Articles | Volume 7, issue 11
https://doi.org/10.5194/amt-7-3947-2014
https://doi.org/10.5194/amt-7-3947-2014
Research article
 | 
26 Nov 2014
Research article |  | 26 Nov 2014

Characteristics of tropopause parameters as observed with GPS radio occultation

T. Rieckh, B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche

Abstract. Characteristics of the lapse rate tropopause are analyzed globally for tropopause altitude and temperature using global positioning system (GPS) radio occultation (RO) data from late 2001 to the end of 2013. RO profiles feature high vertical resolution and excellent quality in the upper troposphere and lower stratosphere, which are key factors for tropopause determination, including multiple ones. RO data provide measurements globally and allow examination of both temporal and spatial tropopause characteristics based entirely on observational measurements. To investigate latitudinal and longitudinal tropopause characteristics, the mean annual cycle, and inter-annual variability, we use tropopauses from individual profiles as well as their statistical measures for zonal bands and 5° × 10° bins. The latitudinal structure of first tropopauses shows the well-known distribution with high (cold) tropical tropopauses and low (warm) extra-tropical tropopauses. In the transition zones (20 to 40° N/S), individual profiles reveal varying tropopause altitudes from less than 7 km to more than 17 km due to variability in the subtropical tropopause break. In this region, we also find multiple tropopauses throughout the year. Longitudinal variability is strongest at northern hemispheric mid latitudes and in the Asian monsoon region. The mean annual cycle features changes in amplitude and phase, depending on latitude. This is caused by different underlying physical processes (such as the Brewer–Dobson circulation – BDC) and atmospheric dynamics (such as the strong polar vortex in the southern hemispheric winter). Inter-annual anomalies of tropopause parameters show signatures of El Niño–Southern Oscillation (ENSO), the quasi–biennial oscillation (QBO), and the varying strength of the polar vortex, including sudden stratospheric warming (SSW) events. These results are in good agreement with previous studies and underpin the high utility of the entire RO record for investigating latitudinal, longitudinal, and temporal tropopause characteristics globally.

Download
Short summary
Radio Occultation (RO) observations featuring high vertical resolution, global availability, and high accuracy were used to investigate global characteristics of the lapse rate tropopause. Climatological tropopause characteristics for the RO record from 2001 to 2013 extend previous studies on tropopause structure and its temporal variability. Latitudinal and longitudinal variations as well as the annual cycle and inter-annual variability were analyzed for the tropopause altitude and temperature.