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Abstract. Knowledge of aerosol type is important for de-
termining the magnitude and assessing the consequences of
aerosol radiative forcing, and can provide useful information
for source attribution studies. However, atmospheric aerosol
is frequently not a single pure type, but instead occurs as a
mixture of types, and this mixing affects the optical and ra-
diative properties of the aerosol. This paper extends the work
of earlier researchers by using the aerosol intensive param-
eters measured by the NASA Langley Research Center air-
borne High Spectral Resolution Lidar (HSRL-1) to develop a
comprehensive and unified set of rules for characterizing the
external mixing of several key aerosol intensive parameters:
extinction-to-backscatter ratio (i.e., lidar ratio), backscatter
color ratio, and depolarization ratio. We present the mixing
rules in a particularly simple form that leads easily to mixing
rules for the covariance matrices that describe aerosol distri-
butions, rather than just single values of measured parame-
ters. These rules can be applied to infer mixing ratios from
the lidar-observed aerosol parameters, even for cases with-
out significant depolarization. We demonstrate our technique
with measurement curtains from three HSRL-1 flights which
exhibit mixing between two aerosol types, urban pollution
plus dust, marine plus dust, and smoke plus marine. For these
cases, we infer a time-height cross-section of extinction mix-
ing ratio along the flight track, and partition aerosol extinc-
tion into portions attributed to the two pure types.

1 Introduction

Atmospheric aerosols play an important role in climate
change and solar energy availability and affect air quality
and human health, but there are still significant uncertainties

in our knowledge of the radiative effects of aerosol (IPCC,
2007). The vertical distribution of aerosol is particularly im-
portant, since aerosol lifetime and climate response depend
on altitude (Hansen et al., 1997). Uniquely among remote
sensing measurement techniques, lidar provides vertically re-
solved measurements of the distribution of aerosol properties
within the atmospheric column. At the same time, the deter-
mination of aerosol radiative forcing and source attribution
also requires knowledge of aerosol type. Depending on the
sophistication of the lidar instrument, one or more aerosol
intensive parameters can be measured. Intensive parameters
are quantities that vary only with aerosol type and not amount
and which can therefore be used for aerosol classification
(Burton et al., 2012; Groß et al., 2013b). For the NASA Lan-
gley Research Center (LaRC) airborne High Spectral Reso-
lution Lidar (HSRL-1) (Hair et al., 2008), these parameters
include the depolarization ratio at 532 and 1064 nm, aerosol
extinction to backscatter ratio (lidar ratio) at 532 nm, and the
spectral ratio of aerosol backscatter (i.e., backscatter color
ratio).

Observed aerosol layers are frequently mixtures of mul-
tiple types (e.g., Lesins et al., 2002; Tesche et al., 2011;
David et al., 2013). For passive instruments, which observe
full columns rather than vertically resolved profiles, the mea-
surements reflect an effective mix of aerosols throughout the
column. The assumption of a single aerosol type throughout
the column is also frequently required in retrievals of aerosol
extinction from elastic backscatter lidar (even though the
backscatter measurements are vertically resolved) (Fernald,
1984). Standard retrievals for the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) lidar instrument on the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations (CALIPSO) satellite do not make this assumption;
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however, they do require significant averaging that can re-
sult in layers that include multiple different aerosol types.
In those cases, the effective lidar ratio and other properties
depend on multiple types, complicating the retrieval (Burton
et al., 2013). Even in very highly resolved measurements,
aerosols are often present in a mixed state (Tesche et al.,
2009; Petzold et al., 2011). Mixing between aerosol types
can be either external or internal. In external mixing, the
aerosol particles are physically separated and individually
pure. Composite particles formed by, for example, coagu-
lation or aqueous reactions are considered internal mixtures
(Lesins et al., 2002). We focus on external mixtures in this
paper.

Aerosol classification schemes for lidar data (Burton et al.,
2012; Groß et al., 2013b; Weinzierl et al., 2011; Omar et al.,
2009) focus mainly on pure aerosol types, but also include
some mixtures, for example Polluted Dust in the CALIPSO
aerosol classification (Omar et al., 2009) and Polluted Mar-
itime and Dusty Mix in the NASA HSRL-1 classification
(Burton et al., 2012). Groß et al. (2013b) also address mix-
tures, by including mixing lines to indicate regions in the
multi-dimensional measurement space representing mixtures
between two types, either Saharan dust and marine aerosol
or Saharan dust and biomass-burning aerosol. These mix-
ing line equations build on a heritage (including Groß et
al., 2011; Gasteiger et al., 2011; Tesche et al., 2009) that
dates back at least a decade. Léon et al. (2003) and Kauf-
man et al. (2003) used equations for the inverse lidar ratio
and backscatter Ångstrøm exponent for a mixture of two
modeled aerosol modes. Sugimoto et al. (2003) examined
mixtures of dust and non-dust aerosol and derived equations
linking the depolarization with the partitioning of backscat-
ter and, in later work, the backscatter-related Ångstrøm ex-
ponent (Sugimoto and Lee, 2006). While not explicitly pro-
viding equations for aerosol intensive properties of mixtures,
Nishizawa et al. (2011) do an extinction retrieval similar to
that of Léon et al. (2003) but use both the depolarization ra-
tio and spectral relationship of the measured backscatter to
choose between three specific aerosol models; they present
results as partitions of aerosol extinction. In this paper, we
infer mixing ratios and extinction partitions for various cases
of mixing, including a non-dust case where we cannot rely
on variation in the depolarization ratio to achieve the separa-
tion. We also expand on the equations of Léon et al. (2003)
and Sugimoto and Lee (2006) by showing that, with a fortu-
itous choice of variables, the mixing equations can all be re-
cast in the form of linear combinations. This more convenient
form then leads easily to a representation of the full variance-
covariance matrices for mixtures of multivariate normal dis-
tributions as well.

The classification algorithms used by Groß et al. (2013b)
and Weinzierl et al. (2011) for German Aerospace Cen-
ter (DLR) Falcon HSRL measurements use a simple set
of thresholds in each measurement dimension to classify
aerosols. However, multivariate normal distributions provide

a more complete picture of aerosol properties, and can be
more useful for some applications (e.g., Russell et al., 2014).
Multivariate normal distributions of aerosol types were cal-
culated from the NASA Langley HSRL-1 (Burton et al.,
2012) and are an important part of the aerosol classification
methodology in use for that instrument. This article builds
on the work of Burton et al. (2012) and shows mixtures of
aerosol types in the framework of multivariate normal dis-
tributions using measurements from the NASA Langley air-
borne HSRL-1.

Following a brief instrument description in Sect. 2, Sect. 3
presents a derivation of the linear mixing equations for
aerosol intensive parameters, expanding on the work in these
earlier papers (especially Léon et al., 2003; Sugimoto and
Lee, 2006; Burton et al., 2012). In Sect. 4, we extend the
equations to include not just the mean values but also the
full covariance matrix for a mixture of two or more pure-
type multivariate normal distributions. In the second half of
this paper, in Sects. 5–7, we will show three case studies of
external mixtures observed by the NASA Langley airborne
HSRL-1, which satisfy the derived relationships. We also es-
timate mixing ratios for our case studies and show the appor-
tionment of aerosol extinction to the two constituent types.

2 Instrument description

HSRL-1 (Hair et al., 2008) is the first airborne high spec-
tral resolution lidar instrument built and operated by NASA
Langley Research Center. Between March 2006 and Octo-
ber 2012, HSRL-1 flew more than 1200 h during its 357
science flights on the NASA King Air B200 on 20 field
campaigns across North America. The HSRL technique in-
dependently retrieves aerosol and tenuous cloud extinction
and backscatter (Grund and Eloranta, 1991) without a pri-
ori information on aerosol type or extinction-to-backscatter
ratio, as is required for standard elastic backscatter lidar re-
trievals. The NASA HSRL-1 employs the HSRL technique at
532 nm and the standard backscatter technique at 1064 nm.
It also measures depolarization ratio at both wavelengths.
HSRL-1 is well calibrated and has been extensively validated
using in situ and remote sensing measurements; the HSRL-1
aerosol optical thickness (AOT) product was shown to be
within 6 % of measurements from well-established sensors
(Rogers et al., 2009). The measurement techniques and cal-
ibration procedures enable direct and unambiguous retrieval
of loading-invariant aerosol intensive properties in addition
to loading-dependent extensive properties such as AOT. The
intensive properties provided by HSRL-1 are the 532 nm li-
dar ratio, the aerosol depolarization ratios at both 532 and
1064 nm, and the backscatter color ratio (i.e., the ratio of
aerosol backscatter coefficients at the two wavelengths; the
1064 nm backscatter depends on a nominal lidar ratio, but the
systematic error this assumption produces does not greatly
affect the ratio used in aerosol classification, due to limited
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sensitivity of backscatter to the lidar ratio assumption at
1064 nm (Burton et al., 2012)).

Burton et al. (2012) describe how the intensive parame-
ters provide information about the aerosol physical proper-
ties and are combined to infer aerosol type. In that study, a
two-part classification is performed. In the first part, a set of
thirty HSRL-1 observation samples are identified where the
aerosol type is known (using external information including
back-trajectory analysis, in situ observations, visual identifi-
cation of plumes, etc.) and from these a set of eight aerosol-
type models are created in the form of multi-normal covari-
ance matrices. In the second part of the classification, every
observation from the entire comprehensive HSRL-1 data set
of 20 field campaigns is classified by choosing the best fit-
ting model out of the eight multi-normal distributions using a
generalized 4-dimensional distance metric, the Mahalanobis
distance (Mahalanobis, 1936). The results of this classifica-
tion are now considered a standard data product for the Lan-
gley HSRL-1 and HSRL-2 instruments. In Sects. 5–7 of this
study, we show examples of HSRL-1 observations that illus-
trate mixing between two pure aerosol types. The pure type
samples are chosen with the aid of the standard classification
algorithm, but multi-normal covariance matrices are created
specifically for these samples as discussed below (that is, we
do not use generalized "pure type" models).

3 Mixing relationships

Analytically derived lidar observables for mixtures are dis-
cussed by Kaufman et al. (2003) and Léon et al. (2003),
who derive backscatter-to-extinction ratio and a backscatter-
related pseudo-Ångstrøm exponent for a mixture of a fine
and a coarse aerosol mode using Moderate Resolution Imag-
ing Spectroradiometer (MODIS) aerosol models. Their start-
ing point is a simple partition of extinction,α, into fine and
coarse modes with the fine-mode fraction defined in terms of
aerosol extinction.

f ≡
αs

αs+ αl
. (1)

Here, subscripts “s” and “l” indicate small and large
mode. We are interested in the lidar ratio, or extinction-to-
backscatter ratio, the inverse of the quantity used by Léon et
al. (2003). The pseudo-Ångstrøm exponent they use is like-
wise related to the backscatter color ratio we use, but not
identical. Also, we wish to mix two arbitrary aerosol types,
which we will call a and b, not single modes. Therefore, we
start our derivation from a slightly different point, with the
goal of producing mixing equations in a very simple form.
Nevertheless the mixing relations given here are consistent
with those given by earlier authors, and we will show how to
convert between them later in this section (Eq.20).

We start with a mixing ratio (partition) defined in terms of
aerosol backscatter

p ≡
βa

βa+ βb
, (2)

where β denotes aerosol backscatter coefficient, and sub-
scripts “a” and “b” denote the contributions from two types.
First, the aerosol backscatter component of each constituent
type can be written in terms of the partition and the backscat-
ter of the mixture:

βa = pβ (3)

βb = (1− p)β. (4)

Then, to represent the aerosol extinction,α, for the con-
stituent types, we apply the aerosol extinction-to-backscatter
ratio, or lidar ratio,S.

αa = Saβa = Sapβ (5)

αb = Sbβb = Sb (1− p)β. (6)

We note that the aerosol lidar ratio is typically represented
asSa with a subscript “a” for “aerosol”. In this work, how-
ever, we drop this customary subscript to avoid confusing it
with the subscripts “a” and “b” indicating specific aerosol
types. All lidar ratios, depolarization ratios, and backscatter
and extinction coefficients in this paper should be understood
to represent the aerosol component only, with the molecular
component already removed.

With the definitions of aerosol extinction and backscatter
for the two types given in Eqs. (3)–(6), we can proceed to
deriving the lidar ratio of the mixture. The lidar ratio is the
ratio of aerosol extinction to aerosol backscatter coefficient.

S =
α

β
. (7)

Inserting Eqs. (5) and (6) in the numerator,

=

[
Sap + Sb(1− p)

]
β

β
. (8)

Cancelling terms in the numerator and denominator leaves
a simple expression for the lidar ratio of the mixture in terms
of a linear combination of the lidar ratio of each of the two
constituent types.

S = Sap + Sb(1− p). (9)

This relationship is true at any wavelength, but both the
lidar ratios and the coefficientp are wavelength dependent.
We must therefore derive the wavelength dependence of the
mixing coefficient,p. Accordingly, we will introduce a su-
perscriptλ to indicate the wavelength dependence of the par-
tition and other quantities and write Eq. (2) more explicitly
for the 1064 nm channel.

p1064=
β1064

a

β1064
a + β1064

b

. (10)
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To get the relationships between channels, we need the
backscatter color ratio

χ =
β532

β1064
. (11)

The color ratios for the two pure types will be indicated
by χa andχb. The backscatter partition at 532 nm is derived
following similar steps.

p532 =
β532

a

β532
a + β532

b

(12)

=
χaβ

1064
a

χaβ1064
a + χbβ

1064
b

. (13)

Combining with Eqs. (3) and (4) and cancelling out the to-
tal aerosol backscatter in the numerator and denominator, we
are left with the following equation, which gives the wave-
length dependence of the backscatter partition. As long as the
partition is known at one wavelength, along with color ratio
values for the two pure types, the partition at other wave-
lengths can be obtained.

p532 =
χap1064

χap1064+ χb (1− p1064)
. (14)

We can write the equation for the lidar ratio at 532 nm as
a linear combination of the 532 nm lidar ratios of each pure
type like this:

S532
= S532

a p532+S532
b (1−p532) (15)

or like this:

S532
=

S532
a χap1064+ S532

b χb (1−p1064)

χap1064+ χb (1− p1064)
. (16)

The backscatter color ratio itself is an aerosol intensive
parameter that is used in aerosol classification. Accordingly,
we derive the mixing coefficient of the backscatter color ratio
itself.

χ =
χaβ

1064
a + χbβ

1064
b

β1064
a + β1064

b

(17)

χ =

[
χap1064+ χb (1− p1064)

]
β1064

β1064
(18)

χ = χap1064+ χb (1− p1064) . (19)

So this also mixes linearly. That is, the form of the equa-
tion is the same as Eq. (9) and furthermore the mixing coef-
ficient is the same as for the lidar ratio at 1064 nm.

A similar derivation yields the relationship between the
backscatter partitionpλ at any wavelength and the partition
of extinction,fλ, that was defined in Eq. (1).

fλ =
Sλ

apλ

Sλ
apλ + Sλ

b (1− pλ)
. (20)

The final intensive parameter that we use for aerosol clas-
sification is the aerosol depolarization ratio. Following the
same logic as Sugimoto and Lee (2006), it is possible to
derive the aerosol depolarization ratio of a mixture. Multi-
ple definitions of depolarization ratio are in use (Cairo et al.,
1999; Gimmestad, 2008), and we must be specific. We con-
sider only the depolarization due to aerosols, and, using the
same notation as Sugimoto and Lee (2006), we use the sym-
bol δ for the ratio of the aerosol backscatter coefficient mea-
sured in the perpendicular channel to that measured in the
parallel channel,

δ =
β⊥

β‖

(21)

and the symbolδ′ for the ratio of perpendicular to total
aerosol backscatter.

δ
′

=
β⊥

β‖ + β⊥

(22)

δ
′

=
δ

1+ δ
. (23)

Note that the second half of Sugimoto and Lee’s (2006)
Eq. (3) relating the two depolarization parameters includes a
typographical error. It should be this:

δ =
δ′

1− δ′
. (24)

Aerosol depolarization measurements from lidar are usu-
ally reported as defined by Eq. (21) . This includes archived
aerosol depolarization ratio measurements from the NASA
airborne HSRL-1 used in this study and by Burton et
al. (2012). However, for the mixing equations in this study,
we will use δ′ from Eq. (22) because this is the quantity
that mixes linearly. To distinguish between them more conve-
niently, we will use the term “aerosol depolarization poten-
tial” for the quantityδ′ and the term “aerosol depolarization
ratio” for the more familiar quantity,δ. The term “depolar-
ization potential” is inspired by Gimmestad (2008) who de-
scribes it as “a measure of the propensity of the scattering
medium to depolarize the incident polarization.”

Sugimoto and Lee (2006) use the backscatter mixing ratio,
which they callX, and we callp532. Without assuming that
one type is totally non-depolarizing as they do, we can write
a more general form of their Eq. (6) for two types. Sugimoto
and Lee’s equation relates the depolarization ratio,δ, of a
mixture to the depolarization potential,δ′, of the two types.
Here we combine their equation and Eq. (24) to write the
relationship entirely in terms ofδ′. With some algebra, this
makes it a linear equation and therefore more useful for our
later development in Sect. 4.

δ′mix
532

1− δ′mix
532

=
δ′

ap532+ δ′
b (1− p532)

(1− δ′
a)p532+ (1− δ′

b)(1− p532)
. (25)
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Invert and add 1 to both sides:

1

δ′mix
532

=

(
1− δ′

a
)
p532+

(
1− δ′

b
)
(1− p532)

δ′
ap532+ δ′

b (1− p532)
(26)

+
δ′

ap532+ δ′
b (1− p532)

δ′
ap532+ δ′

b (1− p532)
.

Canceling terms in the numerator and inverting again
yields

δ′mix
532 = δ′

ap532+ δ′
b (1− p532) . (27)

Not only is this in the convenient form of a linear combi-
nation, but the linear coefficient is the same as the 532 nm
backscatter mixing ratio found in Eq. (15).

4 Multivariate normal distributions for mixture types

The previous section provides mixing rules for the mean val-
ues of lidar intensive parameters. However, as discussed in
the introduction, for some applications it is useful to examine
not just mean values, but also to estimate model distributions
for the mixtures. Burton et al. (2012) use multivariate normal
distributions for various aerosol types, including both pure
types and some mixtures, which were based on HSRL mea-
surements of various types. However, the mixtures included
in this scheme were based empirically on specific mixture
cases that were straightforward to identify in HSRL-1 ob-
servations. Here, we analytically calculate the multivariate
normal distributions of a mixture, given covariance matrices
describing distributions for two pure types. Recall that the
set of normal distributions is closed under linear transfor-
mations. Therefore, the equations in Sect. 3 showing lidar-
observed aerosol intensive parameters in the form of linear
combinations are in a particularly convenient form. Follow-
ing Burton et al. (2012) and earlier authors (Cattrall et al.,
2005), we assume that the lidar measurements for pure types
can be approximated by multivariate normal distributions; in
that case, the linear equations imply that a mixture of two
pure types with a specific mixing ratio can also be approxi-
mated as a multivariate normal distribution.

Specifically, given that an optical measurement of depo-
larization potential, lidar ratio, or color ratio – written gener-
ically by xmix – can be represented as a linear combination
of two pure types as given in Sect. 3,

xmix = pxa+ (1− p)xb (28)

then we define measurement vectorsA and B comprising
those three quantities for the two pure types, “a” and “b”.

A =

 δ
′532
a

S532
a
χa

 B =

 δ
′532
b

S532
b
χb

 . (29)

The vectorX that describes the mixture is given by the
vector equation

X = PA + (I − P)B, (30)

whereI is the identity matrix andP is a diagonal matrix com-
posed of the linear coefficient of mixing for each measure-
ment dimension.

P =

p1 0 0
0 p2 0
0 0 p3

 =

 χap1064
χap1064+χb(1−p1064)

0 0
0 χap1064

χap1064+χb(1−p1064)
0

0 0 p1064

 . (31)

Equation (30) is just a restatement of Eqs. (16), (19) and
(27) in vector form. Assuming the state vectorsX, A and
B are multi-normally distributed with distributions described
by covariance matrices6X,6A and6B then, the covariance
matrix for the mixing stateX is given as follows (Parois and
Lutz, 2011):

6X = P6APt
+ (I − P)6B (I − P)t , (32)

where superscript t indicates the transpose operation. Recall
that the diagonal elements of the covariance matrix are the
variances, while the off-diagonal elements are the covariance
terms:

6 =


σ 2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ 2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ 2
3

 , (33)

whereσi indicates the standard deviation ofxi and ρij is
Pearson’s correlation coefficient describing the correlation
betweenxi andxj .

Writing out the diagonal terms of Eq. (32) produces the
familiar propagation of errors for a linear combination (e.g.,
Bevington and Robinson, 1992).

σ 2
Xi=p2

i σ
2
Ai+(1−pi)

2σ 2
Bi for i = δ

′

532, S532, χ. (34)

Equation (32) can be illustrated by simulation, as shown in
Fig. 1. Here two covariance matrices are arbitrarily selected
to represent pure types. Points randomly selected from these
distributions are shown in blue and purple. Blue and purple
ellipses show the two-sigma contours of the covariance ma-
trices for the pure types (when representing covariance ma-
trices as ellipses, the major and minor axes are given by the
square root of the eigenvalues while the directions are de-
termined by the eigenvectors (Rodgers, 2000)). A specific
mixture of the two pure types is calculated numerically by
mixing the blue and purple points using three different lin-
ear coefficients of mixing for the three dimensions, and these
points are shown in orange. The coefficients are (0.6, 0.2,
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Fig. 1. Illustrates a simulation of mixing in three “measurement”
dimensions (Variable 1, Variable 2 and Variable 3) which are shown
as 2-D projections in the three panels. Blue and purple indicate two
pure types, which are modeled as multivariate normal distributions.
The blue and purple points are randomly selected from defined mul-
tivariate normal distributions, and the blue and purple ellipses are
representations of the two-sigma surfaces of the covariance matri-
ces for these distributions. The orange points are constructed nu-
merically as linear combinations of points from the purple and blue
distributions, using a constant mixing coefficient vector, (0.6, 0.2,
0.8). The red ellipses are the 2-D projections of the covariance ma-
trix calculated analytically using Eqs. (30) and (32). The correspon-
dence between the red ellipses, calculated analytically, and the or-
ange points, calculated numerically, is therefore a demonstration of
the correctness of Eq. (32).

0.8). That is, Variable 1 is calculated as 60 % purple plus
40 % blue, Variable 2 is 20 % purple plus 80 % blue, and
Variable 3 is 80 % purple plus 20 % blue. Equation (32) is
then used to calculate the covariance matrix of the mixture
points, which is represented as a red ellipse in each projec-
tion. Since the orange points are calculated numerically and
the red ellipses are calculated analytically, and they agree,
this simulation provides a demonstration that the form of the
equation is correct.

The mixture equations given here can easily be extended
to three or more types. For three types, A, B, and C, Eq. (30)
becomes

X = PAA + PBB + (I − PA − PB)C, (35)

wherePA andPB represent the vector mixing coefficients for
type A and B, respectively. Expanded for each lidar observ-
able as in Eq. (31),

PA =

pa
1 0 0

0 pa
2 0

0 0 pa
3

 (36)

pa
1 = pa

2 =
χap

a
1064

χap
a
1064+ χbp

b
1064+ χc

(
1− pa

1064− pb
1064

) (37)

pa
3 = pa

1064 (38)

and

PB =

pb
1 0 0

0 pb
2 0

0 0 pb
3

 (39)

pb
1 = pb

2 =
χbp

b
1064

χap
a
1064+ χbp

b
1064+ χc

(
1− pa

1064− pb
1064

) (40)

pb
3 = pb

1064. (41)

The covariance matrix for a mixture of three types is given
by

6X = PA6APA
t
+ PB6BPB

t

+ (I − PA − PB)6C (I − PA − PB)t . (42)

5 HSRL-1 observations of dust and pollution mixtures
during MILAGRO

HSRL-1 data from the MILAGRO (Megacity Initiative: Lo-
cal and Global Research Observations) campaign provide a
further illustration of Eqs. (30) and (32). Figure 2 shows
the aerosol backscatter coefficient, aerosol extinction coeffi-
cient and aerosol depolarization ratio at 532 nm for a flight
in and around Mexico City on 15 March 2006. More de-
tails about the meteorological context and aerosol sources
and transport in this case study are given by de Foy et
al. (2011), who discuss comparisons of the Weather Research
and Forecasting (WRF)-Flexpart aerosol transport model and
the HSRL-1 measurements for this case. Enhancements of
backscatter and extinction in the data curtains mostly indi-
cate urban aerosol from the Mexico City Metropolitan Area.
The aerosol depolarization ratio, which is an indicator of
non-spherical particles, is elevated throughout much of the
boundary layer, reflecting the influence of locally generated
dust.

Most of the scene consists of varying amounts of dust and
pollution. While de Foy et al. (2011) also show a significant
amount of fresh smoke in the region, here we limit the analy-
sis to the region below 4 km above mean sea level (a.s.l.) and
no smoke plumes are included. Figure 3 shows the measure-
ments on 15 March 2006 from HSRL-1 of three intensive
variables for all data points below 4 km having extinction in
excess of 0.05 km−1. Here, the aerosol depolarization ratio
has been converted to depolarization potential, since this is
the quantity that mixes linearly, according to Eq. (27). Note
that the intensive variables are spread over a continuum in all
three measurement dimensions, supporting the inference of
an external mixture between two types.
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Fig. 2.HSRL-1 measurements of the aerosol backscattering coefficient at 532 nm (top), the aerosol extinction coefficient at 532 nm (middle)
and the aerosol depolarization ratio,δ, at 532 nm (bottom) are shown for a flight over Mexico City and surrounding regions on 15 March 2006
during the MILAGRO campaign. Black vertical lines indicate no data, usually due to shuttering the laser during aircraft turns or filtering data
that is attenuated by clouds.

Measurement samples of pure types are required for an-
alyzing the mixture according to Eqs. (30)–(32). For this
study, we define the distributions for the pure types using
scene-specific measurements, rather than using generic mod-
els. For pure dust, we take an HSRL-1 measurement sam-
ple of locally generated dust from a dust plume observed on
the slope of Pico de Orizaba, 200 km east of Mexico City,
three days earlier on 12 March (de Foy et al., 2011). The
532 nm lidar ratio of this measurement sample, 34± 2 sr, is
smaller than typical values reported for Saharan dust close to
the source (Esselborn et al., 2009; Freudenthaler et al., 2009),
but the high depolarization ratio, 0.32, is comparable to the

values of 0.27–0.35 measured by Freudenthaler et al. (2009),
suggesting this sample is indeed pure dust, though of a differ-
ent composition than Saharan dust. The very low backscatter
color ratio (532 nm/1064 nm) of 0.70± 0.07 indicates large
particles. Again, these values differ from other HSRL-1 mea-
surements of pure dust which mostly correspond to trans-
ported Saharan dust (Burton et al., 2012). The smaller color
ratios in this observation of dust in Mexico, directly at the
source, probably imply the presence of large particles that
have not yet deposited out of the plume. For this analysis, we
also sample Mexico City urban pollution using the HSRL-1
aerosol classification mask (Burton et al., 2012) from an
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Table 1. The mean and standard deviation of the 532 nm aerosol lidar ratio, aerosol backscatter color ratio (532 nm/1064 nm) and 532 nm
aerosol depolarization potential are given for the six samples of pure aerosol types measured by the HSRL-1 airborne lidar that are discussed
in this study. The mean aerosol depolarization ratio is also given, since this is a more familiar quantity. See Section 3 for definitions of aerosol
depolarization ratio and depolarization potential.

Aerosol Aerosol Aerosol Aerosol
lidar backscatter depolarization depolarization

ratio (sr) color ratio potential ratio
(532 nm) (532 nm/1064 nm) (532 nm) (532 nm)

Mexico dust 34± 2 0.70± 0.07 0.24± 0.01 0.32
Mexico City pollution 51± 5 1.8± 0.1 0.067± 0.009 0.072
Caribbean marine 21± 3 1.4± 0.1 0.05± 0.02 0.05
Transported Saharan dust 48± 3 1.6± 0.1 0.241± 0.005 0.32
Yucatan Peninsula smoke 66± 6 1.7± 0.1 0.025± 0.001 0.026
Gulf of Mexico marine 24± 2 1.1± 0.1 0.017± 0.008 0.017
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Fig. 3. Aerosol intensive parameters measured by HSRL-1 on
15 March 2006 in Mexico City and surrounding areas. All data
below 4 km a.s.l. having 532 nm aerosol extinction greater than
0.05 km−1 are shown. The three panels illustrate three different
combinations of two of the intensive parameters: 532 nm aerosol li-
dar ratio, backscatter color ratio (532/1064 nm) and 532 nm aerosol
depolarization potential (see text for definition). The measurements
are shown as individual points, color coded by point density in the
2-D space with warmer colors indicating higher point density (in ar-
bitrary units). The red ellipses represent two-sigma covariance for
pure dust and urban pollution (see text) and the orange ellipses in-
dicate mixtures of the two with a range of mixing ratios.

overpass directly over Mexico City where the backscattering
and extinction are at a maximum. In contrast to the dust, this
sample has a higher lidar ratio, 51± 5 sr, larger backscatter
color ratio, 1.8± 0.1, and small depolarization ratio of 0.07,
consistent with other lidar measurements of urban aerosol
(Burton et al., 2012, 2013; Groß et al., 2013a). These mea-
surements are also shown in Table 1.

Numerically calculating the variance-covariance matrices
for the pure-type measurement samples is straightforward.
The ellipses representing the two-sigma covariance contours
of the samples of pure dust and pure urban aerosol are shown
in red in Fig. 3. Also shown, in orange, are ellipses represent-
ing covariance matrices for mixtures built using Eqs. (30)–
(32) with backscatter partitions,p532, of 10, 20, 30. . . 90 %.
The agreement between the measured data and the envelope
of the string of ellipses can be taken as confirmation of the
derivations in Sects. 3 and 4 and an indicator that the aerosol
in this case is well represented as an external mixture.

The next step is to estimate the partitioning between the
two aerosol types, in terms of the 532 nm extinction parti-
tion (or “extinction mixing ratio”) for the entire flight at all
altitudes. Given measured values of three aerosol intensive
parameters, we could use any of the scalar Eqs. (16), (19), or
(27) in Sect. 3 to estimate the extinction mixing ratio at each
point. But to infer an extinction mixing ratio simultaneously
consistent with all three measured variables, we instead use
the calculated multivariate distributions illustrated in Fig. 3.
Any value of the extinction mixing ratio is associated one-to-
one with a backscatter mixing ratio using Eq.20 and with a
multivariate distribution given by a vector mean and covari-
ance matrix as described in Eqs. (30)–(32). A given measure-
ment will be consistent with a range of overlapping multi-
normal distributions, but by minimizing the Mahalanobis dis-
tance as a function of mixing ratio, we choose the distribu-
tion that is the best match to a given measurement. The Ma-
halanobis distance (Mahalanobis, 1936), discussed in detail
by Burton et al. (2012), is a generalized unitless metric that
describes the “distance” between a measurement point and a
multivariate normal distribution. This calculation, choosing
the extinction mixing ratio that best fits a given observation,
is exactly analogous to the aerosol classification methodol-
ogy described by Burton et al. (2012). However, instead of
eight aerosol types described by multi-normal distributions,
here we have a continuum of multi-normal distributions
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Fig. 4. Illustrates the extinction mixing ratio (percentage of 532 nm extinction due to dust) for the dust plus urban mixtures observed by
HSRL-1 on 15 March 2006 during the MILAGRO field campaign. The extinction mixing ratio is inferred from the lidar measurements and
Eqs. (30)–(32) as described in the text. The blue end of the color scale indicates more urban and the red end indicates more dust. Vertical
lines indicate the closest approach to the three campaign ground sites, T0, T1 and T2.
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Fig. 5. Partition of extinction into contributions by the two pure types, dust and urban, for the HSRL-1 measurements on 15 March 2006.
The top panel shows the total aerosol extinction; the middle panel shows the aerosol extinction attributed to dust; the lower panel shows the
aerosol extinction attributed to urban pollution.

which sample the range of possible extinction mixing ratios
from 0 % to 100 %. We choose the single multi-normal distri-
bution which minimizes the Mahalanobis distance metric and
therefore maximizes the probability that the measurement is
consistent with the distribution. Figure 4 shows a time-height
cross-section of the inferred extinction mixing ratio,f532, for
this flight.

This procedure gives a best estimate of the extinction mix-
ing ratio, but a given measurement point can be consistent
with a range of overlapping mixture distributions. We there-
fore also calculate an uncertainty in the extinction mixing
ratio estimate. The error in the extinction mixing ratio is af-
fected by several factors. Errors in selecting or characterizing
the pure type distributions would have a significant effect on
the mixing ratio. A large error in the pure type distributions
would be noticeable as a significant mismatch between the
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Fig. 6. HSRL-1 measurements (left three panels) of aerosol backscatter coefficient, aerosol extinction coefficient and aerosol depolarization
ratio, δ, on 22 August 2010 in the Caribbean Sea. High values of depolarization indicate a layer of transported Saharan dust, which is
mixing with the marine boundary layer. On the right is a set of NOAA HYSPLIT back-trajectories ending within the observed dust layer; the
trajectories lead back to Saharan Africa.

curvature of the data and the ellipses in Fig. 3; however, a
smaller systematic error of this type may not be obvious and
would be difficult to characterize. Measurement error in the
pure type samples affects the size and shape of the ellipses
but not the curves that link them, and so does not have a sig-
nificant effect on the extinction mixing ratio. However, mea-
surement uncertainty also affects the placement of the point
to be characterized and will therefore lead to random error
in the extinction mixing ratio. To estimate this error, we note
that the minimized Mahalanobis distance is essentially a fit-
ting residual. In order to convert the unitless Mahalanobis
distance to mixing ratio units, we estimate a local scaling
factor, using the Mahalanobis distance between the mixture
distribution and the center of a neighboring distribution with
a slightly different extinction mixing ratio. Extinction mix-
ing ratio uncertainties for this example are approximately 3–
10 % mixing ratio (percentage points).

Vertical lines in Fig. 4 indicate the point of closest ap-
proach to the MILAGRO campaign’s three measurement
ground sites, T0, T1, and T2. In each case, the closest ap-
proach was within 10 km and 15 min of an Aerosol Robotic
Network (AERONET) (Holben et al., 1998) observation.
AERONET retrievals of coarse mode fraction (O’Neill et
al., 2003) at these locations and times, converted to 532 nm

using the AERONET-reported total and fine-mode Ångstrøm
exponents, were 4 %± 26 %, 30 %± 10 %, and 40 %± 6 %
for T0, T1, and T2, respectively (uncertainties are root mean
square error in units of percentage points). Assuming the dust
in this scene is predominantly coarse mode, then the inferred
dust extinction mixing ratio in Fig. 4 for these three loca-
tions is in good agreement with these column values. For T0,
the dust extinction mixing ratio inferred for every point in
the column was 0 %± 8 %. At T1, the inferred dust extinc-
tion mixing ratio varies from 18 %± 5 % to 23 %± 4 %, with
most of the column having values at the higher end of the
range. At T2, most of the column has calculated dust extinc-
tion mixing ratios of 30 %± 4 % to 36 %± 3 %, with a drop-
off to 27 %± 5 % in the top 150 m of the aerosol column. For
these locations and times, the HSRL-derived dust extinction
mixing ratio is relatively constant throughout the column.
However, Fig. 4 clearly shows in other parts of the scene,
for example around 16:45 UT, 18:00 UT and again around
18:30 UT, that there is significant vertical variability in the
aerosol extinction mixing ratio. These vertical gradients can-
not be captured by a passive instrument that retrieves only
column-equivalent values.
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Figure 5 shows the contribution of each of the two pure
types, dust and urban pollution, to the total measured aerosol
extinction at 532 nm, calculated by applying the mixing ra-
tios from Fig. 4.

6 HSRL-1 observations of dust and marine mixtures in
the Caribbean Sea

Another case of HSRL-1 observations of mixtures is shown
in Fig. 6. On six days between 18 August and 27 Au-
gust 2010, HSRL-1 observed dust in the Caribbean trans-
ported from Africa. Some of these cases are discussed by
Burton et al. (2012, 2013). The observations shown in Fig. 6
occurred on 22 August south of Puerto Rico at 13◦–19◦ N
latitude, 65◦–69◦ W longitude. Back-trajectories calculated
using the online Hybrid Single Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) tool from the NOAA Air Re-
sources Laboratory READY website (http://ready.arl.noaa.
gov/HYSPLIT.php; Draxler and Rolph, 2013) lead back to
Saharan Africa approximately 10 days earlier. In this scene,
the main part of the dust layer is at relatively low altitude,
in contact with the marine boundary layer and mixing with
it. This is evidenced by the depolarization-ratio curtain in
Fig. 6, where the aerosol depolarization ratio exceeds 0.10
even in the marine boundary layer. The aerosol intensive pa-
rameters are shown in Fig. 7 for all measurements with ex-
tinction above 0.05 km−1 (again, aerosol depolarization ratio
is converted to aerosol depolarization potential for Fig. 7).
To analyze these measurements in terms of mixtures of dust
plus marine aerosol, a pure dust sample was selected us-
ing the HSRL classification (Burton et al., 2012) from the
part of this scene with the highest depolarization ratio, be-
tween 05:24 UT (5.4 UT) and 05:48 UT (5.8 UT) and be-
tween 1.4 and 2.4 km a.s.l. The measured depolarization ra-
tio of this sample is again approximately 0.32 (which is 0.24
depolarization potential), the lidar ratio is 48± 3 sr and the
backscatter color ratio is 1.6± 0.1 (see Table 1). David et
al. (2013) claim that the maximum measured value of de-
polarization should not be used as a proxy for the depolar-
ization of pure dust in cases of transport, since mixing with
spherical particles will invariably occur, decreasing the de-
polarization value from that of pure dust. However, the peak
depolarization ratio measurement is consistent with pure dust
depolarization measurements in literature (Freudenthaler et
al., 2009) and supports the use of this portion of the air
mass being considered pure dust. On the other hand, the
larger backscatter color ratio indicates a smaller mean parti-
cle size, smaller than the locally generated Mexican dust dis-
cussed in Sect. 5. This suggests that the largest particles have
been lost to deposition during transport (Maring et al., 2003;
Preißler et al., 2013). Aerosol depolarization ratio measure-
ments greater than 0.10 throughout this scene suggest that
there is no pure marine aerosol here. Therefore, the pure
marine sample for this case was obtained from a flight on
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Fig. 7. Aerosol intensive parameters measured by HSRL-1 on
22 August 2010 in the Caribbean Sea south of Puerto Rico. The
three panels show three different combinations of two of the in-
tensive parameters, 532 nm aerosol lidar ratio, backscatter color ra-
tio (532/1064 nm) and 532 nm aerosol depolarization potential (see
text for definition). Measurements having 532 nm aerosol extinction
greater than 0.05 km−1 are shown. The measurements are shown as
individual points, color coded by point density in the 2-D space with
warmer colors indicating higher point density (in arbitrary units).
The red and orange ellipses represent two-sigma covariance for pure
dust and marine (see text) and mixtures of the two with a range of
mixing ratios.

26 August, four days later, in the same region. The aerosol
intensive parameters for the pure marine sample are given in
Table 1. The covariance matrices derived from the two sam-
ples of pure types are shown as red ellipses (two-sigma co-
variance) in Fig. 7.

Once again, the HSRL-1 measurements lie on a continuum
between the two pure types and are in good agreement with
the ellipses representing mixture multi-normal distributions
from Eqs. (30)–(32). This alignment indicates that the obser-
vations are well described as a mixture between these two
pure types. Note however that the pure types have been spec-
ified explicitly for each scene. In particular, there is a signif-
icant difference in lidar ratio and backscatter color ratio be-
tween the pure dust samples from the Mexico scene and the
Caribbean scene. This should not be surprising since other
researchers (Esselborn et al., 2009; Schuster et al., 2012;
Mamouri et al., 2013) have found that the lidar ratio for dust
depends on source region, and that the size distribution and
Ångstrøm exponents change as large particles are removed
during transport (Maring et al., 2003; Weinzierl et al., 2011;
Preißler et al., 2013). If generic aerosol models were used
in the mixture calculations, the results for the mixed state
would be more approximate. The accuracy of the partition-
ing results depends on the accuracy of the models used. If
the pure dust sample from Mexico City were used in place

www.atmos-meas-tech.net/7/419/2014/ Atmos. Meas. Tech., 7, 419–436, 2014
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Fig. 8. Top panel illustrates the extinction mixing ratio (percentage of 532 nm extinction due to dust) for the mixtures of marine aerosol and
transported Saharan dust observed by HSRL-1 on 22 August 2010 in the Caribbean Sea. The extinction mixing ratio is inferred from the lidar
measurements and Eqs. (30)–(32) as described in the text. In this case, blue colors indicate more marine aerosol and red indicates more dust.
Bottom three panels show aerosol extinction measurements and aerosol extinction apportioned to the dust and marine components separately.

of the Caribbean dust model in this scene, the ellipses would
not line up well with the data, which would serve as an indi-
cation that the Mexico City dust model is not a good model
for this scene of transported Saharan dust. For some appli-
cations, generic aerosol models may be unavoidable. Further
study is required to determine how to best use generic mod-
els for specific applications, and how much effect they would
have on the accuracy of the results.

Figure 8 shows the inferred extinction mixing ratio for this
scene as a percentage of 532 nm extinction due to dust and
shows the partitioning of extinction for this scene. The ma-
rine aerosol is confined to the boundary layer. While most of

the aerosol extinction due to dust is in a lofted layer, there is a
significant amount of dust aerosol also in the marine bound-
ary layer, as expected.

7 HSRL-1 observations of mixed smoke and marine
aerosol in the Gulf of Mexico

Our final case study occurred in the Gulf of Mexico near Ve-
racruz on 28 March 2006, also during the MILAGRO field
campaign. Figure 9 shows HSRL-1 measurement curtains
and NOAA Hysplit 10-day back-trajectories for this scene.
The aerosol in the boundary layer consists of two layers.
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Fig. 9.Overview of observations on the 28 March 2006 flight off the coast of Mexico near Veracruz. Panel(a) shows a map of the HSRL flight
track, color coded by total column AOT. Panel(b) shows 10-day back-trajectories for two points in the boundary layer (1600 m a.s.l. and
300 m a.s.l.) at 15:00 UT. Panels(c)–(e)show HSRL observations of aerosol backscatter, aerosol extinction and aerosol lidar ratio at 532 nm.
The stratification in the lidar ratio with higher values in the upper part of the boundary layer and lower values in the lower part is indicative
of a smoke or pollution layer on top of a layer of marine air. The two layers are in contact and show intermediate values of lidar ratio at
altitudes in the middle of the boundary layer.

The lower layer has the properties of marine aerosol (Bur-
ton et al., 2012, 2013) with low lidar ratios near 24 sr. The
upper layer, from an air mass which crossed the Yucatan
peninsula 24–48 h before the time of observation, has higher
lidar ratios of 60–70 sr consistent with pollution or smoke
(e.g., Tesche et al., 2011; Burton et al., 2012, 2013). Fig-
ure 10 shows the aerosol lidar ratio and backscatter color
ratio for measurements below 2500 m a.s.l. and having ex-
tinction greater than 0.05 km−1. The backscatter color ratio
increases with lidar ratio such that larger particles are associ-
ated with the lower lidar ratios (marine) and smaller particles
are associated with higher lidar ratios (smoke or pollution).
Considering the prevalence of small fires in the region (Fast
et al., 2007), the air mass is probably best described as smoke
aerosol. Both Figs. 9 and 10 show that the marine and smoke
aerosol types are not cleanly separated. At altitudes in the
middle of the boundary layer, the lidar ratio and backscatter

color ratio take on intermediate values. This suggests that
there is mixing between the two types.

There is no dust in this scene and insignificant aerosol
depolarization. Therefore the technique of Sugimoto and
Lee (2006), Tesche et al. (2009, 2011) and Groß et al. (2011)
for separating aerosol into dust and non-dust components
would not be applicable in this case. In contrast, the general-
ized technique presented in this study uses multiple aerosol
intensive parameters and does not require measurable depo-
larization. We therefore performed our separation technique
for this case using only the lidar ratio and backscatter color
ratio shown in Fig. 10.

As with dust, smoke aerosol properties are known to vary
according to the source region, age and transport (Alados-
Arboledas et al., 2011; Nicolae et al., 2013), including dra-
matic variability in the lidar ratio. Again, this variability mo-
tivates our decision to use aerosol models specific to this
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Marine and Smoke
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Fig. 10. Aerosol lidar ratio (532 nm) and backscatter color ratio
(532/1064 nm) measured by HSRL-1 on 28 March 2006 in the Gulf
of Mexico. All measurements on this flight below 2500 m a.s.l. and
having extinction greater than 0.05 km−1 are shown in this figure.
The measurements are shown as individual points, color coded by
point density with warmer colors indicating higher point density (in
arbitrary units). The red and orange ellipses represent two-sigma co-
variance for pure smoke and pure marine (see text) and for mixtures
of the two with a range of mixing ratios.

region. The covariance matrices for the pure types were both
taken from measurement samples in this flight. The smoke
sample is taken from between 1.5 and 2.0 km a.s.l. from the
start of the flight before 14:28 UT (14.46 UT) where ele-
vated aerosol extinction levels indicate higher aerosol load-
ing. The marine sample was obtained below 0.7 km a.s.l. be-
tween 14:48 UT (14.8 UT) and 15:12 UT (15.2 UT) where
the lidar ratio is low and has relatively little variability. The
inferred extinction mixing ratio and partition of extinction
are shown in Fig. 11. As expected, most of the extinction
in the lower part of the layer is attributed to marine aerosol
and most of the extinction in the upper part of the layer is
attributed to smoke aerosol, but with some portions of the
curtains having partial contributions from both types.

8 Summary and outlook

In summary, we show that lidar observable aerosol inten-
sive parameters frequently reflect mixtures between different
aerosol types. We expand the derivations of equations used
by previous researchers to describe external mixtures. The
equations for each observable can be written in the form of
a linear combination of pure types, from which follow equa-
tions for multivariate covariance matrices. Therefore we can
precisely describe mixing rules not only for single measure-
ments but also measurement distributions. We also give the
relationships between the mixing coefficients for different in-
tensive quantities at different wavelengths.

It is important to acknowledge that not all variability in
aerosol is due to external mixing. Humidification of aerosol
(Su et al., 2008; Ferrare et al., 2001; Howell et al., 2006),
aging and deposition during transport (Maring et al., 2003;
Weinzierl et al., 2011), and internal mixing (Lesins et al.,
2002; Mishchenko et al., 2012) are other mechanisms that
affect aerosol intensive parameters, in ways which may not
conform to the relationships presented here. However, we
show three example flights where good agreement between
the lidar measurements and the analytical relationships sup-
port the assumption of external mixing: of pollution plus
dust, dust plus marine, and smoke plus marine. We also ap-
ply the equations to infer time-height cross-sections of ex-
tinction mixing ratio and partitions of extinction, which is
possible even for cases which do not include dust (and there-
fore which have insignificant depolarization).

Unlike most passive instruments which give only total col-
umn amounts of aerosol-relevant measurements, lidar mea-
surements are fully resolved vertically. The ability to quanti-
tatively apportion aerosol extinction to type in a vertically re-
solved measurement has the potential to greatly increase the
information content that can be used for comparison and val-
idation of global and regional aerosol models and chemical
transport models. Models are the usual means of assessing
the impact of aerosol on climate and air quality, but there is
significant disagreement in how models represent the verti-
cal distribution of aerosols (Textor et al., 2006; Koffi et al.,
2012) and aerosol composition (Kinne et al., 2006; Shin-
dell et al., 2012) even when similar emission functions are
used (Textor et al., 2007). The aerosol classification from the
NASA Langley airborne HSRL has previously been used to
help evaluate and interpret aerosol models (e.g., de Foy et
al., 2011). The ability to handle mixtures of aerosol types
can potentially increase the usefulness of such comparisons,
by providing more precise information on the vertical appor-
tionment of aerosol by type. For example, using the standard
HSRL-1 aerosol classification (Burton et al., 2012), most of
the Caribbean scene illustrated in Figs. 6–8 is classified qual-
itatively as “dusty mix”. The ability to quantify the amount of
extinction in the marine boundary layer which is due to dust
can give information on the deposition of aerosol which can
improve our understanding of aerosol transformation during
transport and relates to measurements of primary productiv-
ity in the ocean.

Applications relating to climate science can be challeng-
ing for aircraft measurements, which are necessarily limited
in time and space. However, the work presented suggests that
a 2β + 1α + 2δ HSRL instrument (that is, an instrument with
backscatter, extinction, and depolarization channels similar
to the airborne HSRL-1) on a space platform could be used
to quantitatively partition extinction by type in cases of exter-
nal mixing on a global basis. Such an instrument is possible
with today’s technology, and could have significant potential
for furthering our current understanding of climate through
improvements to and validation of global models.
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Fig. 11.Top shows extinction mixing ratio (percentage of 532 nm extinction due to smoke) for the mixtures of marine and smoke aerosol
observed by HSRL-1 on 28 March 2006 in the Gulf of Mexico. The extinction mixing ratio is inferred from the measurements and Eqs. (30)–
(32) as described in the text. Blue indicates marine and red is smoke. Bottom three panels show the partition of aerosol extinction at 532 nm
into separate contributions by marine and smoke.

The CALIPSO satellite lidar has provided global, verti-
cally resolved measurements of aerosol from space since
2006. However, due to its smaller number of measurement
channels, aerosol extinction cannot be calculated without ex-
ternal information or assumptions. Some methods for provid-
ing more accurate aerosol extinction profiles from CALIPSO
use column aerosol optical thickness as a constraint (e.g.,
Josset et al., 2010; Burton et al., 2010). This technique avoids

the need to infer a lidar ratio but does still require the assump-
tion of a uniform aerosol mixture throughout the column.
Calculations of mixtures from coincident HSRL-1 measure-
ments on validation flights could potentially be used to help
assess where and when this assumption is valid.

The current technique can be readily extended to
accommodate additional measurements. NASA Langley
has recently built and deployed a 3β + 2α + 3δ HSRL
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instrument, HSRL-2, which makes measurements of extinc-
tion, backscatter, and depolarization at 355 nm in addition
to the measurements made by HSRL-1. The extra aerosol
parameters from the airborne or a future spaceborne lidar
with this capability are expected to improve the accuracy of
aerosol mixing ratio estimates. Moreover, the second wave-
length of extinction and backscatter measurements enables
advanced microphysical retrievals (Müller et al., 1999), and
the methods described here can improve those retrievals. The
large search space of these microphysical retrievals can be
constrained by quantitative calculations of aerosol partition-
ing from the much simpler calculations presented in this pa-
per, potentially making them both faster and more accurate
(Veselovskii et al., 2013). We plan to explore this combina-
tion of techniques using data from the HSRL-2 instrument
from past and future campaigns.

Finally, we note that altitude-resolved aerosol mixing ratio
from a spaceborne lidar similar to HSRL-1 or HSRL-2 could
prove useful as a constraint for retrievals from coincident ra-
diometer or, in particular, multi-angle polarimeter measure-
ments. Such a combination of instruments is indeed called
for on NASA’s ACE mission, and we anticipate exploring
joint lidar–polarimeter retrieval approaches using data from
the airborne HSRL instruments and coincidentally acquired
polarimeter data from past and future field campaigns.
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