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Abstract. In this work neural networks (NNs) have been

used for the retrieval of volcanic ash and sulfur dioxide (SO2)

parameters based on Moderate Resolution Imaging Spectro-

radiometer (MODIS) multispectral measurements. Different

neural networks were built in order for each parameter to

be retrieved, for experimenting with different topologies and

evaluating their performances. The neural networks’ capabil-

ities to process a large amount of new data in a very fast way

have been exploited to propose a novel applicative scheme

aimed at providing a complete characterization of eruptive

products.

As a test case, the May 2010 Eyjafjallajókull eruption has

been considered. A set of seven MODIS images have been

used for the training and validation phases.

In order to estimate the parameters associated to the vol-

canic eruption, such as ash mass, effective radius, aerosol

optical depth and SO2 columnar abundance, the neural net-

works have been trained using the retrievals from well-

known algorithms. These are based on simulated radiances

at the top of the atmosphere and are estimated by radiative

transfer models.

Three neural network topologies with a different number

of inputs have been compared: (a) three thermal infrared

MODIS channels, (b) all multispectral MODIS channels and

(c) the channels selected by a pruning procedure applied to

all MODIS channels.

Results show that the neural network approach is able to

estimate the volcanic eruption parameters very well, show-

ing a root mean square error (RMSE) below the target data

standard deviation (SD). The network built considering all

the MODIS channels gives a better performance in terms of

specialization, mainly on images close in time to the train-

ing ones, while the networks with less inputs reveal a bet-

ter generalization performance when applied to independent

data sets. In order to increase the network’s generalization

capability and to select the most significant MODIS chan-

nels, a pruning algorithm has been implemented. The pruning

outcomes revealed that channel sensitive to ash parameters

correspond to the thermal infrared, visible and mid-infrared

spectral ranges.

The neural network approach has been proven to be ef-

fective when addressing the inversion problem for the esti-

mation of volcanic ash and SO2 cloud parameters, provid-

ing fast and reliable retrievals, important requirements during

volcanic crises.

1 Introduction

The Eyjafjallajókull volcanic eruption which occurred in Ice-

land between April and May 2010 revealed once more the

importance of the effects produced by this natural hazard

(Zehner, 2010) and demonstrated how crucial a reliable re-

altime monitoring and tracking of volcanic clouds is. In par-

ticular, volcanic ash affects climate (Robock, 2000), human

safety (Horwell and Baxter, 2006) and represents a severe

threat to aviation (Miller and Casadevall, 2000). Further-

more, SO2 is considered as volcanic ash proxy when the lat-

ter is undetectable, having long-term effects on aircraft en-

gines and covering an important role in volcanic processes

(Allard et al., 1994; Wallace, 2001; Edmonds et al., 2010).
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Table 1. MODIS TIR channels’ characteristics.

Channel no. Center NEDT Spatial

wavelength (µm) (K) resolution (km)

28 7.3 0.25 1

29 8.5 0.05 1

30 9.7 0.25 1

31 11.0 0.05 1

32 12.0 0.05 1

NEDT – Noise equivalent differential temperature

Although the ash detection algorithm is quite fast, the

well-known methods used for the simultaneous quantitative

estimation of ash and SO2, based on comparisons between

top-of-the-atmosphere (TOA) radiance and the simulated one

obtained using a radiative transfer model (RTM), require a

high computational time and many parameters as input (see

Sect. 3 for details), making the near realtime application

of the standard retrieval procedures difficult during volcanic

crises. With this in mind, in this study we propose a retrieval

approach able to quantitatively estimate ash and SO2 param-

eters in near-realtime and achieving the same accuracy as

when a RTM-based one is used.

The neural network approach has demonstrated its effec-

tiveness in geophysics, and is considered to be an universal

approximator, being to model physical nonlinear phenom-

ena and to solve complex inversion problems in a very short

time (Krasnopolsky et al., 1995). Indeed, once the training

phase is completed, it can be applied in a very fast manner

to new data so that the computational burden required for the

data processing is drastically reduced. This characteristic as-

sumes an important role when considering its possible appli-

cation to high-revisit time sensors like Meteosat Second Gen-

eration (MSG) Spin Enhanced Visible and Infrared Imager

(SEVIRI). Indeed, the algorithms based on radiative transfer

model simulations are generally time consuming, making its

application in near-realtime difficult.

In the remote sensing of the atmosphere, neural networks

(NNs) have been successfully applied in order to address dif-

ferent problems such as height resolved ozone retrievals (Del

Frate et al., 2002; Müller et al., 2003), retrieval of tempera-

ture profiles (Churnside et al., 1994; Del Frate and Schiavon,

1999), cloud classification (Lee et al., 1990; Bankert, 1994),

temperature estimations (Butler et al., 1996) and humidity

profiles retrieval (Cabrera-Mercader and Staelin, 1995; Del

Frate and Schiavon, 1999; Blackwell, 2005). Furthermore,

Gardner and Dorling (1998) and Hsieh and Tang (1998)

demonstrated how NNs can resolve inverse problems involv-

ing complex physical behaviors. It has to be underlined that

when a new applicative scenario is considered, the correct

and complete design of an NN algorithm is not trivial be-

cause, in order to obtain a satisfactory performance, various

issues need to be appropriately taken into account; amongst

Table 2. Training, test and validation sets for the ash mass, reff and

AOD retrievals.

Date TrS TeS VaS Total

6 May 2010, 11:55 UTC 22 365 10 166 8133 40 664

7 May 2010, 14:30 UTC 14 399 6545 5236 26 180

8 May 2010, 13:20 UTC 17 640 8018 6414 32 072

13 May 2010, 12:00 UTC 25 527 11 603 9283 46 413

Total 79 931 36 332 29 066

the most crucial ones, we note the definition of the input and

the output vectors, the generation of the data set necessary

for the training phase and the optimization of the network

parameters. These tasks strongly depend on the specific re-

trieval problem and they need to be addressed and character-

ized carefully in order to avoid failures: due either to over-

fitting or to a scarce capability in the determination of the

desired input–output relationship.

Recently, NNs were applied to a scenario for the detection

of ash plume and the retrieval of the ash mass for the Etna

volcano scenario, using a topology involving channels cen-

tered at 11 µm and 12 µm, plus the water vapor absorption at

7.3 µm (Picchiani et al., 2011). In such a study, the retrieval

was only conducted above the sea, since the scenario did not

imply the presence of ash and meteorological clouds on the

same pixels. In this study, the procedure has been extended

to completely characterize the set of SO2 and ash parameters

over a more complex scenario such as the Eyjafjallajókull

volcano. Different NNs have been used for retrieving ash to-

tal mass, particle effective radius (reff), aerosol optical depth

(AOD) at 11 µm and SO2 at 8.7 µm total column abundance

from MODIS images. The adopted test case involves high

meteorological cloud contamination, representing a very es-

sential condition to run RTM-based approach (see Sect. 3.2

for details). In fact, to perform the retrieval of eruptive prod-

ucts, classical methods need to be tuned, especially to as-

sess the characteristics of ashy pixels contaminated by mete-

orological clouds. This operational issue is overcome by the

NN algorithm that, once trained, can be directly applied to

the whole image without considering the presence of mete-

orological clouds. Since the performance of the neural net-

work is closely related to the reliability of training samples

used, the reference data set has been selected considering

two different scenarios: volcanic clouds over the sea and vol-

canic clouds over meteorological clouds. For both cases it

has adopted the same retrieval strategy, considering two dif-

ferent underlying surface temperatures that for the first case

is the sea surface temperature and for the second case is

the meteorological cloud-top temperature (Corradini et al.,

2010).

The comparison between different input network topolo-

gies, also making use of the NN pruning as a feature selec-

tion technique, has been performed in order to find the most
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Figure 1. Training MODIS images RGB (R=ch1, G=ch4, B=ch3), used in this study. Top panel, from left to right: 6 May 2010, 11:55 UTC;

7 May 2010, 14:30 UTC. Bottom panel, from left to right: 8 May 2010, 13:20 UTC; 13 May 2010, 12:00 UTC.

Figure 2. Validation MODIS images RGB (R=ch1, G=ch4, B=ch3), used in this study. From left to right: 11 May 2010, 14:05 UTC; 12

May 2010, 12:55 UTC; 16 May 2010, 12:30 UTC.

significant inputs and increase the retrieval accuracy. Pruning

techniques represent well-known methods generally used to

avoid overfitting problems in training neural networks. More-

over, such approaches can also be used to select the most sig-

nificant inputs for a specific problem (Del Frate et al., 2005).

This feature’s selection technique relies on the saliency con-

cept, i.e., it analyzes the contribution of an input to the neu-

rons activation and, in the end, to the performance of the

network. In fact, one of the advantages of such an approach

with respect to other non-parametric methods (such as ge-

netic algorithms) using the training data as the unique source

of information is that at the same time both the input feature

set and the retrieval algorithm itself are optimized, the other

techniques determine the best input combination with respect

to a “fixed” inversion model (Pacifici et al., 2009). Moreover,

some components may only be useful in the presence of other

features, while being useless on their own. Such a possibility

is effectively evaluated by the saliency computation, which

generally takes into account all the parameters of the network

simultaneously. To the best of our knowledge, this work rep-
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Figure 3. Ash detection maps of training data sets: 6 May 2010, 11:55 UTC (top left); 7 May 2010, 14:30 UTC (top right); 8 May 2010,

13:20 UTC (bottom left); 13 May 2010, 12:00 UTC (bottom right). Volcanic ash clouds over sea alone in red, ash clouds over meteorological

clouds in green.

Figure 4. Ash detection maps of validation data sets: 11 May 2010, 14:05 UTC (left); 12 May 2010, 12:55 UTC (middle); 16 May 2010,

12:30 UTC (right). Volcanic ash clouds over sea alone in red, ash clouds over meteorological clouds in green.

resents the first attempt at using the NN pruning technique

for the selection of most significant wavelengths in the visi-

ble–infrared range for ash parameters and SO2 retrieval.

The work is organized as follows. Firstly, we provide an

overview of the considered scenario, discussing the MODIS

sensor characteristics as well (Sect. 2), then we discuss the

basic concepts of ash and SO2 parameters retrievals (Sect. 3).

In Sect. 4, the NN approach is introduced while in Sect. 5 the

methodology is described. Finally the results are discussed

(Sect. 6) and then the conclusions are reported (Sect. 7).

2 Test case description – the Eyjafjallajókull eruption

Eyjafjallajökull volcano (63.63◦ N, 19.62◦W) is a 1666 m

high stratovolcano with a 2.5 km wide summit caldera lo-

cated in the south of Iceland. Although Eyjafjallajökull has

been known to erupt throughout history, it has been less ac-

tive than other volcanoes in Iceland’s eastern volcanic zone

(Smithsonian Institution, Global Volcanism Program). A sig-

nificant eruption took place in 1821 and featured intermit-
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Figure 5. Scatterplots for ash mass networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 11 May 2010, 14:05 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

Table 3. Training, test and validation sets for the SO2 retrievals.

Date TrS TeS VaS Total

6 May 2010, 11:55 UTC 13591 6178 4941 24 710

7 May 2010, 14:30 UTC 10 026 4557 3646 18 229

8 May 2010, 13:20 UTC 7036 3198 2559 5172

13 May 2010, 12:00 UTC 21 471 9760 7807 39 038

Total 51 124 17 693 18 953

Table 4. Independent validation sets for ash parameters divided con-

sidering the volcanic cloud over sea and volcanic cloud over mete-

orological clouds.

Date VaS (Total) VaS (Sea) VaS (Clouds)

11 May 2010, 14:05 UTC 19 640 17 264 2376

12 May 2010, 12:55 UTC 8187 5095 3092

16 May 2010, 12:30 UTC 9418 7545 1873

www.atmos-meas-tech.net/7/4023/2014/ Atmos. Meas. Tech., 7, 4023–4047, 2014
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Figure 6. Scatterplots for ash mass networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom) row, applied to the

validation set of 12 May 2010, 12:55 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

Table 5. Independent SO2 validation sets divided into clouds over

sea and clouds over meteorological clouds.

Date VaS (Total) VaS (Sea) VaS (Clouds)

11 May 2010, 14:05 UTC 13 952 13 754 198

12 May 2010, 12:55 UTC 6211 4343 1868

16 May 2010, 12:30 UTC 10 429 8210 2219

tent explosive events that deposited a thin tephra layer on the

flanks of the volcano over a period of about 18 months.

The explosive activity occurring from 14 April to 23 May

2010 caused widespread disruption to aviation, with an enor-

mous impact on the world economy. This eruption may be

considered the biggest explosive eruption in Iceland since

that of Hekla in 1947 (Zehner, 2010).

Following an intense seismic swarm, the eruption be-

gan from the summit of the Eyjafjallajókull volcano at

01:15 UTC on 14 April 2010. Initially the activity was sub-

glacial, but around 06:00 UTC a white (steam-rich) eruption

plume rose from the summit (Sigmundsson et al., 2010).

Three different eruption phases were observed (Zenher,

2010):

– a sustained phreatomagmatic eruption occurred from 14

to 17 April with the production of a large amount of

fine ash of trachyandesite composition with a 5–9 km

Atmos. Meas. Tech., 7, 4023–4047, 2014 www.atmos-meas-tech.net/7/4023/2014/
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Table 6. RMSE values related to ash parameters and SO2 for the independent validation sets. The inputs for the ash parameters are the

MODIS channels 28, 31 and 32, while for the SO2, the MODIS channels 29, 31 and 32.

3 input NN 11 May 2010 12 May 2010 16 May 2010

Total Sea Clouds Total Sea Clouds Total Sea Clouds

(SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE)

Ash mass 2.29/1.86 2.37/1.96 1.28/0.9 3.32/1.78 3.81/2.16 1.92/0.83 5.11/2.90 4.49/3.16 5.24/1.76

Ash re 1.44/1.01 1.31/1.02 1.30/0.88 1.54/1.38 1.60/1.41 1.43/1.32 1.85/1.80 1.67/1.68 1.21/2.22

Ash AOD 0.27/0.22 0.27/0.23 0.14/0.09 0.47/0.14 0.39/0.13 0.26/0.15 0.49/0.51 0.46/0.41 0.48/0.80

SO2 1.61/1.16 1.61/1.15 0.56/1.48 2.03/1.24 2.19/0.79 1.16/1.16 2.60/3.74 2.60/3.94 2.60/2.89

Table 7. RMSE values related to ash parameters and SO2 for the independent validation sets.

28 input NN 11 May 2010 12 May 2010 16 May 2010

Total Sea Clouds Total Sea Clouds Total Sea Clouds

(SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE)

Ash mass 2.29/1.73 2.37/1.78 1.28/1.33 3.32/1.37 3.81/1.44 1.92/1.24 5.11/1.85 4.49/1.19 5.24/3.40

Ash re 1.44/0.84 1.31/0.39 1.30/2.17 1.54/0.73 1.60/0.24 1.43/1.15 1.85/0.82 1.67/0.70 1.21/1.18

Ash AOD 0.27/0.13 0.27/0.11 0.14/0.24 0.35/0.16 0.39/0.16 0.26/0.15 0.49/0.23 0.46/0.20 0.48/0.33

SO2 1.61/1.38 1.61/1.34 0.56/3.09 2.03/1.37 2.19/0.75 1.16/2.22 2.60/1.82 2.60/1.20 2.60/3.2

Table 8. RMSE values related to ash parameters and SO2 for the independent validation sets.

Pruned NN 11 May 2010 12 May 2010 16 May 2010

Total Sea Clouds Total Sea Clouds Total Sea Clouds

(SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE) (SD / RMSE)

Ash mass 2.29/1.36 2.37/1.37 1.28/1.33 3.32/1.31 3.81/1.14 1.92/1.54 5.11/1.80 4.49/1.36 5.24/2.99

Ash re 1.44/0.91 1.31/0.66 1.30/1.94 1.54/0.83 1.60/0.39 1.43/1.25 1.85/0.83 1.67/0.75 1.21/1.10

Ash AOD 0.35/0.18 0.35/0.18 0.19/0.15 0.47/0.20 0.51/0.20 0.34/0.19 0.49/0.3 0.46/0.25 0.48/0.40

SO2 1.61/1.42 1.61/1.31 0.56/4.88 2.03/2.00 2.19/1.19 1.16/3.17 2.60/2.04 2.60/0.95 2.60/4.03

high volcanic ash (Gudmundsson et al., 2010). Prevail-

ing winds carried the ash-rich eruption plume towards

the southeast and south and thereafter over Europe;

– from 18 April to 4 May, a marked change in type and

intensity of the eruption was registered although the

composition of the erupted magma was unchanged. The

eruption type changed from phreatomagmatic to mag-

matic, implying that external water had no longer ready

access to the vents. During this phase, the explosive ac-

tivity decreased by an order of magnitude compared to

the previous phreatomagmatic one, with a reduction of

ash emission with a plume height of between 2 and 5 km

a.s.l.;

– from 5 to 23 May, the eruption type changed to explo-

sive. Following an episode of renewed seismic activity,

the Eyjafjallajókull volcano changed phases, with a re-

turn to the previous magmatic phases with greater ash

production. The intensity of explosive activity increased

again and observations reported volcanic ash heights at

around 4–6 km, sometimes reaching up to 8–9 km. This

resurgence in activity led to further disruption of air traf-

fic in Europe.

In this work, we have concentrated our attention on the last

eruption phase, by considering seven MODIS images col-

lected between 6 and 16 May 2010.

MODIS is a multi-spectral instrument aboard the Earth

Observing System (EOS) Terra and Aqua satellites (Barnes

et al., 1998; http://modis.gsfc.nasa.gov/). These two satellites

have different equatorial crossing times: Terra is character-

ized by a morning overpass, while Aqua by an afternoon one,

with global coverage in 1 or 2 days. MODIS covers 36 spec-

tral bands, from visible (VIS) to thermal infrared (TIR), and a

spatial resolution that varies from 250 m to 1000 m, depend-

ing on the acquisition mode.

3 Ash and SO2 retrievals

In this section, the standard ash and SO2 retrieval proce-

dures applied to the MODIS measurements in the TIR will

be briefly described. The TIR channels’ characteristics are

given in Table 1. The products obtained have been used as

target output for NN training and as “truth” in the validation

phases.

www.atmos-meas-tech.net/7/4023/2014/ Atmos. Meas. Tech., 7, 4023–4047, 2014
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Figure 7. Scatterplots for ash mass networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom) row, applied to the

validation set of 16 May 2010, 12:30 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

3.1 Ash detection and retrievals

The most widely adopted approach for the detection of vol-

canic ash, and to discriminate it from meteorological clouds,

is based on the different spectral absorption of ash and wa-

ter vapor/ice particles between 11–12 µm. The difference be-

tween the brightness temperature (BTD) computed from the

two channels centered around 11 (Tb,11) and 12 µm (Tb,12)

is generally negative for volcanic ash and positive for me-

teorological clouds (Prata, 1989a). The ash reff and AOD

are retrieved by computing the inverted arches curves BTD-

Tb,11 using radiative transfer models, whilst the ash mass is

estimated using the simplified formula introduced by Wen

and Rose in 1994 (Wen and Rose, 1994; Yu et al., 2002).

The BTD method has been applied to satellite instruments as

the Advanced Very High Resolution Radiometer (AVHRR)

(Prata, 1989b; Wen and Rose, 1994; Corradini et al., 2010),

MODIS (Hillger et al., 2002; Watson et al., 2004; Tupper at

al., 2004; Corradini et al., 2008, 2010, 2011), the Geosta-

tionary Operational Environmental Satellite (GOES) (Yu et

al., 2002) and the Spin Enhanced Visible and Infrared Im-

ager (SEVIRI) measurements (Prata and Kerkmann, 2007;

Corradini et al., 2009).

The simulated top-of-the-atmosphere (TOA) radiances

look-up tables (LUT) necessary for the retrievals are com-

puted using the MODTRAN (MODerate resolution atmo-

spheric TRANsmission) 4 (Berk et al., 1989; Anderson et

al., 1995) radiative transfer model (RTM) (Corradini et al.,

2009, 2010, 2011) using the Keflavíkurflugvöllur (63.95◦ N,

Atmos. Meas. Tech., 7, 4023–4047, 2014 www.atmos-meas-tech.net/7/4023/2014/
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Figure 8. Scatterplots for reff networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 11 May 2010, 14:05 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

22.60◦W) WMO atmospheric profiles (PTH) and andesitic

ash optical properties (Pollack, 1973).

3.2 SO2 retrieval

The SO2 retrieval in the TIR spectral range is realized by

exploiting its wide absorption around 8.7 µm (MODIS chan-

nel 29). The retrieval scheme derived from Realmuto et

al. (1994, 1997) was initially applied to the Thermal Infrared

Multispectral Scanner (TIMS) measurements, and later on

was successfully extended to several space-based sensors

such as MODIS (Watson et al., 2004; Corradini et al., 2009,

2010), Advanced Spaceborne Thermal Emission and Reflec-

tion Radiometer (ASTER) (Corradini et al., 2003; Pugnaghi

et al., 2006) and SEVIRI (Corradini et al., 2009). The algo-

rithm is based on a weighted least square fit procedure be-

tween the simulated radiances obtained by varying the SO2

columnar amount with MODTRAN RTM and the sensor ra-

diances measured. The 8.7 µm band lies in the thermal in-

frared atmospheric window which is relatively transparent to

water vapor and therefore generally used for the tropospheric

volcanic clouds retrievals. Limitations to the applicability of

this retrieval scheme are due to a lower thermal contrast be-

tween the SO2 cloud and the underlying surface, and opaque

pixels, i.e., pixels where the minimum simulated radiance ex-

ceeds the TOA radiance measured by the sensor. A relevant

improvement has been proposed by Corradini et al. (2009)

to take into account the interference due to the ash presence

www.atmos-meas-tech.net/7/4023/2014/ Atmos. Meas. Tech., 7, 4023–4047, 2014
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Figure 9. Scatterplots for reff networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 12 May 2010, 12:55 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

in the volcanic plume. Since ash and SO2 are often ejected

simultaneously during volcanic eruptions and volcanic ash

absorbs in the same 8.7 µm band, the SO2 abundance can be

highly overestimated if the ash contribution to the TOA ra-

diance is neglected. The ash correction on SO2 retrieval has

been recently validated by comparing the SO2 flux extract

from a MODIS image and the flux measured by the FLux

Automatic MEasurements (FLAME) ground-based network

(Salerno et al., 2009) deployed at Mt. Etna, Sicily (Merucci et

al., 2011). The SO2 maps presented here are corrected for the

ash cloud content and have been retrieved by means of cus-

tom procedures described in detail in Corradini et al. (2009).

Amongst the different sources of ash and SO2 retrieval er-

rors deriving from the uncertainties on RTM input parame-

ters (Corradini et al., 2008, 2009), the non-uniformity of the

surface underlying the volcanic cloud is one of the most crit-

ical. Such a condition is common when the volcanic cloud

is wide enough to exist in a region in which a partial meteo-

rological cloud cover is present. In these cases the retrievals

have to be realized by considering different surface tempera-

tures for the different volcanic cloud parts existing over dif-

ferent surfaces (land, sea or meteorological clouds). For the

case study considered in this work, the surfaces under the

volcanic cloud are sea and meteorological clouds (see Figs. 1

and 2). The sea surface temperature is computed by the in-

version of the radiative transfer equation in the TIR spectral

range (Corradini et al., 2008), while the surface temperature

of the meteorological clouds is estimated by computing the

Atmos. Meas. Tech., 7, 4023–4047, 2014 www.atmos-meas-tech.net/7/4023/2014/
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Table 9. MODIS channels selected by the input pruning.

MODIS Central Parameters

channels wavelength [µm] Ash mass reff AOD SO2

1 0.645 X X X

2 0.858 X X

3 0.469 X X X X

4 0.555 X X X X

5 1.240 X

6 1.640 X X

7 2.130 X X

8 0.421 X X X X

17 0.905 X X

18 0.936 X X

19 0.940 X X

20 3.750 X X

21 3.959

22 3.959 X

23 4.050 X X X X

24 4.465

25 4.515 X X X

26 1.375 X X X

27 6.715

28 7.325

29 8.550 X X X

30 9.730

31 11.03 X X X X

32 12.02 X X X

33 13.335

34 13.635

35 13.935 X

36 14.235 X X X X

Total 17 17 12 10

brightness temperature at 11 µm (MODIS channel 31). This

latter approximation is all the more valid for high and opaque

meteorological clouds. In this case, the retrieval accuracy is

lower than the one that can be achieved by considering a vol-

canic cloud over a sea surface due to the lower thermal con-

trast between meteorological cloud-top surface and ash cloud

temperature (Watson et al., 2004).

In this work, the ash parameters and SO2 retrievals es-

timated with the methodology described in Corradini et

al. (2009, 2010) have been used for NN training and vali-

dation.

4 Neural networks

Since the 1990s, NNs have been applied in many remote

sensing fields (Atkinson and Tatnall, 1997; Mas and Flo-

res, 2008) including in significant atmospheric investigations

(Gardner and Dorling, 1998). The increased interest in the

management of remote sensing data with this technique can

be understood considering the universal approximation prop-

erty of the most common type of NN, the multi-layer percep-

tron (MLP). The theorem, proven by Cybenko (1989), ex-

plains that an MLP with a single hidden layer, which contains

a finite number of neurons with sigmoidal activation func-

tions, is a universal approximator among continuous func-

tions on compact subsets of Rn. Additional benefits are the

independence from a priori assumptions about the statistical

characterization of the data and the possibility of easily incor-

porating different types of data (Foody, 1995). For these rea-

sons, NNs have often been successfully used for the solution

of the inverse problem of geophysical quantities from satel-

lite measurements (Blackwell, 2005; Picchiani et al., 2011,

2012).

The architecture of an MLP is based on a simple process-

ing unit, called a neuron, which collects the quantities pre-

sented in input through weighted connections, and produces

the output applying an activation function to the weighted

sum of the inputs. The neurons are interconnected and or-

ganized in at least three layers, one input layer, a variable

number of intermediate hidden layers and one output layer.

The first layer distributes the data, without processing them,

to all neurons in the first hidden layer; then the information is

passed to the second hidden layer and so on up to the output

layer.

For remote sensing applications, usually, the input layer

collects data values (the spectral signature of the respective

pixel of the image) such as radiances or brightness tempera-

tures from different spectral bands, with the number of nodes

equal to the number of bands; meanwhile, the output layer

provides the corresponding retrieved geophysical parame-

ter value. In this work, we used the same approach devel-

oped in Picchiani et al. (2011) to train the NNs. The back-

propagation algorithm (Bishop, 1995) has been applied per-

forming a cross-validation approach (Haykin, 1994; Bishop,

1995) to avoid the possibility of over training, i.e., the mem-

orization of specific patterns instead of statistical mapping

linking the inputs to outputs and, therefore, hampering the

generalization capability for new data. The back-propagation

algorithm adopted featured re-scaled sigmoidal activation

functions in each node, where a [−1, +1] output range tends

to be more convenient for neural networks.

Training with cross validation was carried out by splitting

the training data into three sets: a training set, a cross valida-

tion set and a test set. These consisted respectively of 55 %,

25 % and 20 % of the total number of training samples (Ta-

bles 2 and 3). The first set was used for network training. The

cross validation set, consisting of 25 %, was analyzed at a

predefined number of epochs, to assess performance on data

sets other than the training one. Finally, the test set (20 %)

was used as an independent data source in order to assess

network performance after the training phase. Since the NN

performance is dependent on the data used in the training

phase, the statistical representativeness of this latter must be

considered. Many different settings influence the ability of

an NN to generalize. Among the most important ones are the

network topology (i.e., the number of hidden layers and neu-
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Figure 10. Scatterplots for reff networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 16 May 2010, 12:30 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

rons in each layer), the number of training epochs and the

number of inputs. Concerning the latter aspects, a feature se-

lection approach, aimed at selecting a subset of the inputs

relevant for a given retrieval problem, could be very effective

in this framework. Its two main purposes are to speed up the

learning process, since the amount of data to be processed is

reduced, and to give the possibility of empirically discover-

ing the most effective spectral wavelengths for the particular

retrieval problem.

A well-known feature selection technique using NNs is

pruning, which is generally implemented by training a net-

work larger than necessary and then by pruning the neurons

and the connections that are not needed, i.e., the elements

showing low influence on the network’s result. In this way,

the inputs node may also be pruned, so that the algorithm

acts as a features selector (Pacifici et al., 2009), searching

for wavelengths with major correlations with the geophysi-

cal parameters in output. After the training phase, the units

(the network neurons) are analyzed to determine those not

contributing significantly to the solution. This phase is the

most important one in the procedure implementation, and it

guides the connections suppression. The relative importance,

or saliency, of different weights is the measurement, gener-

ally adopted to judge if a node will be removed. This is de-

fined as the sum of weights afferent to the neuron, i.e., less

important weights have smaller saliencies.
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Figure 11. Scatterplots for AOD networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 11 May 2010, 14:05 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

There are not so many formalized studies about pruning

techniques comparison; regardless, in the work of Kavzoglu

and Mather (1999), it has been shown how magnitude-based

(MB) pruning achieves good results compared to other tech-

niques, despite the simplicity of the algorithm. Here, we

chose the Optimal Brain Surgeon (OBS) (Stork and Hassibi,

1993), which is an extension of MB that provides improve-

ments in terms of accuracy and stability, despite higher com-

putational effort due to the computation of the inverse of the

Hessian matrix to deduce saliency and weight change for ev-

ery link. There are two criteria for stopping the pruning; the

error after each retraining must not exceed the error before

the first training more than a certain percentage or the error

after each retraining must not exceed a given absolute error

value.

The first approach allowed us a more effective selection of

the inputs and a reduction of error with respect to the perfor-

mance of the all-units network initially obtained.

5 Methodology

The main objective of the work is to retrieve the three

volcanic-ash-related parameters and SO2 total columnar

amount by means of NNs, with the MODTRAN-based re-

sults as a benchmark, but also to study which are the most

effective wavelengths to successfully reach the fixed target.
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Figure 12. Scatterplots for AOD networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 12 May 2010, 12:55 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

In order to do this, three different NNs have been imple-

mented considering different sets of inputs to exploit both the

model approach (i.e., TIR channels) and the full sensor capa-

bility. The three NNs are NN-3 which uses the three channels

exploited in the physical model; NN-ALL which makes use

of all bands provided by MODIS sensors; NN-P which uses

the bands selected by the pruning algorithm starting from all

available channels. The three MODIS thermal channels for

the NN-3 – 31, 32 and 28 – have been suggested by the BTD

model, where channel 28 takes into account the water vapor

absorption, while for SO2 retrieval, channel 29 centered at

8.7 µm has been used instead of 28.

Even if the systematic identification of the best topology

is outside the scope of this study, we have performed a trial

and error step to select the best architecture. This optimiza-

tion step has been done for NN-3 and NN-ALL, and it was

mostly focused on finding the best topology for the hidden

layers, while the input one is fixed by the number of bands.

Both optimization processes have provided the same topol-

ogy for NN-3 and NN-ALL, one hidden layer of 15 neurons,

thus we extended this result to the NN-P, which is completely

retrained after the pruning step, only using the selected in-

puts. In order to focus on the selection of the most signif-

icant MODIS channels, the pruning procedure has been ap-

plied disabling the possibility to change the NN hidden layers

topology. In this way, the pruning procedure has only been

used as a feature selection tool.
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Figure 13. Scatterplots for AOD networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 16 May 2010, 12:30 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

For this study, we collected seven MODIS images related

to the third phase of the Eyjafjallajókull eruption, from May

6 2010 to May 16 2010 (see Figs. 1 and 2). Therefore, the

MODTRAN standard procedures have been used to extract

the SO2 and the three ash parameters for all available images.

Since the back-propagation training algorithm is super-

vised, some examples of the phenomena under investigation

are needed. For this purpose, the results of the MODTRAN-

based inversion have been considered as target output during

the training phase. The whole set of MODIS acquisitions has

been split into two parts: four dates for the training phase (6,

7, 8 and 13 May, Fig. 3), and the remaining three dates as an

independent validation set (11, 12 and 16 May, Fig. 4). This

approach has been taken into account for assessing the gen-

eralization capabilities of the NNs and the statistical signifi-

cance of the training and test samples. Indeed, the four train-

ing dates have been chosen because of their statistical repre-

sentativeness of the last eruption phase. The NN retrieval has

been focused on the regions in images affected by ash cloud,

according to the BTD ash computations, indifferent to the

presence of only ash or ash cloud mixed with meteorological

clouds. It is worth noticing that the NN retrieval approach

has been applied to a real scenario, where meteorological

clouds are present as well, introducing additional difficul-

ties in the parameter estimation. Indeed, in the MODTRAN-

based scheme, the retrieval of all these parameters in such
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Figure 14. Scatterplots for SO2 networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 11 May 2010, 14:05 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

a condition increases the difficulties of parameterizing the

model itself. In particular, the NN training uses pixels from

an overlap of meteorological and ash clouds and pixels from

volcanic ash above the sea, without disjointing the retrieval

problem, while the MODTRAN-based approach has to treat

the two cases separately. Validation dates are shown in Ta-

bles 4 and 5. The independent validation pixels have been

split further into sea and meteorological clouds, depending

on where the ash cloud was located in order to also evalu-

ate the capability of the NNs to deal with these two distinct

scenarios. Before this step, the surfaces underlying the ash

cloud (sea or meteorological clouds) have been identified by

applying a threshold algorithm to the reflectance measured in

MODIS channel 3. This differentiation has not been adopted

for the training set since we want to retrieve parameters using

a unique neural network.

6 Results and discussion

In this section the results obtained by applying the three NNs

(NN-3, NN-ALL and NN-P) for the retrieval of the three ash

cloud parameters and SO2 are presented. First, the NN-based

retrievals are compared to results obtained by applying the

MODTRAN-based approach, and then the performance of

the NN retrieval are discussed.
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Figure 15. Scatterplots for SO2 networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 12 May 2010, 12:55 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

With regard to the ash parameters, the results are summa-

rized in Tables 6 to 8. As a first general remark, the RMSE of

all retrievals is lower than the corresponding SD for all NN

configurations (NN-3, NN-ALL and NN-P). This is an indi-

cation that the NNs are a valuable approach for this kind of

problem. The second remark is that better results are gener-

ally obtained with greater-input NNs, namely NN-ALL and

NN-P. This second outcome could appear not in agreement

with the results obtained by Picchiani et al. (2011) if we com-

pare their results and the present ash mass retrievals. In Pic-

chiani et al. (2011), it seemed that the performance obtained

here with NN-ALL and NN-P was already reached with a

network based only on the three TIR channels. An explana-

tion can be found considering the lower complexity of the

scenario analyzed in the previous work, where the overlap-

ping of volcanic ash and meteorological clouds was not con-

sidered.

In Figs. 5 to 16, the scatterplots computed considering the

three independent validation sets are shown, and the results

of the three NN topologies, i.e., NN-3, NN-ALL and NN-P,

are reported for each parameter.

As for the Tables, the scatterplots show the validation set

split into two regions, distinguishing the ash plume over sea

from that over meteorological clouds, in order to evaluate

the performances on the NNs in the two different scenarios.

Looking at the scatterplots, the results confirm the findings

obtained by Picchiani et al. (2011) for ash mass retrieved

above sea, using the three inputs based on physical consider-
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Figure 16. Scatterplots for SO2 networks, 3 inputs (top row), 28 inputs (middle row) and 28 inputs pruned (bottom row), applied to the

validation set of 16 May 2010, 12:30 UTC, divided into total patterns (left column), patterns over sea (middle column) and patterns over

meteorological clouds (right column).

ations. Moreover, they prove the effectiveness of the method-

ology for the other parameters and in a more complex phys-

ical scenario. The scatterplots also show a general capability

of the NN approach for reproducing the retrieval obtained by

the radiative transfer model inversion. There is a certain de-

gree of underestimation characterizing all parameters for all

test dates. The patterns above meteorological clouds show a

lower accuracy than the patterns above sea. The high error

of NN inversions depends on the higher uncertainty of the

BTD retrieval procedure in the presence of a meteorologi-

cal cloud due to the non-homogeneity of the meteorological

cloud itself. Moreover, for the temperature at the cloud top,

the brightness temperature has been considered instead of the

physical temperature. This approximation is more reasonable

for higher clouds.

A deeper comparison of all three NN topologies shows that

better performances above sea are obtained when the spectral

information increases (NN-ALL and NN-P).

As expected and confirmed by experimental results, the

NN-ALL and NN-P provided almost the same results, since

in the procedure, to obtain the NN-P from the NN-ALL, we

tried to decrease the number of inputs without affecting the

retrieval capabilities. In this way, redundant information is

neglected, allowing the network to be trained faster and to

obtain a better generalization of independent test cases. This

conclusion is confirmed by the results obtained applying NNs

to the validation date of 16 May 2010. Indeed, the inputs se-

lected by the pruning allow one to achieve better accuracies

for ash parameters and SO2 retrieval when data outside the

time frame used to train the model are considered. This re-
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Figure 17. Ash mass maps: top, 11 May 2010; middle, 12 May 2010; bottom, 16 May 2010. Left: target retrieval; right: retrieval from pruned

neural network.

sult is particularly evident for the SO2 case in which the NN-

3 performance is worse for both ash over sea and ash over

meteorological clouds (see Fig. 16). In Table 9, all bands

selected by the procedure are summarized, and it is possi-

ble to see that the pruning selection has always included the

MODIS channels with the highest physical information, i.e.,

channels 31 and 32. For all three parameters, the pruning step

selects around 50 % of the input space. In particular, the most

common MODIS channels selected by the pruning procedure

applied to the different ash parameters are as follows: chan-

nels 1, 3 and 4 are sensitive to the very fine ash; channels 23

and 25 are sensitive to cloud surface and atmospheric temper-

ature, respectively; channel 36 is sensitive to the cloud-top

altitude.

The NN-P maps (Figs. 17, 18 and 19), representing the

best results obtained for all three parameters, have been com-

pared to the model-based results for the two validation dates.

Looking at the figures, the good performance of the NN ap-

proach is confirmed for the three ash parameters; in fact, the

MODTRAN-based results were the same as those produced

by the NN-P. With regard to SO2, RMSE is still lower than

SD of parameter distribution, even if it is higher with re-

spect to the ash parameters, especially in the meteorological

clouds’ case (see Tables 6, 7 and 8). Looking at the scatter-

plots (Figs. 14, 15 and 16), if we focus our attention only on
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Figure 18. reff maps: top, 11 May 2010; middle, 12 May 2010; bottom, 16 May 2010. Left: target retrieval; right: retrieval from pruned

neural network.

the SO2 above the sea, results are better if we increase the

number of inputs, while with the meteorological cloud some

problems are still present. Indeed, the retrieval above mete-

orological clouds is not satisfactory with NN-3, and it does

not improve if we increase the number of inputs (Figs. 14, 15

and 16, right column).

In Figs. 20, 21 and 22, the comparison between the model-

based and the NN results maps is reported. In these cases,

both NN-3 and NN-P results highlight that the pruning anal-

ysis in general does not improve the results obtained consid-

ering only three channels, or it improves them slightly, in par-

ticular when the volcanic cloud lies above the meteorological

clouds (see Fig. 21). Nevertheless, looking at Fig. 20, where

NN has been applied to validation date of 11 May 2010, the

retrieval obtained by NN-P shows higher accuracy than that

obtained by NN-3, while for the date of 16 May 2010, the

information added by the other channels seems to achieve a

better generalization of the NN.

The reason for the better NN ash retrieval performance

and for the worse one in case of SO2 retrieval, when the

addition of different MODIS channels is considered, might

be explained by the different selective interactions between

the two species in the wavelengths from VIS to TIR. The

aerosol particles, such as volcanic ash, do not present a de-

fined spectral signature at specific wavelengths, but they in-

teract (with absorption and scattering) continuously over the
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Figure 19. AOD maps: top, 11 May 2010; middle, 12 May 2010; bottom, 16 May 2010. Left: target retrieval; right: retrieval from pruned

neural network.

whole VIS–TIR spectral range. In this case, the addition of

channels will increase, even if only slightly, the information

content of the ash presence in the atmosphere. Conversely,

SO2 presents spectral signatures more sensitive to specific

wavelengths, thus increasing the number of input channels

outside the absorption signature the noise will increase with-

out improving the information content.

7 Conclusions

The NNs have been effective in solving the inversion prob-

lem related to the estimation of the volcanic cloud parame-

ters, addressing the issue related to presence of false alarms

in the detection of volcanic ash. Moreover, once the train-

ing phase is completed, NNs have been proven to be a fast

retrieval technique, which is very useful at the application

stage. From this point of view, the technique satisfies the

need to provide results quickly in case of disastrous natural

events, such as volcanic eruptions.

Volcanic ash and SO2 clouds were detected and character-

ized over sea and over meteorological clouds simultaneously,

where the latter represents a very essential condition for run-

ning the RTM-based approach. The results confirm the ef-

fectiveness of the approach especially considering the main

goal of obtaining an accurate retrieval for the plume above

the sea. We have proven that the simplified topology obtained

by considering only three input channels is almost unable to

describe the complexity of the considered scenario and that
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Figure 20. SO2 columnar abundance maps for 11 May 2010: top, target retrieval; bottom left, retrieval from 3 inputs neural network; bottom

right, retrieval from pruned neural network.

pruning analysis can be conveniently applied to find other

significant input channels and improve NN performance ac-

curacy.

Moreover, the increase in the number of inputs with other

MODIS channels improves the ash retrieval over the sea and

provides appreciable results on patterns characterized by me-

teorological clouds. Another remarkable outcome is that the

retrieval accuracy over the sea is not compromised by the

presence of meteorological clouds underlying the ash cloud

in the training set, allowing one to apply a unique NN with-

out splitting the problem as required by the MODTRAN-

based algorithm. Indeed, it seems that the NNs estimate the

main relationship between ash characteristics and radiomet-

ric measurement, despite the presence of effects due to me-

teorological clouds. Especially for the ash parameters, the

majority of the validation pixels were properly retrieved in

both the scenarios. The spread shown in the scatterplots, de-

scribing pixels above meteorological clouds, is due to some

boundary effects on the region between the ash cloud and

meteorological clouds. This behavior can be interpreted as a

posteriori validation of the forward model accuracy over me-

teorological clouds, indeed it seems that the NNs address the

core of the plume on the clouds quite well, where the forward

model gives good results, and fails to retrieve ash boundary

pixels, characterized by mixed effects of ash and clouds, con-

firming high uncertainty of the forward model in describing

such a complex scenario.

On the other hand, the pruning analysis was able to apply a

feature selection of input data set maintaining the significant

inputs and improving the accuracy of the NN or by leaving it

unaltered.

Results obtained for SO2 with the same approach are gen-

erally in agreement with those obtained for the three ash pa-

rameters, even if some problems still remain above the mete-

orological clouds. Nevertheless, for the validation date on 16

May 2010, the pruning technique succeeds in finding the sig-

nificant inputs improving the NN results that are completely

unsatisfactory for the three channels approach.

Future studies will include testing the usefulness of the

technique under different light conditions (nighttime) and

on different multispectral remote sensed data, such as those

provided by high-revisit time sensors like MSG-SEVIRI, on
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Figure 21. SO2 columnar abundance maps for 12 May 2010: top, target retrieval; bottom left, retrieval from 3 inputs neural network; bottom

right, retrieval from pruned neural network.

Figure 22. SO2 columnar abundance maps for 16 May 2010: top, target retrieval; bottom left, retrieval from 3 inputs neural network; bottom

right, retrieval from pruned neural network.
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board the METEOSAT Second Generation satellites. The lat-

ter would be particularly suitable for its extremely quick re-

sponse which is a key property for realtime monitoring the

atmosphere.
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