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Abstract. Statistical models for environmental monitoring

strongly rely on automatic data acquisition systems that use

various physical sensors. Often, sensor readings are missing

for extended periods of time, while model outputs need to

be continuously available in real time. With a case study in

solar-radiation nowcasting, we investigate how to deal with

massively missing data (around 50 % of the time some data

are unavailable) in such situations. Our goal is to analyze

characteristics of missing data and recommend a strategy for

deploying regression models which would be robust to miss-

ing data in situations where data are massively missing. We

are after one model that performs well at all times, with and

without data gaps. Due to the need to provide instantaneous

outputs with minimum energy consumption for computing in

the data streaming setting, we dismiss computationally de-

manding data imputation methods and resort to a mean re-

placement, accompanied with a robust regression model. We

use an established strategy for assessing different regression

models and for determining how many missing sensor read-

ings can be tolerated before model outputs become obsolete.

We experimentally analyze the accuracies and robustness to

missing data of seven linear regression models. We recom-

mend using the regularized PCA regression with our estab-

lished guideline in training regression models, which them-

selves are robust to missing data.

1 Introduction

Environmental monitoring strongly relies on automatic data

acquisition systems, using various physical sensors. For in-

stance, stations measuring atmosphere ecosystem relation-

ships (SMEAR) stations1 measure the relationship of at-

mosphere and forest in the boreal climate zone (Hari and

Kulmala, 2005). The stations are equipped with an exten-

sive range of measurement instruments: atmospheric and flux

measurements, irradiation and flux measurements, tree phys-

iology measurements, soil and soil-water measurements, and

solar irradiance. Due to the continuous flux of measure-

ments, the setup can be analyzed in the context of stream-

ing data (Babcock et al., 2002; Aggarwal, 2007). Streaming-

data analysis is different from the traditional retrospective

data analysis, where data are first collected, cleaned, pre-

processed, and then analyzed. Streaming data arrive continu-

ously and need to be analyzed in real time. Statistical models

built on such streaming data (see, e.g., Lu et al., 2006, Hrust

et al., 2009, and Menut and Bessagnet, 2010) need to operate

continuously and provide outputs in real time.

Physical sensors are exposed to various risks due to severe

environmental conditions, exposure to physical damage, or

battery drainage. Under such circumstances it is very com-

mon to encounter time intervals when readings from some

of the sensors are missing from the database. A lot of ad-

vanced missing-value imputation schemes have been devel-

oped (Junninen et al., 2004; Allison, 2001), primarily target-

ing offline exploratory data analysis, where computational

resources are practically unlimited, while it is critical to re-

1http://www.atm.helsinki.fi/SMEAR/
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construct data as accurately as possible. A simple mean re-

placement remains popular in regression modeling (Kadlec

et al., 2009) in situations where real-time outputs are needed

and computational resources and time are limited, but the in-

put data does not need to be reconstructed perfectly accu-

rately, as long as model outputs remain correct.

The goal of this study is to experimentally analyze the per-

formance and robustness of linear regression models with

regard to massively missing data for operation in resource-

aware settings. We consider situations where data are mas-

sively missing, which means that around 50 % of the time

at least one sensor does not deliver readings and there is no

single sensor that dominates the missing data; data from any

sensor can be missing. In such a situation, readings from in-

put sensors may be missing for extended periods of time;

nevertheless, model outputs need to be produced continu-

ously and delivered in real time; not producing model out-

puts when some data are missing is not an option. We aim at

building one regression model that is robust in performance;

i.e., the expected performance is stable, no matter how many

sensor readings are missing.

We present a case study in solar-radiation nowcasting us-

ing meteorological sensor data as inputs, where multiple sen-

sor failures happen frequently due to environmental and op-

erational reasons. We analyze the performance of seven lin-

ear regression models coupled with the mean replacement of

missing values and provide recommendations for robust and

accurate modeling in such circumstances. Nowcasting refers

to predicting the current values from other measurements and

is different from forecasting, which aims at predict future val-

ues from the past values.

The paper presents a case study in which our earlier pub-

lished results (Žliobaitė and Hollmén, 2013) are put into

practice for solving a solar-radiation nowcasting task in the

context of a SMEAR measurement station (Hari and Kul-

mala, 2005). A reader interested in the theoretical underpin-

nings of our approach and a follow-up is advised to refer

to studies by Žliobaitė and Hollmén (2013, 2014); the cur-

rent paper focuses on practical implications of the results

and demonstrates how regression problems with lots of miss-

ing data can be successfully solved with our recommended

scheme. The results apply to the case of linear regression

coupled with the mean replacement of missing values. We

assume that the uncertainty of the sensor measurements is

stable over time when the measurements are available.

Research attention to solar-radiation nowcasting and

short-term forecasting using statistical-data-driven models

is increasing due to the growing popularity of solar-energy

power plants that need solar-radiation estimates for planning.

Research studies mostly focus on searching for a suitable sta-

tistical modeling technique: artificial neural networks (Mar-

quez and Coimbra, 2011), autoregressive time series mod-

els (Bacher et al., 2009), Markov models (Bhardwaj et al.,

2013), or optimally integrating different data sources, such

as meteorological variables, ground and remote sensing ob-

servations, or satellite images (Hammer et al., 1999; Vuilleu-

mier et al., 2011). We are not aware of any research work

addressing the problem of massively missing values in solar-

radiation nowcasting.

The rest of the paper is organized as follows. Section 2 de-

scribes the SMEAR data used in the case study, the method-

ology of the modeling, and the experimental protocol. Sec-

tion 3 presents and discusses the results of the case study.

Section 4 summarizes the contributions and concludes the

study.

2 Materials and methods

2.1 Data

We use a data stream recorded at SMEAR II station in

Hyytiälä, Finland (Junninen et al., 2009) (61◦50′51′′ N,

24◦17′41′′ E; 181 ma.s.l.), measuring relationships between

the forest ecosystem and atmosphere. We use data covering

a period of 7 years (April 2005–April 2013), recorded at ev-

ery 30 min from 37 observation sensors. The raw data com-

ing from the station have on average 7 % of missing values.

Missing values may occur due to the occasional failure of

measuring sensors, wear and tear, or variations in electricity

power supply. Some data are missing up to 50 % of the time.

There is no single sensor that would provide non-interrupted

readings over those 5 years; for any sensor from 1 % (about

4 days per year) up to 25 % (3 months per year) values are

missing.

The task is to nowcast the current level of solar radiation

from the meteorological sensor data, given in Table 1. The

incoming radiation to Earth is constant with the accuracy we

require at a given day and hour of the year. The only unknown

is the absorption to the atmosphere and, more importantly, to

the clouds and anthropogenic pollution plumes. Hence, an in-

teresting variable to infer is the cloudiness, or, in other words,

the deviation of the measured radiation from the theoretical

maximum. In this schema other meteorological parameters

could be used to estimate the cloudiness, and this can further

be used to calculate the actual radiation, but the primary vari-

able to nowcast is the difference between the theoretical and

actual radiation.

This nowcasting task would be relevant to the stations

where no radiation measures are available. The station

SMEAR II, from which the input data originate, is able to

measure solar radiation; hence, the true values are present

for us for evaluation purposes. However, instrumentation for

measuring solar radiation is not always available. Small me-

teorological observation stations may not be able to have so-

lar radiation measured, but it may be interesting to nowcast

radiation from meteorological data that is available anyway.

In this study our target variable is defined as the ratio of the

actual radiation to the theoretical maximum radiation. This

gives a value between 0 and 100 %, where 100 % indicates

Atmos. Meas. Tech., 7, 4387–4399, 2014 www.atmos-meas-tech.net/7/4387/2014/
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Table 1. Sensors for the case study: SWS – surface wetness sen-

sor; P – pressure; T – temperature; WS – wind speed; WD – wind

direction; RH – relative humidity; RH Td – relative humidity calcu-

lated using dew point; PTG – potential temperature gradient; Vis –

visibility.

Index measurement height missing values

1 Rain 18.0 m 1 %

2 SWS 18.0 m 1 %

3 Dew point 18.0 m 18 %

4 P 0.0 m 2 %

5 T 4.2 m 16 %

6 T 8.4 m 3 %

7 T 16.8 m 2 %

8 T 33.6 m 2 %

9 T 50.4 m 2 %

10 T 67.2 m 2 %

11 WS 33.6 m 9 %

12 WS 8.4 m 5 %

13 WS 16.8 m 3 %

14 WS 33.6 m 9 %

15 WS 74.0 m 25 %

16 WD avr 2 %

17 WD ultrasonic 8.4 m 7 %

18 WD ultrasonic 16.8 m 4 %

19 WD ultrasonic 33.6 m 9 %

20 WD ultrasonic 74.0 m 23 %

21 RH 4.2 m 21 %

22 RH 8.4 m 9 %

23 RH 16.8 m 7 %

24 RH 33.6 m 7 %

25 RH 50.4 m 9 %

26 RH 67.2 m 6 %

27 RH Td 18.0 m 20 %

28 PTG 5 %

29 Visibility 18.0 m 1 %

30 Vis-min 18.0 m 1 %

31 Vis-max 18.0 m 1 %

32 Precipitation intensity 18.0 m 1 %

33 Preci-min 18.0 m 1 %

34 Preci-max 18.0 m 1 %

35 Precipitation 18.0 m 1 %

36 Snowfall 18.0 m 1 %

37 Global RADIATION 18.0 m 1 %

that all the theoretically possible radiation is actually incom-

ing. The sensor Global RADIATION (Table 1) is not used as

an input into the nowcasting model; it is only used for eval-

uating the nowcasting accuracy. It indicates the actual radia-

tion and is used in forming the target variable.

The theoretical maximum radiation is calculated using

MIDC (Measurement and Instrumentation Data Center)

SOLPOS (Solar Position and Intensity) Calculator2. SOL-

POS is a computational tool that calculates the apparent so-

lar position and intensity (theoretical maximum solar energy)

2http://www.nrel.gov/midc/solpos/solpos.html
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Table 1. Sensors for the case study: SWS - surface wetness sensor, P
- pressure, T - temperature, WS - wind speed, WD - wind direction,
RH - relative humidity, RH Td -relative humidity calculated using
dew point, PTG - potential temperature gradient, Vis - visibility.

index measurement height missing values

1 Rain 18.0m 1%
2 SWS 18.0m 1%
3 Dew point 18.0m 18%
4 P 0.0m 2%
5 T 4.2m 16%
6 T 8.4m 3%
7 T 16.8m 2%
8 T 33.6m 2%
9 T 50.4m 2%
10 T 67.2m 2%
11 WS 33.6m 9%
12 WS 8.4m 5%
13 WS 16.8m 3%
14 WS 33.6m 9%
15 WS 74.0m 25%
16 WD avr 2%
17 WD ultrasonic 8.4m 7%
18 WD ultrasonic 16.8m 4%
19 WD ultrasonic 33.6m 9%
20 WD ultrasonic 74.0m 23%
21 RH 4.2m 21%
22 RH 8.4m 9%
23 RH 16.8m 7%
24 RH 33.6m 7%
25 RH 50.4m 9%
26 RH 67.2m 6%
27 RH Td 18.0m 20%
28 PTG 5%
29 Visibility 18.0m 1%
30 Vis-min 18.0m 1%
31 Vis-max 18.0m 1%
32 Precipitation intensity 18.0m 1%
33 Preci-min 18.0m 1%
34 Preci-max 18.0m 1%
35 Precipitation 18.0m 1%
36 Snowfall 18.0m 1%
37 Global RADIATION 18.0m 1%

tory, which is operated for the U.S. Department of Energy160

by the Alliance for Sustainable Energy. The calculations are
based on established models for solar position reported in
(Michalsky, 1988) and other sources.

The following input parameters were used: Lat: 61.8475,
Lon: 24.29472, Time zone: 2 (location parameters), Surface165

pressure 990 mbar , Ambient dry-bulb temperature 3oC, Az-
imuth of panel surface 180o, Degrees tilt from horizontal of
panel 0, Solar irradiance constant 1360.8 W/m2 (Kopp and
Lean, 2011), Shadow-band width 7.6 cm , Shadow-band ra-
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Fig. 1. Correlations between input sensors.

dius 31.7 cm , Shadow-band sky factor 0.04, Interval of a170

measurement period 0 sec.
The sensor readings are often correlated with each other.

Figure 1 visualizes the pairwise correlations computed over
non-missing data. We see distinct blocks of positive and neg-
ative correlations. For instance, relative humidity (RH) is175

negatively correlated with temperature (T).

2.2 Prerequisites

2.2.1 Setting

Suppose we have r sources generating streaming data (e.g.
weather observation sensors). Data are recorded in multidi-180

mensional vectors x ∈ <r. Our task is to nowcast the tar-
get variable y ∈ <1 (e.g. solar radiation) from these sensor
readings as inputs. The regression model is then y = f(x) =
f(x1, . . . ,xr), and the corresponding learning task is to learn
the approximate the function f from the available input-185

output data (x,y). It is important to note that we do not make
use of temporal information of the variables, that is, we pre-
dict the value of the output y at time t, with the sensor read-
ings available at the same time point t, hence the task is re-
ferred to as nowcasting. With the time index, the regression190

model is y(t) = f(x1
(t), . . . ,xr

(t)). In the rest of the paper,
we omit the time index t. For the identities of the sensors
used in the case study (r = 36), see Table 1.

Data arrive in real time, and nowcasting needs to be deliv-
ered as soon as possible, in nearly real time. The nowcasting195

performance should be stable in a sense that the expected
loss in accuracy due to possible missing values should be
minimal. Having in mind that often environment monitor-
ing sensors are operating on batteries ,or autonomous power

Figure 1. Correlations between input sensors.

31

Figure 1. Correlations between input sensors.

based on the date, time, and location on Earth. The tool is de-

veloped and maintained by The National Renewable Energy

Laboratory, which is operated for the US Department of En-

ergy by the Alliance for Sustainable Energy. The calculations

are based on established models for solar position, reported

in Michalsky (1988) and other sources.

The following input parameters were used: lat – 61.8475;

long – 24.29472; time zone – 2 (location parameters); sur-

face pressure – 990 mbar; ambient dry-bulb temperature

– 3 ◦C; azimuth of panel surface – 180◦; degrees of tilt

from horizontal of panel – 0; solar irradiance constant –

1360.8 Wm−2 (Kopp and Lean, 2011); shadow-band width

– 7.6 cm; shadow-band radius – 31.7 cm; shadow-band sky

factor – 0.04; interval of a measurement period – 0 s.

Often sensor readings are correlated with each other. Fig-

ure 1 visualizes the pairwise correlations computed over non-

missing data. We see distinct blocks of positive and negative

correlations. For instance, relative humidity (RH) is nega-

tively correlated with temperature (T ).

2.2 Prerequisites

2.2.1 Setting

Suppose we have r sources generating streaming data (e.g.,

weather observation sensors). Data are recorded in multidi-

mensional vectors x ∈ Rr . Our task is to nowcast the tar-

get variable y ∈ R1 (e.g., solar radiation) using these sensor

readings as inputs. The regression model is then y = f (x)=

f (x1, . . .,xr), and the corresponding learning task is to ap-

proximate function f from the available input–output data.

It is important to note that we do not make use of temporal

information of the variables; that is, we predict the value of

www.atmos-meas-tech.net/7/4387/2014/ Atmos. Meas. Tech., 7, 4387–4399, 2014
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the output y at time t , with the sensor readings available at

the same time point t ; hence, the task is referred to as now-

casting. With the time index in place, the regression model is

y(t) = f (x1
(t), . . .,xr

(t)). In the rest of the paper, we omit the

time index t . For the identities of the sensors used in the case

study (r = 36), see Table 1.

Data arrive in real time, and nowcasting outputs need to

be delivered as soon as possible, in nearly real time. The

nowcasting performance should be stable in the sense that

the expected loss in accuracy due to possible missing val-

ues should be minimal. Bearing in mind that often environ-

ment monitoring sensors operate on batteries or autonomous

power sources, the computational resources consumed for

data processing, including missing-value imputation, should

be minimal. We are after one model that performs well at all

times, with and without data gaps.

2.2.2 Imputation of missing data

We assume that, when a sensor fails, missing values are au-

tomatically replaced with the mean values, which remains

a popular approach in practice due to its simplicity and low

user cost (Black et al., 2007; Kadlec et al., 2009; Enders,

2010). To keep the focus of the paper on the regression mod-

els tolerant to massively missing data, we also assume that

there is no need to implement any driven missing-value de-

tectors; the system knows when a value is missing.

In this study, we do not explore alternative imputation

methods due to two reasons. Firstly, our main goal is to in-

vestigate the robustness of regression models to missing data

rather than to select the best imputation scheme. Secondly,

advanced model-based imputation methods such as linear in-

terpolation, nearest neighbor imputation, and self-organizing

map or multilayer perceptron methods (Junninen et al., 2004)

typically are more accurate when the amount of missing data

is small, but they lose their advantage when long missing-

data gaps are expected. While multiple imputation methods

(Junninen et al., 2004) bear relatively high computational

costs and are favorable in one-off imputation operations, they

are not very suitable for continuous online operations and

imputation in real time. More importantly, such methods im-

plicitly or explicitly assume that data are missing at random;

i.e., a sensor value missing is independent both of observable

variables and of unobservable parameters of interest. In real-

ity this assumption ay often be violated, for instance by the

sensors switching themselves off at low temperatures.

Bayesian approaches (Lerner et al., 2002; Ramoni and Se-

bastiani, 2001) present an interesting alternative for learning

from incomplete data, but the goals and the task are some-

what different from what we are solving. In our setting, train-

ing data are abundant, and an initial model can be built from

a subset that has no missing values. Bayesian nets can inher-

ently learn from data with missing values, but once a model

is ready, it does not seem to have any special mechanism

for making predictions from incomplete data. In this case a

Bayesian net would require an extra missing-value imputa-

tion approach, just like a linear regression.

One could create imputation models using knowledge

about physical relationships between variables. However,

when a lot of data is missing, such an approach would en-

counter a combinatorial explosion. One model would need

to be available per each combination of missing variables,

which requires building and maintaining 2r models, where r

is the number of input features.

2.2.3 Performance indicators

We use a nowcasting error as the main measure of perfor-

mance, which is computed on a subset of data that was not

used for parameter estimation (Hastie et al., 2001). The mean

squared error (MSE) is a popular measure to quantify the dis-

crepancy between the true target value y and the value output

by the model, ŷ. MSE punishes large deviations from the true

values; this is relevant for the environmental monitoring ap-

plications, where large errors are to be avoided. For practical

interpretability, RMSE is often used, which is the square root

of MSE. RMSE reports the error in the same units as the tar-

get variable. For a test data set of size n, MSE and RMSE are

computed as

MSE=
1

n

n∑
l=1

(ŷ(l)− y(l))2,RMSE=
√

MSE, (1)

where y(l) is the true target value of the lth sample and ŷ(l)

is the corresponding model output. In the experiments we re-

port RMSE, which can be interpreted as an average deviation

of model outputs from the true target values.

2.3 Computational methods

Linear regression model

For nowcasting we adopt linear regression models, which

assume that the relationship between r input variables x =

(x1, . . .,xr) and the target variable y is linear. Without loss

of generality we assume that the input data are standardized

before modeling to have zero mean and unit standard devia-

tion3. The regression model takes the form

y = b1x1+ b2x2+ . . .+ brxr + ε = xβ + ε, (2)

where ε is the error variable and the vector β =

(b1,b2, . . .,br)
T contains the parameters of the linear model

(regression coefficients). Since the data are assumed to have

been standardized, there is no bias term in the model. In ma-

trix form, the model is y = Xβ + ε, where Xn×r is a sample

3For standardization we need to estimate the data mean m and

the standard deviation s from a sample data set; then xstandardized =

(x−m)/s. For every variable we need to store the values m and

s and apply the same procedure to all new incoming data before

nowcasting.

Atmos. Meas. Tech., 7, 4387–4399, 2014 www.atmos-meas-tech.net/7/4387/2014/
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data matrix containing n records from r sensors and yn×1 is

a vector of the corresponding n target values.

2.4 Ordinary least squares

There are different ways to estimate the regression param-

eters (Hastie et al., 2001). Ordinary least squares (OLS) is

a simple and probably the most common estimator. It mini-

mizes the sum of squared residuals giving the following so-

lution:

β̂OLS = argminβ

(
(y−Xβ)T (y−Xβ)

)
= (XTX)−1XT y.

(3)

Having estimated a regression model β̂, nowcasting on new

data xnew can be made as

ŷ = xnewβ̂. (4)

2.4.1 Regularization

If the input variables are correlated with each other, the op-

timization problem could result in poor estimates for the pa-

rameters. In such situations, regularization is often used for

estimating the regression parameters. The Ridge regression

(RR) (Hoerl and Kennard, 1970; Hastie et al., 2001) regu-

larizes the regression coefficients by imposing a penalty on

their magnitude. RR solution minimizes the cost function

β̂RR = argminβ

(
(y−Xβ)T (y−Xβ)+ λβT β

)
= (XTX+ λI)−1XT y,

where λ > 0 controls the amount of shrinkage: the larger the

value of λ, the greater the amount of shrinkage. X denotes

the n× r training data set, and y is the n× 1 vector of the

true target values; I is the r × r identity matrix. Nowcasting

outputs on new data xnew can be produced as

ŷ = xnewβ̂RR. (5)

2.4.2 Principal component regression

Principal component (PCA) regression (Jolliffe, 2002) first

transforms the input data by rotating them towards their prin-

cipal components and then estimates the regression coeffi-

cients on the transformed data.

Let Xn×r be the training data matrix, and Rr×k is the ma-

trix of k principal components, corresponding to the largest

eigenvalues. Here, k is a user-defined parameter such that

1≤ k ≤ r; if k = r , then PCA regression becomes the ordi-

nary regression. Then OLS gives the following solution on

the transformed input data:

β̂∗PCA = argminβ

(
(y−XRβ∗)T (y−XRβ∗)

)
, (6)

and in the original data space the solution is β̂PCA = Rβ̂∗PCA.

Nowcasting on new data xnew can be made as

ŷ = xnewRβ̂∗PCA = xnewβ̂PCA. (7)
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their magnitude. RR solution minimizes the following cost
function

β̂RR = argmin
β

(
(y−Xβ)T (y−Xβ) +λβTβ

)
290

= (XTX +λI)−1XTy, (5)

where λ > 0 controls the amount of shrinkage: the larger the
value of λ, the greater the amount of shrinkage. X denotes
the n×r training dataset and y is the n×1 vector of the true295

target values, I is the r× r identity matrix. Nowcasting on
new data xnew can be made as

ŷ = xnew β̂RR. (6)

2.4.2 Principal component regression

Principal component (PCA) regression (Jolliffe, 2002) first300

transforms the input data by rotating it towards its principal
components and then estimates the regression coefficients on
the transformed data.

Let Xn×r be the training data matrix and Rr×k is the ma-
trix of k principal components, corresponding to the largest305

eigenvalues. Here k is a user defined parameter such that
1≤ k ≤ r, if k = r then PCA regression becomes the ordi-
nary regression. Then OLS gives the following solution on
the transformed input data

β̂?PCA = argmin
β

(
(y−XRβ?)T (y−XRβ?)

)
, (7)310

and in the original data space the solution is
β̂PCA = Rβ̂?PCA. Nowcasting on new data xnew can be
made as

ŷ = xnewRβ̂?PCA = xnew β̂PCA. (8)

2.4.3 Partial least squares regression315

Partial least squares (PLS) regression is very popular in
chemometrics (Wold et al., 2001). Similarly to PCA, the in-
put data are transformed, but instead of maximizing the vari-
ance of the input data (as in PCA) this transformation maxi-
mizes the covariance between input variables and the target.320

There is no convenient analytical solution for optimization,
instead an iterative optimization is employed for parameter
estimation. The procedure is presented in Algorithm 1. Here
k is a user defined parameter such that 1≤ k ≤ r, if k = r
then PLS regression becomes the ordinary regression.325

Nowcasting on new data xnew can be made as

ŷ = xnew β̂PLS . (9)

2.5 Estimating robustness of linear regression models to
missing data

For linear regression models it is possible to determine the-330

oretically how many missing inputs can be tolerated before

Algorithm 1: PLS regression
Data: training set (X,y), number of components k
Result: estimated regression coefficients β̂PLS

1 for i← 1 to k do
2 wi←XTy/

√
yTXXTy ;

3 ti←Xwi ;
4 qi← tTi y/(t

T
i ti);

5 pi←XT ti/(t
T
i ti);

6 X←X− tip
T
i (data deflation step);

7 y← y− tiqi (data deflation step);
8 end
9 W← (w1,w2, . . . ,wk);

10 P← (p1,p2, . . . ,pk);
11 q← (q1, q2, . . . , qk)

T ;
12 β̂PLS =W(PTW)−1q

model outputs become obsolete. We can estimate robustness
of a linear regression model to potentially missing input data
using the deterioration index (Žliobaitė and Hollmén, 2013),
which is defined as335

d =−βT (Σ− I)β, (10)

where β is a vector of the regression coefficients, assuming
that the input variables have been standardized to zero mean
and unit standard deviation, Σ is the covariance matrix of
the input data and I is the identity matrix. High values of the340

index d indicate low tolerance to missing data. The prediction
errors will increase fast with the number of missing inputs.
The smaller d, the more robust to missing data the model is.
d can be negative, that is the best option.

Low d guarantees robustness to missing data, but the mod-345

els with low d do not necessarily give good predictions when
all the data are available. Hence, a tradeoff between accuracy
and robustness needs to be found, the following method can
help to find it.

Suppose we get two models A and B, and we would like350

to select one for deployment. We can measure their pre-
diction errors on a training dataset using cross-validation,
RMSE (A) and RMSE (B) respectively. We can also compute
deterioration indices d(A) and d(B). Without loss of general-
ity assume that RMSE (A) ≥ RMSE (B), i.e. model B shows355

a better prediction accuracy when no data are missing. If
d(A) ≥ d(B), then modelB is also more robust. In such a case
model B is better (or at least as good) in both characteristics,
and hence B is preferred over A.

If, however, d(A) < d(B), then we can find, how many in-360

put readings can go missing beforeA becomes better thanB.
The numberm? can be computed as (Žliobaitė and Hollmén,
2013)

m? = (r− 1)
[RMSE (A)]2− [RMSE (B)]2

d(B)− d(A)
, (11)

where r is the total number of input sensors.365

Algorithm 1. PLS regression.

30

Algorithm 1. PLS regression.

2.4.3 Partial least squares regression

Partial least squares (PLS) regression is very popular in

chemometrics (Wold et al., 2001). Similarly to PCA, the in-

put data are transformed, but instead of maximizing the vari-

ance of the input data (as in PCA), this transformation maxi-

mizes the covariance between input variables and the target.

There is no convenient analytical solution for optimization;

instead an iterative optimization is employed for parameter

estimation. The procedure is presented in Algorithm 1. Here,

k is a user-defined parameter such that 1≤ k ≤ r; if k = r ,

then PLS regression becomes the ordinary regression.

Nowcasting on new data xnew can be made as

ŷ = xnewβ̂PLS. (8)

2.5 Estimating the robustness of linear regression

models to missing data

For a linear regression model, it is possible to determine the-

oretically how many missing inputs can be tolerated before

model outputs become obsolete. We can estimate the robust-

ness of a linear regression model to potentially missing input

data by using the deterioration index (Žliobaitė and Hollmén,

2013), which is defined as

d =−βT (6− I)β, (9)

where β is a vector of the regression coefficients, assuming

that the input variables have been standardized to zero mean

and unit standard deviation; 6 is the covariance matrix of

the input data; and I is the identity matrix. High values of the

index d indicate low tolerance of the model to missing data.

The prediction errors will increase quickly with the number

of missing inputs. The smaller d , the more robust to missing

data the model is. d may be negative; that is the best option.

Low d guarantees robustness to missing data, but the mod-

els with low d do not necessarily give good predictions when

www.atmos-meas-tech.net/7/4387/2014/ Atmos. Meas. Tech., 7, 4387–4399, 2014
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all the values are available. Hence, a tradeoff between ac-

curacy and robustness needs to be found, and the following

method can help to find it.

Suppose we get two models A and B, and we would like

to select one for deployment. We can measure their pre-

diction errors on a training data set using cross-validation:

RMSE(A) and RMSE(B). We can also compute deterioration

indices d(A) and d(B). Without loss of generality, assume that

RMSE(A) ≥ RMSE(B); i.e., model B shows a better predic-

tion accuracy when no data are missing. If d(A) ≥ d(B), then

model B is also more robust. In such a case, model B is better

(or at least as good as A) with regard to both characteristics,

and hence B is preferred over A.

If, however, d(A) < d(B), then we can find out how many

input readings can go missing before A becomes better

than B. The number m∗ can be computed as (Žliobaitė and

Hollmén, 2013)

m∗ = (r − 1)
[RMSE(A)]2− [RMSE(B)]2

d(B)− d(A)
, (10)

where r is the number of input sensors.

2.6 Experimental protocol

2.6.1 Data preparation and preprocessing

Solar-radiation readings (target variable) are available 99 %

of the time. We eliminate from the experiment the samples

where no target value is available, since we can use such

samples neither for model training nor can we measure the

model accuracy on them.

The following preprocessing of the target values is per-

formed. If the measured solar radiation is negative, it is set

to 0. If the measured solar radiation exceeds the theoreti-

cal (maximum) radiation, the measurement is corrected to

be equal to the theoretical radiation. In practice, such ob-

servations can arise if, during a cloudy day, the sky is clear

where the sun is shining but there is cloud cover elsewhere.

The cloud reflects back more back-reflected radiation that the

blue sky. For simplicity, we do not consider this effect in our

modeling at this stage.

Exploratory analysis of missing data is performed on all 7

years of data. For the analysis of the model accuracies, we

use the first 3 years of data as a training set and the remain-

ing 4 years as the testing set. We assume the scenario where

an analyst is currently at the end of year three, and all the

previous 3 years of data are available for model calibration.

After modeling and calibration are done, an online operation

scenario is assumed, where the testing data (4 years) arrive

in the sequential order.

From the training set we eliminate all the observations that

contain any missing values (34 % of train data). The testing

set contains all samples, regardless of whether any values in

the input data are missing. In addition, we eliminate from the

training and testing sets all the observations where the value

Table 2. Summary of regression models: OLS – ordinary least

squares; RR – Ridge regression.

Optimization

OLS RR

Inputs all r ALL rALL

Selected k SEL rSEL

PCA k PCA rPCA

PLS k PLS

of theoretical radiation is 0 (the periods of dark) since the

value of the target variable is then also 0, which can be now-

casted with 100 % accuracy, while when performing experi-

mental comparison of models we are interested in accuracies

of nontrivial nowcasting tasks.

The training data are standardized to have zero mean and

unit standard deviation. The testing data are preprocessed by

subtracting the mean and dividing by the standard deviation

calculated on the training set. After standardization we re-

place all the missing values in the testing set by zeros and

test the performance of the regression models.

2.6.2 Regression models used in the experiments

We experimentally analyze seven regression models, sum-

marized in Table 2.

ALL uses all r sensors as inputs. SEL selects k sensors that

have the largest absolute correlation with the target variable

(correlation is measured on the training data) and builds a re-

gression model on those k sensors. PCA rotates the input data

using principal component analysis, k features corresponding

to the largest eigenvalues are retained, and then PCA builds

a regression model on those k new features. PLS rotates in-

put data to maximize the covariance between the inputs and

the target. We keep k new features.

ALL, SEL, and PCA use the ordinary least squares opti-

mization procedure (OLS) for parameter estimation. In addi-

tion, we test the same approaches but using the regularized

Ridge regression (RR); these models are denoted as ALLr,

SELr, and PCAr. PLS uses its own iterative optimization pro-

cedure, which is not regularized.

In addition, we compare the performance to a naive base-

line NAI, which produces a constant output, considering that

the radiation will be the same as the mean radiation in the

training data.

Atmos. Meas. Tech., 7, 4387–4399, 2014 www.atmos-meas-tech.net/7/4387/2014/
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Fig. 2. Analysis of missing data patterns: (a) distribution of number of missing sensors in observations (10+ means from 10 to 36 are
missing); (b) effects of removing the most missing sensors, (c) the relation of individual sensors with the target variable (each dot represents
one sensor).

could solve the problem. That could help if mostly the same
sensors were missing all the time. We can analyze in which
way individual sensors are missing by the following experi-455

ment. First, we remove a sensor with the most missing val-
ues from the dataset, this way the observation vectors at each
30 minutes time stamp become shorter, they now include 35
sensors instead of 36. Given the updated observation vectors
we recalculate how many of those vectors contain at least460

one missing value. Then we remove the next most missing
sensor and repeat the calculation. Figure 2 (b) presents the
results. We see that removing a couple of largely missing
sensors does not make the remaining observations complete.
We would need to remove about half of the sensors in order465

to reach the stage where at least 95% of the data are com-
plete. The problem with this approach is that sensors to be
removed may carry important information about the target,
which would be lost if a lot of those sensors are removed.
Figure 2 (c) presents relation between the missing data rate470

in each sensor and the information about the target contained
in it, measured as the absolute linear correlation with the tar-
get variable. We have removed the periods where the value
of the target is equal to zero (the dark periods when there is
no solar radiation) from this analysis. We see some sensors in475

the far right corner and upper center that have high missing
value rate, but also high correlation with the target variable.
This means that excluding sensors with high missing value
rates would lead to losses of valuable information about the
target that would be useful for nowcasting.480

One more issue with the data is that sensors produce miss-
ing values not independently from each other. For example,
if one temperature value is missing, then it is likely that the
other temperature values are missing as well. It may be the
case that sensors are missing together due to some common485

external reasons, for instance, electric power outages. This
observation is illustrated by Figure 3, which plots pair-wise
correlations between missing values for different sensors.
Sensors that often are missing together are encoded in black
(dark). We see that particularly temperatures (T), relative hu-490

midity (RH), visibility and precipitation readings are often
missing together. This means that we cannot rely on redun-
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Fig. 3. Correlation of missing value patterns. High correlation (in-
dicated by darker values) means that the values are often missing
together.

dancy of the sensors such that if say a temperature reading is
missing at 33m, we can use the reading at 50m. Both read-
ings would often be missing together.495

Finally, in many cases the average duration of missing val-
ues lasts for several hours. Figure 4 presents the average du-
ration of missing values in the case study dataset for each
sensor. Since values may be missing for extended periods of
times, from this perspective we also cannot simply discard500

data with missing values, since in such cases we often would
not have model outputs for extended periods of time.

In summary, the amount of missing data is very large, at
this level data with missing sensors cannot be discarded with-
out losing valuable information. Missing values are strongly505

correlated with each other that makes it difficult and in many
cases impossible to make use of sensor redundancy or impute
missing data based on non-missing data. Removing sensors

Figure 2. Analysis of missing data patterns: (a) distribution of number of missing sensors in obser-
vations (10+ means from 10 to 36 are missing); (b) effects of removing the most missing sensors,
(c) the relation of individual sensors with the target variable (each dot represents one sensor).

32

Figure 2. Analysis of missing-data patterns: (a) distribution of number of missing sensors in observations (10+ means that 10 to 36 sensors

are missing); (b) effects of removing the most of the missing sensors; (c) the relation of individual sensors with the target variable (each dot

represents one sensor).

2.6.3 Software and hardware

The experiments are performed in MATLAB 2012b, using

in-house produced code (no extra packages are required)

on a commodity laptop computer (Processor 2.5 GHz Intel

Core i5; Memory 8 GB 1600 MHz DDR3). The data set used

in this study and the code for the experiments are made avail-

able4 for research purposes.

3 Results and discussion

3.1 Analysis of missing-data characteristics

Firstly, we analyze in what way missing values occur in the

case study data set. Figure 2a presents the distribution of

missing sensors. We see that about half of the time nothing is

missing and half of the time observation vectors are incom-

plete. Over 35 % of the time, 2–4 sensors are missing. The

mean number of missing sensors over all the data set is 2.4.

We observe from the data that up to 36 sensors (all the in-

put sensors) may be missing at a time. From this analysis we

conclude that the amount of missing data is at a massive scale

and scope, and missing values needs to be taken into consid-

eration when building nowcasting models on this data. The

amount and frequency of missing data also indicates that a

case deletion approach would not be suitable because there

would be predictions missing continuously.

One may consider that removing from the data set one or

two sensors with the largest amount of missing values could

solve the problem. This could help if mostly the same sen-

sors were missing all the time. In the following experiment

we analyze in what way individual sensors are missing. First,

we remove a sensor with the most missing values from the

data set; this way the observation vectors at each 30 min time

stamp become shorter, and they now include 35 sensors in-

stead of 36. Given the updated observation vectors, we recal-

culate how many of those vectors contain at least one missing

value. Then we remove the sensor lacking the next highest

number of measurements and repeat the computation. Fig-

ure 2b presents the results. We see that removing a couple of

4http://users.ics.aalto.fi/indre/smear.zip
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Fig. 2. Analysis of missing data patterns: (a) distribution of number of missing sensors in observations (10+ means from 10 to 36 are
missing); (b) effects of removing the most missing sensors, (c) the relation of individual sensors with the target variable (each dot represents
one sensor).

could solve the problem. That could help if mostly the same
sensors were missing all the time. We can analyze in which
way individual sensors are missing by the following experi-455

ment. First, we remove a sensor with the most missing val-
ues from the dataset, this way the observation vectors at each
30 minutes time stamp become shorter, they now include 35
sensors instead of 36. Given the updated observation vectors
we recalculate how many of those vectors contain at least460

one missing value. Then we remove the next most missing
sensor and repeat the calculation. Figure 2 (b) presents the
results. We see that removing a couple of largely missing
sensors does not make the remaining observations complete.
We would need to remove about half of the sensors in order465

to reach the stage where at least 95% of the data are com-
plete. The problem with this approach is that sensors to be
removed may carry important information about the target,
which would be lost if a lot of those sensors are removed.
Figure 2 (c) presents relation between the missing data rate470

in each sensor and the information about the target contained
in it, measured as the absolute linear correlation with the tar-
get variable. We have removed the periods where the value
of the target is equal to zero (the dark periods when there is
no solar radiation) from this analysis. We see some sensors in475

the far right corner and upper center that have high missing
value rate, but also high correlation with the target variable.
This means that excluding sensors with high missing value
rates would lead to losses of valuable information about the
target that would be useful for nowcasting.480

One more issue with the data is that sensors produce miss-
ing values not independently from each other. For example,
if one temperature value is missing, then it is likely that the
other temperature values are missing as well. It may be the
case that sensors are missing together due to some common485

external reasons, for instance, electric power outages. This
observation is illustrated by Figure 3, which plots pair-wise
correlations between missing values for different sensors.
Sensors that often are missing together are encoded in black
(dark). We see that particularly temperatures (T), relative hu-490

midity (RH), visibility and precipitation readings are often
missing together. This means that we cannot rely on redun-
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Fig. 3. Correlation of missing value patterns. High correlation (in-
dicated by darker values) means that the values are often missing
together.

dancy of the sensors such that if say a temperature reading is
missing at 33m, we can use the reading at 50m. Both read-
ings would often be missing together.495

Finally, in many cases the average duration of missing val-
ues lasts for several hours. Figure 4 presents the average du-
ration of missing values in the case study dataset for each
sensor. Since values may be missing for extended periods of
times, from this perspective we also cannot simply discard500

data with missing values, since in such cases we often would
not have model outputs for extended periods of time.

In summary, the amount of missing data is very large, at
this level data with missing sensors cannot be discarded with-
out losing valuable information. Missing values are strongly505

correlated with each other that makes it difficult and in many
cases impossible to make use of sensor redundancy or impute
missing data based on non-missing data. Removing sensors

Figure 3. Correlation of missing value patterns. High correlation (indicated by darker values) means
that the values are often missing together.

33

Figure 3. Correlation of missing-value patterns. High correlation

(indicated by darker values) means that the values are often missing

together.

largely missing sensors does not make the remaining obser-

vations complete. We would need to remove about half of the

sensors in order to reach the stage where at least 95 % of the

data are complete. The problem with such an approach is that

the removed sensors may carry important information about

the target, which then would be lost. To investigate this effect,

Fig. 2c presents the relation between the missing-data rate in

each sensor and the information about the target contained in

it, measured as the absolute linear correlation with the target

variable. We have removed the periods where the value of the

target is equal to 0 (the dark periods when there is no solar

radiation) from this analysis. We see that some sensors in the

far right corner and upper center have a high missing-value

rate but also high correlation with the target variable. This

means that excluding sensors with high missing-value rates

would lead to losses of valuable information about the target

that would be useful for nowcasting.

www.atmos-meas-tech.net/7/4387/2014/ Atmos. Meas. Tech., 7, 4387–4399, 2014
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Fig. 4. Average duration of missing readings.

with the most missing data is also not feasible, since miss-
ing values are not concentrated in several sensors, but they510

are distributed across all the sensors and the sensors with a
lot of missing values at the same time carry relatively strong
information about the target at times when the values are not
missing. Hence, the most appropriate solution to the problem
of missing values in this setting appears to be building mod-515

els that are robust to missing data. This approach is free from
any assumptions about the missing data and allows nowcast-
ing even when all or nearly all the sensors are missing.

3.2 Prediction accuracy

Next we experimentally analyze accuracies of several lin-520

ear regression models and their robustness to missing values.
The first experiment demonstrates how we can select the best
model for deployment. The second experiment presents evi-
dence about the performance on unseen data.

Table 3 presents the errors of the regression models ALL,525

rALL, SEL, rSEL, PCA, rPCA, PLS measured on the train-
ing set using 5-fold cross validation and deterioration index
estimated on the training set. For PCA, rPCA and PLS the
number of components was fixed to k = 18, which is a half
of the original number of input sensors, and explains 99% of530

the variance. The cumulative percent variance method was
used for selecting k, which is recommended as one of the
most reliable methods in the literature (Valle et al., 1999).
Figure A1 in the Appendix provides a complementary infor-
mation about the variance explained by PCA components.535

Later in this section we will provide a sensitivity analysis to
different values of k.

This analysis is performed from the perspective on an an-
alyst, making a decision on which model to deploy. Cross
validation is used to avoid potential overfitting of the model540

parameters to the training data. Complementary information
on the goodness of fit and confidence intervals of the regres-
sion coefficients is presented in Appendix B.

In case the analyst bases the decision only on the offline
analysis of validation errors, she would select ALL for de-545

ployment, since it shows the lowest error, while PCA and
rPCA show nearly the highest error. However, the deteriora-
tion indexes computed for these models suggest the opposite:
rPCA shows the best, while ALL shows the worst deteriora-

Table 3. 10-fold cross validation errors (RMSE ) measured on the
training dataset and deterioration index (d).

ALL rALL SEL rSEL PCA rPCA PLS

RMSE 19.0 21.6 20.5 21.9 21.7 21.8 20.8
d 1122710 537 362708 451 -109 -117 6121

tion index value. The analyst now can theoretically compare550

the robustness of two models, for instance, ALL and PCA,
using the criteria from Eq. (11), which gives

m? = (r− 1)
[RMSE (PCA)]2− [RMSE (ALL)]2

d(ALL)− d(PCA)

= (36− 1)
(21.8)2− (19.0)2

1122710− (−117)
≈ 10−4.

555

The result m? = 10−4 means that, if we expect at least one
sensor reading to be missing in ten thousand observations, it
is better to deploy rPCA than ALL. Recall that in the data
about 2.4 sensors are missing on average in every observa-
tion. Hence, in this situation it is clearly worth deploying560

rPCA, instead of a standard linear regression, even though
the ordinary regression may be more accurate when no data
is missing.

Let us consider the regularized version of ordinary regres-
sion rALL and rPCA. rALL shows better cross-validation565

accuracy than rPCA on the training data, and not that bad
deterioration index, as ALL. For rALL and rPCA m? = 0.4,
which means that it is still worth deploying rPCA.

How about non regularized PCA? The performance of
PCA and rPCA seems very close to each other. For PCA and570

rPCA m? = 13.1, which means that rPCA is expected to be
more accurate if more than 13 sensors are missing, which is a
bit too pessimistic for our case study data. Hence, the analy-
sis suggests to chose PCA for deployment. the test set, which
we analyze.575

The following analysis simulates online operation after de-
ployment. The regression models are trained on the training
set and then sequentially tested on the test set. Table 4 reports
the testing results of the regression models ALL, rALL, SEL,
rSEL, PCA, rPCA, PLS (k = 18).

Table 4. Nowcasting errors (RMSE ) on the testing dataset.

ALL rALL SEL rSEL PCA rPCA PLS NAI

full set 175.8 20.4 127.8 20.3 19.5 19.5 25.7 22.9

non-missing 17.9 19.2 18.8 19.7 19.6 19.6 19.3 22.9
missing 233.4 21.3 169.2 20.7 19.4 19.4 29.7 22.9

580

The regularized principal component regression rPCA
demonstrates the best performance on the test data

Figure 4. Average duration of missing readings.
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Figure 4. Average duration of missing readings.

One more issue with the data is that sensors do not pro-

duce missing values independently of each other. For exam-

ple, if one temperature value is missing, then it is likely that

the other temperature values are missing as well. It may be

the case that sensors are missing together due to some com-

mon external reasons, for instance, electric power outages.

This observation is illustrated by Fig. 3, which plots pair-

wise correlations between missing values for different sen-

sors. Sensors that are often missing together are encoded in

black (dark). We see that, in particular, temperatures (T ), rel-

ative humidity (RH), visibility, and precipitation readings are

often missing together. This means that we cannot rely on the

redundancy of the sensors such that, if, say, a temperature

reading is missing at 33 m, we can use the reading at 50 m.

Both readings would often be missing together.

Finally, in many cases the average duration of missing val-

ues lasts for several hours. Figure 4 presents the average du-

ration of missing values in the case study data set for each

sensor. Since values may be missing for extended periods of

time, we also cannot, from this perspective, simply discard

data with missing values, since in such cases we would often

not have model outputs for extended periods of time.

In summary, the amount of missing data is very large,

and at this level data with missing sensors cannot be dis-

carded without losing valuable information. Missing values

are strongly correlated with each other; this makes it diffi-

cult and, in many cases, impossible to make use of sensor

redundancy or impute missing data based on non-missing

data. Removing sensors with the most missing data is also

not feasible since missing values are not concentrated in sev-

eral sensors but are distributed across all the sensors and the

sensors with a lot of missing values at the same time carry

relatively strong information about the target at times when

the values are not missing. Hence, the most appropriate solu-

tion to the problem of missing values in this setting appears

to be building models that are robust to missing data. This ap-

proach is free from any assumptions about the missing data

and allows nowcasting even when all or nearly all the sensors

are missing.

Table 3. Tenfold cross-validation errors (RMSE) measured based

on the training data set and deterioration index (d).

ALL rALL SEL rSEL PCA rPCA PLS

RMSE 19.0 21.6 20.5 21.9 21.7 21.8 20.8

d 1 122 710 537 362 708 451 −109 −117 6121

3.2 Prediction accuracy

Next we experimentally analyze accuracies of several lin-

ear regression models and their robustness to missing values.

The first experiment demonstrates how we can select the best

model for deployment. The second experiment presents evi-

dence about the performance on unseen data.

Table 3 presents the errors of the regression models ALL,

rALL, SEL, rSEL, PCA, rPCA, and PLS, measured on the

training set using a fivefold cross-validation and deterioration

index estimated based on the training set. For PCA, rPCA,

and PLS the number of components was fixed to k = 18,

which is a half of the original number of input sensors and

explains 99 % of the variance. The cumulative percent vari-

ance method was used for selecting k, which is recommended

as one of the most reliable methods in the literature (Valle

et al., 1999). Figure A1 in the Appendix provides comple-

mentary information about the variance explained by PCA

components. Later in this section we will present a sensitiv-

ity analysis to different values of k.

This analysis is performed from the perspective of an an-

alyst, making a decision on which model to deploy. Cross-

validation is used to avoid potential overfitting of the model

parameters to the training data. Complementary information

on the goodness of fit is presented in Appendix B.

In the case of the analyst basing the decision only on the

offline analysis of validation errors, he or she would select

ALL for deployment since it gives the lowest error, while

PCA and rPCA show nearly the highest error. However, the

deterioration indexes computed for these models suggest the

opposite: rPCA shows the best, while ALL shows the worst

deterioration index value. The analyst can now theoretically

compare the robustness of two models, for instance ALL and

PCA, using the criteria from Eq. (10), which gives

m∗ = (r − 1)
[RMSE(PCA)

]
2
− [RMSE(ALL)

]
2

d(ALL)− d(PCA)

= (36− 1)
(21.8)2− (19.0)2

1 122 710− (−117)
≈ 10−4.

The result m∗ = 10−4 means that, if we expect at least one

sensor reading to be missing in 10 000 observations, it is

better to deploy rPCA than ALL. Recall that in the data

about 2.4 sensors are missing on average in every observa-

tion. Hence, in this situation it is clearly worth deploying

rPCA instead of a standard linear regression, even though

the ordinary regression may be more accurate when no data

is missing.

Atmos. Meas. Tech., 7, 4387–4399, 2014 www.atmos-meas-tech.net/7/4387/2014/
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Fig. 5. Analysis of residuals.

(RMSE = 19.49), closely followed by PCA without reg-
ularization (RMSE = 19.52). The other regularized ap-
proaches outperform rSEL and rALL perform notably585

worse (RMSE = 20.43 and 20.28), but still outperform the
naive baseline NAI (RMSE = 22.88). The unregularized ap-
proaches PLS, SEL and ALL perform much worse than the
baseline and illustrate well the dangers presented by mas-
sively missing values.590

It is interesting to note that the analyzed strategy combin-
ing linear regression with mean replacement Žliobaitė and
Hollmén (2013) theoretically approaches NAI performance
as more values go missing. If all the input values are miss-
ing, then the predictor becomes NAI automatically.595

To analyze the performance further we divide the test
data into non-missing (44%) and missing observations (56%)
parts and inspect the errors on these sub-sets separately. We
see that the performance data of all the models is similar
when there is no missing data, with the ordinary regression600

ALL having an advantage in accuracy, since it does not dis-
card any information from the input data. However, the non-
regularized models (ALL, SEL and PLS) fail badly when
there is missing data, while the regularized rSEL and rALL
lose some accuracy, but still remain competitive. Both non-605

regularized and regularized PCA remain nearly insensitive to
missing data.

Figure 5 plots the distribution of absolute residuals for
each approach. We can see that most of the errors (residu-
als) are concentrated around 10, which is not bad, given that610

the range of the target variable is from 0 to 100. It means
that most of the predictions do not deviate too much from the
true. We can also see that NAI has less probability mass on
the left hand side, where the most accurate predictions are.
As expected, intelligent predictors do better than NAI. Only615

the unregularized approaches ALL and SEL have any proba-
bility mass on the far right, which means that they occasion-
ally produce predictions that may exceed the maximum of
the true target. We can conclude from this investigation, that
predictions by most of the approaches are reasonably stable,620

and outliers in predictions do not pose any major threats.
Next, let us analyze sensitivity to the parameter setting. So

far we used a fixed number of components (k = 18) for PCA,
rPCA, PLS and the same number of selected features for SEL
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Fig. 6. Nowcasting error as a function of components retained (top
plot - all models in log scale, bottom plot - best models zoomed in).

and rSEL. Figure 6 the testing errors (RMSE ) as a function625

of k.
An important observation can be made from this plot.

The regularized approaches rSEL, rPCA performs reason-
ably well at all variants of the parameter k, while the non-
regularized models SEL, PCA and PLS perform poorly when630

a large number of components is retained. In such a case the
resulting models are still similar to ALL, which uses all the
available information. ALL, rALL and NAI do not depend
on the parameter k, but are also included for comparison.
We also observe that PLS becomes very effective at low k,635

but there is a risk of setting k incorrectly (e.g. around 25) in
which case PLS gives the worst results. Therefore, we rather
recommend using rPCA, which gives stable and accurate re-
sults even in k is sub-optimal.

Finally, we visually analyze the model outputs made by640

the baseline approach ALL and the recommended regular-
ized approach rPCA (k = 18). Figure 7 plots four 3-day snap-
shots from year 2012: 1-3 January, 1-3 April, 1-3 July and 1-
3 October. It is important to emphasize that here we plot the
raw outputs of the classifiers to better illustrate the effects of645

regularization, whereas when calculating the numerical er-
rors we post-process all the model outputs to fall into the
same interval as the original target ([0,100], where 0 means
no irradiance is observed, and 100 (%) means all the theoret-
ically possible irradiance is observed). That is, if the predic-650

tion is less than 0, we correct it to 0, and if the prediction is
larger than 100, we correct it to 100. That makes the base-
line classifiers more competitive (and hence is more prudent
way of quantitative evaluation). We see from the figure that
the baseline ALL sometimes fails to extremes (particularly655

in January and April plots), while the regularized approach
rPCA remains stable. In July there are only a couple situa-
tions when ALL has very poor performance (we see a green
inclination on day #2 and a green peak on day #3). In Oc-

Figure 5. Analysis of residuals.
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Let us consider the regularized version of ordinary regres-

sion rALL and rPCA. rALL shows better cross-validation ac-

curacy than rPCA regarding the training data and not as bad a

deterioration index as ALL. For rALL and rPCA, m∗ = 0.4,

which means that it is still worth deploying rPCA.

The performance of PCA and rPCA seems very similar.

For PCA and rPCA, m∗ = 13.1, which means that rPCA is

expected to be more accurate than PCA if more than 13 sen-

sors are missing; this would be quite pessimistic for our case

study data, where the mean number of missing sensors is 2.4.

Hence, the analysis suggests chosing PCA for deployment.

The following analysis simulates online operation after de-

ployment. Regression models are trained on the training set,

and then sequentially tested on the test set. Table 4 reports

the testing results of the regression models ALL, rALL, SEL,

rSEL, PCA, rPCA, and PLS (k = 18).

The regularized principal component regression rPCA

demonstrates the best performance on the test data (RMSE=

19.49), closely followed by PCA without regularization

(RMSE= 19.52). The other regularized approaches, rSEL

and rALL, perform notably worse (RMSE= 20.43 and

20.28) but they still outperform the naive baseline NAI

(RMSE= 22.88). The unregularized approaches PLS, SEL,

and ALL perform much worse than the baseline and illustrate

well the dangers presented by massively missing values.

It is interesting to note that the analyzed strategy combin-

ing linear regression with mean replacement (Žliobaitė and

Hollmén, 2013) theoretically approaches NAI performance

as more values go missing. If all the input values are miss-

ing, then the predictor turns into NAI automatically.

To analyze the performance further, we divide the test data

into non-missing (44 %) and missing observations (56 %)

and inspect the errors on these subsets separately. We see

that the performance of all the models is similar when there

is no missing data. The ordinary regression ALL has an ad-

vantage in accuracy, since it does not discard any informa-

tion from the input data. However, the non-regularized mod-

els (ALL, SEL, and PLS) fail badly when there is missing

data, while the regularized rSEL and rALL lose some accu-

racy but still remain competitive. Both non-regularized and

regularized PCA remain nearly unaffected by missing data.

Figure 5 plots the distribution of absolute residuals for

each approach. We can see that most of the errors (residuals)
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(RMSE = 19.49), closely followed by PCA without reg-
ularization (RMSE = 19.52). The other regularized ap-
proaches outperform rSEL and rALL perform notably585

worse (RMSE = 20.43 and 20.28), but still outperform the
naive baseline NAI (RMSE = 22.88). The unregularized ap-
proaches PLS, SEL and ALL perform much worse than the
baseline and illustrate well the dangers presented by mas-
sively missing values.590

It is interesting to note that the analyzed strategy combin-
ing linear regression with mean replacement Žliobaitė and
Hollmén (2013) theoretically approaches NAI performance
as more values go missing. If all the input values are miss-
ing, then the predictor becomes NAI automatically.595

To analyze the performance further we divide the test
data into non-missing (44%) and missing observations (56%)
parts and inspect the errors on these sub-sets separately. We
see that the performance data of all the models is similar
when there is no missing data, with the ordinary regression600

ALL having an advantage in accuracy, since it does not dis-
card any information from the input data. However, the non-
regularized models (ALL, SEL and PLS) fail badly when
there is missing data, while the regularized rSEL and rALL
lose some accuracy, but still remain competitive. Both non-605

regularized and regularized PCA remain nearly insensitive to
missing data.

Figure 5 plots the distribution of absolute residuals for
each approach. We can see that most of the errors (residu-
als) are concentrated around 10, which is not bad, given that610

the range of the target variable is from 0 to 100. It means
that most of the predictions do not deviate too much from the
true. We can also see that NAI has less probability mass on
the left hand side, where the most accurate predictions are.
As expected, intelligent predictors do better than NAI. Only615

the unregularized approaches ALL and SEL have any proba-
bility mass on the far right, which means that they occasion-
ally produce predictions that may exceed the maximum of
the true target. We can conclude from this investigation, that
predictions by most of the approaches are reasonably stable,620

and outliers in predictions do not pose any major threats.
Next, let us analyze sensitivity to the parameter setting. So

far we used a fixed number of components (k = 18) for PCA,
rPCA, PLS and the same number of selected features for SEL
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Fig. 6. Nowcasting error as a function of components retained (top
plot - all models in log scale, bottom plot - best models zoomed in).

and rSEL. Figure 6 the testing errors (RMSE ) as a function625

of k.
An important observation can be made from this plot.

The regularized approaches rSEL, rPCA performs reason-
ably well at all variants of the parameter k, while the non-
regularized models SEL, PCA and PLS perform poorly when630

a large number of components is retained. In such a case the
resulting models are still similar to ALL, which uses all the
available information. ALL, rALL and NAI do not depend
on the parameter k, but are also included for comparison.
We also observe that PLS becomes very effective at low k,635

but there is a risk of setting k incorrectly (e.g. around 25) in
which case PLS gives the worst results. Therefore, we rather
recommend using rPCA, which gives stable and accurate re-
sults even in k is sub-optimal.

Finally, we visually analyze the model outputs made by640

the baseline approach ALL and the recommended regular-
ized approach rPCA (k = 18). Figure 7 plots four 3-day snap-
shots from year 2012: 1-3 January, 1-3 April, 1-3 July and 1-
3 October. It is important to emphasize that here we plot the
raw outputs of the classifiers to better illustrate the effects of645

regularization, whereas when calculating the numerical er-
rors we post-process all the model outputs to fall into the
same interval as the original target ([0,100], where 0 means
no irradiance is observed, and 100 (%) means all the theoret-
ically possible irradiance is observed). That is, if the predic-650

tion is less than 0, we correct it to 0, and if the prediction is
larger than 100, we correct it to 100. That makes the base-
line classifiers more competitive (and hence is more prudent
way of quantitative evaluation). We see from the figure that
the baseline ALL sometimes fails to extremes (particularly655

in January and April plots), while the regularized approach
rPCA remains stable. In July there are only a couple situa-
tions when ALL has very poor performance (we see a green
inclination on day #2 and a green peak on day #3). In Oc-

Figure 6. Nowcasting error as a function of components retained (top plot – all models in log scale,
bottom plot – best models zoomed in).
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Figure 6. Nowcasting error as a function of components retained

(top plot – all models in log scale; bottom plot – best models

zoomed in).

are concentrated around 10, which is a reasonably good result

keeping in mind that the range of the target variable is from

0 to 100. It means that most of the predictions do not deviate

too much from the true values. We can also see that NAI has

less probability mass on the left-hand side, where the most

accurate predictions are. As expected, intelligent predictors

do better than NAI. Only the unregularized approaches ALL

and SEL have any probability mass on the far right, which

means that they occasionally produce predictions that may

exceed the maximum of the true target. We can conclude

from this investigation that predictions by most of the ap-

proaches are reasonably stable, and outliers in predictions do

not pose any major threats.

Next, we analyze the sensitivity of the predictive perfor-

mance to different parameter settings. So far we used a fixed

number of components (k = 18) for PCA, rPCA, and PLS

and the same number of selected features for SEL and rSEL.

Figure 6 shows the testing errors (RMSE) as a function of k.

An important observation can be made from this plot.

The regularized approaches rSEL and rPCA perform rea-

sonably well at all variants of the parameter k, while the

non-regularized models SEL, PCA, and PLS perform poorly

when a large number of components is retained. In such

a case the resulting models are still similar to ALL, which

uses all the available information. ALL, rALL, and NAI do

not depend on the parameter k but are also included for com-

parison. We also observe that PLS becomes very effective at

low k, but there is a risk of setting k incorrectly (e.g., around

25), in which case PLS gives the worst results. Therefore,

we instead recommend using rPCA, which gives stable and

accurate results even if k is suboptimal.

Finally, we visually analyze model outputs produced by

the baseline approach ALL and a robust approach rPCA

(k = 18). Figure 7 plots four 3-day snapshots from the year

2012: 1–3 January, 1–3 April, 1–3 July, and 1–3 October.

It is important to emphasize that, here, the plot shows raw

www.atmos-meas-tech.net/7/4387/2014/ Atmos. Meas. Tech., 7, 4387–4399, 2014
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Table 4. Nowcasting errors (RMSE) on the testing data set.

ALL rALL SEL rSEL PCA rPCA PLS NAI

Full set 175.8 20.4 127.8 20.3 19.5 19.5 25.7 22.9

Non-missing 17.9 19.2 18.8 19.7 19.6 19.6 19.3 22.9

Missing 233.4 21.3 169.2 20.7 19.4 19.4 29.7 22.9

outputs of the classifiers in order to better illustrate the ef-

fects of regularization, whereas, when calculating numerical

errors, we postprocess all the model outputs to fall into the

same interval as the original target ([0,100], where 0 means

no irradiance is observed, and 100 (%) means all the theo-

retically possible irradiance is observed). That is, if the pre-

diction is less than 0, we correct it to 0, and if the prediction

is larger than 100, we correct it to 100. This postprocessing

makes the baseline classifiers more competitive (and hence

is a more prudent way of quantitative evaluation). We see

from the figure that the baseline ALL sometimes fails very

badly (particularly in the January and April plots), while the

outputs of the regularized approach rPCA remain stable. In

July there are only a couple situations when ALL shows very

poor performance (we see a green inclination on day 2 and

a green peak on day 3). In October both approaches perform

similarly. Unlike ALL, rPCA perform in a stable manner and

does not exhibit extreme failures.

4 Summary and conclusions

In environmental monitoring, continuous and comprehensive

measurement of the environment leads to a data streaming

setting. Nowcasting in such settings is a demanding task. We

performed a case study in modeling solar radiation based on a

SMEAR measurement data set, where model outputs are ex-

pected to be available continuously in spite of often missing

sensor readings. We also experimentally analyzed missing-

data patterns in our data set.

We aimed at nowcasting the amount of global radiation,

relative to the theoretical maximum, with the help of mea-

sured meteorological variables. Due to the need to provide

instantaneous outputs in the data streaming setting, as well as

having limited computing power, especially when operating

on autonomous power sources, we dismiss all of the sophis-

ticated data imputation methods, which are computationally

more demanding. We experimentally analyzed the accuracies

and the robustness to missing data of seven linear-regression

models and recommend using the regularized PCA regres-

sion. The results apply to linear-regression models coupled

with the replacement of missing values by a constant (mean).

The strategy that we consider does not require any sophis-

ticated missing-value imputation but just the replacement of

the values with predefined constants. Linear regression is
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tober both approaches perform similarly. Unlike ALL, rPCA660

perform stable and does not show extreme failures.

4 Summary and Conclusions

In environmental monitoring, continuous and comprehensive
measurement of the environment leads to streaming data set-
ting. Nowcasting in such settings is a demanding task. We665

performed a case study in modeling solar radiation based on
SMEAR measurement data set, where model outputs are ex-
pected to be available continuously in spite of often missing
sensor readings. We also experimentally analyzed the miss-
ing data patterns in our data set.670

We aimed at nowcasting the amount of global radiation,
relative to the theoretical maximum, with the help of mea-
sured meteorological variables. Due to the need to provide
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limited computing power, especially when operating on au-675
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training data without missing values.

and recommend using regularized PCA regression. The re-680

sults apply to linear regression models coupled with replace-
ment of missing values by a constant (mean).

The strategy that we consider does not require any so-
phisticated missing value imputation, just replacing the val-
ues with pre-defined constants. Linear regression is also685

very light computationally, it only requires r multiplications,
where r is the number of input variables, and one summa-
tion. When the model is trained, it can be recorded and oper-
ate with minimal energy consumption. If, in addition to that,
we consider a computationally heavy imputation procedure,690

such as Expectation Maximization algorithm, it would re-
quire by orders of magnitude more computing power, and
would be the dominating computing operation.

The regression itself is a powerful model, particularly con-
sidering that, if desired, one could apply non-linear transfor-695

mations to the input features, which then would make the
resulting predictions non-linear with respect to the inputs.
More importantly, linear models are theoretically well un-
derstood, and can provide guarantees with respect to perfor-
mance when there is a lot of missing data. We would argue700

that in such situations robustness of the model may be more
important than flexibility. A flexible model may on average
be more accurate, but the outputs may be extremely wrong at
times. On the other hand, a robust model may be not the most
accurate on average, but its performance would be stable and705

the errors not too large at all times. We chose linear models,
since they have theoretical guarantees for robustness. Hence,
we recommend using our established guideline in training
regression models, which themselves are robust to missing
data.710

Appendix A

Parameter selection

Figure A1 presents information on the variance explained by
PCA components.
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also very light computationally; it only requires r multipli-

cations, where r is the number of input variables, and one

summation. When the model is trained, it can be recorded

and can operate with minimal energy consumption. If, in ad-

dition to this, a computationally heavy imputation procedure,

such as the expectation maximization algorithm, would re-

quire computing power several orders of magnitude greater

and would be the dominating computing operation.
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A linear regression, supplied with the right input, is a pow-

erful model, particularly considering that, if desired, one

could apply nonlinear transformations to the input features,

which would then make the resulting predictions nonlinear

with respect to the inputs. More importantly, linear models

are theoretically well understood and can provide guarantees

with respect to performance when there is a lot of missing

data. We would argue that in such situations robustness of

the model may be more important than flexibility. A flexi-

ble model may on average be more accurate, but the outputs

may be extremely wrong at times. On the other hand, a ro-

bust model may not be the most accurate on average, but its

performance would at all times be stable and the errors not

too large. We chose linear models since they have theoretical

guarantees for robustness. Hence, we recommend using our

established guideline in training regression models, which

themselves are robust to missing data.

Considering variable uncertainties of sensor measure-

ments over time would make an interesting extension of the

current work if we had some way of quantifying how un-

certainties vary. The strength of uncertainty could be mea-

sured from 0 to 1, where 0 would mean a perfect certainty,

1 would mean a missing value, and everything in between

would mean a noisy measurement. In such a case, a missing

value could be considered as a special case of uncertainty.

www.atmos-meas-tech.net/7/4387/2014/ Atmos. Meas. Tech., 7, 4387–4399, 2014
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Appendix A: Parameter selection

Figure A1 presents information on the variance explained by

PCA components.
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tober both approaches perform similarly. Unlike ALL, rPCA660

perform stable and does not show extreme failures.

4 Summary and Conclusions

In environmental monitoring, continuous and comprehensive
measurement of the environment leads to streaming data set-
ting. Nowcasting in such settings is a demanding task. We665

performed a case study in modeling solar radiation based on
SMEAR measurement data set, where model outputs are ex-
pected to be available continuously in spite of often missing
sensor readings. We also experimentally analyzed the miss-
ing data patterns in our data set.670

We aimed at nowcasting the amount of global radiation,
relative to the theoretical maximum, with the help of mea-
sured meteorological variables. Due to the need to provide
instantaneous outputs in the data streaming setting, as well as
limited computing power, especially when operating on au-675

tonomous power sources, we dismiss any of the sophisticated
data imputation methods, which are computationally more
demanding. We experimentally analyzed accuracies and ro-
bustness to missing data of seven linear regression models,
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and recommend using regularized PCA regression. The re-680

sults apply to linear regression models coupled with replace-
ment of missing values by a constant (mean).

The strategy that we consider does not require any so-
phisticated missing value imputation, just replacing the val-
ues with pre-defined constants. Linear regression is also685

very light computationally, it only requires r multiplications,
where r is the number of input variables, and one summa-
tion. When the model is trained, it can be recorded and oper-
ate with minimal energy consumption. If, in addition to that,
we consider a computationally heavy imputation procedure,690

such as Expectation Maximization algorithm, it would re-
quire by orders of magnitude more computing power, and
would be the dominating computing operation.

The regression itself is a powerful model, particularly con-
sidering that, if desired, one could apply non-linear transfor-695

mations to the input features, which then would make the
resulting predictions non-linear with respect to the inputs.
More importantly, linear models are theoretically well un-
derstood, and can provide guarantees with respect to perfor-
mance when there is a lot of missing data. We would argue700

that in such situations robustness of the model may be more
important than flexibility. A flexible model may on average
be more accurate, but the outputs may be extremely wrong at
times. On the other hand, a robust model may be not the most
accurate on average, but its performance would be stable and705

the errors not too large at all times. We chose linear models,
since they have theoretical guarantees for robustness. Hence,
we recommend using our established guideline in training
regression models, which themselves are robust to missing
data.710

Appendix A

Parameter selection

Figure A1 presents information on the variance explained by
PCA components.

Figure A1. Cumulative variance explained by PCA components on the training data without missing
values.
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Figure A1. Cumulative variance explained by PCA components on

the training data without missing values.

Appendix B: Goodness of fit

Table B1 presents fitness statistics of the regression models

to the training data. The coefficient of determination, R2, in-

dicates the amount of total variability explained by the re-

gression model. The coefficient is computed as

R2
= 1−

n∑
l=1

(ŷ(l)− y(l))2

n∑
l=1

(y(l)− y)2
,

where y(l) is the true target value of the lth sample and ŷ(l)

is the corresponding model output, y is the mean of the true

target values, and n is the number of samples in the train set.

We see that the best-fit model is ALL. Recalling the experi-

mental analysis in Sect. 3, we can see that good fitness to the

training data does not guarantee good generalization perfor-

mance when a lot of missing values start to appear.

Table B1. Fitness statistics of the models on the training data.

ALL rALL SEL rSEL PCA rPCA PLS

RMSE 19.2 21.2 20.5 21.6 21.8 21.8 20.9

R2 0.501 0.393 0.436 0.373 0.361 0.361 0.410
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Žliobaitė, I. and Hollmén, J.: Fault tolerant regression for sensor

data, in: Proc. of the European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in

Databases, ECMLPKDD, 449–464, 2013.
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