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Abstract. Organic carbon (OC) can constitute 50 % or more

of the mass of atmospheric particulate matter. Typically, or-

ganic carbon is measured from a quartz fiber filter that has

been exposed to a volume of ambient air and analyzed using

thermal methods such as thermal-optical reflectance (TOR).

Here, methods are presented that show the feasibility of us-

ing Fourier transform infrared (FT-IR) absorbance spectra

from polytetrafluoroethylene (PTFE or Teflon) filters to ac-

curately predict TOR OC. This work marks an initial step

in proposing a method that can reduce the operating costs

of large air quality monitoring networks with an inexpen-

sive, non-destructive analysis technique using routinely col-

lected PTFE filter samples which, in addition to OC concen-

trations, can concurrently provide information regarding the

composition of organic aerosol. This feasibility study sug-

gests that the minimum detection limit and errors (or un-

certainty) of FT-IR predictions are on par with TOR OC

such that evaluation of long-term trends and epidemiological

studies would not be significantly impacted. To develop and

test the method, FT-IR absorbance spectra are obtained from

794 samples from seven Interagency Monitoring of PRO-

tected Visual Environment (IMPROVE) sites collected dur-

ing 2011. Partial least-squares regression is used to calibrate

sample FT-IR absorbance spectra to TOR OC. The FTIR

spectra are divided into calibration and test sets by sampling

site and date. The calibration produces precise and accu-

rate TOR OC predictions of the test set samples by FT-IR

as indicated by high coefficient of variation (R2; 0.96), low

bias (0.02 µg m−3, the nominal IMPROVE sample volume

is 32.8 m3), low error (0.08 µg m−3) and low normalized er-

ror (11 %). These performance metrics can be achieved with

various degrees of spectral pretreatment (e.g., including or

excluding substrate contributions to the absorbances) and are

comparable in precision to collocated TOR measurements.

FT-IR spectra are also divided into calibration and test sets

by OC mass and by OM / OC ratio, which reflects the or-

ganic composition of the particulate matter and is obtained

from organic functional group composition; these divisions

also leads to precise and accurate OC predictions. Low OC

concentrations have higher bias and normalized error due to

TOR analytical errors and artifact-correction errors, not due

to the range of OC mass of the samples in the calibration set.

However, samples with low OC mass can be used to predict

samples with high OC mass, indicating that the calibration is

linear. Using samples in the calibration set that have differ-

ent OM / OC or ammonium / OC distributions than the test

set leads to only a modest increase in bias and normalized

error in the predicted samples. We conclude that FT-IR anal-

ysis with partial least-squares regression is a robust method

for accurately predicting TOR OC in IMPROVE network

samples – providing complementary information to the or-

ganic functional group composition and organic aerosol mass

estimated previously from the same set of sample spectra

(Ruthenburg et al., 2014).

1 Introduction

Particulate matter (PM) has been implicated in increased

morbidity and mortality (Anderson et al., 2012), climate

change (Yu et al., 2006) and reduced visibility (Watson,

2002). As a result, its size-resolved chemical composition is

measured during episodic measurement campaigns and over

longer periods of time in many networks worldwide, includ-
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ing the Interagency Monitoring of PROtected Visual Envi-

ronment (IMPROVE) network (Hand et al., 2012; Malm et

al., 1994) in pristine and rural areas in the US, the Chemical

Speciation Network/Speciation Trends Network (CSN/STN;

Flanagan et al., 2006) in urban and suburban areas in the

US, the Southeastern Aerosol Research and Characterization

network (SEARCH; Hansen et al., 2003) in urban and ru-

ral areas in the southeastern US, the Canadian National Air

Pollution Surveillance network (NAPS; Dabek-Zlotorzynska

et al., 2011) in primarily urban sites in Canada and the

European Monitoring and Evaluation Programme (EMEP;

Tørseth et al., 2012) throughout Europe. Typically, organic

carbon (OC) and elemental carbon (EC) concentrations are

measured on quartz filters using thermal-optical reflectance

(TOR; Chow et al., 2007), NIOSH 5040 (Birch and Cary,

1996), European Supersites for Atmospheric Aerosol Re-

search protocol (EUSAAR-2; Cavalli et al., 2010) or simi-

lar methods. PM is collected on a quartz filter, and a por-

tion of the filter is subjected to a temperature gradient with

two carrier gas regimes that operationally define the organic

and elemental carbon (Chow et al., 2007). Charring of or-

ganic material during heating is corrected for by using laser

reflectance or transmittance (Cavalli et al., 2010; Chow et

al., 2007). The measurement artifact caused by gas phase ad-

sorption of organic material on the quartz filter may be cor-

rected for by using blank or back-up quartz filters (Chow et

al., 2010; Maimone et al., 2011; Turpin et al., 1994). Organic

matter (OM) is estimated by multiplying the reported OC by

an assumed OM / OC factor (Pitchford et al., 2007; Turpin

and Lim, 2001).

Fourier transform infrared spectroscopy (FT-IR) has been

proposed as an alternative for quantification of organic matter

in particles collected on filters (Russell, 2003; Ruthenburg et

al., 2014). FT-IR measures abundances of bonds connecting

carbon atoms with their heteroatoms, leading to characteri-

zation of functional groups including aliphatic and aromatic

CH, carbonyl (C=O), alcohol OH (C-OH), carboxylic acid

OH (C-OH) and others (Blando et al., 2001; Coury and Dill-

ner, 2008; Maria et al., 2003). This bond abundance allows

more direct estimates of OM and OM / OC ratios (Russell,

2003; Ruthenburg et al., 2014) compared to using TOR OC

and an assumed OM / OC ratio. Organic functional groups

in carbonaceous material absorb IR light in (a) specific re-

gion(s) of the mid-IR spectrum (4000 to 400 cm−1). The

amount of light absorbed is proportional to the moles of

functional group. Based on initial work by Allen and col-

leagues (Allen et al., 1994), researchers (Coury and Dillner,

2008; Reff et al., 2007; Russell et al., 2009; Ruthenburg et

al., 2014; Takahama et al., 2013) have shown that organic

functional groups can be quantified even in complex mixtures

of ambient or indoor aerosols. These studies use laboratory-

generated standards as reference material to develop cali-

bration models for quantifying functional group abundance

which can be used to calculate OC and OM.

Researchers in other fields have used FT-IR spectra to

quantify properties such as total carbon (TC), organic car-

bon or fatty acid content using calibrations developed from

environmental (e.g., soil or food) reference samples. These

environmental samples were analyzed by FT-IR alongside an

expensive or time-consuming conventional method to mea-

sure the property of interest. Partial least-squares regres-

sion (PLSR) has been commonly used to develop calibration

models that quantitatively predict these properties from the

FT-IR spectra. In one example of this approach in the field

of soil science (Madari et al., 2005), calibrations were devel-

oped for total carbon and organic carbon in soil samples us-

ing near-infrared (NIR) and diffuse reflectance mid-infrared

spectroscopy (DRIFTS). Over 1000 samples from the Brazil-

ian National Soil Collection were analyzed by a combustion

method to determine TC and by a chromate oxidation method

to determine OC. Calibrations of DRIFTS spectra developed

through spectral pretreatments, and subsets of samples based

on carbon content, soil texture and soil class produced accu-

rate predictions of soil TC and OC with high correlation to

observations (R2 of 0.95 and 0.93, respectively).

Another application of this method in the food science

field (Vongsvivut et al., 2012) used attenuated total re-

flectance FT-IR (ATR-FT-IR) spectra of fish oil supplements

and PLSR to quantify the fatty acid content of the oil. Fatty

acids are composed of organic functional groups including

carbonyl groups, carboxylic acid OH groups and aliphatic

CH groups. Because gas chromatography (GC), the common

method for measuring fatty acids in oils, is time and labor

intensive and uses hazardous chemicals, researchers sought

a faster, less expensive and more environmentally friendly

method. Sixty-four samples were analyzed by GC and ATR-

FT-IR, and two-thirds of these were used to develop a cal-

ibration for fatty acids using PLSR. Predictive estimations

(R2
≥ 0.96 compared to observed values) of total oil, total

fatty acids and two specific fatty acids in fish oil samples

were made using this technique.

The work presented here proposes a similar approach, in

which FT-IR spectra and PLSR are used to predict TOR OC

in ambient aerosol samples. As described above, thermal-

optical methods such as TOR provide OC measurements in

air monitoring network ambient particle matter samples but

are destructive and relatively expensive. FT-IR analysis is

fast, relatively inexpensive and non-destructive to the sam-

ples and can be performed on PTFE filters. The use of PTFE

filters for FT-IR analysis has several benefits. While parti-

cles collected on PTFE filters likely have similar organic

gas phase adsorption as particles collected on quartz filters,

PTFE filters have minimal organic gas phase adsorption com-

pared to quartz (Gilardoni et al., 2007; Turpin et al., 1994)

and are commonly used in PM monitoring networks, such

as the speciation networks mentioned above, for gravimetric

mass and elemental analysis. The Federal Reference Method

sampling network used for compliance with National Ambi-

ent Air Quality Standards for PM mass concentrations in the
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United States is a large network that uses PTFE filters which

could be analyzed by FT-IR for prediction of TOR OC in lo-

cations where speciation monitors are not available. Impor-

tantly, many quantities of interest – including organic func-

tional groups, OM and OM / OC – can be quantified from the

same FT-IR spectra (Fig. 1). In this work, methods are devel-

oped and tested using TOR OC data and FT-IR spectra from

parallel PTFE filters from one year of samples from seven

IMPROVE sites. Although methods exist for measuring OC

directly from FT-IR spectra (Russell, 2003; Ruthenburg et

al., 2014), calibrating to TOR OC provides TOR-equivalent

OC data that will enable the continuation of long-term trend

analysis of particulate pollution and longitudinal epidemio-

logical studies on the effects of particulate pollution on hu-

man health.

The objectives of this work are to demonstrate the feasibil-

ity of predicting TOR OC from infrared spectra and establish

that this prediction can be accomplished with accuracy on par

with TOR measurement precision. This work is the first step

in proposing a non-destructive method for reducing sampling

and analysis costs for large particulate speciation monitor-

ing networks. The method also provides a means of obtain-

ing information about the carbonaceous aerosol at sampling

sites that have only Teflon filter samples, provided that new

samples have similar aerosol composition to the samples in

the calibration set. We will mechanistically explain impor-

tant differences in sample composition between calibration

and test sets that can lead to increased prediction errors; for

this we use additional IMPROVE and FT-IR measurements

to aid in our interpretation. And, finally, we will demonstrate

how sensitivity to sample composition is manifested in pre-

dictions for sites which are not included in the calibration

set.

2 Methods

2.1 IMPROVE network samples

The IMPROVE filters used in this work were collected at

seven sites during 2011. The seven sites are shown in Fig. S1

in the Supplement. The Phoenix, AZ site has two IMPROVE

samplers, and filters from both samplers are used in this

study. In the IMPROVE network, filters are collected every

third day from midnight to midnight local time at a nominal

flow rate of 22.8 L min−1, which yields a nominal volume of

32.8 m3 and produces filter samples of particles smaller than

2.5 µm in diameter (PM2.5).

The FT-IR analysis is applied to 25 mm PTFE filters

(Teflo, Pall Gelman) that are analyzed for gravimetric mass,

elements and light absorption in the IMPROVE network.

The sample area is 3.53 cm2. Quartz filters collected in

parallel to the PTFE filters are analyzed by TOR using the

IMPROVE_A protocol to obtain OC and EC mass in the

IMPROVE network (Chow et al., 2007). Prior to data publi-

cation, the OC values are adjusted to account for charring of

organic material during heating (Chow et al., 2007). Organic

carbon values are also adjusted to account for the gas phase

adsorption artifact by subtracting the monthly median OC

value from field blanks collected at a few sites in the net-

work (http://vista.cira.colostate.edu/IMPROVE/Data/QA_

QC/Advisory/da0031/da0031_OC_Artifact.pdf); during

2011 the monthly median OC artifact values ranged from 4.1

to 6.7 µg OC. For this work, the reported TOR OC values are

adjusted to account for measured flow differences between

the quartz and PTFE filters. IMPROVE data were obtained

from the Federal Land Manager Environmental Database

(FED, http://views.cira.colostate.edu/fed/Default.aspx) on

1 May 2014. IMPROVE samples lacking either flow records

for PTFE filters or TOR measurements are excluded, leaving

794 samples for this analysis.

In order to provide reference performance metrics for the

evaluation of the FT-IR to TOR comparisons (see Sect. 2.4

for a description of the metrics), measurements from seven

IMPROVE sites with collocated TOR measurements (Ever-

glades, Florida; Hercules Glade, Missouri; Hoover, Califor-

nia; Medicine Lake, Montana; Phoenix, Arizona; Saguaro

West, Arizona; Seney, Michigan) are used.

2.2 FT-IR analysis

2.2.1 Spectra acquisition

A total of 794 PTFE ambient samples and 54 PTFE labo-

ratory blank filters are analyzed using a Tensor 27 Fourier

transform infrared (FT-IR) spectrometer (Bruker Optics, Bil-

lerica, MA) equipped with a liquid-nitrogen-cooled wide-

band mercury cadmium telluride detector. The samples are

analyzed using transmission FT-IR over the mid-infrared

wavenumber region of 4000 to 420 cm−1 (see Ruthenburg

et al., 2014, for more details). Absorbance spectra are cal-

culated using a recent spectrum of the empty sample com-

partment as a zero reference. Each spectrum is zero-filled

(smoothed) with a factor of 8 in the OPUS software. Air free

of water vapor and carbon dioxide (delivered by purge-gas

generator; PureGas LLC, Broomfield, CO) is used to con-

tinuously purge the optical compartments of the instrument

and to purge the sample compartment for 4 min before each

sample or reference spectrum is acquired. Each sample or

reference spectrum takes about 1 min to collect such that the

total analytical time per filter is about 5 min. No sample pre-

treatment is performed.

2.2.2 Spectra preparation

Three different versions of the absorption spectra are used in

our analysis (Fig. S2 in the Supplement), corresponding to

different pretreatments and wavelength selection: (1) “raw”

spectra are unmodified spectra except that values interpo-

lated during the zero-filling process are removed. These spec-
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Sampled PTFE filter 
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TOR OC calibration 
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Functional group calibrations 
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Previous work This work 
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Figure 1. FTIR absorbance spectra from particulate matter collected on PTFE filters can be used for measuring OM; OM / OC; organic

functional groups; and, from the work presented here, TOR OC. Previous work on functional group calibrations includes CH groups from

saturated (Ruthenburg et al., 2014), unsaturated and ring structures (Gilardoni et al., 2007; Maria et al., 2003; Russell et al., 2009); amine

CNH2 (Liu et al., 2009; Maria et al., 2003); alcohol (Ruthenburg et al., 2014) and phenol COH (Bahadur et al., 2010; Russell et al., 2010;

Takahama et al., 2013); organosulfate COSO3 by solvent rinsing (Hawkins et al., 2010; Maria et al., 2003); organonitrate CONO2 groups

(Day et al., 2010); carboxylic COH (Liu et al., 2009; Ruthenburg et al., 2014; Takahama et al., 2013); and carbonyl CO (Gilardoni et al.,

2007; Maria et al., 2003; Ruthenburg et al., 2014; Takahama et al., 2013).

tra contain all 2784 wavenumbers. (2) “Baseline-corrected”

spectra include absorbances above 1500 cm−1, and the sub-

strate contribution is removed by subtracting an average

blank filter spectrum and then using linear or polynomial

baselines by spectral region as described by Takahama et

al. (2013). These spectra are standardized to a 2 cm−1 resolu-

tion and contain 1563 wavenumbers. (3) “Truncated” spectra

are the raw spectra interpolated to match the wavenumbers

in the baseline-corrected spectra, which excludes the PTFE

peaks (the region below 1500 cm−1), and so also contain

1563 wavenumbers.

2.3 Calibration

The FT-IR spectra are calibrated to TOR OC measurements

using PLSR (also called projection onto latent structures re-

gression) using the kernel partial least-squared (PLS) algo-

rithm, implemented by the PLS library (Mevik and Wehrens,

2007) for the R statistical package (R Core Team, 2014). In

PLSR, the matrix of spectra is decomposed into a product

of orthogonal factors (loadings) and their respective contri-

butions (scores); observed variations in the OC mass are re-

constructed through a combination of these factors and a set

of weights simultaneously developed to relate features in the

dependent and independent variables. Candidate models for

calibration are generated by varying the number of factors

used to represent the matrix of spectra. A common approach

for model selection and assessment is to divide the set of

available samples into three groups: a training set for deter-

mining model parameters, a validation set for selecting the

best model and a test set for evaluating its performance or

prediction errors (Hastie et al., 2009; Bishop, 2011; Witten

et al., 2011). The first two sets are combined into what is

called the calibration set; training and validation is handled

by an approach known as K fold cross validation (CV) (Ar-

lot and Celisse, 2010; Hastie et al., 2009). In this approach,

the calibration set is partitioned into K segments, and each

of the K segments is used for validation while the remaining

K-1 segments are used to train the model.

The minimum root mean square error of prediction (RM-

SEP; Mevik and Cederkvist, 2004) is used to select the model

with least prediction error. A value of K between 5 and

10 has often been chosen empirically for CV (Hastie et al.,

2009); evaluation of FTIR OC estimates for K = 5, 8 and 10

showed very little difference in prediction error (Supplement,

Sect. S3), so a value of K = 10 is fixed for our protocol. This

CV procedure permits development and selection of PLSR

models using only the samples in the calibration set, and it

guards against overfitting to a single set of samples. Blind

evaluation is then carried out on the test set, which imposes

no influence on the model development or selection.

We follow the common approach of using two-thirds of

the total filters in the calibration set (Arlot and Celisse, 2010;

Hastie et al., 2009) for the “Base case” (described in the fol-

Atmos. Meas. Tech., 8, 1097–1109, 2015 www.atmos-meas-tech.net/8/1097/2015/



A. M. Dillner and S. Takahama: Predicting TOR OC measurements from infrared spectra 1101

lowing paragraph) and other cases used to evaluate which

parameters impact prediction quality. Included in this set are

spectra from ambient samples and blank laboratory filters,

and the corresponding OC mass (which is assumed to be 0

for the blank laboratory filters). Samples with TOR OC val-

ues below its method minimum detection limit (MDL) are

excluded from the calibration set so as to not train the model

to values with low signal-to-noise ratios. The total number of

samples in the test set is one-third of the ambient and blank

samples. The test set is used to assess the prediction quality

and is not used in calibration development. Predicted FT-IR

OC values for the laboratory blank samples in the test set

are used to calculate the MDL. Performance metrics used to

assess the quality and MDL determination are described in

Sect. 2.4.

Multiple calibrations are developed by varying the spec-

tral type used and by selecting filters for the calibration and

test sets using different ordering regimes. We define a Base

case reference scenario, where the samples are chronologi-

cally stratified per site (i.e., ordered by date for each site),

prior to selecting every third sample for inclusion in the test

set. The remaining samples are placed in the calibration set.

The Base case is also defined to use the raw spectra. Other

calibration models are described in the results section.

2.4 Methods for evaluating the quality of calibration

The quality of each calibration is evaluated by calculating

four performance metrics: bias, error, normalized error and

the coefficient of variation (R2) of the linear regression fit of

the predicted FT-IR OC to measured TOR OC. FT-IR OC is

the OC predicted from the FT-IR spectra and the PLSR cali-

bration model. TOR OC is the artifact-corrected OC reported

from TOR and available on the FED website. The bias is the

median difference between measured (TOR) and predicted

(FT-IR) OC for the test set. Error is the median absolute bias.

The normalized error for a single prediction is the error di-

vided by the TOR OC value. The median normalized error is

reported. The performance metrics are also calculated for the

collocated TOR observations and compared to those of the

FT-IR OC to TOR OC regression. The MDL and precision

of the FT-IR and TOR methods are calculated and compared.

The MDL of the FT-IR method is 3 times the standard devia-

tion of the laboratory blanks in the test set (18 blank filters).

The MDL for the TOR method is 3 times the standard devia-

tion of 514 blanks (Desert Research Intitute, 2012). Precision

for both FTIR and TOR is calculated using the 14 parallel

samples in the test set at the Phoenix, AZ site.

3 Results

3.1 Predicting TOR OC from infrared spectra

Figure 2 compares predicted FT-IR OC to measured TOR

OC for the calibration and test set for the Base case. The

performance metrics for the calibration and test sets show

good agreement between measured and predicted OC val-

ues. Prediction of the calibration set is expected to be better

than the test set as the model is trained on these values. An

ANOVA analysis between the calibration set predictions and

the test set predictions indicates that the predictions are not

statistically different, although the bias (p= 0.08) and error

(p < 0.001) are. The performance metrics for the collocated

TOR samples show good agreement between TOR samples

collected at the same site and time. The precision between

TOR samples is expected to be better than that between FT-

IR OC and TOR OC because the TOR samples are collected

on the same filter type and analyzed by the same method.

However, since the collocated observations are from differ-

ent sites than the FT-IR OC and TOR OC comparison (except

Phoenix), a direct comparison (and ANOVA analysis) is not

possible. The distribution of normalized errors for the cali-

bration and test set and the collocated precision for the TOR

samples is quite similar (Fig. S4 in the Supplement). Addi-

tional calibrations are created using fewer samples in the cal-

ibration set, and the error in the test set is independent of the

number of samples in the calibration set as long as there are

at least one-third of the total samples (∼ 250 samples) in the

calibration set (see Sect. S5 in the Supplement), indicating

that the calibration is robust with respect to the number of

samples used to calibrate between one-third and two-thirds

of the sample set. The number of samples is not, however, an

absolute number but is dependent on the specific set of sam-

ples in the calibration and test sets. The analysis shows that

the accuracy of FT-IR OC predictions with respect to TOR

OC values is comparable to the precision of collocated TOR

measurements.

Table 1 compares the MDL and precision of the FT-IR OC

predictions and TOR OC measurements. The MDL for the

FT-IR OC method using raw spectra (Base case, Fig. 2) is

higher than TOR, but both methods have fewer than 3 % of

the samples below MDL. For the FT-IR OC method with raw

spectra, seven of the 268 ambient samples in the test set are

below MDL, and four for TOR. The MDL is calculated from

18 blank filters in the test set with 36 blank filters in the cal-

ibration set. However, the MDL is independent of the num-

ber (from 0 to 36) of blanks in the calibration set and the

number of samples (513 to ∼ 100) in the calibration set (see

Sect. S5 in the Supplement). The absolute precision for FT-

IR OC is on par with TOR OC. The mean predicted value for

the blanks filters (last row of Table 1) is an order of magni-

tude lower than the 1st percentile of predicted OC values in

this data set.

3.2 Predicting TOR OC using different spectral types

The analysis shown in Fig. 2 is performed on the raw spectra.

Figure 3 shows the same prediction capability of the method

using baseline-corrected spectra and truncated spectra. All

other inputs, including the samples used for the calibration
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Figure 2. Predicted OC for calibration set (a) and test set (b). The

collocated TOR samples (c) are from sites with parallel quartz filters

that are both analyzed by TOR. Only the Phoenix site has samples

in the calibration, test and collocated data sets. There are 521 sam-

ples in the calibration set (a), 265 samples in the test set (b) and

431 samples in the collocated TOR data set (c). Concentration units

of µg m−3 for bias and error are based on the IMPROVE nominal

volume of 32.8 m3.

Table 1. MDL and precision for FT-IR OC and TOR.

TOR OC FT-IR OC FT-IR OC FT-IR OC

raw baseline- truncated

spectra corrected spectra

spectra

MDL (µg m−3)a 0.05 0.14 0.11 0.08

% below MDL 1.5 2.6 0.7 0.7

Precision (µg m−3)a 0.14 0.12 0.21 0.12

Mean blank (µg) NRb 0.1± 1.5 1.9± 1.2 2.8± 0.9

a Concentration units of µg m−3 for MDL and precision are based on the IMPROVE volume of

32.8 m3. b Not reported.

and test sets, are not changed. The performance metrics (test

set panel in Fig. 2 for raw spectra) are of the same order for

all three cases. An ANOVA analysis of these three predic-

tions produces p values of 0.99 (R2), 0.53 (bias) and 0.61

(error), indicating that the quality of predictions are not sta-

tistically different for these three spectra pretreatments. The

distribution of normalized errors for the calibration and test

set for both spectral pretreatments are quite similar to the

distribution of normalized errors when using the raw spectra

and the collocated precision for TOR samples (Fig. S4 in the

Supplement).
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Figure 3. Predicted FT-IR OC versus measured TOR OC for the

Base case test set with (a) baseline-corrected and (b) truncated spec-

tra. Concentration units of µg m−3 for bias and error are based on

the IMPROVE nominal volume of 32.8 m3.

Table 1 shows the MDL and precision values for these

two cases. When compared to the raw spectra calibration,

the MDLs for these two cases are lower than the raw spectra;

both have only two samples below MDL. The mean blank

values for the baseline-corrected and truncated spectra cases

are higher and not centered around 0 as is the raw spectra

calibration. For baseline-corrected cases, the mean blank is

less than half of the 1st percentile of predicted OC values;

for the truncated spectra, the mean blank is of the same order

as the 1st percentile of predicted values (3.7 µg). The preci-

sion is poorest using baseline-corrected spectra. ANOVA of

the blank values indicates that the blank predictions are sig-

nificantly different (p < 0.001 for prediction, bias and error).

3.3 Evaluating causes of bias and error by selecting the

calibration and test sets based on measured

parameters

In this section, we consider the role of the distribution of

TOR OC, OM / OC and ammonium / OC on FT-IR OC pre-

dictions. The magnitude of TOR OC is considered since this

is the property to be quantified. OM / OC is considered since

it is indicative of the mix of primary and secondary organic

aerosol composition. OM / OC is obtained from FT-IR anal-

ysis calibrated with laboratory standards (Ruthenburg et al.,

2014). Ammonium can be an interferant in FT-IR analysis;

the absorption band of the N-H stretching vibrations overlaps

with several vibrational modes of organic functional groups.

We use the ratio of ammonium to OC mass loadings to iso-

late the effect of ammonium because the magnitude of its

interference is dependent on its mass with respect to the or-

ganic material mass collected on the filter. Because ammo-

nium is not measured in the IMPROVE network, the ammo-

nium mass is estimated assuming full neutralization solely by

ammonium of reported sulfate and nitrate concentrations re-

ported in the IMPROVE network data. The assumption may

be an over- or underestimation of ammonium depending on

the amount of neutralization and other species present; how-
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Figure 4. The probability density distribution of OC and bias and normalized error (with the interquartile range shown by error bars) in the

calibration (red) and test (blue) sets for five calibration cases: the Base case, the Uniform OC case and three Non-uniform OC cases. Vertical

lines are the median of the OC mass distributions color-coded for calibration and test sets.

ever we expect that for the purpose of our study, the errors

in this assumption will not significantly alter our evaluation.

Separate calibrations are developed for each parameter: OC,

OM / OC and ammonium / OC.

To investigate the role of the distribution of each parame-

ter, samples are arranged in ascending order by the parameter

of interest prior to selection of filters for the calibration and

test sets. Every third sample in the ordered list is put into the

test set, and the remaining samples are put into the calibration

set. These cases are called the Uniform OC case, Uniform

OM / OC case and Uniform ammonium / OC case. Three

Non-uniform cases are also considered for TOR OC: samples

with TOR OC in the lowest two-thirds of the TOR OC range

are used to predict samples with TOR OC in the highest one-

third of the TOR OC range (Non-uniform A), samples with

the highest and lowest one-third TOR OC are used to pre-

dict samples in the middle one-third TOR OC (Non-uniform

B) and samples with the highest two-thirds TOR OC are

used to predict samples with the lowest one-third TOR OC

mass (Non-uniform C). Similarly, three Non-uniform cases

are modeled for OM / OC and ammonium / OC.

The top row of subplots in Fig. 4 shows the distribution

of OC in the test and calibration sets for the Base case (for

reference), the Uniform OC case and the three Non-uniform

cases. For the Base case and the Uniform OC case, the dis-

tribution of OC is quite similar in the test and calibration set,

but for the Non-uniform cases the distributions are different

and reflect the algorithm used to select the filters for each

case. The median and 25th to 75th percentiles (interquar-

tile range) of the bias and normalized error are shown in the

lower two rows of Fig. 4 for each of the three spectral types.

Small, open symbols are used for sets with low median OC

mass. Larger, closed symbols represent sets that have higher

median OC mass. For the Base and Uniform cases, the me-

dian bias is close to 0 and the interquartile range is similar

and small for the test and calibration sets. The median nor-

malized error and the interquartile range for these two cases

are also small and similar for the test and calibration sets.

The bias and error indicate that the test set is well predicted

for both the Base and Uniform cases. Similarly, for the case

where the lowest and highest thirds of the values are used

to predict the middle third (Non-uniform B), the bias and

normalized error median and interquartile range are similar

and small, indicating good prediction of the test set. For the

case when low-OC-mass samples are used to predict high-

OC-mass samples (Non-uniform A), there is a small nega-

tive bias (−0.10 µg m−3) and a larger range in bias for the

test set. However, the normalized error is small and similar

for the two sets, highlighting the linearity of the calibration.

For all of these cases, median OC masses for both sets are

greater than 15 µg. For the case when high-OC-mass samples

are used to predict low-OC-mass samples (Non-uniform C),

the median OC mass is less than 15 µg in the test set. For this

case the median bias is 0.10 to 0.14 µg m−3 and the normal-

ized error is between 40 and 50 % depending on the spectral

types used. The range of errors (the higher errors are outside

the bounds of the plot) is also considerably larger. The posi-

tive bias and normalized errors for low-OC-mass samples is

expected due to some combination of higher analytical TOR

and FT-IR errors, including TOR blank correction and PLSR

fitting errors at low concentrations. For the samples below

15 µg, the actual measurement artifact may be considerably

less than the monthly median value used (Sect. 2.1), lead-

ing to an underestimate of TOR OC which contributes to the

positive bias in the FT-IR OC. The large sample-to-sample

variability in measurement artifact in TOR may contribute to

the higher variability in the error.

The top row of subplots in Fig. 5 shows the distribution of

OM / OC in the test and calibration sets for the Base case, the

Uniform OM / OC case and the three Non-uniform OM / OC
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Figure 5. The probability distribution of OM / OC and bias and normalized error (with the interquartile range shown by error bars) in the

calibration (red) and test (blue) sets for five calibration cases: the Base case, the Uniform OM / OC case and three Non-uniform OM / OC

cases. Vertical lines on the probability distributions are the color-coded median of the OM / OC distributions.

cases. The Base and Uniform cases have similar OM / OC

distributions, a median bias of 0 and low normalized error

in the test and calibration sets, indicating good prediction of

the test set. When the highest and lowest one-third of the

samples is used to predict the middle third (Non-uniform B),

the median OM / OC is somewhat different between the cal-

ibration and test set, but the test set has low bias and error,

indicating good prediction. However when there is a larger

difference in OM / OC between the test and calibration sets

(Non-uniform A and Non-uniform C), the bias is still near

0 (no more than 0.03 µg m−3) – except for the Non-uniform

C, truncated case (0.09 µg m−3) – but the normalized error

and its range are higher for the test set (14–17 %) than for

the calibration set (7–9 %). The higher error is due to dif-

ference in the chemical composition of the aerosol in the

test and calibration sets. High OM / OC indicates that the

carbonaceous aerosol is oxidized and has considerable func-

tionality as would be expected of secondary organic aerosol.

Primary organic aerosol has a low OM / OC because there

is less oxygen and functionality in the molecules. The dif-

ference in composition leads to an increase in the median

normalized error in the test set and increases the likelihood

of larger errors for some samples as indicated by the larger

error bars. This analysis is carried out for OC / EC and is

shown in Sect. S6 in the Supplement. OC / EC has been used

as an indicator of organic composition (Turpin and Huntz-

icker, 1995) and follows a similar pattern to OM / OC.

The impact of ammonium is evaluated using Uniform and

Non-uniform calibrations of ammonium / OC (Fig. 6). Sim-

ilar to OC and OM / OC, the Base case, Uniform case and

Non-uniform B case have near-zero bias and low normalized

error. When low ammonium / OC samples are used to pre-

dict samples with high ammonium / OC (Non-uniform A),

the bias increases to 0.1 µg m−3 and the normalized error in-

creases from 8 % in the calibration set to 24 % in the test set.

In this case, the calibration set is not trained to disregard am-

monium in the prediction of OC, so some of the ammonium

is likely reported to be OC. In the Non-uniform C case, the

calibration set is trained to disregard ammonium, the predic-

tion of low ammonium / OC samples is slightly biased low

(0.04 to 0.06 µg m−3), the range of the bias increases and

the error increases by 3 or 4 % from the calibration set to

the test set, but the range is similar for the two sets. This

suggests that a small amount of OC may be incorrectly as-

signed to ammonium, so the predictions are biased slightly

low and the error increases slightly. The distribution of OC,

OM / OC, ammonium / OC and EC / OC for the test and cal-

ibration sets for the Base, Uniform and Non-uniform cases

are shown in Sect. S7 in the Supplement.

3.4 Understanding error in samples with low OC mass

As least-squares algorithms minimize the squared magnitude

of residuals, normalized errors for low-mass samples may

be large when high mass samples are included in the cali-

bration set. A calibration model localized to the lowest one-

third of the OC masses (OC≤ 15 µg) is developed to evalu-

ate our capability to predict OC in samples with these low

masses. This calibration model is called the Low Uniform

OC calibration model. The test set contains 89 ambient sam-

ples that are in the lowest one-third of the OC mass distribu-

tion. The lowest one-third mass OC calibration set is made

up of 168 ranked OC samples which are in the lowest one-

third of the OC mass range plus blanks. The prediction of

the test set by the Low Uniform OC calibration is compared

to the prediction of the same test set by Uniform OC cali-

bration (Sect. 3.3) which includes the full range of OC. The

distribution of OM / OC and ammonium / OC in the test and

calibration sets for these cases are similar (Sect. S7 in the

Supplement), indicating that the error in the low-OC sam-
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Figure 6. The probability distribution of ammonium / OC and bias and normalized error (with the interquartile range shown by error bars) in

the calibration (red) and test (blue) sets for five calibration cases: the Base case, the Uniform ammonium / OC case and three Non-uniform

ammonium / OC cases. Vertical lines on the probability distributions are the median of the ammonium / OC distributions.

ples is not due to differences in chemical composition or am-

monium in the test and calibration sets. Figure 7 shows the

mean error and MDL for the Uniform OC calibration and

the Low Uniform OC calibration for each of the three spec-

tral types. Collocated TOR precision for samples in the same

mass range as the Low Uniform OC calibration (OC≤ 15 µg)

is shown for comparison in Fig. 7. The mean error does not

significantly decrease when using samples with low OC mass

in the calibration, and it is comparable to the collocated TOR

precision. Improvement in the reported detection limits for

the raw and truncated spectra model is observed when us-

ing samples with low OC mass, suggesting that samples with

masses near MDL may benefit from this alternative calibra-

tion model. However, because the average prediction error

for these low-mass samples is not significantly improved ac-

cording to any of these calibrations over the Uniform OC

case model, the Uniform OC case calibration is suitable for

most samples (further discussion on the distribution of errors

is provided in Sect. S8 of the Supplement). Since we are fit-

ting the FT-IR spectra to TOR OC measurements, the error in

FT-IR OC cannot be lower than the error in TOR OC itself.

However, this analysis suggests that the FT-IR analytical and

PLS fitting errors do not impose a significant addition to the

TOR analytical and artifact-correction errors already present

in the OC measurements.

3.5 Using differences in OC mass and aerosol

composition in the test and calibration sets to

explain the quality of TOR OC predictions at

specific sites

Calibrations are developed using all ambient samples in the

calibration set except samples from one site which is pre-

dicted. For five sites, the distributions of OC in the test and

calibration set, and the median and interquartile range of bias
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Figure 7. Mean error and MDL for the Uniform OC (which in-

cludes the full range of OC) and the Low Uniform OC cases for

all three spectral types. Collocated TOR OC precision and MDL

for TOR samples in the same mass range as the Low Uniform OC

case (OC < 15 µg) are shown for reference. The error bars indicate

the 95 % confidence intervals on these point estimates. Absolute er-

rors are compared directly because the same test set is used for both

cases (FT-IR OC), or for samples in the same concentration range

(TOR OC).

and normalized error are shown in Fig. 8. Three sites – Mesa

Verde, Olympic and Trapper Creek – have median OC mass

below 15 µg (shown with open symbols) and have the high-

est median and range of normalized error. As shown with

the low-OC calibration and comparison to collocated TOR

samples (Sect. 3.4), these errors are due primarily to TOR

analytical and artifact-correction errors. All other sites have

higher OC mass and are expected to be predicted well, based

on OC mass alone. St. Marks and Proctor Maple Research

Facility are both well predicted (Fig. 8). Distributions of OC,

OM / OC, OC / EC and ammonium / OC for the test and cal-
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Figure 8. The distribution of OC and the bias and normalized error (with the interquartile range shown by error bars) in the calibration (red)

and test (blue) sets for calibrations developed for each of five sites. Each calibration has all samples in the calibration set except for the site

to be predicted. Vertical lines are the color-coded median of the OC distributions.
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Figure 9. The OM / OC and ammonium / OC distributions and the bias and normalized error (with the interquartile range shown by error

bars) in the calibration (red) and test (blue) sets for calibrations developed for Phoenix and Sac and Fox. Each calibration has all samples in

the calibration set except for the site to be predicted. Vertical lines are the median of the OM / OC or ammonium / OC distributions.

ibration sets for all sites are shown in Sect. S7 of the Supple-

ment.

Figure 9 shows the OM / OC and ammonium / OC distri-

butions for the two remaining sites, Phoenix and Sac and

Fox. Phoenix, an urban site, and Sac and Fox have lower

OM / OC than the rest of the sites, which indicates that there

is more primary OM at these sites than in the rest of the sites.

For Sac and Fox, the median OM / OC is lower than the rest

of the sites (calibration set), but the distribution is bimodal

such that many of the Sac and Fox samples are in the same

range of OM / OC as the other sites, minimizing the impact

of the difference in median OM / OC. The median and range

of the bias is higher for Sac and Fox than for the other sites,

but the error is very similar to the other sites, indicating only

a slightly poorer prediction than for the calibration set. For

Phoenix, the difference in composition produces predictions

that are more biased (the direction of the bias depends on the

type of spectra used) and the range of bias is large, which

means that more samples have larger biases than in the cal-

ibration set. However, the median OC for Phoenix is nearly

50 µg, so the bias is small relative to the OC mass. The nor-

malized error is also slightly higher for the Phoenix samples

than the rest of the samples although the distribution of er-

rors is similar for the calibration and test set, indicating only

a small effect on error. Phoenix has the largest difference in

composition between it and the rest of the sites, yet the im-

pact on the calibration metrics is small. This analysis is car-
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ried out for OC / EC and shows similar trends (Sect. S6 in

the Supplement).

Only the Phoenix and Sac and Fox sites show differences

in ammonium / OC between the test and calibration set; these

are the same two sites impacted by OM / OC differences

(Fig. 9). The calibration set for predicting Phoenix has higher

ammonium / OC than Phoenix, the same pattern as Non-

uniform C for ammonium / OC, which was shown to have

only a small impact on predicted values. This suggests that

the increased bias and error in Phoenix is due primarily to

differences in organic composition, not to ammonium inter-

ference. The calibration set for Sac and Fox has lower ammo-

nium / OC than Sac and Fox. This is similar to Non-uniform

A for ammonium / OC, in which the calibration is not trained

to disregard ammonium when determining OC, so a positive

bias is observed and a larger normalized error and range of

errors. Sac and Fox has only a small positive bias and in-

crease in error and no increase in the range of error, so the

impact of ammonium, if present is small. However, the im-

pact of the difference in OM / OC produces similar changes

in bias and error to ammonium / OC, so for Sac and Fox the

small increases in bias and error compared to the calibration

set may be due to OM / OC, ammonium / OC or some com-

bination of both.

We can therefore predict how well a site not included in

the calibration will be predicted, based on the OC, OM / OC

and ammonium / OC for the site. However, even for the most

poorly predicted sites the median normalized errors are still

fairly low; 17–25 % for sites with low OC mass; 11–14 %

for Phoenix, which has low OM / OC; and 9–12 % for Sac

and Fox due to some combination of low OM / OC and high

ammonium / OC.

4 Conclusions

PTFE filters routinely collected in the IMPROVE network

are non-destructively analyzed by FT-IR. The FT-IR spectra

and parallel TOR OC measurements are used in partial least-

squares regression to develop calibrations to predict TOR

OC. All three spectral types produce high-quality predic-

tions. Blank filters in the test set are used to calculate MDL.

The calibration sets developed from samples ordered by site

date, OC, OM / OC or ammonium / OC produce nearly bias-

free predictions with low error. Samples with low OC mass

predict OC in samples with high OC mass with low error be-

cause the calibration is linear. Errors for samples with low

OC mass (less than 15 µg or 0.45 µg m−3) are high primar-

ily due to TOR OC analytical errors and artifact-correction

errors. The higher errors in the low-OC-mass samples sug-

gest that the use of a single value to artifact-correct all sam-

ples collected in a month induces additional error in low-OC

samples. The low error in most samples suggests that the

charring correction is consistently applied such that it can be

accounted for with the statistics used to develop the calibra-

tion models. Using the lowest one-third of OC samples in the

calibration set may improve the prediction for some samples

near the MDL, but this modification to the calibration does

not improve the overall performance of the calibration. Er-

rors and bias are kept to a minimum by including samples in

the calibration set that have a similar range of organic com-

position, as indicated by OM / OC or OC / EC, and a similar

range of ammonium / OC to the samples to be predicted. Us-

ing a calibration set in which samples do not span the full

range of OM / OC or ammonium / OC in the test set leads to

higher bias and errors, but the bias and errors are still small.

Therefore, we conclude that FT-IR spectra calibrated to TOR

OC using partial least-squares regression is a robust method

for predicting TOR organic carbon from particulate matter

samples. Future work includes establishing that the calibra-

tion developed using samples from one year can be used to

predict TOR OC during other years and developing a cali-

bration that includes samples with a broader range of aerosol

composition.

The Supplement related to this article is available online

at doi:10.5194/amt-8-1097-2015-supplement.
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