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Abstract. In this study we built a nano-CPC (condensation
particle counter) battery, consisting of four ultrafine CPCs
optimized for the detection of sub-3 nm particles. Two of
the CPCs use diethylene glycol as a working fluid: a lam-
inar type diethlylene glycol CPC and a mixing type Air-
modus A09 particle size magnifier. The other two CPCs
are a laminar type TSI 3025A and a TSI 3786 with bu-
tanol and water as the working fluids, respectively. The nano-
CPC battery was calibrated with seven different test aerosols:
tetraheptyl ammonium bromide, ammonium sulfate, sodium
chloride, tungsten oxide, sucrose, candle flame products and
limonene ozonolysis products. The results show that ammo-
nium sulfate and sodium chloride have a higher activation
efficiency with the water-based 3786 than with the butanol-
based 3025A, whereas the other aerosols were activated bet-
ter with butanol than with water as the working fluid. It is
worthwhile to mention that sub-2 nm limonene ozonolysis
products were detected very poorly with all of the CPCs,
butanol being the best fluid to activate the oxidation prod-
ucts. To explore how the detection efficiency is affected if the
aerosol is an internal mixture of two different chemical sub-
stances, we made the first attempt to control the mixing state
of sub-3 nm laboratory generated aerosol. We show that we
generated an internally mixed aerosol of ammonium sulfate
nucleated onto tungsten oxide seed particles, and observed
that the activation efficiency of the internally mixed clusters
was a function of the internal mixture composition.

1 Introduction

Atmospheric aerosols play a significant role in impacting
the global atmospheric energy balance by directly scattering
the sunlight and indirectly participating in cloud formation
and affecting the properties of clouds (IPCC, 2007). Accord-
ing to Merikanto et al. (2010), about 75 % of surface level
aerosol particles are formed in the atmosphere via nucleation
and condensation of pre-existing vapours, but the processes
and vapours responsible for new particle formation are not
well known. Recent field (Riipinen et al., 2007; Kuang et al.,
2008) and laboratory (Sipila et al., 2010; Kirkby et al., 2011)
studies show that while sulfuric acid plays a major role in at-
mospheric nucleation, compounds that stabilize sulfuric acid
in the initial cluster formation and compounds, other than
sulfuric acid, that contribute to particle growth above 1.5 nm
are still mostly unknown (Smith et al., 2010; Riipinen et al.,
2012; Kuang et al., 2012a).

The chemical composition of particles from 4 to 10 nm
can be measured indirectly with a tandem differential mobil-
ity analyser (HTDMA) (Sakurai et al., 2005; Ehn et al., 2007;
Keskinen et al., 2013), which measures the hygroscopic and
volatile fraction of the sampled aerosols. However, due to
large sampling losses associated with low charging, trans-
port and counting efficiencies of the smallest particles, the
lowest measurable size for the HTDMA is about 4 nm, with
most field measurements restricted to sizes above 10 nm. Al-
ternatively, the chemical composition of the nucleation mode
particles can be measured by means of mass spectrometry.
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The thermal desorption chemical ionization mass spectrom-
eter (TD-CIMS) (Voisin et al., 2003) is able to measure
the chemical composition of freshly nucleated particles as
small as 8 nm. For example, Smith et al. (2010) found that
nanoparticle composition was dominated by the presence of
aminium salts. A different sampling approach is employed
in the nanoaerosol mass spectrometer (NAMS) (Bzdek et al.,
2011), where the sample particle is broken into elements, and
thereon the elemental distribution is measured. Using this
method Bzdek et al. were able to observe the elemental com-
position of 20 nm particles. With an atmospheric pressure in-
let time of flight mass spectrometer (APi-TOF) (Junninen et
al., 2010) it is possible to characterize the precise chemi-
cal composition of atmospheric ions up to about 1.5 nm in
mobility diameter, which corresponds to about 1000 Th, and
by using different ionization methods also information from
neutral clusters can be obtained (Zhao et al., 2010; Jokinen
et al., 2012; Berndt et al., 2012). These two methods leave a
gap between 1.5 and 8 nm, where the measurement of chem-
ical composition (both direct and indirect) has been difficult
so far. Also, while measurement of the total aerosol size dis-
tribution down to around 2.5 nm is a routine measurement by
DMPS (differential mobility particle sizer) and NAIS (neu-
tral air ion spectrometer) (based on the detection limit for
the DMPS using a 3025A as a detector and on the upper
size limit of corona-generated ions as seen in Manninen et
al. (2011), Aalto et al.(2001) and Manninen et al.(2009)), be-
low that size there is only a very limited literature available
(Lehtipalo et al., 2009, 2010; Jiang et al., 2011b; Kuang et
al., 2012a; Kulmala et al., 2013) due to lack of instruments
capable of measuring sub-2 nm neutral clusters.

In earlier studies Kulmala et al. (2007) have inferred
aerosol hygroscopicity with a CPC (condensation particle
counter)-battery (CPCb) using four CPCs: an ultrafine wa-
ter and butanol CPC (d50 = 3 nm for silver, where d50 is
the size corresponding to 50 % detection efficiency) and a
conventional water and butanol CPC (d50 = 11 nm). In the
laboratory, the CPCs were tuned to have equal cut-off di-
ameters for both working fluids for non-hygroscopic silver
test aerosol. Using the CPCb with those operating condi-
tions, they found that salts (hygroscopic test aerosol) are ac-
tivated better with water than butanol. In the following work
Riipinen et al. (2009) were able to infer the hygroscopicities
of atmospheric aerosols in Hyytiälä for two different cut-
off diameters. The results showed for both CPC pairs clear
WCPC / CPC ratios over 1 during a nucleation event, indi-
cating more hygroscopic compounds participating in forma-
tion and initial growth especially at the smaller sizes. For the
larger cut-off size CPC pair, the hygroscopicity was not so
strong, indicating fewer hygroscopic compounds participat-
ing in the growth of the particles.

Combining the work of Kulmala et al. (2007) and Kuang
et al. (2012a), our aim in this study is to construct and verify
the performance of a nano-CPCb that will be used as a detec-
tor in an SMPS (scanning mobility particle sizer) system. As

a whole, this SMPS system consists of an aerosol neutralizer,
a nano-DMA (differential mobility analyser), and the nano-
CPCb which itself consists of four ultrafine CPCs optimized
for the detection of sub-3 nm aerosols. In this study, the CPCs
of the nano-CPCb are characterized with mobility classified
particles of diverse composition. By doing so, the strong de-
pendence of CPC activation on particle size and charge be-
low 3 nm (Winkler et al., 2008; Iida et al., 2009; Kuang et
al., 2012b; Kangasluoma et al., 2013) is accounted for and
any measured differences in CPC response are then attributed
solely to the composition-specific interactions between the
particle and the various working fluids. Two of the CPCs use
diethylene glycol as a working fluid: a laminar type diethy-
lene glycol CPC (DEG CPC, Iida et al., 2009; Kuang et al.,
2012b) and a mixing type Airmodus A09 particle size mag-
nifier (PSM) (Vanhanen et al., 2011). The other two CPCs are
a modified laminar type TSI 3025A and a modified laminar
type TSI 3786 using the working fluids butanol and water,
respectively. The PSM and DEG CPC were already shown to
be suitable for detecting sub-2 nm clusters (Iida et al., 2009;
Kuang et al., 2012b; Kangasluoma et al., 2013; Wimmer et
al., 2013), which makes them the best available reference
detectors for our instrument. The 3025A and the 3786 have
also been modified for the detection of sub-2 nm clusters (e.g.
Sipila et al. (2009) and Kuang et al. (2012b) for 3025A, and
Kulmala et al. (2007) for 3786); however, extensive compo-
sition dependent studies have been lacking. To maximize the
cluster detection using the 3025A, the saturator temperature
was increased to 40◦C, the optics temperature was increased
to 42◦C, and the condenser temperature remained at 10◦C.
For the 3786 we made the following changes: the saturator
temperature was decreased to 5◦C, the growth tube temper-
ature was increased to 78◦C, and the optics temperature was
increased to 78◦C, resulting in an operating temperature dif-
ference of 73◦C (several degrees higher than for the WCPC
reported in Mordas et al. (2008). The list of CPCs and corre-
sponding operating conditions are listed in Table 1.

To widen the knowledge about working fluid dependent
activation for different test aerosols we used aerosol gen-
erated from tetraheptyl ammonium bromide (THABr) (Ude
and de la Mora, 2005), ammonium sulfate, sodium chloride,
tungsten oxide, candle flame products, sucrose, and limonene
ozonolysis products and measured their respective cut-off di-
ameters for each of the CPCs comprising the CPCb. The test
aerosols and their generation methods are listed in Table 2.
Although the composition of the initial sample material is
known, the composition of the resulting aerosol will not be
always identical to the bulk starting material. For that reason
the exact chemical composition as determined through mass
spectrometry is vital for sub-2 nm CPC calibration studies.
The chemical composition of the sub-2 nm test aerosol gen-
erated from ammonium sulfate, sodium chloride and tung-
sten oxide was already characterized and presented in our
previous study (Kangasluoma et al., 2013). The composi-
tion of the test aerosol generated from candle flame products,
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Table 1.List of CPCs used in the nano-CPCb and their operating conditions and detector CPCs.

Saturator Condenser Optics Inlet Inlet flow Detector
CPC [◦C] [◦C] [◦C] [◦C] rate [Lpm] CPC

DEG-CPC 60 10 1.5 3010
PSM 78 5 15 2.5 3772
3025A 40 10 42 1.5
3786 5 78 78 0.6

sucrose and limonene ozonolysis products, as far as resolv-
able, will be characterized in this study. By knowing the
chemical composition of the aerosol used, we show that the
response of the four different CPCs is working fluid depen-
dent for different test aerosols. Last, we aim to generate in-
ternally mixed aerosol by nucleating ammonium sulfate on
tungsten oxide seed particles to see how the activation of the
internally mixed particles varies when changing the mixing
ratios of the initial aerosols.

2 Experimental

The calibration setup, which is presented in Fig. 1, followed
a conventional CPC calibration setup for sub-2 nm aerosol
with the following components: aerosol generator,241Am
radioactive charger, a high resolution DMA in a closed
sheath air loop, the nano-CPCb with total aerosol flow of
6.1 Lpm (litre per minute), and a TSI electrometer with
an inlet flow rate of 2 Lpm. The total inlet flow of the
counters was 8.1 Lpm, so by having a small electrometer
inlet flow, we did not have to dilute the sample flow and
we were able to draw the sample flow completely from the
DMA. We used a tube furnace and a water bath cooler to
generate and then nucleate ammonium sulfate and sodium
chloride aerosol, and a hot wire generator (Peineke et al.,
2006) to produce tungsten oxide particles. For these three
substances we used a Herrmann type high resolution DMA
(Herrmann et al., 2000) with detailed chemical character-
ization described in Kangasluoma et al. (2013). Briefly,
in the negative mode (negatively charged aerosol) the
chemical composition of generated ammonium sulfate par-
ticles is governed by the series (HSO4)x(NH3)ySO4−

and (HSO4)x(NH3)yH2SO4+, the sodium chloride
particles by the series (NaCl)x(C4H10O3)0–2Cl− and
(NaCl)x(C4H10O3)0–6Na+, and the tungsten oxide particles
by the series WxOyHz(C4H8O2)0–2− with x/y ≈ 1/3 for
tungsten oxide. For these three samples, in negative mode
when the sample concentration is high enough, there are
no charger-generated ions present due to complete charge
transfer to the sample clusters, which allows unambiguous
sampling of the smallest negative clusters down to 1 nm,
the composition of which is confirmed by the APi-TOF.
The charge transfer is not complete in the positive mode,
probably due to charger generated ions’ higher proton

Fig. 1.The upper panel shows the general schematic of the calibra-
tion setup used. The lower panel shows the generation setup for the
internally mixed aerosol.

affinity compared to the sample clusters. All samples were
generated in both polarities to study the potential differences
in activation for oppositely charged particles. The Herrmann
DMA mobility classification was calibrated after each
experiment with THABr positive monomer, which was the
only sample generated only in positive mode.

For the test aerosol generated from the sucrose, candle
flame products and limonene ozonolysis products, mobility
classification was achieved with a TSI nano-DMA (Chen et
al., 1998; Jiang et al., 2011a) for size classification, operat-
ing at an aerosol to sheath flow rate ratio of 8.1 : 25. The rea-
son for this was that, when running the Herrmann DMA with
very high sheath air flows, the sheath air gets to a higher pres-
sure than ambient pressure which leads to a higher pressure
at the inlet of the DMA when compared to the nano-DMA.
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Table 2.List of substances, generation methods, carrier gases, and DMAs used in this study, and literature references to the methods.

Substance Method Carrier gas DMA Reference

Ammonium sulfate Tube furnace N2 Herrmann Kangasluoma et al. (2013)
Sodium chloride Tube furnace N2 Herrmann Kangasluoma et al. (2013)
Tungsten oxide Hot wire generator N2 Herrmann Peineke et al. (2006)
Sucrose Electrospray Compressed air nDMA Chen et al. (1995)
Limonene ozonolysis products Flow tube N2 nDMA
Candle flame products Candle chamber Compressed air nDMA Kupc et al. (2013)
THABr Electrospray Compressed air Herrmann Ude and de la Mora (2005)
Mixed aerosol Tube furnace and hot wire generator N2 Half-mini

In the case of the electrospray source we found that the
higher pressure at the inlet of the DMA, and therefore around
the electrospray needle, leads to a high amount of multiply
charged particles. The reason for this is unknown and not
further studied here. Sucrose was dissolved in Milli-Q water
with a hint of ammonium acetate to make the solution con-
ductive (Chen et al., 1995). The same241Am charger was in
this experiment used downstream of the electrospray to re-
duce the charge of the highly charged aerosol coming from
the electrospray. To keep the electrospray needle at ambient
pressure, the CPCs and the electrometer were used to draw
the sample flow from the nano-DMA. Upstream of the elec-
trospray we had a compressed air line with a T cross in the
line pushing a sufficient amount of dry air to the electrospray,
so that there was excess flow all the time to prevent the ambi-
ent air from getting in and increasing the relative humidity of
the sample. As shown in our previous study (Kangasluoma et
al., 2013), changes in the relative humidity can significantly
alter the detection efficiency, and therefore all experiments
conducted in this study are in close to zero relative humidity.

The candle generator, similar to the one used by Kupc et
al. (2013), was a 5 cm radius and 30 cm tall metal cylinder
with two inlets close to the bottom of the cylinder and one
outlet at the top face of the cylinder. A candle was placed at
the bottom of the cylinder. The chamber was charged with
excess flow since there was no bottom plate in the cylinder;
this enabled us in a convenient way to monitor the candle
flame. To keep the candle flame at ambient pressure, the sam-
ple flow was drawn by the CPCs, which is why we used the
nano-DMA. The total flow of the detectors was 8.1 Lpm and
we pumped into the chamber about 10 Lpm of compressed
air from one inlet and let the exhaust go out from the other
inlet.

The limonene ozonolysis was carried out in a 4.7 cm in-
ner diameter and 205 cm long flow tube made of borosili-
cate glass, which we did not want to pressurize and there-
fore the nano-DMA was used for mobility classification.
Ozone was supplied to the tube at a concentration of 50 ppb
(parts per billion) and a flow rate of 2.5 Lpm, while limonene
was bubbled with cryo-nitrogen at 15 mLpm (millilitres per
minute). In addition, we had 6 Lpm cryo-nitrogen as carrier

flow, giving a residence time of about 36 s in the flow tube.
These conditions yielded a stable aerosol distribution in the
size range between 1 and 10 nm.

To generate internally mixed aerosol, we built a setup
where the flows through the tube furnace and the hot wire
generator were mixed just upstream of the water bath cooler.
We kept the flow through both of the two generators constant
at 10 Lpm throughout the experiment to keep the aerosol gen-
eration and composition stable. We also kept the total mixed
aerosol flow entering the cooler constant at 10 Lpm by ad-
justing the excess flows after the generators. The experiments
were run at the following flow rate settings that were se-
lected from the 10 Lpm and 10 Lpm flows of the ammonium
sulfate and tungsten oxide generators, respectively: 10 and
0 Lpm, 8 and 2 Lpm, 6 and 4 Lpm and so on. The resulting
excess flows, in order to maintain a final flow rate of 10 Lpm
through the cooler, were sent through exhaust lines. After the
cooler the mixed aerosol was charged and then size classified
with a half-mini high resolution DMA (Jiang et al., 2011a; de
la Mora and Kozlowski, 2013). To monitor the mixing state
and the composition of the aerosol, the precise mass distribu-
tion of the aerosol was measured with the Api-TOF, in paral-
lel with the nano-CPCb and the electrometer. The APi-TOF
can draw the sample directly at atmospheric pressure, which
makes it a well suited mass spectrometer to be used in paral-
lel with CPCs. In the APi-TOF, the pressure is pumped down
to 10−6 mbar in four stages, where in the final chamber the
time of flight of the charged ions is measured, yielding the
m/z ratio. The mass resolution, that is FWHM of a given
peak divided by the mass of the cluster, of the APi-TOF is
about 5000, which is accurate enough to resolve the mass
defect of the clusters. By combining the information of the
isotopic patterns, mass defect and a reasonable guess of the
probable cluster composition, one can solve the exact molec-
ular formula of a cluster (Junninen et al., 2010; Kangaslu-
oma et al., 2013). In all of the experiments the sample was
led to the CPCs with three T pieces after the DMA, the first
split was for the electrometer and the CPCs, the second and
third ones to split the sample flow to all the CPCs. To cor-
rect for the possible unequal penetration efficiencies we ran
an experiment with tungsten oxide and sampled only with
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Fig. 2.The estimated penetration efficiencies of the sampling lines.

the electrometer and one CPC at a time in parallel to get the
“true” activation efficiency. This could then be compared to
the results with the sampling line and scale the obtained de-
tection efficiencies (the product of transport efficiencies and
activation efficiencies) to the true activation efficiencies. The
corrections used for the line penetration are plotted in Fig. 2.

3 Results and discussion

3.1 Chemical composition of sucrose, candle flame and
limonene ozonolysis aerosols

We found that most of the negatively charged candle
flame aerosol signal in the mass spectrometer consisted
of sodium nitrate ion pairs where at least one of the ni-
trate’s oxygen has been replaced by sulfur (Fig. 3, bot-
tom). The ion pair could have been NaNO3, NaNO2S,
NaNOS2 or NaNS2, which therefore forms a series of
Nax(NO3)y(NO2S)z(NOS2)i(NS2)j NO3−, where x = y +

z + i + j . In Fig. 3 the indicated cluster compositions are
given only with ion pairs NaNO3 and NaNO2S, since
from (unit) mass we cannot distinguish, for example, clus-
ters (NaNO2S)2NO3− and (NaNO3)(NaNOS2)NO3− which
have the same unit mass. However, the isotopic patterns of
the clusters suggest that the clusters are more sulfated, e.g.
might contain ion pairs NaNOS2 or NaNS2. The composi-
tion of the positively charged candle flame aerosol was not
possible to resolve, as the charger-generated ions overlapped
with the sample below 1.5 nm diameter in size. This is be-
cause the charge transfer to the sample from the charger ions
was not complete, which is probably due to the higher proton
affinity of the charger ions compared to the sample. Thus the
identification of the larger clusters gets very difficult if there
are no hints from the smallest clusters of what the molecules
forming the cluster series could be. When added that proper

Fig. 3. Mass spectra of positive sucrose (top), negative limonene
ozonolysis products (middle) and negative candle flame products
(bottom). A more extensive description of the clusters is given in
the text.

mass calibration is very difficult with no small known clus-
ters, the cluster identification gets almost impossible in the
positive polarity mode.

To identify the composition of the aerosol coming out
from the electrospray when spraying sucrose, we led the
sample straight from the electrospray to the APi-TOF to
maximize the signal without prior mobility classification.
A similar procedure was followed when characterizing the
limonene ozonolysis products and candle flame products.
The APi-TOF confirmed that electrospray generated pos-
itively charged sucrose, which was the only sample of
these three that gave a clear structure for positively charged
aerosol, was composed of oligomeric sucrose molecules and
a charged additional molecule (Fig. 3, top). The only identi-
fied charge carrier was NH4+, with some unidentified charge
carriers with masses of 124, 180 and 231. An example se-
ries was (C12H22O11)xNH4+. In addition to this we found
doubly charged clusters, which were identical to the singly
charged but with a second charge given by an additional
charge carrier. The charge carriers in doubly charged clus-
ters were almost always identical, i.e. the signal of doubly
charged clusters that had identical charge carriers of mass
231 were significantly higher than a cluster with charge car-
riers of 231 and 124, or 231 and 180. In addition to these
clusters, there were some unidentified doubly charged clus-
ters, which had an unidentified charge carrier. The unidenti-
fied clusters also formed a series that grew by one sucrose
molecule. The fact that multiply charged clusters were found
in the spectra means increased uncertainties for determining
the corresponding size-dependent detection efficiencies. The
charger-generated ions were also present below 1.5 nm, so
keeping these in mind we can still concentrate on the ratio of
the 3786 / 3025A detection efficiencies, which is the quantity
of interest because the sample is still the same for both CPCs.
The negatively charged sucrose yielded such a low signal that
we were not able to resolve the chemical composition.
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The reaction of limonene and ozone yielded a mass spec-
trum with many organic peaks, where four bands of signals
indicative of oxidized organics can be distinguished from the
mass spectrum (Fig. 3, middle). Bands similar to the two
smallest (lowestm/z) of these were also observed in cham-
ber experiments, where ozonolysis ofα-pinene was con-
ducted (Ehn et al., 2012). The ozonolysis ofα-pinene yielded
cluster groups that had approximately 10 or 20 carbon atoms
in each cluster or molecule. Ehn et al. (2012) reported a
C / H (carbon / hydrogen) ratio below one and a C / O (car-
bon / oxygen) ratio between 0.7 and 1.3 for the clusters. The
clusters are ionized by clustering with nitrate or sulfate ion.
These oxidized organics have been already observed from the
Hyytiälä measurement station in the boreal forest (Ehn et al.,
2010), where the measured cluster structure, similar to that
observed in the chamber experiments of Ehn et al. (2012),
hints that they are also products ofα-pinene ozonolysis.
While we were not able to identify every single cluster, these
C10, C20, C30 and C40 bands were clearly visible from the
mass spectrum. From these similarities to the field and cham-
ber results of ozonolysis ofα-pinene, we can treat these flow
tube generated clusters as ambient-relevant organic sub-2 nm
CPC calibration ions. The positive sample was left unidenti-
fied because it did not show any clear patterns or clear cluster
series from where the identification could be started.

3.2 Detection efficiencies, 3786 / 3025A ratio and
positive vs. negative sample comparison

For the interpretation of potential ambient measurements, we
are interested in the size dependent detection efficiency ra-
tio of the water and butanol CPCs (3786 and 3025A), as it
provides indirect information about the size resolved chem-
ical composition of the ambient aerosol; e.g. the degree to
which the aerosol is water-soluble versus organic-soluble. In
this section we will show how the ratio behaves as a func-
tion of chemical composition, particle size, and particle po-
larity, which can be then potentially used to interpret ambient
measurements of aerosol with unknown composition. In ad-
dition to the water and butanol CPCs, we also characterized
two diethylene glycol CPCs, providing a chemically differ-
ent working fluid to examine the interactions between parti-
cle and condensing vapor. Based on the activation behaviour
for the three working fluids, we can divide the sample into
three groups which are given below.

Ammonium sulfate and sodium chloride are detected bet-
ter with the 3786 (water) than the 3025A (butanol) (Fig. 4),
yielding the activation efficiency ratio of 3786 / 3025A bigger
than one (Fig. 5). This is most probably due to hygroscopic-
ity of the salts and is in line with previous experiments (Liu et
al., 2006). The 3786 / 3025A ratio shows an increasing trend
with decreasing particle size, and after showing peak value
decreases to zero. For the negatively charged ammonium sul-
fate and sodium chloride the 3786 / 3025A ratio peaked at 2.6
and 1.5, respectively, and for the positively charged aerosol

Fig. 4.Detection efficiency of the 3025A and 3786 for all generated
test aerosols.

the ratio of ammonium sulfate peaked at 3.2 and sodium
chloride at 2.9 before the sampling was disturbed by the pres-
ence of charger-generated ions. The observed trends in the
3786 / 3025A ratio are explained in the negative polarity by
the water CPC’s ability to activate the smallest clusters, ex-
cept the smallest sampled size, and on the other hand the
effect fading away when sampling big enough clusters. For
positive polarity the sample composition changes from salts
to organic contaminants when sampling the smallest clus-
ters. In previous studies it has been found that these salts
are activated with reasonably high efficiency in the water
and DEG-based CPCs (Kulmala et al., 2007; Kangasluoma
et al., 2013). In positive mode sodium chloride shows sig-
nificantly lower activation efficiency plateau values than any
other of the samples. As this is observed only with the posi-
tive sodium chloride above 1.8 nm with all CPCs, we assume
that this discrepancy is related to the test aerosol. This leads
to slightly higher values in the 3786 / 3025A ratio for pos-
itive sodium chloride above 2 nm. In positive polarity, the
charger-generated ions are overlapping with the samples be-
low 1.5 nm, which results in worse detection than negative
samples below 1.5 nm for all working fluids, as the charger-
generated ions are detected worse than ammonium sulfate or
sodium chloride.

Negative tungsten oxide, negative candle generated
aerosol and sucrose with both polarities showed the oppo-
site activation behaviour than ammonium sulfate and sodium
chloride: the 3025A (butanol) detected them better than the
3786 (water), resulting in the 3786 / 3025A ratio being below
unity across all sizes. However, they are detected better with
DEG-based CPCs than with the 3025A. The negative candle
flame products were activated with the DEG-based CPCs sig-
nificantly better than the other substances, which shows DEG
working fluid preference to sodium, sulfur or nitrate based
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Fig. 5. Ratio of the detection efficiency 3786 / 3025A for all gen-
erated aerosols, left panel shows the negative test aerosol and right
panel shows the positive test aerosol.

compounds (Fig. 6), which is already observed with sodium
chloride and ammonium sulfate. The positive tungsten oxide
and especially the candle generated aerosol, similar to posi-
tive NaCl and ammonium sulfate, are detected worse in pos-
itive than negative mode due to organic contamination below
1.5 nm in the positive mode. Sucrose showed about equal ac-
tivation efficiency for both polarities across all working flu-
ids, which hints that the positive and negative samples are
potentially similar in chemical composition.

The last two substances, negative limonene ozonolysis
products and positively charged THABr, were clearly de-
tected the best with the 3025A. For negative limonene, the
d10 (the diameter where activation efficiency is 10 %) for
the 3025A was 1.55 nm whereas for the other CPCs it was
> 2 nm. This is not seen in Table 3 which lists only the d50 di-
ameters, the diameter where the activation efficiency is 50 %.
THABr shows similar activation behavior as both positively
and negatively charged limonene (Table 3), in general very
low activation efficiencies compared to other substances with
highest activation using butanol. Positive limonene ozonoly-
sis products were detected better than negative ones across
all used working fluids.

When looking at DEG-based CPC detection efficiencies,
one notes the low detection for limonene (and positive sam-
ples, except THABr, that are charger ion contaminated) up to
below 2 nm compared to all other samples, as seen in Table 3.
This is in line with our previous study (Kangasluoma et al.,
2013; Wimmer et al., 2013) that concluded that DEG acti-
vates sub-2 nm organics very poorly, which should be kept
in mind when sampling with DEG-based CPCs from sites
which may contain much organic aerosol.

From the CPCs, the 3025A was the most insensitive for
chemical composition, the d50 being 1.8± 0.1 nm for most

Fig. 6. Detection efficiency of the DEG CPC and PSM for all gen-
erated test aerosols.

substances. The 3786 compared to 3025A showed clear pref-
erence for sodium chloride and ammonium sulfate (water
soluble substances) with d50 diameters from 1.4 to 1.8 nm,
and from 2.0 to 2.7 nm for not water soluble substances. The
d50 diameters of DEG-based CPCs were at their lowest be-
tween 1 and 1.5 nm for inorganic samples and > 1.7 nm for
partly or completely organic samples.

So far we have shown that the activation efficiency is a
clear function of chemical composition at a fixed mobility
diameter. Generally, water and DEG activate salts better than
butanol, whereas it is the opposite for organics. Tungsten ox-
ide, candle flame and sucrose products are something in be-
tween, but butanol activation is still higher than with water.
Also we found a slight preference for water activation of pos-
itively charged ammonium sulfate and sodium chloride for
which we do not know the reason. These results are the ba-
sis for developing and applying the nano-CPCb for ambient
experiments.

3.3 Aerosol mixing state and the composition of
internally mixed aerosol

We showed how the activation is a function of composition.
However, outside laboratory conditions the sampled aerosol
might not (and likely does not) consist of only one well
defined substance, but rather is a mixture of different sub-
stances. In the second half of this paper we aim to take the
first steps into the controlled generation of sub-2 nm inter-
nally mixed aerosol with a range in composition, and thereby
study the effect of the mixing state of the aerosol on the cor-
responding activation efficiency.

To calculate the mixing state of the aerosol, we first la-
belled clusters from pure tungsten oxide and ammonium sul-
fate mass spectra as acquired by the APi-TOF. Then by look-
ing at mass spectra where the two substances were mixed a
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Table 3.Measured d50 values [nm] for the generated particles and activation efficiencies [%] for the tetraheptyl ammonium bromide (THABr)
positive monomer and dimer.

DEG-CPC PSM 3025A 3786

Ammonium sulfate− 1.52 1.41 1.83 1.73
Ammonium sulfate+ 1.52 1.49 1.84 1.67
Sodium chloride− 1.39 1.42 1.73 1.44
Sodium chloride+ 1.72 1.71 3.09 1.78
Tungsten oxide- 1.52 1.50 1.76 2.07
Tungsten oxide+ 1.65 1.65 1.77 2.16
Sucrose− 1.83 1.86 1.87 2.04
Sucrose+ 1.80 1.82 1.83 2.03
Limonene ozonolysis products− 2.65 2.64 2.63 2.70
Limonene ozonolysis products+ 1.79 1.69 1.74 2.27
Candle flame products− 1.22 1.02 1.47 1.75
Candle flame products+ 1.79 1.69 1.74 2.27

THABr monomer 0.08 0.10 0.16 0.01
THABr dimer 0.52 0.42 3.11 0.19

few clusters were found, which were not present in either of
the pure sample spectrum. From these we summed the signal
intensities corresponding to the pure ammonium sulfate, pure
tungsten oxide, and the resulting mixed clusters,IAs, IWOx
andIMix , respectively, and calculated the mixing ratios, MR,
of the mixed clusters of the aerosol as

MRMix =
IMix

IAs + IWOx + IMix
. (1)

The mixing ratio is essentially the fraction of the measured
signal that is attributed to clusters of mixed composition,
which is our trace for the mixing state of the aerosol. The
mixing ratio of the aerosol is presented in Table 4. We found
the highest signal for internally mixed clusters when tung-
sten oxide flow was slightly bigger than ammonium sulfate
flow. Internally mixed clusters were detected with low inten-
sity even when we had only one of the flows going into the
mixing zone. This might be due to some residual sulfate or
tungsten oxide in the cooler which then clustered with the
incoming clusters.

At a mobility diameter of 1.3 nm, which was the
only size that gave a reasonable signal as measured
by the APi-TOF, the tungsten oxide clusters of the
pure tungsten oxide spectrum were W3O10H(C4H8O2)2−,
W4O15H2−, W6O19H−, W6O15H(C4H8O2)2−, W7O22H−

and W7O18H(C4H8O2)2− which are all identified in our
previous study (Kangasluoma et al., 2013). The internally
mixed clusters, which we separate into two groups based
on mass, were identified as W3O8–10H(C4H8O2)2(SO4)x−

up tox = 5, which are the lighter clusters withm/z < 1400.
The heavier clusters, withm/z > 1600, were identified as
W6O19HS2O8− and W6O15H(C4H8O2)2S2O8−, which are
tungsten oxide clusters attached with persulfate. These ob-
served internally mixed clusters suggest that sulfate was clus-
tering with tungsten oxide particles. The signal intensities

Table 4.Calculated fraction of ammonium sulfate and tungsten ox-
ide in the mixing experiment.

Tungsten Ammonium Mixed
Flows oxide sulfate aerosol

WOx 10 Lpm, As 0 Lpm 0.86 0 0.14
WOx 8 Lpm, As 2 Lpm 0.63 0 0.37
WOx 6 Lpm, As 4 Lpm 0.37 0.10 0.53
WOx 4 Lpm, As 6 Lpm 0.22 0.36 0.42
WOx 2 Lpm, As 8 Lpm 0.07 0.77 0.16
WOx 0 Lpm, As 10 Lpm 0.03 0.92 0.05

of the internally mixed clusters are plotted in Fig. 7 (upper
panel). The mass division also shows up in the figure so that
lighter clusters appear already at tungsten oxide flows 2 and
4 Lpm, whereas the two heavier ones mostly at flows 6 and
8 Lpm. This is an interesting observation about the nucle-
ation dynamics that we cannot explain within this study. In
this study, it is enough to monitor the mixing state of the
aerosol and see how it affects the resulting activation effi-
ciencies of the internally mixed clusters.

For the detection efficiency of the total aerosol, which is
here composed of internally and externally mixed aerosol,
we found different responses depending on the working fluid
as a function of the mixed flow. They are presented in Fig. 7
(lower panel) with thinner lines, where thex axis is the tung-
sten oxide flow rate. The ammonium sulfate flow rate is then
10 Lpm minus the tungsten oxide flow rate. PSM and DEG
CPC detection efficiency show a decreasing trend as a func-
tion of tungsten oxide flow rate. The 3025A has a rather con-
stant detection efficiency except at flow rates of 2 and 4 Lpm
where the activation efficiency is slightly lower. The 3786
shows decreasing activation efficiency with increasing tung-
sten oxide flow rate: the total detection efficiency decreases
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Fig. 7. Upper panel shows the mixing state of the aerosol, dotted
lines are fractions of the total given on the left, dashed lines are
the heavier clusters and solid lines are lighter clusters with arbitrary
unit. The composition changes smoothly from ammonium sulfate
to tungsten oxide as a function of flow. Heavier clusters with six
tungstens show the highest signal at flow of 8 Lpm whereas the
lighter ones show highest signals at flows of 4 and 6 Lpm. Lower
panel shows the CPC detection efficiencies for the total aerosol and
the detection efficiencies for only the internally mixed clusters as a
function of tungsten oxide flow. The detection efficiency of the total
aerosol shows a peak at a flow of 8 Lpm for PSM, DEG CPC and
3025A. The peak is more visible when the detection efficiency of
the internally mixed clusters is extracted. We account this flow de-
pendency to the same signal pattern of the heavier internally mixed
clusters.

from 0.012 to 0.006 as tungsten oxide flow rate increases
from 0 to 10 Lpm. To explain the observed behaviour in the
total detection efficiency in the experiment, a deeper look
into the mass spectra needs to be taken. Also the detection
efficiency of the internally mixed aerosol must be extracted.

Assuming that the detection of the internal mixture can be
given by one single value (which is likely a weighed average
of all clusters in the spectrum), which represents the acti-
vation of all internally mixed clusters, the internal mixture
detection efficiencies were calculated as

MRAs · DetAs + MRWOx · DetWOx

+ MRMix · DetMix = DetTot, (2)

from where the DetMix is given by

DetMix =
DetTot − MRAs · DetAs − MRWOx · DetWOx

MRMix
, (3)

where Det refers to detection efficiency, MR, calculated from
the mass spectra, to mixing ratio, Mix to the internally mixed
aerosol, As to ammonium sulfate, WOx to tungsten oxide
and Tot to As + WOx + Mix.

Using Eq. (3) the effect of pure clusters to the detection
efficiency is subtracted and then normalized back by the

fraction of the internally mixed clusters. We only calculated
the internal mixture detection efficiencies for tungsten ox-
ide flows of 2–8 Lpm, because the internal mixture detection
was normalized by MRMix , which should be zero for pure
samples. The results are shown in Fig. 7 (lower panel) with
thicker lines. For all the CPCs the calculated detection of in-
ternally mixed clusters shows an increase with the increas-
ing tungsten oxide flow. Our interpretation of the observation
is that the CPCs detect the heavier internally mixed clusters
better than the lighter ones, though the clusters are selected
with the same mobility. The scattering and negative detec-
tion efficiency for 3786 is probably due to quite a low signal
in the total detection efficiency, which increases uncertain-
ties. However, based on the trends of the curves and another
similar experiment conducted which showed similar activa-
tion behaviour, increase as a function of tungsten oxide flow,
we conclude that the first attempt to create and monitor the
mixing state of a sub-2 nm aerosol and interpret the effect of
mixing state to the detection efficiency of a CPC was suc-
cessful.

4 Conclusions

In this study we assembled a nano-CPC battery and char-
acterized it in the laboratory with seven different types of
aerosol: ammonium sulfate, sodium chloride, tungsten ox-
ide, sucrose, candle flame products, THABr and limonene
ozonolysis products. We found that as a function of size the
salts, ammonium sulfate and sodium chloride, were detected
better with a tuned 3786 (water) than tuned 3025A (butanol),
whereas it is the opposite for the rest of the aerosols. The re-
sult is a confirmation to use the nano-CPC battery in the field
to obtain composition information from mobility-classified
ambient aerosol. Another important result is that limonene
ozonolysis products are detected very poorly with the diethy-
lene glycol-based DEG CPC and the PSM, with d50 diame-
ter being only 2.6 nm. To explore the possibility of generat-
ing internally mixed aerosol we nucleated ammonium sulfate
with tungsten oxide and observed internally mixed clusters,
where SO4 was clustered with three different tungsten ox-
ide clusters. Finally, by using the APi-TOF, we found that at
1.3 nm mobility diameter the activation efficiency of the in-
ternally mixed clusters changes as a function of mixing state
of the internally mixed clusters.
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