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Abstract. This paper describes the All Sky Infrared Visi-
ble Analyzer (ASIVA), a multi-purpose visible and infrared
sky imaging and analysis instrument whose primary function
is to provide radiometrically calibrated imagery in the mid-
infrared (mid-IR) atmospheric window. This functionality
enables the determination of diurnal fractional sky cover and
estimates of sky/cloud temperature from which one can de-
rive estimates of sky/cloud emissivity and cloud height. This
paper describes the calibration methods and performance
of the ASIVA instrument with particular emphasis on data
products being developed for the meteorological commu-
nity. Data presented here were collected during the Solmirus’
ASIVA campaign conducted at the Atmospheric Radiation
Measurement (ARM) Southern Great Plains (SGP) Climate
Research Facility from 21 May to 27 July 2009. The purpose
of this campaign was to determine the efficacy of IR technol-
ogy in providing reliable nighttime sky cover data. Signifi-
cant progress has been made in the analysis of the campaign
data over the past several years and the ASIVA has proven
to be an excellent instrument for determining sky cover as
well as the potential for determining sky/cloud temperature,
sky/cloud emissivity, precipitable water vapor (PWV), and
ultimately cloud height.

1 Introduction

Uncertainty in the characterization of clouds in general cir-
culation models (GCMs) is one of the major causes of the
broad range of future climate change predictions (US DOE,

2010). Fractional sky cover, which is closely related to cloud
fraction (a dominant modulator of radiative fluxes), has been
an integral part of the observational data set that feeds these
GCMs (Kassianov et al., 2005). Currently, however, sky
cover is only directly determined at the Atmospheric Radi-
ation Measurement (ARM) sites during daytime hours uti-
lizing the Total Sky Imager (TSI) (Long et al., 2001). Other
indirect cloud fraction data products can be derived from sur-
face radiometers (Long et al., 2006a) and the statistical anal-
ysis of lidar and radar observations (Qian et al., 2012). A di-
rect means of determining nighttime sky cover has been and
remains a critical programmatic gap in ARM’s observational
data set and is an important factor in understanding the life
cycle of clouds, one of the central themes of the Atmospheric
System Research program. The mid-infrared (mid-IR) atmo-
spheric window from 8–13 micrometers (µm) has long been
known to hold great promise in closing this gap as well as
providing other valuable ground-based cloud properties and
atmospheric data (Shaw et al., 2005; Thurairajah and Shaw,
2005). A thermal IR imager has the distinct advantage of di-
rectly detecting emission from clouds, rather than relying on
scattered light or obscured starlight, and is not hampered by
the presence of the Sun or the Moon, thus providing consis-
tent and reliable information under a wide variety of condi-
tions.

Significant work has been done in determining sky cover
using all-sky imagers that operate in the visible spectrum
(Pfister et al., 2003; Heinle et al., 2010; Calbó and Sabburg,
2008; Cazorla et al., 2008; Huo and Lu, 2009). All-sky im-
agers that operate in the mid-IR (Liu et al., 2011; Feister et
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Figures and Captions 1 
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Figure 1. ASIVA at SGP Guest Instrument Facility from May 21 to July 27, 2009.  3 
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Fig. 1. ASIVA at SGP Guest Instrument Facility from 21 May to
27 July 2009.

al., 2010) have thus far been limited to instruments that scan
or acquire multiple images to create all-sky images. These
instruments are met with unique calibration challenges. The
ASIVA instrument circumvents many of these issues by the
use of an all-sky lens and, as will be described in this paper,
is integral to the calibration process.

This paper will discuss the ASIVA instrument with partic-
ular emphasis on the calibration procedures that have been
developed to improve mid-IR radiometric performance en-
abling the removal of water vapor emission. Infrared data
analysis procedures that are being developed to characterize
cloud properties with particular emphasis on determining sky
cover will also be discussed. In addition, sky cover data from
ASIVA’s visible channel will be discussed and compared to
data from the infrared channel as well as from the TSI.

2 Description of the ASIVA instrument

The ASIVA instrument (shown in Fig. 1) was deployed
at the ARM Southern Great Plains (SGP) site (36.605◦ N,
97.485◦ W, 318 m) for an infrared sky imager field campaign
from 21 May to 27 July 2009. This instrument was a pro-
totype unit that featured an infrared camera subsystem con-
sisting of a 320× 256 uncooled microbolometer array sensi-
tive to 8–14 µm radiation, a 180◦ (all-sky) custom-designed
hard-carbon-coated waterproof lens, and a filter wheel which
included the two IR filters. The IR camera provided image
data at 14-bit resolution and at a 30 Hz rate. Sixteen of these
images were co-added to produce a single frame with an ef-
fective exposure of 0.53 s. Sixteen consecutive frames were
then bundled to produce a 3-dimensional (data cube) FITS
(Flexible Image Transport System) file that was stored to disk
for future data analysis. The ASIVA visible camera subsys-
tem featured a color progressive scan 2048× 1536 CMOS
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Figure 2. All-sky images acquired on May 25, 2009 at 23:07 UTC (top) and July 21, 2009 at 2 

14:17 UTC (bottom). Images shown are from the TSI instrument (left), the ASIVA Visible 3 

camera (middle), and from ASIVA’s 10.2-12.2 µm IR channel (right). 4 
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Fig. 2.All-sky images acquired on 25 May 2009 at 23:07 UTC (top)
and 21 July 2009 at 14:17 UTC (bottom). Images shown are from
the TSI instrument (left), the ASIVA visible camera (middle), and
from ASIVA’s 10.2–12.2 µm IR channel (right).

detector array and a 180◦ off-the-shelf lens. The visible cam-
era provided image data at 10-bit resolution per color and
exposures up to 2 min in duration. The instrument featured
a unique hatch/radiation shield subsystem used for radio-
metric calibration. The hatch subsystem provided the fol-
lowing relevant features: (1) integration of the IR black-
body reference and visible dark reference into a single hatch
mechanism. (2) IR blackbody reference and the visible ref-
erence remained in the same protected orientation (pointed
downward) as the hatch mechanism was opened and closed.
(3) Temperature sensor and a heater were embedded in the
IR blackbody reference to provide in situ radiometric image
calibration. (4) Radiation shield allowed the blackbody ref-
erence to equilibrate with the ambient air temperature.

An observing script governed the data acquisition process
which determined what filters and exposure times were to be
used for each 5 min data sequence. Each sequence began with
the hatch closed. An IR blackbody reference image (in each
of the two filters) and a visible dark reference image were
acquired in the closed position. The hatch was then opened
wherein one visible and two infrared sky images were ac-
quired until the next data acquisition sequence. All data se-
quences were identical with the exception of toggling the ex-
posure time for the visible camera between a daytime and
nighttime setting. All data were stored to disk.

A collection of images acquired on 25 May 2009 at
23:07 UTC and 21 July 2009 at 14:17 UTC is shown in Fig. 2.
Images from the ARM facility’s TSI instrument are shown
for comparison with ASIVA’s visible camera along with one
of ASIVA’s IR channels. Note that the ASIVA visible im-
ages do not utilize a sun occulter and that the camera’s 10-
bit-per-color resolution (TSI uses 8 bit per color) allows for
better sensitivity near the Sun. The ASIVA IR images are sin-
gle frame (0.53 s exposure) images and demonstrate that the
Sun’s presence has almost no impact on the image.
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Figure 3. Simulated clear-sky downwelling radiance for 22 mm PWV pointed at the zenith. 2 

Spectral response of two ASIVA filters (red and blue) used in this research. 3 
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Fig. 3. Simulated clear-sky downwelling radiance for 22 mm PWV
pointed at the zenith. Spectral response of two ASIVA filters (red
and blue) used in this research.

A major challenge for thermal imagers has been separat-
ing the effects of water vapor emission from those of cloud
emission, particularly cirrus clouds (Brocard et al., 2011).
The ASIVA’s primary function is to provide radiometrically
calibrated imagery across the entire sky in the mid-IR. Fig-
ure 3 shows the clear-sky downwelling radiance as simu-
lated using MODTRAN (MODerate resolution atmospheric
TRANsmission; Berk et al., 1999) for a standard mid-latitude
summer atmosphere (Anderson et al., 1986) pointed at the
zenith with the CO2 mixing ratio set to 380 ppmv and the
H2O profile scaled to 22 mm of precipitable water vapor
(PWV), typical of conditions found at the ARM SGP site.
Absorption, and therefore thermal emission, is dominated by
water vapor at wavelengths less than 8 µm, by carbon diox-
ide at wavelengths greater than 13 µm, and by ozone near
9.5 µm. Water vapor absorption lines are present through-
out this spectral interval but are least prevalent in the 10.2–
12.2 µm region. For this reason, a custom 10.2–12.2 µm fil-
ter for optimizing clear-sky–cloud contrast was fabricated for
the ASIVA instrument. The spectral response of this filter
(shown in red) as well the 8.25–9.25 µm filter (shown in blue)
used in this research are presented in Fig. 3.

3 Infrared radiometric calibration

3.1 Determination of instrument response coefficients

A somewhat more detailed discussion of the ASIVA’s cal-
ibration procedure can be found in Klebe et al. (2012). In
the interest of completeness, much of that discussion is re-
peated here. The ASIVA instrument incorporates a two-step
calibration process in determining the spectral radiance for
IR images. The first step in this calibration procedure is to
determine the instrument response coefficientsGλ for every

pixel in the array in each IR filter. These coefficients are gen-
erated using Eqs. (1) and (2).

Gλ =
Iλ

ελ · BBλ (T )

{
Counts

Watts/m2/µm/sr

}
, (1)

whereIλ is instrumental counts measured for the blackbody
reference in a specific filter,ελ is emissivity of the blackbody
reference in a specific filter, and

BBλ (T ) = (2)∫
1.19× 108

· λ−5

e1.44×104/λT − 1
tλdλ

/∫
tλdλ

{
Watts/m2/µm/sr

}
,

wheretλ is system response as a function of wavelength for
a specific filter.

The blackbody spectral density equation BBλ (T ) above
assumes a wavelengthλ in µm and is integrated over the sys-
tem responsetλ (which includes the combined effects of fil-
ter/lens transmission and nominal IR detector sensitivity as
a function of wavelength) for a particular temperatureT in
Kelvin. The emissivityελ of the blackbody depends on the
coating and design of the calibration reference used to cover
the IR lens. The emissivity is assumed to be constant for a
given filter but can be adjusted from one filter to the next if
necessary. A value of 0.95 was used for this study.

To eliminate instrumental offsets,Gλ was determined by
calculating a least squares linear fit to theIλ versusελ ·

BBλ (T ) data for a range of temperatures. The built-in black-
body reference located inside the hatch cover was used to
determine the instrumental response of the system and also
to measure the fixed pattern components in the image during
data acquisition. A temperature sensor was bonded within
the blackbody reference and the temperature data were writ-
ten into the FITS header when acquiring images. A heater
was embedded in the blackbody reference and was used to
control its temperature during calibration.

The calibration procedure was performed on 21 May 2009.
During the procedure, the hatch was opened and the black-
body was heated to∼ 80◦C and then allowed to passively
cool down to near-ambient temperature. During the cool-
down period, the hatch was periodically closed (2 min inter-
vals) to take calibration data in each of the two IR filters. Data
were acquired in this fashion for approximately 60 minutes
wherein the hatch stayed open for the majority of the time to
prevent heating of the IR lens during the calibration proce-
dure. The data were analyzed as described above and a cal-
ibration image file containing theGλ values for each pixel
was created. An example of the calibration data set used to
establishGλ for a single central pixel (representative of ev-
ery pixel in the array) for the 10.2–12.2 µm filter is provided
in Fig. 4. The response is linear over a factor of two in radi-
ance, yielding great confidence in extrapolating to low radi-
ance values as is done when observing clear skies with low
PWV.
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 1 

Figure 4. 10.2-12.2 µm Instrument Response for a single central pixel. 2 

  3 

Fig. 4.10.2–12.2 µm instrument response for a single central pixel.

3.2 Calibration of spectral radiance images

The second step in the calibration procedure is to determine
the sky’s spectral radiance (FλSky) for a given filter using
Eq. (3).

FλSky =
IλSky − IλRef

Gλ

+ BBλ (TRef)
{
Watts/m2/µm/sr

}
, (3)

whereIλSky is instrumental counts measured for the sky im-
age,IλRef is instrumental counts measured for the reference
blackbody image,Gλ is instrument response coefficients de-
rived from Eq. (1), and BBλ (TRef) is integrated blackbody
radiance derived from Eq. (2) for ambient temperatureTRef.

For purposes of the analysis presented in Sect. 4, we de-
fine the normalized spectral radianceFλSky given by Eq. (4).
FλSky can be thought of as a proxy to the sky’s average emis-
sivity.FλSky is generally an underestimate of the true emissiv-
ity since the ambient temperature given byTRef is nominally
greater than the mean temperature of the emitting sky.

FλSky = FλSky
/
BBλ (TRef)

. (4)

4 Cloud detection and fractional sky cover analysis

4.1 Verification of calibration procedures

The calibration procedures described in Sect. 3 provide the
foundation for cloud detection and other cloud data prod-
ucts that can be derived from the ASIVA instrument. As a
verification of these procedures, ASIVA spectral radiance
data were compared with the precisely calibrated data re-
trieved from the Atmospheric Emitted Radiance Interferom-
eter (AERI) instrument (Knuteson et al., 2004) available for
the campaign period. The mean spectral radiance was deter-
mined by averaging the AERI spectral radiance data over the
response of each of the two ASIVA IR channels. The 8 min

average AERI data were utilized, as this cadence was sim-
ilar to the 5 min cadence used by the ASIVA instrument.
Calibrated ASIVA data were then evaluated at the zenith,
coincident with AERI’s field of view. Comparison plots of
AERI data with ASIVA data for the two daytime periods that
will be highlighted in this paper are shown in Fig. 5. Agree-
ment is very good (< 5 %) for the two daytime comparisons,
which are representative of the entire campaign data set. Note
that the agreement is good in both clear and cloudy circum-
stances. Discrepancies (e.g., 25 May 2009, 17:00 UTC) are
likely due to slight differences in the beam size and direction
utilized by each instrument.

4.2 Removal of clear-sky emission

The primary step in the cloud detection process is to remove
the effects of clear-sky emission. This is done by employing
the all-sky capabilities of the ASIVA instrument. Figure 6
illustrates the procedure in which the clear-sky normalized
radiance is determined from the ASIVA IR image data set.
In Fig. 6, the normalized radiance pixel data are plotted as
a function of airmass for the images shown in Fig. 2. The
normalized radiance data are sorted into 29 airmass bins of
roughly equal pixel count. The lower envelope of points in
each airmass bin (shown as red squares) is fit to a 2nd-order
polynomial equation (blue line), which identifies the clear-
sky radiance. Even in the very cloudy image of 21 July 2009
at 14:17 UTC, the lower envelope is still well defined (chi-
square= 0.0005) and serves as an excellent representation of
the underlying clear-sky emission. The clear-sky emission is
then described as a function of airmass utilizing this polyno-
mial equation and is then subtracted from the original nor-
malized radiance image to yield the clear-sky subtracted im-
ages.

The clear-sky subtracted images form the basis of sky
cover determination. A cloud/no-cloud decision can be sim-
ply made by choosing a single threshold value, above which
an individual pixel is determined to be cloudy. For this study,
two thresholds were used to determine the presence of “low-
emission” and “high-emission” clouds. The ultimate goal is
to explore if one can identify threshold values that correlate
well with the “thin” and “opaque” criteria employed by the
TSI instrument (Long et al., 2006b). The advantage of ex-
pressing the clear-sky subtracted image in normalized radi-
ance is that as mentioned it is related to the emissivity of the
cloud and therefore the threshold values should be largely
independent of ambient temperature.

One of the primary challenges of producing a robust cloud
decision map is determining the clear-sky radiance in nearly
100 % cloudy conditions. This is accomplished by demand-
ing that the chi-square value for the polynomial fit be less
than some threshold (chosen to be 0.002 in this analysis)
to ensure a strict goodness-of-fit criterion. If this criterion is
not met, the previous polynomial equation that has met this
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Figure 5. Comparison of AERI with ASIVA spectral radiance data in each of the two filters 2 

for a) May 25, 2009 and b) July 21, 2009. 3 

  4 

Fig. 5.Comparison of AERI with ASIVA spectral radiance data in each of the two filters for(a) 25 May 2009 and(b) 21 July 2009.

Fig. 6. Pixel normalized radiance vs. airmass data (left) on 25 May 2009 at 23:07 UTC (top) and 21 July 2009 at 14:17 UTC (bottom). Blue
line represents 2nd-order polynomial fit to lower envelope of points (red squares) in each of 29 airmass bins. Clear-sky subtracted images
derived from this analysis (right). Note: image is truncated at 6 airmasses. Large error bars (near 2 airmasses) are due to the Sun’s extreme
pixel values at this location.
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criterion is used to define the clear-sky radiance. We have
found this procedure to be very effective.

4.3 Fractional sky cover determination

After determining the clear-sky emission, cloud decision
masks can be processed by applying thresholds to the
clear-sky subtracted images. Figure 7 shows fractional sky
cover comparisons between TSI (thin and opaque) and
ASIVA IR (low and high emission) during daylight hours
for the 25 May and 21 July 2009 data sets. Agreement
between TSI data and the ASIVA IR data are excellent;
however, different low-emission threshold values were used
for the two days. Threshold values (in normalized radi-
ance units) of 0.15< low-emission cloud< 0.05 and high-
emission cloud≥ 0.05 were used for the 25 May data set,
and 0.03< low-emission cloud< 0.05 and high-emission
cloud≥ 0.05 for the 21 July data set. The TSI data used in
this comparison were improved from those available from
the ARM archive using a more sophisticated analysis pack-
age (Long, 2010). This analysis is used to improve the relia-
bility of the TSI instrument for low Sun elevation angles.

The 21 July data set is dominated by thick opaque clouds.
The 25 May data set, which provided a mix of thin and
opaque clouds, represents more challenging conditions for
sky cover analysis. The difficulty arises in that the emission
from the thin cirrus clouds evident in Fig. 6 is only slightly
above the clear-sky radiance. As can be seen in Fig. 7, much
better agreement between low-emission and thin clouds is
achieved by reducing the lower end of the low-emission
threshold to 0.015. However applying this analysis to the
21 July data set would produce a larger fraction of low-
emission clouds than shown in Fig. 7. This discrepancy is
due to the fact that the cloud decision analysis is fundamen-
tally different between the IR and visible. The TSI measures
optical thickness of a cloud and the ASIVA IR channel mea-
sures cloud emission. However, the primary goal of this re-
search has been to obtain as close an agreement as possible
between the TSI and ASIVA’s IR channel. The entire 2009
campaign data set will be used to determine the best correla-
tion between these sky cover measurements.

4.4 Retrieval of fractional sky cover data product from
ASIVA visible data

Retrieval of the sky cover data product from ASIVA’s visible
channels uses the same analysis adopted by the TSI instru-
ment. The analysis involves taking the ratio of the red image
to blue image and then setting appropriate opaque/thin/no-
cloud thresholds (Long et al., 2006b). Figure 8 shows the vis-
ible red / blue ratio images coincident with the images shown
in Fig. 2. The Sun has been occulted in software (the larger
circle) and is similar in size to the zone of avoidance utilized
in the TSI cloud fraction analysis. In addition, a small circle
is used to mask an artifact seen at the Sun’s position reflected

through the zenith. This artifact (which can be seen in Fig. 2)
is brought about by internal reflection within the fisheye lens.
Since the ASIVA instrument does not require a sun occulter
like that utilized in the TSI instrument, eliminating this part
of sky is relatively minor in the analysis.

Thresholds are then set to define the thin and opaque
boundaries to provide the best agreement with the TSI instru-
ment. Figure 9 shows the sky cover analysis for the 25 May
and 21 July data sets. The ASIVA visible channel performs
very well for low Sun angles without any further processing.
The agreement is remarkably good and demonstrates that the
ASIVA visible subsystem is more than adequate in reproduc-
ing TSI daytime functionality. Development of ASIVA’s sky
cover data product is nearly complete and is currently being
applied to the entire field campaign data set.

5 Sky/cloud temperature and other potential ASIVA
data products

As a radiometrically calibrated instrument the ASIVA has
the potential of delivering many other data products that will
be useful to the meteorological community. This section dis-
cusses the current research in this area.

5.1 Determination of sky/cloud temperature

Two temperature data products can be immediately derived
from ASIVA’s IR radiance data: brightness temperature and
color temperature. The brightness temperature (for a given IR
filter) of an image can be determined by equating the mea-
sured radiance with a blackbody whose temperature yields
this same radiance. Brightness temperature images deter-
mined from the representative images of 25 May (surface
temperature 304 K) and 21 July (surface temperature 297 K)
are shown in Fig. 10. Note that the peripheries of the clouds
indicate lower brightness temperature consistent with lower
optical depth in these regions.

The color temperature can be inferred by taking the ratio of
sky radiance images acquired in the 8.25–9.25 µm and 10.2–
12.2 µm filters and assigning this a temperature for which a
blackbody yields this same radiance ratio. Color temperature
has the distinct advantage of only being affected by differ-
ences in sky/cloud emissivity in the two filters but is insen-
sitive to the total optical depth. For this reason we believe
that color temperature will ultimately yield a better measure
of the true temperature for optically thin clouds. Color tem-
perature images are also shown in Fig. 10. The color tem-
perature images show variations (both positive and negative
temperature fluctuations) at the periphery of the clouds due
to the motion of the clouds over the data acquisition period.
This is particularly evident in the 21 July image as the clouds
were very fast moving. Current ASIVA instruments now ac-
quire 8.25–9.25 µm and 10.2–12.2 µm image data in a much
shorter time interval to combat this problem. Also note that
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Figure 7. a) Sky cover comparisons between TSI (thin and opaque) and ASIVA IR (low and 2 

high emission) during daylight hours on May 25, 2009 for threshold values 0.15 < low 3 

emission < 0.05 and high emission ≥ 0.05 and b) on July 21, 2009 for threshold values 0.03 < 4 

low emission < 0.05 and high emission ≥ 0.05. 5 
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Fig. 7. (a) Sky cover comparisons between TSI (thin and opaque) and ASIVA IR (low and high emission) during daylight hours on
25 May 2009 for threshold values 0.15< low emission< 0.05 and high emission≥ 0.05, and(b) on 21 July 2009 for threshold values
0.03< low emission< 0.05 and high emission≥ 0.05.
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 1 

Figure 8. a) Red/Blue ratio image for May 25, 2009. b) Red/Blue ratio image for July 21, 2 

2009. 3 

  4 

Fig. 8. (a) Red / blue ratio image for 25 May 2009.(b) Red / blue
ratio image for 21 July 2009.

the clear-sky color temperature is higher (one would expect
lower temperatures) at the zenith due to sky emissivity dif-
ferences in the two IR filters.

Brightness and color temperatures are similar in the opti-
cally thick regions of clouds, indicating cloud temperatures
10–20 K below the ground temperature. To some degree,
these color maps already provide an estimate of cloud tem-
perature that may be very valuable to cloud modelers. To im-
prove on the accuracy of this measurement, one will have to
account for the intervening atmospheric absorption and emis-
sion in each of the filters. This is where knowledge of PWV
(discussed in Sect. 5.3) is required to provide additional in-
formation regarding the atmosphere’s radiative properties.

5.2 Determination of sky/cloud emissivity

Perhaps one of the most powerful data products that can
be derived using the temperature analysis outlined above is
an accurate estimate of the emissivity of an image. By as-
suming that the color temperature is indeed a measure of
the true mean temperature for an image, one can compute

a blackbody radiance image from the color temperature im-
age. By dividing the measured radiance by the blackbody ra-
diance derived from the color temperature, one arrives at a
measure of the emissivity of the sky. Figure 10 also shows
the results of this analysis.

The accuracy of this measure is somewhat hampered by
the variations in emissivity between the two IR filters but
can be corrected using knowledge of the PWV burden and
the information it yields regarding the atmosphere’s radiative
properties. Ignoring the effects of cloud motion, the images
of Fig. 10 show cloud emissivity near unity for opaque clouds
as one would expect. They also show the expected variations
in clear-sky emissivity (i.e., lower emissivity at the zenith
and higher emissivity near the horizon).

5.3 Determination of precipitable water vapor (PWV)

As discussed above, determination of PWV is important as
it can provide valuable ancillary information in the analysis
of other cloud property data products, in particular refining
cloud temperature measurements. The basic analysis strategy
is to compare the clear-sky envelope (described in Sect. 4.2)
with modeled data. The model data are constructed using a
series of MODTRAN simulations that provide a parameteri-
zation of the normalized clear-sky downwelling radiance as a
function of PWV evaluated at different elevation angles (i.e.,
airmass). Preliminary simulations have been run for each
of ASIVA’s filters using a radiosonde data set acquired for
21 July 2009. The simulated data set is then best fit to the
clear-sky envelope determined for a particular image, thus
providing an estimate of PWV. Figure 11 shows the result of
this analysis for the 25 May and 21 July data sets. The PWV
data are compared with data retrieved from the microwave
radiometer (MWR), an instrument with accuracy of better
than 1 mm PWV. The correlation is reasonable for the 21 July
data set (the day from which the radiosonde data were used
in the MODTRAN analysis) but deviates significantly for the

www.atmos-meas-tech.net/7/637/2014/ Atmos. Meas. Tech., 7, 637–645, 2014
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Figure 9. a) Sky cover comparisons between TSI and ASIVA Visible for opaque and thin 2 

cloud types for May 25, 2009 and b) July 21, 2009. 3 
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Fig. 9. (a)Sky cover comparisons between TSI and ASIVA visible for opaque and thin cloud types for 25 May 2009 and(b) 21 July 2009.

Fig. 10. Brightness temperature (K, top), color temperature
(middle), and emissivity (bottom) for representative images for
25 May 2009 (left) and 21 July 2009 (right).

 25 

 1 

Figure 11. Comparison of MWR with ASIVA PWV data for a) May 25, 2009 and b) July 21, 2 

2009. 3 

Fig. 11. Comparison of MWR with ASIVA PWV data for(a)
25 May 2009 and(b) 21 July 2009.

25 May data set. This suggests coincidental radiosonde data
may be required to improve the accuracy of ASIVA’s esti-
mate of PWV.

Better accuracy in the determination of PWV may not be
required in that this measure is only required to make second-
order corrections to data products such as the sky/cloud tem-
perature and emissivity images. If better accuracy is required,
other instruments such as MWR could be used in a value-
added product (VAP). Ultimately, we wish to obtain a mea-
sure of cloud temperatures with accuracy sufficient to pro-
vide a useful estimate of cloud height. Cloud height can be
estimated from ASIVA cloud temperature data by utilizing
the altitude versus temperature information retrieved from
radiosonde data. Validation of this technique would be ac-
complished by comparison to cloud height measurements re-
trieved from the ARM ceilometer (CEIL) operated at SGP
during the campaign period. This is the subject of future re-
search.

6 Conclusions

The ASIVA demonstrates considerable promise in provid-
ing a diurnal fractional sky cover data product. ASIVA sky
cover data (both IR and visible) correlate very well with day-
time data retrieved from the Total Sky Imager. Radiometric
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calibration procedures have been validated by data retrieved
from the Atmospheric Emitted Radiance Interferometer. The
quality of the ASIVA’s radiometric data promises to yield ad-
ditional products such as quality estimates of sky/cloud tem-
perature (both color and brightness temperature), sky/cloud
emissivity, precipitable water vapor, and ultimately cloud
height.
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