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Abstract. Reliable data on circumsolar radiation, which is
caused by scattering of sunlight by cloud or aerosol parti-
cles, is becoming more and more important for the resource
assessment and design of concentrating solar technologies
(CSTs). However, measuring circumsolar radiation is de-
manding and only very limited data sets are available. As
a step to bridge this gap, a method was developed which al-
lows for determination of circumsolar radiation from cirrus
cloud properties retrieved by the geostationary satellites of
the Meteosat Second Generation (MSG) family. The method
takes output from the COCS algorithm to generate a cirrus
mask from MSG data and then uses the retrieval algorithm
APICS to obtain the optical thickness and the effective ra-
dius of the detected cirrus, which in turn are used to deter-
mine the circumsolar radiation from a pre-calculated look-up
table. The look-up table was generated from extensive cal-
culations using a specifically adjusted version of the Monte
Carlo radiative transfer model MYSTIC and by developing a
fast yet precise parameterization. APICS was also improved
such that it determines the surface albedo, which is needed
for the cloud property retrieval, in a self-consistent way in-
stead of using external data. Furthermore, it was extended to
consider new ice particle shapes to allow for an uncertainty
analysis concerning this parameter.

We found that the nescience of the ice particle shape
leads to an uncertainty of up to 50 %. A validation with
1 yr of ground-based measurements shows, however, that the
frequency distribution of the circumsolar radiation can be
well characterized with typical ice particle shape mixtures,
which feature either smooth or severely roughened particle

surfaces. However, when comparing instantaneous values,
timing and amplitude errors become evident. For the circum-
solar ratio (CSR) this is reflected in a mean absolute devia-
tion (MAD) of 0.11 for both employed particle shape mix-
tures, and a bias of 4 and 11 %, for the mixture with smooth
and roughend particles, respectively. If measurements with
sub-scale cumulus clouds within the relevant satellite pix-
els are manually excluded, the instantaneous agreement be-
tween satellite and ground measurements improves. For a 2-
monthly time series, for which a manual screening of all-sky
images was performed, MAD values of 0.08 and 0.07 were
obtained for the two employed ice particle mixtures, respec-
tively.

1 Introduction

Circumsolar radiation with regard to concentrating solar
technology (CST) has been investigated mainly for two rea-
sons: first, it can cause an underestimation of optical thick-
ness from ground measurements and thus lead to an overesti-
mation of the direct solar irradiance, which is the resource for
CST (e.g.Grassl, 1971). Second, for the design and the pre-
cise evaluation of high-flux solar concentrators the radiance
distribution inside and around the sun disk, called sunshape,
needs to be known (e.g.Rabl and Bendt, 1982; Schubnell,
1992; Neumann and Witzke, 1999; Buie and Monger, 2004).

Circumsolar radiation is caused by forward scattering of
sunlight by cloud or aerosol particles. If these particles are
evenly distributed horizontally, the radiance decreases with
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angular distance from the Sun. The steepness and shape of
this angular gradient depends on the particles’ type, shape
and size as well as on the optical thickness. Thus, percep-
tion of circumsolar radiation by any optics pointed at the Sun
is strongly dependent not only on its opening half-angleα

but also on the sky conditions. Such optics can be a pyrhe-
liometer withα = 2.5◦ (World Meteorological Organization
standard according toCIMO Guide, 2008, Chap. 7) but, for
example, also a concentrating solar thermal power plant with
α < 1◦. Furthermore, the discrepancy in perception caused
by different opening angles is not constant and also varies
with sky conditions. Since circumsolar radiation is com-
monly included in direct normal irradiance (DNI) measure-
ments at higher amounts than perceived by CST plants, this
can lead to systematic overestimation of the solar resource
when DNI alone is available.

There has been some effort to measure circumsolar radi-
ation from the ground (e.g.Noring et al., 1991; Neumann
et al., 2002; DeVore et al., 2009; Wilbert et al., 2011, 2013)
and also to simulate it for a range of atmospheric conditions
(e.g. Thomalla et al., 1983). So far, however, circumsolar
radiation has not been determined from satellite measure-
ments, which have large advantages considering global cov-
erage, site intra-comparability and financial costs compared
to ground measurements. Moreover, satellite data are readily
available for many regions of the world and covering longer
time spans than most available ground measurement time se-
ries of circumsolar radiation. In this study a method is devel-
oped to derive the circumsolar radiation utilizing the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) aboard
the geostationary Meteosat Second Generation (MSG) satel-
lites (Schmetz et al., 2002).

The focus of this study lies on circumsolar radiation
caused by cirrus clouds with an optical thicknessτ ranging
from 0.1 to 3.0. Clouds in this optical thickness range affect
radiation, but still allow for the operation of CSTs; however
they are also detectable by satellites. Cirrus clouds typically
occur in this range, while water clouds usually exhibit an op-
tical thickness too large to allow for the operation of CSTs.

The presented method to derive the circumsolar radiation
comprises two steps. First the particle size and optical thick-
ness of the cirrus clouds are determined using the Algo-
rithm for the Physical Investigation of Clouds with SEVIRI
(APICS) (Bugliaro et al., 2011, 2012, 2013). A parameteri-
zation is then applied to convert these cloud properties into
circumsolar radiation. We developed this parameterization
based on simulations of the sunshape with an improved ver-
sion of the radiative transfer solver “Monte Carlo Code for
the Physically Correct Tracing of Photons in Cloudy Atmo-
spheres”, MYSTIC (Mayer, 2009).

The manuscript is structured as follows. In Sect.2, basic
definitions are made. The problems and solutions with re-
spect to the exact simulation of the sunshape with MYSTIC
are described. Furthermore the difficulties of retrieving prop-
erties of thin cirrus clouds with APICS and respective

improvements are outlined. Finally, the parameterization of
the circumsolar radiation is developed. In Sect.3, we ap-
ply the method to 1 yr of SEVIRI data processed through
APICS and study the impact of the ice particle shape that
so far cannot be determined from MSG. The results are also
compared to ground measurements of the circumsolar ratio
(CSR) performed at the Plataforma Solar de Almería (PSA)
with the measurement system presented byWilbert et al.
(2013). A conclusion is given in Sect.4.

2 Material and methods

2.1 Sunshape and circumsolar ratio

The one-dimensional radiance distribution along a radial cut
outwards from the Sun’s centre is called sunshape. The cir-
cumsolar ratio (CSR) is a common scalar quantity that can
be used to characterize the sunshape (Buie et al., 2003). It
is defined as the normal irradiance coming from an annular
region around the Sun divided by the normal irradiance from
this circumsolar region and the sun disk. For the remainder
of the document the term irradiance always refers to normal
irradiance, i.e. irradiance on a surface perpendicular to the
direction pointing at the Sun.

The disk angleαsun gives the extent of the sun disk mea-
sured from its centre to the edge. The circumsolar region
reaches from the Sun’s edge to the angleαcir (> αsun), which
is subject to arbitrary definition and measured from the Sun’s
centre as well. With this we can write

CSR(αcir) =

∫ 2π

0

∫ αcir
αsun

L(α)cos(α)sin(α)dαdφ∫ 2π

0

∫ αcir
0 L(α)cos(α)sin(α)dαdφ

, (1)

whereL is the sunshape – i.e. the radiance depending on the
angular distanceα from the Sun’s centre. The cosine term is
safely neglected in our calculations, as even for the maximum
αcir of 5◦ considered in this study, the errors due to this are
smaller than 0.2 %.

2.2 Radiative transfer modelling

The parameterization for the circumsolar radiation that is de-
veloped in the following is based on extensive simulations
of the sunshape under different atmospheric conditions. Let
us therefore briefly consider the radiative transfer code MYS-
TIC and how it was improved to allow for an exact simulation
of the sunshape.

MYSTIC (Mayer, 2009) is a 3-D Monte Carlo radiative
transfer solver which is part of the libRadtran radiative trans-
fer package (Mayer and Kylling, 2005). It traces individual
photon paths through the atmosphere, either forward or back-
ward. All events in which the photon interacts with the atmo-
sphere, like scattering and absorption, are treated statistically
according to their physical probability density functions.
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The scattering phase function of ice crystals exhibits
a strong forward peak. This may cause rare but result-
dominating events – so-called “spikes”. Levelling the spikes
increases computing time excessively. A solution for this
problem was given recently byBuras and Mayer(2011). The
variance reduction methods described in this publication are
implemented in MYSTIC. It is therefore well suited to simu-
late the radiance distribution in the circumsolar region.

To simplify the radiative transfer, the Sun is commonly as-
sumed to be a point source at infinite distance. All sunrays are
therefore parallel and enter the atmosphere under the same
angle. However this approximation is not appropriate when
simulating radiance in the vicinity of the sun disk since the
Sun has a finite angular extent. Furthermore the centre of
the sun disk is brighter than the limb. This so-called limb
darkening is caused by absorption in the Sun’s atmosphere
and is therefore wavelength-dependent. To take account of
these effects, a sun disk source was implemented in MYSTIC
which uses the wavelength-dependent limb-darkening model
as given inScheffler and Elsässer(1990) andKöpke et al.
(2001). This disk source is used in the simulation of the dif-
fuse, as in the simulation of the direct radiation.

All simulations in the following neglect the temporal
course of the Sun’s angular radiusαsun and refer to a mean
angular sun radius of 0.266◦. From reference simulations
we estimate that the absolute error in CSR that arises from
this is less than±0.004 as long asαcir > 0.375◦. However,
asNeumann et al.(2002) demonstrated, it is important that
the integration limitαsun in Eq. (1) is consistent with the
Sun’s radius, or otherwise larger errors will arise. Therefore,
the Sun’s actual radius according to the Sun–Earth distance
should be taken into account in Eq. (1) when calculating CSR
from real ground-based sunshape measurements.

The model extensions are illustrated in Fig.1. The dif-
ferences between a simulation of the diffuse radiance with
a point source (blue) and a sun disk source (green) are pro-
nounced for angles smaller than≈ 1◦ from the Sun’s centre,
which is in line with findings byGrassl(1971). The red curve
shows the total sunshape consisting of direct and diffuse ra-
diation.

2.3 Optical properties of cirrus clouds

Passive satellite instruments with only one viewing direction
do not provide information about the ice particle shape com-
position within a cloud, which therefore has to be assumed
a priori. The particle shape influences the optical proper-
ties of the cloud, such as the scattering phase function and
the single-scattering albedo. This in turn influences both the
cloud property retrieval and the modelling of the circumsolar
radiation. To assess the uncertainty that is caused by the as-
sumption of the ice particle shape, we use several cloud bulk
optical properties for modelling the circumsolar radiation, as
well as for the cloud property retrieval with APICS.
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Fig. 1. Simulated broadband sunshape (integrated solar) for a cir-
rus cloud with optical thickness 0.5 and with the Sun in the zenith.
Blue: diffuse radiance for a point source. Green: diffuse radiance
for a disk source. Red: direct and diffuse radiance for a disk source.
Optical properties for a cirrus composed of HEY solid columns (see
Sect.2.3) with an effective radius of 40 µm were employed in the
simulations.

Optical properties are considered both for clouds featuring
a particle shape mixture and for clouds composed of particles
of only one single shape. We use the latter to represent the
extremes in the natural variability of the cloud’s composition.

The particle mixtures and associated optical properties are
described inBaum et al.(2005a, b, 2011). We call the older
version “Baum v2.0” and the newer version “Baum v3.5”.
The latter incorporates more particle shapes and the parti-
cle surfaces are “severely roughened” while Baum v2.0 is
composed of particles with smooth surfaces – except for ag-
gregates, which also feature a rough surface in Baum v2.0.
Further differences between Baum v2.0 and Baum v3.5 in-
clude a change of the particle-size-dependent shape mix-
ture and an improvement in the method to calculate the
single-scattering properties of the individual particles. The
five different single-particle shapes that are considered here
comprise solid and hollow columns, planar bullet rosettes,
droxtals, and rough aggregates composed of eight hexago-
nal columns. Except for the aggregates, these particles fea-
ture smooth surfaces. The bulk optical properties for the
single-particle shapes have been generated by Hong Gang
and Claudia Emde using single-scattering properties derived
from the models ofYang et al.(2000, 2005) (C. Emde, per-
sonal communication, 2012). These are referred to under the
acronym HEY, the letters of which correspond to the contrib-
utors Hong, Emde and Yang. All optical property data sets
cover an effective radius range of 5–90 µm except for Baum
v3.5, which only extends from 5 to 60 µm.
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The effective radiusreff is a parameter that is commonly
used to characterize the scattering and absorption properties
of disperse particle size distributions by means of a single
scalar (Hansen and Travis, 1974; McFarquhar and Heyms-
field, 1998). For spherical particles like water droplets it is
defined as the ratio of the third to the second moment of the
size distribution. There is, however, an ambiguity in the def-
inition of reff for non-spherical particles. We stick to the def-
inition that was used in the generation of the bulk optical
properties (e.g.Baum et al., 2005a):

reff =
3
∫

V (D)n(D)dD

4
∫

A(D)n(D)dD
, (2)

wheren is the number concentration,D the maximum di-
mension,V the volume andA the projected area of the par-
ticles.

2.4 Remote sensing of ice clouds with APICS and its
optimization for optically thin clouds

This study relies on the APICS framework to derive effec-
tive radius and optical thickness of the cirrus clouds. APICS
(Bugliaro et al., 2011, 2012, 2013) implements a cloud prop-
erty retrieval based on the work ofNakajima and King(1990)
for SEVIRI channels 1 and 3 in the solar spectrum (centred at
0.6 and 1.6 µm). APICS was originally developed as a multi-
purpose cloud property retrieval. However for this study it is
of special importance that optically thin cirrus clouds are re-
trieved with as little error as possible. To account for that, we
modified APICS as described in the following.

The retrieval is only performed for pixels classified as cir-
rus. While APICS originally relied on a cirrus cloud mask
generated by the Meteosat Second Generation Cirrus Detec-
tion Algorithm v2 (MeCiDa) (Krebs et al., 2007; Ewald et al.,
2013), we produced cloud masks based on the algorithm
“Cloud Optical properties derived from CALIOP and SE-
VIRI” (COCS) (Kox et al., 2011; Kox, 2012) since it detects
more of the optically thin cirrus.Ostler(2011) andBugliaro
et al. (2012) compared the detection efficiency of COCS
and MeCiDa utilizing airborne high-spectral-resolution lidar
(HSRL) observations. They found that both algorithms de-
tect virtually all of the cirrus clouds withτ > 0.5, but COCS
has advantages at smaller optical thickness: while MeCiDa
detects about 50 % of the cirrus clouds withτ ≈ 0.2, COCS
shows a higher detection efficiency of over 80 %. COCS uses
a neural network approach to convert the brightness temper-
ature information from the infrared channels of SEVIRI into
the parameters ice optical thickness and cloud-top pressure.
The neural network was trained with a collocated data set of
SEVIRI observations and retrieval results for the CALIOP
lidar, which is onboard the polar-orbiting satellite CALIPSO
(Winker et al., 2009). As mentioned, the output of COCS is
not a cloud flag per se, but an optical thickness value. To
generate a cloud mask, all pixels that are assigned an optical
thickness larger than 0.1 by COCS are assumed to be cloudy.

This cut-off criterion ofτ > 0.1 is necessary to keep the false
alarm rate at an acceptable level (S. Kox, personal communi-
cation, 2012).

For the operation of APICS in this study it was assumed
that channels 1 and 3 of the SEVIRI instrument aboard the
“Meteosat 9” MSG satellite exhibit an underestimation of
about 6 % (Ham and Sohn, 2010) and an overestimation
of 2 %, respectively (P. Watts, EUMETSAT, personal com-
munication, 2009). A preprocessing step takes care of the
corresponding recalibration of reflectance values. Recently,
Meirink et al. (2013) published similar calibration coeffi-
cients. In a satellite inter-calibration study they found an un-
derestimation of 8 % and an overestimation of 3.5 % for the
SEVIRI channels 1 and 3, respectively.

The APICS retrieval uses look-up tables (LUTs) in which
pre-simulated reflectivity values for the two SEVIRI chan-
nels are stored as a function of the most relevant parameters,
namely as a function of the sun and satellite zenith angles,
the relative azimuth between the Sun and satellite, the albedo
in both channels, the particle size in terms of the effective
radius and the optical thickness. Simplifications and assump-
tions about the state of the atmosphere are required because
the two independent pieces of information (the two satellite
channels) only allow for the retrieval of two quantities, in our
case optical thickness and effective radius.

The most important sources of uncertainty concerning thin
ice clouds are the assumptions about the ground reflectivity,
aerosol beneath the clouds and the ice particle shape. While
we have no solution for the latter, we adapted APICS such
that errors in the cloud property retrieval due to wrong as-
sumptions of the ground reflectivity and long-term aerosol
variability are reduced. This is outlined in the following.

APICS relies on an albedo value to describe the ground
reflectivity. It must be determined a priori for both SE-
VIRI channels at every pixel. The original version of APICS
used albedo products based on measurements of the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) aboard
polar-orbiting satellites – either the “blacksky” or “whitesky”
albedo from the Ambrals processing scheme (Strahler et al.,
1999). During this study APICS was modified so that it gen-
erates its own self-consistent albedo product. This product
is based on the SEVIRI clear-sky reflectance map, which is
the average of the reflectance for a given time of day over
the seven preceding days under clear-sky conditions (EUM
OPS DOC 09 5165, 2011). The clear-sky reflectance con-
tains contributions from the ground as well as from the atmo-
sphere. From this combined signal the ground albedo needs
to be extracted. The albedo values in both SEVIRI chan-
nels are therefore retrieved using the APICS LUTs. To this
end it is evaluated for which albedo the pre-simulated re-
flectivity values match the clear-sky reflectance best, where
τ = 0. This procedure has the advantage of being consistent
with the cloud property retrieval concerning atmospheric gas
composition, radiative transfer modelling and instrument cal-
ibration. Furthermore it is assumed that the thus-retrieved
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albedo also corrects for some of the long-term variability in
the aerosol properties, which may deviate from the constant
aerosol properties assumed in the simulations for the APICS
LUTs.

The clear-sky reflectance map is routinely only available
for 12:00 UTC. Therefore the albedo is only retrieved at this
time and assumed to be constant during the day. The success
rates (defined in the following) reached by APICS with this
method are superior when compared to using the MODIS
albedo data sets.

The cloud property retrieval results can be erroneous
because of the uncertainties in the assumptions described
above, and because of other shortcomings (e.g. 1-D radiative
transfer calculations). Often the measured reflectivity pair
cannot even be reproduced by any parameter combination in
the LUT. In these cases the retrieval will return the maximal
or minimal values ofτ or reff from the LUT such that the dif-
ference between the measured and pre-simulated reflectivity
combination is minimized. We call these occurrences “out-
liers”. This definition of “outlier” is very strict. In principle
one could add all those data points to the “hits”, which lie
within the uncertainty range of the retrieval due to errors in
the measurements and in the assumptions. These errors are,
however, difficult to quantify. Since we use the number of
outliers only as a relative quality criterion, the exact defini-
tion is not relevant. The success rateS of the cloud property
retrieval is defined as 1 minus the ratio of the number of out-
liers to the total number of considered pixels in a domain:

S = 1−
number of outliers

number of considered pixels
. (3)

The success rate was calculated within a test sector (lo-
cation shown in Fig.5) for four months meant to represent
the four different seasons (June 2011, September 2011, De-
cember 2011 and March 2012). The averages over these four
months for the MODIS blacksky, the MODIS whitesky and
the APICS-generated albedo are 62, 62 and 81 %, respec-
tively, when using the Baum v2.0 optical properties. Con-
sidering the better results with the APICS-generated albedo,
APICS was operated with this new albedo product for the re-
trieval of circumsolar radiation. Note that success means the
retrieval obtained values covered by the LUT, which, how-
ever, still need not be correct. In the following, all retrieval
results are considered, successful or not, because they have
an inherent uncertainty and even the outliers are the best pos-
sible result for the given set of measurements.

One can conclude from the imperfect success rate of
81 % that this approach of generating a self-consistent sur-
face albedo alleviates the problems with wrong a priori as-
sumptions, but does not solve them completely. The APICS-
generated albedo product can adapt to changes of the real
surface albedo only on the scale of a few days, while real
changes can occur on the scale of hours. Further reading
on the influence of an inhomogeneous surface albedo on

Nakajima and King-like cloud property retrievals can be
found inFricke et al.(2012).

Bugliaro et al.(2013) examined the APICS optical thick-
ness especially for optically thin cirrus clouds also utilizing
the airborne HSRL measurements. In their study the Baum
and HEY bulk optical properties were used as well. In gen-
eral APICS delivered larger optical thickness values than the
HSRL. In a linear regression, slopes of 1.26 and 1.54 were
found for Baum v2.0 and Baum v3.5, respectively. The cor-
relation coefficient is close to 0.8 for all optical property data
sets. However, only approximately 150 data pairs could be
used in their study. They all belong to the same flight that was
conducted under low-sun conditions (θsun approaching 80◦),
which poses a challenge for the APICS cloud property re-
trieval. FurthermoreBugliaro et al.(2013) used a similar, but
not completely identical, method to derive the ground albedo
from SEVIRI measurements as in this study.

2.5 Parametrization of circumsolar radiation

In this section a way of efficiently parameterizing the CSR is
developed. We thereby build on the concept of an apparent
optical thickness. We also evaluate the uncertainty of the pa-
rameterization under the fact that the ice particle shape can-
not be retrieved from MSG.

As mentioned previously, the circumsolar radiation rele-
vant for CST applications is mainly caused by scattering by
aerosol or thin cirrus layers. When modelling circumsolar ra-
diation it is sufficient to focus on the properties of the atmo-
spheric layers containing scattering particulates. Therefore,
varying Rayleigh scattering due to changing sun zenith an-
gle or different elevations as well as surface albedo changes
are neglected in the following. The effects of these simpli-
fications were analysed by means of several simulations for
the largest, and therefore most sensitive, field of view (FOV)
considered in this study ofαcir = 5◦. The control simulations
show that Rayleigh scattering causes a circumsolar irradi-
ance of less than 1 Wm−2 and a CSR of less than 0.0015,
even for the extreme assumption of the surface albedo be-
ing 1. This was tested for varying sun zenith anglesθsun be-
tween 0 and 88◦. The effect of changing the surface albedo
was assessed by varying it between 0 and 1, while different
cloud types were incorporated. Resulting changes in diffuse
irradiance were always below 2 Wm−2 or 0.0025 in CSR.
Therefore, all simulations used for the development of the
circumsolar radiation parameterization were performed with
θsun= 0◦, albedo 0 and elevation 0 m.

2.5.1 Concept of the apparent optical thickness

Shiobara and Asano(1994) andKinne et al.(1997) corrected
sun photometer measurements in the case of cirrus clouds
with the concept of an apparent optical thickness. Recently
Segal-Rosenheimer et al.(2013) developed this approach fur-
ther into a cloud property retrieval for sun photometer data.

www.atmos-meas-tech.net/7/823/2014/ Atmos. Meas. Tech., 7, 823–838, 2014
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We will use the apparent optical thickness in the following to
parameterize the circumsolar radiation.

The direct transmissionT through the atmosphere can be
decomposed into a particulate and molecular transmission:

T = TpTm. (4)

The particulate transmissionTp can be expressed as

Tp = exp(−τs), (5)

whereτs is the particulate slant path optical thickness along
the line of sight from the observer to the Sun. The molecu-
lar transmissionTm is determined by Rayleigh scattering and
absorption on air molecules.

Diffuse radiation – that is, radiation that has been scat-
tered in the atmosphere – will enter any optics with a finite
FOV pointed towards the Sun in addition to the direct radia-
tion. By definition, direct radiation has not been scattered and
therefore stems only from the Sun, while diffuse radiation
can come from both the sun disk region and the circumsolar
region.

Considering the total radiation entering the FOV, one may
consider an apparent transmissionT ′, which describes both
the diffuse and the direct contribution.T ′ can also be decom-
posed into a particulate and molecular part:

T ′
= T ′

pT
′
m. (6)

Since Rayleigh scattering on molecules contributes only
a negligible part to the radiation in the circumsolar region,
one can approximateT ′

m = Tm. The molecular transmission
Tm will not be further discussed here, since it will cancel out
later in the relevant formulas.

The apparent particulate transmissionT ′
p can be parame-

terized as

T ′
p = exp(−kτs), (7)

with k taking values between 0 and 1. This means that the
difference between the direct particulate transmission – fol-
lowing Beer’s law – and the apparent particulate transmission
can be accounted for with the factork. Defining the apparent
optical thicknessτapp= kτs one obtains

T ′
p = exp(−τapp). (8)

It is notable that the corrective factork depends mainly on
reff, FOV and particle type or shape but is almost independent
of τs itself. This holds true as long as the optical thickness
does not get too large: extensive Monte Carlo simulations for
cirrus clouds with different ice particle shapes but also for
varying aerosol types showed that, as long as 0< τs < 3, k

varies by less than 3 % if all other parameters except the op-
tical thickness are kept constant. This is due to the fact that
the effect of multi-scattering is reduced whenever scattering
in the atmosphere exhibits a strong peak in the forward di-
rection.

Shiobara and Asano(1994) showed thatk can be approx-
imated by evaluating the single-scattering phase functionP :

k ≈ 1− ω0

∫ αcir
0 P(θ)sin(θ)dθ∫ π

0 P(θ)sin(θ)dθ
, (9)

with ω0 being the single-scattering albedo. We verified this
with the cirrus optical properties considered in this study at
one wavelength (550 nm) by performing MYSTIC simula-
tions. We found that the approximation leads to deviations of
less than 5 % ink (550 nm) as long asτs < 3 andαcir > 0.5◦.
For smaller angles the extent of the Sun which is not captured
by the approximation causes larger deviations from the val-
ues obtained from MYSTIC simulations. Therefore we used
the more exact results from MYSTIC to computek.

Interestingly, the concept of apparent optical thickness,
which was born out of shortcomings inmeasuring directra-
diation, shows parallels to a concept developed due to short-
comings insimulating diffuseradiation – the well-knownδ-
scaling approach (e.g.Joseph et al., 1976). The basic concept
of δ-scaling is that the forward peak of the phase function is
truncated, which is accounted for by a reduction of the opti-
cal thickness; that is, forward-scattered radiation is treated as
direct radiation.

APICS diagnoses the optical thickness at 550 nm; however
for this study we are interested in integrated broadband (bb)
circumsolar radiation. The conversion from optical thickness
at 550 nm to the integrated solar value is also accounted for
by the factork. Hence the tabulated values ofk will translate
a slant path optical thickness at 550 nm into a broadbandap-
parentoptical thickness. We tabulatedk from MYSTIC sim-
ulations for cirrus clouds as a function of three parameters:
the FOV which is characterized by the instrument’s opening
half-angleα, the particle shape and the effective radius of
the particlesreff. For technical reasons the wavelength range
considered in the radiative transfer simulations of solar inte-
grated values differs between the Baum (430–2000 nm) and
the HEY (300–2600 nm) optical properties. The Baum and
HEY spectral ranges include 82 and 98 % of the extraterres-
trial solar irradiance, respectively. Due to the strong absorp-
tion in the atmosphere in the UV spectrum, the figures are
even higher for the solar irradiance at ground level. An ex-
emplary excerpt of thek table is given in Table 1. The full
table, including additional documentation, is available as an
electronic supplement to this paper.

A look-up table approach allows the fast computation of
CSR(α) from the cloud parametersτ andreff using a param-
eterization instead of solving the radiative transfer equation.
Therebyk is interpolated linearly between the tabulated val-
ues.

If we denote the circumsolar irradiance within a given
FOV by an opening angleα asIcir, the total irradiance from
within the same FOV asItot,α and the total irradiance coming
from within the sun disk asItot, sun, we can then write
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Fig. 2.Possible circumsolar ratio (CSR) values as a function of the limiting angleα for a variety of cirrus clouds, each composed of a random
mixture of the five particle shapes and the two particle mixtures (described in Sect.2.3). Left: τs = 0.4. Right:τs = 2.0. Different symbols
denote different effective radii (labelled Reff, units µm).

Table 1.Exemplary values ofk (Eq.7) for varying ice optical prop-
erties. The listedk values translate a slant path optical thickness at
550 nm into a broadband (430 nm–2000 nm) apparent optical thick-
ness.

Optical Properties k(0.266◦) k(2.5◦) k(5.0◦)

Baum v2.0,reff = 10 µm 0.97 0.65 0.55
Baum v2.0,reff = 25 µm 0.82 0.46 0.43
Baum v2.0,reff = 60 µm 0.52 0.33 0.32
Baum v3.5,reff = 10 µm 0.96 0.60 0.53
Baum v3.5,reff = 25 µm 0.80 0.52 0.49
Baum v3.5,reff = 60 µm 0.65 0.50 0.47

CSR=
Icir

Itot, sun+ Icir
=

Itot, sun+ Icir − Itot, sun

Itot, sun+ Icir

= 1−
Itot, sun

Icir + Itot, sun
= 1−

Itot, sun

Itot,α
. (10)

In general we can express the total irradianceItot, sun and
Itot,α for a given atmosphere as

Itot, sun= I0T
′
p, sun= I0exp(−ksunτs), (11)

Itot,α = I0T
′
p,α = I0exp(−kατs) , (12)

with ksunbeing the corrective factor for a FOV corresponding
to the Sun’s angular radius andkα for a FOV corresponding
to the limiting angle for which the CSR shall be calculated.
I0 denotes the solar constantIs corrected for molecular trans-
mission:

I0 = IsTm. (13)

Applying Eqs. (11) and (12) to Eq. (10) yields

CSR= 1−
exp(−ksunτs)

exp(−kατs)
= 1− exp[−(ksun− kα)τs] . (14)

ksun andkα are subtracted, which can lead to addition of the
individual errors. Therefore the error in CSR due to tabulat-
ing them independently of the optical thickness can reach up
to 20 %, but most times it is well below 10 %. Since the an-
gular radius of the Sun is assumed constant, we can rewrite
Eq. (14) as

CSR= 1− exp(−1kατs), (15)

where 1kα = ksun− kα. One can even simplify further:
CSR≈ 1kατs as long as1kατs is much smaller than 1.

Other circumsolar radiation parameters besides CSR can
be derived with this approach as well. The diffuse irradiance
in the circumsolar regionIcir = Itot,α − Itot, sun, for example,
is the relevant parameter when considering solar resource
overestimation by pyrheliometers. SinceItot,α is basically the
integral of the sunshapeL (compare denominator in Eq.1)
over the solid angle, one can also obtain the mean value of
the sunshapeL between the limiting anglesα1 andα2 by nu-
merical differentiation ofItot,α with respect to the solid angle
� enclosed by the corresponding FOV as

L(α1 < α < α2) =
Itot,α2 − Itot,α1

�(α2) − �(α1)
. (16)

This way the sunshape can be coarsely reproduced from
thek LUT, although this may not be the most straightforward
way of use.

2.5.2 Uncertainty due to unknown ice particle shape

Of the three parameters determining thek-LUT values –
FOV, effective radius and ice particle shape – the FOV is
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Fig. 3. Uncertainty in circumsolar irradiance for certain fields of
view (legend gives opening half-angle in degrees). Solid lines: for
reff = 25 µm and undefined ice particle shape. Dashed lines: for un-
definedreff and ice particle shape.

the only one which is easy to determine. The effective ra-
dius can be retrieved from MSG with APICS, but is subject
to uncertainties, particularly for optically very thin clouds.
The ice particle shape cannot at all be retrieved with pas-
sive remote sensing methods like APICS. In Fig.2 possible
CSR values are depicted as a function of the FOV for a vari-
ety of cirrus clouds, each composed of a random mixture of
particle shapes. The left panel shows values for clouds with
τs = 0.4, the right one forτs = 2.0. From the scatter of the
data points one can deduce which uncertainties arise in the
determination of CSR if either the information about one pa-
rameter (particle shape) or about both parameters (particle
shape and effective radius) are absent. The possible CSR val-
ues for the whole range of particle shapes and effective radii
contained in thek LUT (see Sect.2.3) are displayed: if the
optical thickness is the only information available, the whole
band composed of the different symbols must be considered.
In this case the determined values have a large uncertainty.
If the effective radius is known, the range of possible values
narrows to the band filled by the corresponding symbol type.
The remaining uncertainty originates from differences in the
optical properties of the ice particle shapes. This is the un-
certainty that is inherent to the method even for an otherwise
perfect retrieval of the cloud propertiesτs andreff.

For the slant path optical thickness range of 0< τs ≤ 3 un-
certainties are also depicted in Figs.3 and4. The first figure
shows the maximum difference between possible values of
the circumsolar irradiance1Icir in Wm−2 depending on the
FOV and the optical thicknessτs considering varying parti-
cle shapes. The latter shows the relative uncertainties in CSR
δCSR for the same parameters, computed as

δCSR=
CSRmax− CSRmin

0.5 · (CSRmax+ CSRmin)
.

In both graphs solid lines stand for a fixedreff of 25µm
and dashed lines for an undefined effective radius. Again it
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Fig. 4. Relative uncertaintyδCSR for certain fields of view (legend
gives opening half-angle in degrees). Solid lines: forreff = 25 µm
and undefined ice particle shape. Dashed lines: for undefinedreff
and ice particle shape.

becomes apparent that knowledge about the effective radius
considerably reduces the uncertainties.

3 Results

So far the components of our method have been treated in-
dividually. In this section we apply the complete circumsolar
retrieval chain on real data; that is, we process the SEVIRI
measurements identified to contain cirrus clouds by COCS
through the APICS cloud property retrieval. The obtainedreff
values are used to pick appropriate values from thek LUT.
These together with the optical thickness from APICS are
then used in Eq. (14) to calculate CSR.

We compare CSR retrieval results for different ice particle
shape assumptions. Maps of the average circumsolar irradi-
ance for the two Baum ice particle parameterizations are pre-
sented and, finally, a validation against ground measurements
of the CSR is offered.

A test sector of 189×252 satellite pixels within the whole
MSG disk of 3712×3712 pixels was selected for evaluation.
The sector includes the southern part of the Iberian Peninsula
as well as parts of northern Africa (see Fig.5). One year of
data was evaluated for this sector (May 2011–April 2012).
Unless stated otherwise, MSG-related statements refer to this
area. Ocean pixels and pixels containing continental water
surfaces were excluded using a land–water mask from the
EUMETSAT Land Surface Analysis Satellite Applications
Facility.

3.1 Consideration of different ice particle shapes in the
whole retrieval chain

In Sects.2.5 and2.4 it was outlined that uncertainties exist
in the cloud property retrieval as well as in the conversion of
these properties to CSR values due to the unknown ice parti-
cle shape (mixture). It is not obvious how these uncertainties
interact, in particular whether they cancel at least partially.

Atmos. Meas. Tech., 7, 823–838, 2014 www.atmos-meas-tech.net/7/823/2014/



B. Reinhardt et al.: Determination of circumsolar radiation from Meteosat Second Generation 831
B. Reinhardt et al.: Determination of circumsolar radiation from Meteosat Second Generation 15

Fig. 3. Uncertainty in circumsolar irradiance for certain fields of
view (legend gives opening half angle in degrees). Solid lines: for
reff = 25µm and undefined ice particle shape. Dashed lines: for un-
defined reff and ice particle shape.

Fig. 4. Relative uncertainty δCSR for certain fields of view (legend
gives opening half angle in degrees). Solid lines: for reff = 25µm
and undefined ice particle shape. Dashed lines: for undefined reff

and ice particle shape.

Fig. 5. Map covering the test sector. SEVIRI pixels are evaluated
inside the sector (only over land). The cross marks the location of
the SAM instrument at the Plataforma Solar de Almerı́a (Sect. 3.3).
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Fig. 6. Histograms of the relative occurrence of circumsolar ratio
(CSR) values under the condition Itot,α=2.5 > 200Wm−2 with re-
spect to the total number of SEVIRI measurements with Itot,α=2.5 >
200Wm−2 for one year within the test sector considering the dif-
ferent ice particle shapes.

Fig. 5. Map covering the test sector. SEVIRI pixels are evaluated
inside the sector (only over land). The cross marks the location of
the SAM instrument at the Plataforma Solar de Almería (Sect.3.3).

Therefore the overall variability was investigated by apply-
ing the complete retrieval chain yielding circumsolar radia-
tion from SEVIRI measurements several times using differ-
ent setups.

To this end CSR values for a limiting angleα = 2.5◦ have
been retrieved from 1 yr within the SEVIRI test sector. This
was done for the five ice particle shapes and the two shape
mixtures described in Sect.2.3; that is, seven distinct APICS
runs were performed with different cloud optical properties.
In the following conversion from the retrieved cloud proper-
ties to CSR values, optical properties for the same particle
shape were used as in the corresponding APICS run. There-
fore seven different CSR data sets were obtained in total.

A histogram of the occurrence of CSR values was com-
puted for every ice particle shape considering the whole do-
main, excluding, however, measurements for which total ir-
radiance valuesItot,α=2.5◦ ≤ 200W m−2 were calculated. We
consideredItot,α=2.5◦ = 200W m−2 to be the lower opera-
tion limit of a hypothetical CST plant. These histograms are
shown in Fig.6, which gives a first illustration of the un-
certainty induced by not knowing the particle shape. The
Baum optical properties are based on a realistic mixture of
particle shapes, and thus an operational retrieval would rely
on them rather than on individual particle shapes. There-
fore the corresponding lines are highlighted. The occurrence
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Fig. 6. Histograms of the relative occurrence of circumsolar ra-
tio (CSR) values under the conditionItot,α=2.5 > 200 W m−2

with respect to the total number of SEVIRI measurements with
Itot,α=2.5 > 200 W m−2 for 1 yr within the test sector considering
the different ice particle shapes.

is shown relative to the number of all measurements that
fulfil Itot,α=2.5◦ > 200 Wm−2, i.e. inclusive corresponding
clear-sky measurements. For the calculation ofItot,α=2.5◦ the
clear-sky direct irradianceI0 is required (Eq.12). It was ob-
tained from libRadtran calculations assuming an elevation
of 0 m a.s.l. everywhere. In the presence of water clouds,
Itot,α=2.5◦ was assumed to be below the 200 W m−2 thresh-
old because water clouds are at most times too optically
thick to allow higher values. These cases were identified with
a general cloud mask from EUMETSAT (EUM OPS DOC
09 5164; EUM MET REP 07 0132). Pixels marked cloudy
in this mask but not in the COCS cirrus cloud mask were
assumed to contain water clouds. While on average 22 %
of the SEVIRI measurements in the test data set produce
a cirrus cloud detection, only 8–10 % additionally satisfy the
200 W m−2 criterion (depending on the assumed ice particle
shape).

To gain insight into how much the retrieval results scatter,
Fig. 7 shows, as an example, the distribution of CSR from
the retrieval with Baum v2.0 applied to a subset of SEVIRI
measurements – namely to the subset for which the retrieval
with Baum v3.5 yielded CSR values between 0.17 and 0.18.
Ideally, if the ice particle shape had no influence, all Baum
v2.0 results would also fall into the same interval. However
in reality the distribution is clearly wider.

Figure8 gives a more complete comparison of the scat-
ter between the different optical properties: for this purpose,
the SEVIRI measurements were binned into CSR (retrieved
using Baum v3.5) intervals of width 0.01. Each subset was
then processed again assuming other cloud optical properties
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Fig. 7. Normalized distribution of retrieval results using “Baum
v2.0” for SEVIRI measurements for which the retrieval with “Baum
v3.5” yielded circumsolar ratio (CSR) values between 0.17 an 0.18.
Dashed lines mark the 25th and 75th percentiles (q25 and q75).

Fig. 7. Normalized distribution of retrieval results using Baum
v2.0 for SEVIRI measurements for which the retrieval with Baum
v3.5 yielded circumsolar ratio (CSR) values between 0.17 an 0.18.
Dashed lines mark the 25th and 75th percentiles (q25 andq75).

(specified in they axis label of each panel). The resulting
new CSR distribution is colour-coded along they axis. Fig-
ure 7 shows the Baum v2.0 CSR distribution within one of
these subsets and is simply a vertical cross section through
the upper left panel. From Fig.8 one can see that hollow-
columns and rough aggregates have rather narrow distribu-
tions but also show some curvature – implying a bias com-
pared to Baum v3.5. Rosettes, which account for a good
share of the particles with a maximum dimension larger than
150 µm in Baum v3.5, produce a relatively narrow distribu-
tion close to the 1: 1 line. Droxtals, which are only used to
represent small particles in the two Baum parameterizations,
yield quite different CSR results compared to Baum v3.5:
the results within the individual CSR subsets scatter widely
and most times droxtals yield smaller CSR values than Baum
v3.5 (distribution is curved to lower values). The distribu-
tions for Baum v2.0 and solid columns are quite similar, be-
ing rather broad with no clear bias visible.

3.2 Circumsolar irradiance

The average circumsolar irradiance during CST plant op-
eration is strongly dependent on the lower DNI limit the
plant can work at. Nevertheless, we calculated the mean cir-
cumsolar irradiance in W m−2 for a FOV of α = 2.5◦ to
provide an example. Again we considered only values for
this for which the total irradianceItot,α=2.5◦ was computed
as being above 200 W m−2. Figure 9 shows two maps of
the circumsolar irradiance averaged over all time steps with
Itot,α=2.5◦ > 200 W m−2 – one for the Baum v3.5 optical
properties and one for Baum v2.0. The values for Baum v2.0
are on average about 50 % higher than for Baum v3.5 but the

regional distribution patterns are similar. Therefore intra-site
comparisons are possible with our method with considerably
less dependence on the assumed ice particle shape. There are
few red pixels visible in the figure that stand out from their
environment. These are caused by unusually frequent cloud
detections by COCS at these locations. In this example the
Baum parameterizations also mark the extremes of the tem-
porally and spatially averaged values and the HEY param-
eterizations lie in between (not shown here). Interestingly,
HEY aggregates produce the mean circumsolar irradiance
value closest to Baum v3.5 result and HEY solid columns
show the mean value closest to Baum v2.0. Aggregates are
the only roughened particles of the HEY data set which may
explain the similarity of their results to the ones obtained
with Baum v3.5. Considering the similarities between HEY
solid columns and Baum v2.0 it should be mentioned that the
medium-sized particles in Baum v2.0 are mainly represented
by solid columns. Similarities between Baum v3.5 and HEY
aggregates as well as between Baum v2.0 and HEY solid
columns are also visible in the histograms of Fig.6.

3.3 Validation with ground measurements

In this section we compare our results with ground mea-
surements of the CSR performed at the Plataforma Solar de
Almería (location marked in Fig.5) with the system pre-
sented in (Wilbert et al., 2013). This system consists of the
Sun and Aureole Measurement system (SAM) (DeVore et al.,
2009), a Cimel sun photometer that is part of AERONET
(Holben et al., 1998) and dedicated post-processing software.
The software determines the broadband sunshape and the
broadband circumsolar ratio based on the spectral radiance
measurements from the SAM and the AERONET data. This
involves also the use of a slightly modified version of the
SMARTS2.9.5 code (Gueymard, 2001). CSR measurements
were available for the same period of 1 yr length that was
evaluated in the previous sections (May 2011–April 2012).
The SAM-based measurements show varying frequency but
were generally done at least once per minute, except for a few
days which had to be discarded due to technical failures of
the instrument.

The comparison of satellite data with ground measure-
ments is not trivial due to the different spatial scales of the in-
strument footprints. To get a best possible match we applied
methods discussed byGreuell and Roebeling(2009): we im-
plemented a correction of the parallax displacement that re-
sults from the two instruments (SAM and SEVIRI) looking
at an elevated cloud layer under different geometries. In our
case the parallax correction must consider not only the satel-
lite viewing geometry but also the Sun’s geometry since the
SAM instrument looks into the Sun. For the parallax correc-
tion the cirrus was assumed to lie between heights of 9 and
11 km.
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Fig. 8. Normalized circumsolar ratio (CSR) retrieval distributions for 100 bins of CSR from Baum v3.5 (x axis, bin width 0.01). Dashed
lines markq25 andq75; that is, they enclose 50 % of the measurements. Black vertical line in upper left panel marks the cross section that is
displayed in Fig.7.

The retrieval results from three consecutive SEVIRI mea-
surements at timest0 − 15min,t0 andt0 + 15min were aver-
aged to reduce short-term variability, which can deteriorate
the validation results if the SEVIRI and SAM measurements
are not perfectly collocated.

SAM only measures CSR at one place, while our method
delivers an average CSR for several square kilometres. To
alleviate this scale discrepancy we brought the ground mea-
surements to the same time grid as the SEVIRI measure-
ments by averaging them within a symmetrical time span1t

aroundt0. The averaging of the CSR from SAM was done ap-
plying a Gaussian weighting functionw to the measurements

w = exp

[
−2(t − t0)

2

1t2

]
, (17)

with t being the time of the SAM measurement andt0 be-
ing the time of the central SEVIRI measurement. Underlying
this is the assumption that atemporalaverage of the advected
cloud properties is more representative of thespatialaverage
of cloud properties that we retrieve at distinct times from SE-
VIRI. We found the averaging time of1t = 35min to deliver
good agreement between satellite and ground measurements,
and did not see much better agreement for longer averaging
times. Only SAM measurements meeting the condition

|t − t0| < 1t (18)

were considered.
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Fig. 9. Circumsolar irradiance for a limiting angle of 2.5◦ averaged over all time steps in the test dataset with Itot,α=2.5◦ > 200Wm−2.
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Fig. 10. Scatter plots for the shortened validation time series (May 2011–Jun. 2011). Left panel: CSR retrieved using “Baum v2.0”. Right
panel: CSR retrieved using “Baum v3.5”. Filled circles indicate that the data pair has passed the manual cumulus cloud screening on the
basis of all-sky images.
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Fig. 11. Exemplary excerpt of the circumsolar ratio (CSR) time series used for the validation. In total 107 data pairs are shown. Grey symbols
indicate that water clouds were identified in the manual screening of sky camera images. Time is given as UTC.

Fig. 9.Circumsolar irradiance for a limiting angle of 2.5◦ averaged over all time steps in the test data set withItot,α=2.5◦ > 200 W m−2.

Before comparing CSR values for a 2.5◦ FOV the mea-
surements were filtered: only time steps with a positive cir-
rus cloud detection from MSG were considered. Furthermore
we required the total irradianceItot,α=2.5◦ calculated from the
averaged SEVIRI measurements to be above 200 W m−2 as
in Sect.3.2to ensure relevance for CST plants.

The following validation measures were calculated using
the N remaining CSR pairs in the time series: the relative
bias, the mean absolute deviation (MAD), the root-mean-
square deviation (RMSD), the median relative deviation
(MRD), the Pearson correlationr (Wilks, 2005, Eq. 3.23) and
the Spearman rank correlationrrank (Wilks, 2005, Eq. 3.28).
We show the RMSD and the Pearson correlation since they
are widely used validation measures; however it should be
noted that they have to be interpreted with care because the
deviations between SAM and the satellite retrieved values
are not normally distributed and we do not expect a truly lin-
ear relationship between the CSR from SAM and from our
method. This is because errors in1k or τs will not propagate
linearly (comp. Eq.15). The Spearman rank correlationrrank
is simply the Pearson correlation applied not on the data, but
on the ranks of the data. It is not a measure of linear relation-
ship but of monotone relationship. The Pearson correlation
is neither robust nor resistant, whereas the Spearman rank
correlation is – it requires no assumption about the kind of
monotone relationship (e.g. linear) and is not unduly influ-
enced by a few outliers (Wilks, 2005, Chap. 3).

Bias=

∑N
i=1CSRSEVIRI,i −

∑N
i=1CSRSAM,i∑N

i=1CSRSAM,i

(19)

MAD =

N∑
i=1

∣∣CSRSEVIRI,i − CSRSAM,i

∣∣
N

(20)

RMSD=

√√√√ N∑
i=1

(CSRSEVIRI,i − CSRSAM,i)2

N
(21)

MRD = q50

(
CSRSEVIRI,i − CSRSAM,i

CSRSAM,i

)
(22)

In Table2 the different validation measures are listed. The
rank correlation of 0.48 and 0.54 and the MAD values of
0.11 show that there are considerable differences between the
time series if we look at instantaneous values. This is also
confirmed by the MRD of 75 and 74 % meaning that 50 %
of the derived CSR values deviate by more than 75 or 74 %
from the SAM measurements. It should be noted, however,
that the largest relative deviations occur for very small values
of the CSR, which are irrelevant in practice.

After manual inspection of the data series and sky images
from an automated camera positioned beside the SAM in-
strument, it was suspected that presence of cumulus clouds
might compromise the results. On the one hand, the cumulus
clouds – even if only partially covering a SEVIRI pixel – will
increase the reflectivity in the 0.6 µm channel. This will re-
sult in APICS retrieving an increased optical thickness for the
cirrus. On the other hand, if a small-scale but optically thick
water cloud is just in the field of view of the SAM instru-
ment, it will cause a CSR measurement close to unity. To test
how these effects compromise the results, part of the evalu-
ation time series was used (1 May 2011–30 June 2011). For
this period the data were additionally filtered by hand, leav-
ing only slots without cumuli visible in the sky camera im-
ages. The numbers for the validation of the manually filtered
data are listed in Table3. The values for the unscreened time
series are given in parenthesis. The instantaneous validation
measures improve after this manual filtering: the rank cor-
relation and the Pearson correlation increase, and the MAD
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Table 2.Results of the comparison of CSR measured from ground and retrieved from SEVIRI for different setups: rank correlationrrank,CSR,
Pearson correlationrCSR, mean absolute deviation MAD, root-mean-square deviation RMSD, median relative deviation MRD, bias and the
number of compared data pairsN .

Optical Properties rrank,CSR rCSR MAD RMSD MRD Bias N

Baum v2.0 0.54 0.50 0.11 0.16 75 % 4 % 2021
Baum v3.5 0.48 0.44 0.11 0.15 74 % −11 % 1890

Table 3. Same as Table2 but for the shortened time series (1 May 2011–30 June 2011) which was manually cumulus-screened. Values in
parenthesis are for unscreened time series.

Optical Properties rrank,CSR rCSR MAD RMSD MRD Bias N

Baum v2.0 0.79 (0.68) 0.75 (0.62) 0.08 (0.10) 0.12 (0.14) 62 % (62 %) 18 % (14 %) 220 (407)
Baum v3.5 0.76 (0.65) 0.67 (0.58) 0.07 (0.09) 0.10 (0.13) 55 % (59 %)−7 % (−7 %) 213 (386)
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Fig. 9. Circumsolar irradiance for a limiting angle of 2.5◦ averaged over all time steps in the test dataset with Itot,α=2.5◦ > 200Wm−2.
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Fig. 10. Scatter plots for the shortened validation time series (May 2011–Jun. 2011). Left panel: CSR retrieved using “Baum v2.0”. Right
panel: CSR retrieved using “Baum v3.5”. Filled circles indicate that the data pair has passed the manual cumulus cloud screening on the
basis of all-sky images.
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indicate that water clouds were identified in the manual screening of sky camera images. Time is given as UTC.
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of all-sky images.

values decrease. For Baum v3.5 the bias stays unchanged,
while for Baum v2.0 a slight increase in the bias is observed.
The MRD, which features a certain robustness in regard to
outliers, improves only slightly from Baum v3.5 and stays
unchanged for Baum v2.0.

Figure 10 contains scatter plots for the shortened evalu-
ation time series for Baum v2.0 and Baum v3.5. Displayed
are all data from 1 May 2011 to 30 June 2011. Filled circles
mark data pairs which passed the manual cumulus screen-
ing. The figure confirms the information from the numeri-
cal validation measures: the cumulus screening reduces the
scatter. A cloud detection excluding cumulus-contaminated
pixels would thus be desirable for future applications.

Excerpts of the evaluated time series are shown in Fig.11.
We selected those three days that contain the most data pairs
from shortened data series (May–June 2011). From the figure
it becomes apparent that the temporal evolution of the CSR
measured by SAM is in general captured by the satellite time

series but due to timing and amplitude errors the CSR values
at a given time often disagree. This results in the scatter seen
in Fig. 10.

The statistical values of CSR are more important than the
instantaneous ones for long-term CST system performance
prediction (e.g.Rabl and Bendt, 1982). Therefore, Fig.12
compares the histograms of CSR from SAM and retrieved
from SEVIRI. Although there are some differences, the his-
tograms compare well considering the two completely dif-
ferent methods operating on different scales for both Baum
particle mixtures. It is also encouraging that the bias in the
CSR mean values is of the order of only 10 % (4 % for Baum
v2.0 and−11 % for Baum v3.5; see Table2). Therefore we
conclude that the presented method is suited to derive typical
distributions or time series of CSR.
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4 Summary and conclusions

A method to determine circumsolar radiation from measure-
ments of the geostationary satellites of the Meteosat Second
Generation family was developed. To achieve this, several
components were linked together and improved where nec-
essary. The Monte Carlo radiative transfer model MYSTIC
was extended by introducing a sun disk instead of a point
source such that it can simulate the circumsolar region with
high accuracy. With this tool at hand, it was possible to estab-
lish a database of coefficients that enables the computation of
circumsolar radiation by simple analytical expressions from
cloud properties instead of performing time-consuming ra-
diative transfer simulations. This was facilitated by the de-
velopment of a theoretical basis that avoids a dependence
on optical thickness in the database. To obtain CSR values
from satellite measurements, the database is used in conjunc-
tion with the cloud property retrieval from the APICS frame-
work. APICS was improved by creating an albedo data set
that is consistent with the cloud property retrieval algorithm
and that optimizes the retrieval’s success rate. Furthermore
APICS was extended with new look-up tables for individual

ice particle shapes and the Baum v3.5 ice particle mixture to
allow for an uncertainty analysis.

Retrievals of circumsolar radiation show that the uncer-
tainties in the complete retrieval chain due to assumptions of
the ice particle shape can sum up to 50 %. A validation of re-
trieved CSR values with SAM-based measurements shows
that considerable errors must be expected if instantaneous
values are compared: the mean absolute deviation is 0.11 and
the median relative deviation is approximately 75 %. Nev-
ertheless, the frequency distribution of the satellite derived
CSR is in good agreement with the ground measurements if
the two Baum optical properties are used. In general Baum
v2.0 produces slightly higher CSR values than Baum v3.5,
which is also reflected in the bias values of 4 % and−11 %,
respectively, compared to the ground measurements. A man-
ual data screening indicates that the presence of sub-scale
water clouds below the cirrus compromises the results. A de-
tection and appropriate treatment of “mixed cloud” pixels is
an open point for further development.

Despite obvious uncertainties, a retrieval of circum-
solar radiation from meteorological satellite observations
can complement ground measurements since it offers sev-
eral unique advantages: for example, compared to ground
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measurements it is cheap. Satellite data are also readily avail-
able for many regions of the world for longer time spans than
any of the time series of ground measurements available so
far. Furthermore the method allows for easy comparison of
the circumsolar radiation characteristics of several sites as
long as they are within the field of view of the same satellite.
The further development of satellite-based cloud property re-
trievals can improve the circumsolar radiation products since
the errors in the retrieved cloud properties are a main source
of uncertainty in circumsolar radiation. In particular, further
information about the ice particle shape composition would
help to further reduce the uncertainty.

The presented parameterization with its efficient look-up
table approach can in principle be extended and applied to
other data sources as well. Aerosols, the other significant
source for CST-relevant circumsolar radiation besides cirrus
clouds, could be treated by combining the parameterization
with an aerosol-resolving weather forecast model.

Supplementary material related to this article is
available online athttp://www.atmos-meas-tech.net/7/
823/2014/amt-7-823-2014-supplement.zip.
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