ML). Thus, we can assume that
the process relationship between the observations and the de-
sired estimate is represented by a forward model (denoted as
f ), which is defined in Eq. (6):

Rint(xi,yi) = f (Rrad;i,Rml;i), (6)

whereRint(xi,yi) is the required state (rainfall intensity, in
eachxi,yi coordinate in space), andRrad;i andRml;i are the
rainfall intensities obtained by the radar and the ML observa-
tions, respectively, for eachxi,yi coordinate in space (where
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data are available). Figure1 shows the study area where data
from radar and/or ML are available (i.e. in the case of the
ML, we divided the space into areas of interest).

In order to generate the most reliable reconstruction of
rainfall maps, we define the following rules, based on the
characteristics of the different measurement sources:

1. For all the coordinates which are not covered by ML
(i.e. the coordinates where the reconstruction by the ML
is not available, e.g. in Fig.1), we only regard the re-
construction received by the radar, if available, i.e. any
[xi,yi] coordinate which is not covered by the ML but
satisfies 0.1 ≤ Ri ≤ 150.

2. Inside an area of interest, with available ML, we check
whether both the following regularity conditions are sat-
isfied:

a. The distribution of the links in space satisfy the
reconstruction ability condition, as discussed and
proven inSendik and Messer(2012), which states
that by having enough ML in some area of interest,
it is possible to achieve a highly reliable recovery of
the rainfall along the microwave links in that area.

b. The estimated rain intensities in space along the mi-
crowave links (which are distributed in an arbitrary
manner in space) satisfy the generalized Shannon–
Nyquist sampling theorem for non-uniform sam-
pling, as detailed inEldar(2003).

3. If condition 1 and condition 2 are not satisfied inside
an area of interest, we apply a new weighted algorithm
using both of the sources in the study area. The rainfall
measurement will then rely both on the links distribu-
tion in space and the radar radius, as shown in Eq. (2).

If condition 2 is satisfied in a given area, an optimal recov-
ery of the rainfall, using ML, in that area is possible (see
Sect.1.2). Hence, we do not consider the radar reconstruc-
tion in that area at all. If condition 3 is satisfied, we use some
sort of integration scheme between the ML and the radar. For
this integration we propose a weighted linear model, mainly
due to the fact that linear models have been adopted and have
proven useful (e.g.Daley, 1993) in previous data assimilation
works, especially for hydrological and weather forecasts.

It should be noted that both the radar and the ML data
undergo some preprocessing stage before the integration is
applied. For example, dominant clutter areas (denoted as
Clutter), which are characterized by much uncertainty in the
radar reconstruction (see Sect.1.3), are determined by using
prior information and rain gauge measurements. Regarding
the ML RSL data, a zero-level reduction, noise removal and
other preprocessing methods are applied before the rainfall
maps are created, as further discussed inLiberman(2013).
Hence, by using the proposed conditions above, we may

rewriteRint in Eq. (6) as follows Our:

Rint(xi,yi) =



Rrad;i, 0.1km≤ Ri ≤ 150km∩ Ni = 0

Rml;i, Ni > 1∩ (Ri ≥ 150km∪ Ri

≤ 0.1km∪ Condition 2∪ Clutter)

fLin(Rml;i,Rrad;i), Ni > 0∩ 0.1km

≤ Ri ≤ 150km∩ No Clutter
(7)

In Eq. (7), Rrad;i andRml;i are the rain rate values, in the
[xi,yi] coordinates, for the radar and ML, respectively.Ni

indicates the number of links in the area of interest that the
[xi,yi] coordinate belongs to.Ri is the distance (denoted as
the radar radius, expressed in km) between the radar location
and each[xi,yi] coordinate in space.∪ and∩ indicate the OR
and AND operators, respectively.fLin is a linear function of
Rml;i andRrad;i , which is defined by

fLin(Rml;i,Rrad;i) = α̃rad;iRrad;i + α̃ml;iRml;i, (8)

where fLin is calculated in each[xi,yi] “common” coor-
dinate (i.e. where rain intensities are provided both by the
radar and ML) in space.̃αrad;i andα̃ml;i denote the normal-
ized radar and ML weights, respectively. These weights are
a function of the radar radius (denoted asRi) and the num-
ber of links in the area of interest (denoted asNi) in each
[xi,yi] common coordinate (i.e. where condition 3 is satis-
fied). Sinceα̃rad;i andα̃ml;i are subject tõαrad+ α̃ml = 1, we
may model these weights as follows:

α̃rad;i =
αrad

αrad+ αml
(9a)

α̃ml;i =
αml

αrad+ αml
, (9b)

αrad and αml are denoted as the radar and ML non-
normalized weights, respectively. From Eq. (9), it is clear that
α̃ml + α̃rad = 1; hence, this offered model is valid.

As mentioned before, the accuracy in the reconstruction
of rain fields, derived by the radar and the ML, is mainly
dependent on the number of links and the radar radius (dis-
tance from the target area) in each coordinate. Thus, for each
[xi,yi] coordinate which satisfies condition 3, we can model
αml andαrad as follows:

αrad =
c2

r

c2
r + R2

i

(10a)

αml =
N2

i

N2
i + c2

l

, (10b)

wherecr andcl are the radar and ML weight constants, re-
spectively. From the definition of the weights in Eq. (10), it is
clear that, asNi is higher,α̃ml;i is higher and, accordingly, as
Ri is lower (closer to the radar location),α̃rad;i is higher; thus,
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it is the natural choice of the weights. It should be noted that
other forms of weights (e.g. exponential weights) were also
considered for the integration, but these have been proven
to be less accurate than the ones proposed here. Future work
may focus on other forms of weights for the integration. Now,
by substituting Eq. (10a) into Eq. (9a), and Eq. (10b) into
Eq. (9b), we may derive the following relation:

α̃rad;i =
(N2

i + c2
l )c

2
r

(N2
i + c2

l )c
2
r + (c2

r + R2
i )N

2
i

= hi(cl,cr), (11a)

α̃ml;i =
(c2

r + R2
i )N

2
i

(N2
i + c2

l )c
2
r + (c2

r + R2
i )N

2
i

= 1− hi(cl,cr). (11b)

The variablehi(cl,cr) is a non-linear function of the un-
known scalar variables –cl,cr, while for each[xi,yi] coor-
dinate,Ni andRi are known. Now, if we substitute Eq. (11)
into fLin(Rml;i,Rrad;i) in Eq. (7), we derive the following re-
lation betweenfLin(Rml;i,Rrad;i) andhi(cl,cr) , hi , that is:

fLin(Rml;i,Rrad;i) = hiRrad;i + (1− hi)Rml;i, (12)

where one can see that 0≤ hi ≤ 1.
Now, by definingRg;i as the actual rain intensity at each

[xi,yi] coordinate, as measured by the rain gauges, we can
minimize the cost function, as defined in Eq. (13), in order
to derive the optimal solution for the unknown variables (i.e.
for [cl,cr]):

C(cl,cr) =

∑
i

(hiRrad;i + (1− hi)Rml;i − Rg;i)
2. (13)

By minimizingC(cl,cr) in Eq. (13), we may derive our esti-
mate for[cl,cr], which is given by

[ĉl, ĉr] = argmin
cl ,cr

{C(cl,cr)}. (14)

We point out that eachRg;i (denoted as the rain gauge in the
[xi,yi] coordinate) provides measurements of the amount of
rain (in mm) for a certain amount of time. Therefore, in or-
der to derive the desired estimates, as shown in Eq. (14), we
analysed three heavy rain events which have occurred over
the last 5 years in Israel, specifically on 18 January 2010,
7–10 January 2013 and 30 December 2009. We obtained an
estimate for the unknown variables[cl,cr] using the rain in-
tensities available from the radar, ML, and rain gauges for all
available coordinates where each inspected coordinate satis-
fied condition 3 from above and a rain gauge measurement
was available at that coordinate as well. The non-linear esti-
mation problem in Eq. (14) might be solved in various ways
(e.g. Marquardt, 1963; Wan and Van Der Merwe, 2000).
In this research we used a non-linear least-squares iterative
method, as discussed inByrd et al.(1987).

3 Results

This section describes the results of the rainfall measure-
ments from different sources (only radar, only ML, and

the integrated method). The first two parts define the study
area and parameter estimation, respectively. In the third part
we present the results, including reconstructed maps, scatter
plots, performance evaluations, and graphs showing statisti-
cal and numerical comparisons.

3.1 Study area

The study area is located in the centre of Israel (approxi-
mately 22000km2), where both radar and ML data are avail-
able. Most of the region (from the north to the centre) is cov-
ered by the IMS radar, located in Bet Dagan, as shown in
Fig. 1, where the areas covered by ML are also delineated.

The rain rates for calibration and validation of the rainfall
measurements were recorded by 70 rain gauges distributed in
space (see Fig.3). Moreover, the total attenuation of 96 oper-
ational telecommunication ML was also used. The ML oper-
ate at a time resolution of 15 min; the radar operates at a spa-
tial resolution of 1km2 with 5 min time intervals; and the rain
gauge network, composed of 70 tipping-bucket gauges, pro-
vides measurements at a time resolution of 10 min.

In order to make the data from the rain gauges, ML and
radar comparable, we inspect only the common times which
occur every 30 min (i.e. at 00:00, 00:30. . . 23:30 IDT (Israel
Daylight Time)). The ML used in this application operate at
18–23 GHz, with horizontal (or vertical) polarization, with
lengths that vary by between 3 and 20 km and with a magni-
tude resolution of 0.1 dB. The reconstruction adopted for the
ML is the instantaneous rain field reconstruction developed
by Liberman et al. (2014) as described in Sect.1.2; however,
as mentioned before, any reconstruction technique can be ap-
plied (e.g.Zinevich et al., 2010; Overeem et al., 2013) for the
proposed analysis as well.

3.2 Parameter estimation

For the estimation of the parameters, we used 40 different
points in space, all of which had available data from all
sources. Given the above, we have chosen two of the three
events mentioned above for the provided analysis of the new
technique by using a leave-one-out procedure for calibration
and validation of the measurements. Specifically, for the set
of rain events 1, 2 and 3, only data from the other two events
are used as follows:

1. Event 1: 7–10 January 2013, 30 December 2009;

2. Event 2: 18 January 2010, 30 December 2009;

3. Event 3: 7–10 January 2013, 18 January 2010.

Given the large amount of data, we assume that the estima-
tions will be similar for all inspected events. The non-linear
least-squares iterative unique solution yielded the following
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Fig. 4. Example of the rain field reconstruction for the 18-Jan-2010 rain event (event(1)) at 17:00. Top left:

Rain gauges. Top right: Radar. Bottom left: ML. Bottom right: The proposed integration.
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Figure 4. Example of the rain field reconstruction for the 18 January 2010 rain event (event 1) at 17:00 IDT (Israel Daylight Time). Top left:
rain gauges. Top right: radar. Bottom left: ML. Bottom right: the integration.

estimation results for each one of the examined events:

[ĉl, ĉr]Event1 = [9.82,98.89], (15a)

[ĉl, ĉr]Event2 = [10.64,100.17], (15b)

[ĉl, ĉr]Event3 = [10.45,101.02]. (15c)

In (15c), [ĉl, ĉr] are denoted as the estimations for[cl,cr] for
each their respective events. While theĉr values are simi-
lar, there is a difference of about 8 % in theĉl estimations
of event 1 with respect to events 2 and 3. However, they are
still close enough to provide reliable estimations. Moreover,
as the number of measurements from rain events increases,
the parameter estimation will be stronger, hence improving
the application of the algorithm for future use. In short, by
using these values, we assume an optimal linear weighted in-

tegration when considering the radar and ML for the purpose
of rain field reconstruction for each one of the inspected sets
of rain events (1, 2 and 3).

3.3 The reconstruction evaluation

In order to best evaluate the performance of the different
measuring techniques, we present both the rainfall maps
and comparative statistics. For the purpose of comparing the
different measurements to actual rain intensities over sev-
eral coordinates in space, we calculate the spatial correla-
tion, RMSE (the spatial root-mean-square error) and RB (the
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Fig. 5. Example of the rain field reconstruction for the 09-Jan-2013 rain event (event (2)) at 14:30. Top left:

Rain gauges. Top right: Radar. Bottom left: ML. Bottom right: The proposed integration.
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Figure 5. Example of the rain field reconstruction for the 9 January 2013 rain event (event 2) at 14:30. Top left: rain gauges. Top right: radar.
Bottom left: ML. Bottom right: the integration.

relative bias, in %), which are defined as follows:

ρ =

∑M
j=1

∑N
i=1(x̂i,j − µx̂)(xi,j − µx)√∑M

j=1
∑N

i=1(xi,j − µx)2
∑M

j=1
∑N

i=1(x̂i,j − µx̂)
2
, (16a)

RMSE=

√
1

NM

∑M

j=1

∑N

i=1
(x̂i,j − xi,j )2, (16b)

RB =
1

NM

∑M

j=1

∑N

i=1

x̂i,j − xi,j

xi,j

× 100, (16c)

whereρ is defined as the spatial correlation. In Eq. (16),
µx̂ =

1
NM

∑M
j=1

∑N
i=1 x̂i,j and µx =

1
NM

∑M
j=1

∑N
i=1xi,j

are defined as the mean spatial rain rates of the estimated

rain measurements and the true measurements, respectively.
In Eq. (16), the indexj refers to each time step (total ofM

time steps), while indexi refers to each[xi,yi] spatial coor-
dinate in space (total ofN coordinates).

In Figs. 4, 5 and 6, the rain field reconstructions esti-
mated by the different sources – rain gauges, radar, ML, and
the integrated method – are illustrated. Maps are shown for
a given time step for each of the analysed events (i.e. 18 Jan-
uary 2010 at 17:00, 9 January 2013 at 14:30 and 30 Decem-
ber 2009 at 16:00 IDT). From these figures, it is clear that the
integrated method expands the spatial coverage substantially.

In addition, the integrative method improved the estima-
tions for many of the areas where radar coverage is poor and
ML exist, specifically the area of Mitzpe Ramon. As can be
observed, the radar cannot provide an estimate for the rain
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Fig. 6. Example of the rain field reconstruction for the 30-Dec-2009 rain event (event (3)) at 16:00. Top left:

Rain gauges. Top right: Radar. Bottom left: ML. Bottom right: The proposed integration.
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Figure 6. Example of the rain field reconstruction for the 30 December 2009 rain event (event 3) at 16:00 IDT. Top left: rain gauges. Top
right: radar. Bottom left: ML. Bottom right: the integration.

rate if the distance between the radar and a coordinate in
space is higher than 150 km, as has also been discussed in
Sect.1.1.

Figures7, 8 and9 depict the performance evaluations for
events 1, 2 and 3, respectively. The correlation coefficient
(spatial correlation) and the RMSE are shown, both evalu-
ated for the common times spanning the rain event. Each line
in the figures is the comparison between one of the sources
as compared to actual rain intensities measured by the rain
gauges. The added value of the integrated technique is evi-
dent in its lower RMSE and RB while showing higher cor-
relation values in all events. Moreover, each method’s per-
formance was also evaluated over the entire event. This is
provided in Figs.10, 11and12 for events 1, 2 and 3, respec-

tively, while inspecting the mean correlation, RMSE and the
relative bias, as defined in Eq. (16).

Furthermore, we had also evaluated the probability of de-
tection (POD), the false alarm ratio (FAR) and the critical
success index (CSI) on the proposed integration technique
and the radar. These measures are very important criteria for
assessing the quality of the method. For this, we use the def-
inition of the relative error, i.e.φ , |x̂−x|

x
, wherex denotes

a rain gauge (ground truth) measurement andx̂ is the rain
intensity estimation at the same point. Thus, a success is de-
clared if φ < ε (e.g. ε = 10 %); otherwise it is regarded as
a miss. A false alarm is declared if a rain gauge indicated no
rain but the estimation did. Given that definition, by denoting
S as total successes,M as total misses, andF as total false
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Figure 7. Evaluation analysis of event 1, where the radar (black line), the proposed integration technique (red line) and ML (blue line) are
compared to the rain gauges at the common times. Left: RMSE. Right: spatial correlation.
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Figure 8. Evaluation analysis of event 2, where the radar (black line), the proposed integration technique (red line) and ML (blue line) are
compared to the rain gauges at the common times. Left: RMSE. Right: spatial correlation.

alarms, the given criteria can be evaluated by POD, S
M+S

;

FAR , F
F+S

; CSI , S
S+M+F

. By considering all the avail-
able rain gauge measurements, for all the inspected events
at all given time frames, the integration algorithm achieved
the scores of (withε = 10%) POD≈ 89%, FAR≈ 9%, and
CSI≈ 82%. Under the same conditions, the radar achieved a
performance of POD≈ 74 %, FAR≈ 19%, and CSI≈ 68 %.
These results once again prove the high quality of the pro-
posed integration technique. It should be noted that, even
when lower values ofε were used, similar results were ob-
tained.

In addition to the performance evaluations, Figs.10, 11
and12 also demonstrate the scatter plots, each with its cor-
responding regression line (black line) for events 1, 2 and 3,
respectively.

From these figures it is clear that the disparity of the points
is the lowest for the integration algorithm with respect to the
ML and the radar scatter plots (due to the under and over
estimation of their reconstructions). This implies that the in-
tegrative approach is the most accurate one.

The highest correlations, lowest RMSE and lowest (abso-
lute) RB for all three rain events were obtained using the
integration algorithm. From both the maps and the compar-
ative statistics, the integrated method provides a new way
to improve rainfall estimation spatially and over time. The
effectiveness of using this particular integration scheme, as
in Eq. (7), can be understood by examining the RB of the
radar and ML, which showed an over- and underestimation,
respectively, for all the inspected events.
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Figure 9. Evaluation analysis of event 3, where the radar (black line), the proposed integration technique (red line) and ML (blue line) are
compared to the rain gauges at the common times. Left: RMSE. Right: spatial correlation.

Figure 10. Rain rate scatter plots and performance evaluations of
the integration (left), ML (middle) and radar (right) with respect to
all the available rain gauges for event 1.

Our last analysis of the data was comparing the total accu-
mulated rainfall over a specific point located inside the study
area for the duration of the rain event. The accumulated rain
was calculated as defined in the following relation:

R(Tk) =

Tk∫
0

rij dt ≈

Tk∑
r=0

rij (Tr)1T (mm), (17)

whererij is the rain rate (mm h−1) in the[xi,yj ] coordinate,
1T is the time resolution (e.g. for the rain gauges 1/6 h),Tk

is the accumulation time,Tr indicates each time sample for
eachrij (i.e. rij (Tr) is the rain rate at timeTr, expressed in
mm h−1), andR(Tk) indicates the accumulated rain for each
Tk (e.g. forTk = 00:30,R(Tk) is the accumulated rain from
00:00 to 00:30 IDT).

Figure 11. Rain rate scatter plots and performance evaluations of
the integration (left), ML (middle) and radar (right) with respect to
all the available rain gauges for event 2.

The sites Dorot and Ramle were chosen for their respective
rain events given the availability of their nearby ML data, as
well as their distance from the radar. The data availability
from the sources, for each site, is detailed as follows:

1. Ramle site: [31.83◦ N, 34.96◦ E], 18 January 2010: 24 h
of rain; 30 operating ML in the area of interest (as
shown in Fig.13), provided by Pelephone, are available.
The links operate at a frequency of 18–23 GHz (for each
link) and the link lengths vary by between 1 and 15 km.
The RSL data from the ML is given at a time resolution
of 1 min with magnitude resolution of 1 dB. Distance
from the Bet Dagan radar is 17.12 km.

2. Dorot site: [31.50◦ N, 34.64◦ E]; 7–10 January 2010,
96 h of rain, and 30 December 2009, 24 h of rain.
Twelve operating ML in the area of interest (as shown

www.atmos-meas-tech.net/7/3549/2014/ Atmos. Meas. Tech., 7, 3549–3563, 2014



3560 Y. Liberman et al.: Integration between WSN and radar for improved rainfall mapping

0 20 40 60
0

5

10

15

20

25

30

35

40

Rain Gauges mm/h

In
te

gr
at

io
n 

m
m

/h

Integration Scatter Plot

 

 
0.89*x + 0.04170

0 20 40 60
0

5

10

15

20

25

30

35

Rain Gauges mm/h

M
L 

m
m

/h

ML Scatter Plot

 

 
0.77*x + 0.10018

0 20 40 60
0

10

20

30

40

50

60

Rain Gauges mm/h
R

ad
ar

 m
m

/h

Radar Scatter Plot

 

 
1.26*x + 0.37507

Correlation: 0.71 
RMSE (mm/h): 4.89   
Relative Bias(%): 20

Correlation: 0.76 
RMSE (mm/h): 3.86  
Relative Bias(%): -18

Correlation: 0.88 
RMSE (mm/h): 1.98  
Relative Bias(%): 4

Figure 12. Rain rate scatter plots and performance evaluations of
the integration (left), ML (middle) and radar (right) with respect to
all the available rain gauges for event 3.
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Fig. 14. Rain rates scatter plots of the Integration (left), the ML (middle) and the radar (right) with respect to

the rain gauge in Ramle site for event (1).

25

Figure 13. ML distribution for two different coordinates. Left:
Ramle coordinate in an area of about 400 km2 for 30 ML pro-
vided by Pelephone Ltd. Right: Dorot coordinate in an area of about
150 km2 for 12 ML provided by Cellcom Ltd.

in Fig.13), provided by Cellcom Ltd., are available. The
ML operate at a frequency of 17–21 GHz (for each link)
and each link length varies by between 1 and 13. Dis-
tance from the Bet Dagan radar is 53.67 km. The RSL
data from the links are given at a temporal resolution of
15 min with a magnitude resolution of 0.1 dB.

It should be noted that we calculated the accumulated rain-
fall for each site over the duration for the set of events 1, 2
and 3. Given that the time step varies between methods, we
interpolated the accumulated results to a 5 min time resolu-
tion using cubic spline interpolation (De Boor, 1978) in order
to make the accumulation results comparable. That is, when
regarding the rain gauges for example, the time interval is
10 min, i.e. 00:00, 00:10. . . 23:50 IDT; thus, after interpola-
tion, the results correspond to time samples every 5 min, i.e.
at 00:05, 00:10, 00:15. . . 23:55 IDT.

Illustrations of the scatter plots, each with corresponding
regression lines (black line), for the Ramle (event 1) and
Dorot (events 2 and 3) sites are provided in Figs.14, 15 and
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Fig. 13. ML distribution for two different coordinates. Left: Ramle coordinate, in an area of about 400 km2, for
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Fig. 14. Rain rates scatter plots of the Integration (left), the ML (middle) and the radar (right) with respect to

the rain gauge in Ramle site for event (1).
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Figure 14.Rain rate scatter plots of the integration (left), ML (mid-
dle) and radar (right) with respect to the rain gauge at the Ramle site
for event 1.
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Fig. 15. Rain rates scatter plots of the Integration (left), the ML (middle) and the radar (right) with respect to

the rain gauge in Dorot site for event (2).
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Fig. 16. Rain rates scatter plots of the Integration (left), the ML (middle) and the radar (right) with respect to

the rain gauge in Dorot site for event (3).
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Figure 15.Rain rate scatter plots of the integration (left), ML (mid-
dle) and radar (right) with respect to the rain gauge at the Dorot site
for event 2.

16. From these figures it is clear that the integration approach
achieved the lowest disparity of the points (with respect to
the regression line) when comparing to the ML and the radar
scatter plots. This not only implies that the integrative ap-
proach is the most accurate one but also proves the effective-
ness in using Eq. (7) for the proposed integration scheme,
both spatially and temporally.

Finally, Figs.17 and18 illustrate the accumulated rain in-
tensity for the Ramle (event 1) and Dorot (events 2 and 3)
sites. The results are demonstrated for each source, i.e. the
radar (pink solid line), rain gauges (black solid line), the inte-
gration (dashed red line) and the ML (dash-dotted blue line)
every 5 min (i.e. the accumulated rain during the rain event,
as defined in Eq.17).

From Figs.17 and 18, one can see that the integration
method improved the estimation of the accumulated rain,
especially for the radar, which had an overestimation in all
cases. When compared with ML measurements, for events 2
and 3 at Dorot, the ML showed an underestimation of the
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Fig. 15. Rain rates scatter plots of the Integration (left), the ML (middle) and the radar (right) with respect to

the rain gauge in Dorot site for event (2).
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Fig. 16. Rain rates scatter plots of the Integration (left), the ML (middle) and the radar (right) with respect to

the rain gauge in Dorot site for event (3).
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Figure 16.Rain rate scatter plots of the integration (left), ML (mid-
dle) and radar (right) with respect to the rain gauge at the Dorot site
for event 3.

Table 1.Performance analysis event (1) – Ramle site.

Correlation RMSE (mm) Relative bias (%)

ML 0.87 3.93 −3
Radar 0.71 14.31 20
Integration 0.87 3.89 −3

accumulation, due to the rather sparse network deployed
(only 12 available ML) in the area. On the other hand, the
integrated technique provides a clear improvement. As ex-
pected, for the Ramle site there is no evident improvement
in the integrated method, neither in total amounts nor with
regard to the correlation or the RMSE when compared to the
ML. However when comparing the performance to that of
the radar, an evident improvement was clear. This is due to
the high number of ML available at that point.

In order to evaluate the RMSE, RB and the spatial correla-
tion metrics, we used Eq. (16) withN = 1; that is, the perfor-
mance measures are calculated with respect to one coordinate
in space forM different time steps. The evaluation is derived
at the common times for all the reconstruction methods (i.e.
every 30 min – 00:00, 00:30. . . 23:30 IDT) during the whole
rain event. These calculations are shown for the Ramle site
in Table1, and for the Dorot site in Tables2 and3, with re-
spect to events 2 and 3. These results (and especially the RB
results) of all the methods prove once again the unwavering
ability of the proposed integration algorithm.

4 Conclusions

The ability to accurately monitor rainfall at large spatial and
temporal scales is critical for meteorological and hydrolog-
ical research and applications. Each of the techniques cur-
rently available (rain gauges, radar, ML and satellites) can
provide important information. Each technique, however, has

Table 2.Performance analysis event (2) – Dorot site.

Correlation RMSE (mm) Relative bias (%)

ML 0.77 6.09 −21
Radar 0.68 9.19 19
Integration 0.88 2.07 −6

Table 3.Performance analysis event (3) – Dorot site.

Correlation RMSE (mm) Relative bias (%)

ML 0.75 6.68 −29
Radar 0.72 7.79 34
Integration 0.86 2.07 7

its limitations, yet they can be used to greatly complement
one another.

This paper presents a new method for data fusion of dif-
ferent rainfall mapping sources - the weather Radar and ML,
while optimizing the advantages of each. The integration
technique achieves an optimal weighted linear estimation of
the rain field while considering the pros and cons of each
source, mainly the coverage area of the ML and the weather
radar. We have shown that the integrated approach is capa-
ble of reconstructing reliable and accurate 2-D rainfall maps
compared to both spatially averaged rain gauges (Figs.7, 8
and9), as well as in specific locations (i.e. Figs.17and18).

By using data from rain gauges from several coordinates
in space, over multiple rain events, we managed to achieve
an estimation for the unknown parameters in the integration
model. This parameter estimation can be improved in the fu-
ture as data from additional rain events become available.
The main limitations of this approach lie in the necessity of
having a specific model for the integration. In this paper we
chose the use of a weighted linear model; the effectiveness
of using this kind of model can be understood from both the
scatter plots and the relative bias metric (Figs.10, 11, 12).

The methodology proposed here is computationally fast
and provides improved rainfall estimates over the entire Is-
rael region. The data used in the analysis here show how
maps can be drawn from the different sources in a manner
that allows them to be compared and contrasted, as well as
complementing one another, in an effort to provide a reli-
able assessment of the rain field recovery. The limitations
are obviously the availability of data. Specifically, the ML
data are subject to specific time resolution with arbitrary
distribution in space, as provided by the telecommunication
companies. However, once the data are accessible, we may
manipulate it into uniform formats and calibrate the neces-
sary parameters in order to provide four interdependent 2-D
rainfall maps which can be used both to better inform me-
teorological and hydrological models as well as potentially
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Fig. 17. The accumulated rain intensity (mm) for Dorot site, with 12 ML surrounding the site. Left -

30/Dec/2009 (24 hours of rain event), Right - 07-10/Jan/2013 (96 hours of rain event)
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Fig. 18. The accumulated rain intensity (mm) for Ramle site, with 30 ML surrounding the site at 18/Jan/2013

(24 hours of rain event)

Table 1. Spatial correlation of all methods for all time steps.

event (1) event (2) event(3)

ML 0.74 0.79 0.76

Radar 0.64 0.69 0.71

Integration 0.87 0.86 0.88

27

Figure 17. Accumulated rain intensity (mm) for the Dorot site, with 12 ML surrounding the site. Left: 30 December 2009 (24 h of rain);
right: 7–10 January 2013 (96 h of rain).
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Figure 18. Accumulated rain intensity (mm) for the Ramle site,
with 30 ML surrounding the site on 18 January 2013 (24 h of rain).

give a better understanding of the underlying dynamics of the
storm, which no one has ever provided before.

Even though the proposed integration technique was
proven to yield very accurate results, future work could fo-
cus on more complex (e.g. non-linear) models for integration
between the sources, as well as the use of additional sources
(e.g. satellites) in order to even achieve an improved accuracy
in rainfall measurement and mapping.
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