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Abstract. The Multi-angle Imaging SpectroRadiome-

ter (MISR) aboard the NASA Earth Observing System’s

Terra satellite can provide more reliable aerosol opti-

cal depth (AOD) and better constraints on particle size

(Ångström exponent, or ANG), sphericity, and single-

scattering albedo (SSA) than many other satellite instru-

ments. However, many aerosol mixtures pass the algorithm

acceptance criteria, yielding a poor constraint, when the

particle-type information in the MISR radiances is low, typi-

cally at low AOD. We investigate adding value to the MISR

aerosol product under these conditions by filtering the list

of MISR-retrieved mixtures based on agreement between

the mixture ANG and absorbing AOD (AAOD) values, and

simulated aerosol properties from the Goddard Chemistry

Aerosol Radiation and Transport (GOCART) model. MISR–

GOCART ANG difference and AAOD ratio thresholds for

applying GOCART constraints were determined based on

coincident AOD, ANG, and AAOD measurements from the

AErosol RObotic NETwork (AERONET). The results were

validated by comparing the adjusted MISR aerosol optical

properties over the contiguous USA between 2006 and 2009

with additional AERONET data. The correlation coefficient

(r) between the adjusted MISR ANG derived from this study

and AERONET improves to 0.45, compared to 0.29 for the

MISR Version 22 standard product. The ratio of the adjusted

MISR AAOD to AERONET increases to 0.74, compared to

0.5 for the MISR operational retrieval. These improvements

occur primarily when AOD < 0.2 for ANG and AOD < 0.5 for

AAOD. Spatial and temporal differences among the aerosol

optical properties of MISR V22, GOCART, and the adjusted

MISR are traced to (1) GOCART underestimation of AOD

and ANG in polluted regions; (2) aerosol mixtures lacking in

the MISR Version 22 algorithm climatology; (3) low MISR

sensitivity to particle type under some conditions; and (4) pa-

rameters and thresholds used in our method.

1 Introduction

Atmospheric aerosols affect global climate directly by ab-

sorbing and reflecting solar radiation (Myhre, 2009) and in-

directly by altering cloud microphysics and biogeochemi-

cal cycles (Mahowald, 2011). Despite several decades of re-

search, the quantitative relationships among aerosols, clouds,

and precipitation within the global climate system are still

not well understood due to the inadequacy of existing tools

and methodologies (Stevens and Feingold, 2009) and avail-

able measurements. Aerosol particles originate from a wide

variety of natural and anthropogenic sources, and can con-

tain chemically distinct species, such as sulfates, nitrates, or-

ganic carbon (OC), black carbon (BC), sea salt, and mineral

dust. The concentration and composition of these species are

highly variable temporally and spatially. Ground-based ob-

servations, such as those provided by the AErosol RObotic

NETwork (AERONET), are often used to constrain column-

effective aerosol optical properties, but these point measure-

ments have very limited spatial coverage (Holben et al.,

1998), and the derivation of particle properties other than the
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spectral optical depth or Ångström exponent (ANG) requires

many assumptions. During the past decade, researchers have

explored the potential of using satellite-retrieved aerosol

properties to fill gaps not covered by ground observa-

tions. Satellite products have advanced our understanding

of aerosol impacts on global climate change (Lohmann and

Lesins, 2002), particle type (Kahn and Limbacher, 2012; Liu

et al., 2007a), and air quality (Liu et al., 2009b; van Donke-

laar et al., 2010).

Uncertainties in satellite aerosol retrievals are usually at-

tributed to cloud contamination, surface reflectance estima-

tion, and the selection of aerosol optical models (Chu et

al., 2002). Among these factors, the aerosol models are usu-

ally derived from the analysis of ground-based observations,

such as AERONET data or aircraft in situ measurements ac-

quired during field campaigns. Omar et al. (2005) found that

six aerosol models (representing desert dust, biomass burn-

ing, background/rural, polluted continental, marine, and dirty

pollution aerosol) characterize the primary aerosol types in

almost the entire AERONET data set. With slight modifi-

cations, these general aerosol types are used in the opera-

tional Cloud–Aerosol Lidar and Infrared Pathfinder Satel-

lite Observation (CALIPSO) lidar aerosol classification al-

gorithm. As the most widely used satellite aerosol data

source, NASA’s Moderate-Resolution Imaging Spectrora-

diometer (MODIS) aerosol optical depth (AOD) algorithm

assigns a set of global aerosol models in its dark target (DT)

algorithm based on spatial and temporal information de-

rived from AERONET (Levy et al., 2013). Many researchers

also use local observations to fill the gaps in satellite data

needed to create regional aerosol products. For example, Li

et al. (2005a) derived seasonal aerosol mixing ratios with

single-scattering albedo (SSA) around 0.91–0.94 to accom-

modate the higher aerosol absorption encountered in Hong

Kong. Lee and Kim (2010) achieved better AOD correla-

tions with AERONET than those obtained from the oper-

ational MODIS aerosol products when using aerosol mod-

els developed by statistically clustering observational data

from East Asia. However, AERONET coverage is not dense

enough to capture all the subtlety in aerosol-type diversity

on continental scales. To date, many studies have demon-

strated that atmospheric chemical transport models (CTMs)

can help constrain satellite aerosol retrievals under some cir-

cumstances. Drury et al. (2008, 2010) first coupled the sim-

ulated aerosol properties from a global 3-D chemical trans-

port model (GEOS-Chem) to improve the MODIS DT al-

gorithm. This method was extended by Wang et al. (2010)

and Li et al. (2013), who looked specifically at dust and

haze pollution in China and demonstrated that customized

retrievals performed better than the MODIS standard product

in these regions. Although the accuracy of most CTM sim-

ulations, like those from GEOS-Chem, depends heavily on

the quality of meteorological inputs, atmospheric chemistry

schemes, and emission inventories, CTM simulations have

the advantage of providing information on aerosol mass con-

centration, composition, and optical properties at regional-to-

global scales with complete temporal and spatial coverage.

Most importantly for the current study, aerosol type in the

model depends primarily on the aerosol source inventories

used and is therefore far less sensitive to the ambient AOD

downwind than the satellite aerosol-type retrievals.

The MODIS instruments have proven valuable for retriev-

ing AOD around the world, but the standard DT algorithm

shows poor performance over bright surfaces and lacks the

capability to retrieve additional aerosol optical properties,

such as particle type. The analysis presented in this pa-

per focuses on the Multi-angle Imaging SpectroRadiome-

ter (MISR), which was launched into a sun-synchronous

polar orbit in December 1999 aboard the NASA Earth

Observing System (EOS) Terra satellite. Unlike MODIS,

MISR, which has a unique design of nine individual cam-

eras, uses the presence of angular-spatial patterns within a

17.6 km retrieval region to derive an empirical orthogonal

function (EOF) representation of region-averaged, surface-

leaving light reflection (Martonchik et al., 2009). The EOF

algorithm can greatly reduce the impact of surface re-

flectance uncertainties on aerosol retrievals (Diner et al.,

2005). Global validation of MISR-retrieved AOD against

AERONET observations showed that the operational (Ver-

sion 22) MISR AOD product has a retrieval error that falls

within a confidence envelope defined by ±0.05 or ±0.2τ ,

whichever is larger (Kahn et al., 2010). The retrieval algo-

rithm that generates this product defines 74 aerosol opti-

cal models (called “mixtures” in MISR terminology), which

are combinations of up to three of eight individual aerosol

components. Each component is defined by a size distribu-

tion, shape, and complex index of refraction. The top-of-

atmosphere (TOA) reflectances calculated based on these

aerosol mixtures and stored in a look-up table are compared

with the observed reflectances. A set of chi-square statistical

tests is then applied to determine which aerosol mixtures best

fit to the observations (Kahn et al., 1998; Liu et al., 2009a).

Using this approach, the MISR aerosol retrieval algorithm

provides some particle-type information under favorable re-

trieval conditions, such as constraints on ANG and SSA, in

addition to AOD.

However, the V22 MISR aerosol retrieval approach also

has limitations. Although the mixtures included in the MISR

algorithm were derived primarily from field measurements,

selections among these mixtures are based on a set of chi-

square statistical tests that do not employ any prior spatial

or temporal aerosol information (e.g., the prior information

from AERONET that defines the aerosol optical properties

used in the MODIS DT algorithm). If many different mix-

tures pass the retrieval acceptance criteria, this usually indi-

cates that the aerosol-type information content of the obser-

vations is limited (Kahn et al., 2010), and the retrieved type

might reflect more on the MISR algorithm aerosol climatol-

ogy than the true aerosol properties (Liu et al., 2007a, b). Liu

et al. (2007a) reported∼ 20 % uncertainty in MISR-retrieved
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aerosol microphysical properties when distinguishing light-

absorbing and non-light-absorbing aerosols. The sensitivity

of the V22 MISR retrieval algorithm to aerosol component

information also diminishes when AOD is below 0.15 or

0.2 (Kahn et al., 1997, 2001). Moreover, the V22 MISR al-

gorithm climatology lacks spherical absorbing particles of

certain sizes, as well as mixtures containing both spherical,

absorbing smoke analogs and non-spherical dust. For these

reasons, the V22 MISR algorithm shows poor AOD perfor-

mance for some biomass burning and urban regions (Kahn et

al., 2010; Kahn et al., 2007). ANG also tends to be overes-

timated in some polluted and smoky regions, as the current

set of eight aerosol components in the MISR V22 algorithm

lacks medium particles with effective radii between 0.26 and

2.8 µm (Kahn et al., 2010).

Our work aims to add value to MISR-retrieved aerosol

optical properties using CTM aerosol simulations as addi-

tional constraints on particle types where the MISR radi-

ances lack such sensitivity. We use the Goddard Chemistry

Aerosol Radiation and Transport (GOCART) model because

it has been evaluated extensively against in situ observa-

tions, sun photometer measurements, and satellite observa-

tions around the world (Chin et al., 2002b, 2004, 2007, 2009,

2014), and a global-scale model can provide a useful link be-

tween satellite and ground observations. GOCART can pro-

vide MISR-corresponding parameters, such as AOD, ANG,

and absorbing AOD (AAOD), which can also be evaluated

using AERONET observations. The rest of the paper is orga-

nized such that Sect. 2 describes the data sets involved in this

analysis and the methods used for constraining MISR mix-

tures with CTM simulations. Section 3 validates our method

using 4 years of coincident AERONET observations over the

contiguous USA. The sources of uncertainties and sensitivity

analyses are also discussed in detail in this section. Finally,

major findings and potential future improvements to the cur-

rent analysis are summarized in Sect. 4.

2 Data and method

2.1 MISR aerosol product

The V22 MISR Level 2 aerosol data, with a spatial reso-

lution of 17.6 km, were downloaded from the NASA Lan-

gley Research Center Atmospheric Sciences Data Cen-

ter (http://eosweb.larc.nasa.gov) for the contiguous USA

from 2006 through 2009. Total column AOD values used

in this analysis are from MISR parameters “RegBestEsti-

mateSpectralOptDepth” and “RegLowestResidSpectralOpt-

Depth” (called “MISR Best Estimate” and “MISR Low-

est Resid” hereinafter), which represent the mean AOD

of all mixtures that pass the goodness-of-fit tests and the

AOD of the mixture with the smallest chi-square, respec-

tively. The corresponding parameters for ANG (“RegBestEs-

timateAngstromExponent” and “RegLowestResidAngstrom-

Exponent”) and SSA (“RegBestEstimateSSA”) were also ex-

tracted. The ANG reported in the MISR product is calculated

from the slope of a linear least-squares fit to the logarithm of

the AODs retrieved at MISR’s four wavelengths (446, 558,

672, and 866 nm). The AAOD (τ absorbing) at a given wave-

length can be calculated from SSA and AOD as follows:

τ absorbing
= τ × (1−ω). (1)

MISR’s 74 mixtures are made of up to three “pure” aerosol

components corresponding to spherical non-absorbing

aerosol (components 1, 2, 3, and 6, representing optical

analogs for sulfate, sea salt, organic aerosol, etc.); spheri-

cal, absorbing aerosol (components 8 and 14, representing

black or brown carbon particles, etc.); and non-spherical

dust analogs (components 19 and 21) (Kahn et al., 2010).

A “mixture data” table for the MISR product (as shown in

Fig. 1) lists each mixture’s properties, such as ANG (reported

as “Ångström exponent”), SSA (reported as “mixture spec-

tral single-scattering albedo”), and the fractional contribu-

tion of each component to the total mid-visible AOD (re-

ported as “component fractional optical depth in reference

band”). MISR also provides information on whether each

mixture passed the goodness-of-fit tests (reported as “Aer-

RetrSuccFlagPerMixture”), the number of successful mix-

tures (reported as “NumSuccAerMixture”), and the green-

band (558 nm) AOD for each of the 74 mixtures used in the

retrieval (reported as “OptDepthPerMixture”). Therefore, the

aerosol optical properties can be calculated based on these

mixtures and their related information.

2.2 GOCART aerosol simulations

The NASA GOCART model is driven by assimilated mete-

orological fields, which are generated in the Goddard Earth

Observing System Data Assimilation System (GEOS DAS).

Although the GOCART model has been validated around the

world (Chin et al., 2009), we also conduct a focused vali-

dation study for the same period and geographic region as

the MISR retrievals considered in the current study. The GO-

CART 2-D simulations used in this analysis are at a 3 h tem-

poral resolution and 1◦ latitude × 1.25◦ longitude horizontal

resolution. Total column AOD (τ) at 550 nm is the sum of

five tracer AODs: sulfate, dust, OC, BC, and sea salt:

τ = τsulfate+ τdust+ τOC+ τBC+ τsea−salt. (2)

GOCART saves 2-D AODs at seven wavelengths (350, 450,

550, 650, 900, 1000, and 1500 nm). ANG is calculated

from AODs at 450 and 900 nm using the Ångström equa-

tion

(
α =−

ln
τ450
τ900

ln 450
900

)
. The model also provides the AAOD at

seven wavelengths for each tracer; thus, the total AAOD at

550 nm (τ absorbing) can be calculated as

τ absorbing
= τ

absorbing

dust + τ
absorbing

OC + τ
absorbing

BC . (3)
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Figure 1. Graphical representation of the 74 aerosol mixtures in the MISR Version 22 standard product. Distributions of (a) Ångström

exponent and SSA at 558 nm; (b) AOD percentages, by component categories, for each mixture.

The factors that affect GOCART AOD the most are the par-

ticle mass and the assumed aerosol optical properties. The

uncertainties in the simulated aerosol mass are attributed pri-

marily to ground emissions, meteorological fields, and pa-

rameterized aerosol removal mechanisms. Because sulfate

and sea salt particles are non-absorbing at visible wave-

lengths, they are not included in Eq. (3).

As shown in Fig. 2, we split the contiguous USA into 690

GOCART grid cells. To compare the satellite retrievals with

model simulations, all cloud-free, 17.6 km MISR pixels lo-

cated in each 1◦× 1.25◦ GOCART grid cell were first av-

eraged (called MISRGOCART hereinafter). Then, GOCART

simulations at 12:00 LT, which roughly corresponds to the

MISR overpass time (∼ 10:30 LT), were sampled for the

MISRGOCART swath. Figure 2 also adds the National Land

Cover Database (NLCD) 2006 land cover layer, which is

partly linked to the ground emission conditions (Wang et al.,

2012). Due to the large, systematic differences in land cover,

climate, and emissions, we divided the contiguous USA into

eastern and western regions along the 100◦W longitude line.

2.3 AERONET Level 2 data

Level 2 (quality-assured) spectral AOD data from 32

AERONET sites over the contiguous USA were included

in this study (accessed at http://aeronet.gsfc.nasa.gov). As

shown in Fig. 2, 14 of these AERONET sites (red circles)

are in the eastern USA, many of which are located along the

Atlantic coast. There are 18 western AERONET sites, many

of which are in crop- or forest-covered regions, according to

the NLCD 2006 land cover data. Eighteen of the sites (blue

circles) reported absorbing AOD and SSA during the study

period. AERONET AOD values at 440 and 870 nm were used

to calculate ANG using the Ångström equation above, which

was then used to interpolate the AOD to 550 nm to compare

with the GOCART and MISR AOD data (MISR values are

at 558 nm wavelength). AERONET observations were aver-

aged over a 2 h window around the satellite overpass time

(i.e., 10:30 LT). Only high-quality AERONET AAOD re-

trievals (i.e., AOD at 440 nm > 0.4, and solar zenith angle

> 50◦; Dubovik et al., 2000, 2002) were used in this study.

2.4 Sub-selecting MISR mixtures with GOCART

information

As mentioned above, greater uncertainty is indicated in

MISR-retrieved aerosol microphysical properties when many

mixtures satisfy the retrieval acceptance criteria (Liu et al.,

2007a, b). The post-processing technique proposed in this

study aims to narrow the selection of mixtures under these

circumstances by introducing GOCART aerosol simulation

results. Our approach does not require rebuilding the MISR

look-up table or rewriting the EOF code. The additional GO-

CART information provides some constraints on aerosol size

distribution and composition. We use AAOD rather than SSA

(ω), as AAOD has a wider dynamic range than SSA.

In practice, we constrain MISR’s aerosol mixture selec-

tions in the V22 operational product with information from

GOCART model simulation results by calculating the differ-

ences of ANG and AAOD between MISR and GOCART:

DiffANG = |αMISR−αGOCART| ≤ εANG, (4)

DiffAAOD =
∣∣FractionMISR_AAOD

−FractionGOCART_AAOD

∣∣≤ εAAOD, (5)

where α is the ANG, and εANG and εAAOD represent the cor-

responding thresholds for the ANG and AAOD differences

at 558 nm, respectively. FractionMISR_AAOD is the fractional

contribution of AAOD to the total AOD for a specific mixture

at 558 nm. The corresponding FractionGOCART_AAOD is cal-

culated as
τ

absorbing

GOCART

τGOCART
. By using fractional AAOD values, Eq. (5)

emphasizes the contribution of absorbing aerosol, and it re-

duces the impact of differences in the absolute AAOD due

Atmos. Meas. Tech., 8, 1157–1171, 2015 www.atmos-meas-tech.net/8/1157/2015/
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Figure 2. Spatial distribution of GOCART 1◦ × 1.25◦ grid points (blue dots), superposed on a map of the contiguous USA. Thirty-two

AERONET sites containing AOD Level 2 data from 2006 to 2009 are shown as red dots; those also reporting SSA have a surrounding blue

circle. The NLCD 2006 land cover layer, created by the Multi-Resolution Land Characteristics (MRLC) Consortium (http://www.mrlc.gov/

nlcd06_data.php), underlies the grid data.

to model–satellite discrepancies, such as resolution differ-

ences, satellite retrieval errors, and the impact of emission

inventory choices on the model. Because fixed thresholds of

εANG or εAAOD often leave no mixtures that meet the accep-

tance criteria, we adopted dynamic thresholds in Eqs. (4) and

(5) to retain a certain percentage of mixtures. Specifically,

we first sort the absolute differences calculated by Eqs. (4)

and (5) for all the successful mixtures in order from small

to large values. We then retain a certain percentage of the

successful mixtures based on Eqs. (4) (called εANG% here-

inafter) and (5) (called εAAOD % hereinafter). Finally we se-

lect the common ones from the two sets of retained mixtures.

The minimum (0 %) and maximum (100 %) values represent

none and all MISR successful mixtures passing our thresh-

olds, respectively. If no common mixtures are found, we se-

lect one mixture with the smallest εANG and one with the

smallest εAAOD. We call the aerosol optical properties cal-

culated from the selected MISR-retrieved mixtures “adjusted

MISR” aerosol properties. We adopt this approach primarily

to help in situations where the MISR radiances lack aerosol-

type information, and many mixtures pass. The errors in our

method are mainly due to the uncertainties in the GOCART

simulations; limitations in the V22 MISR mixture options;

and thresholds of εANG % or εAAOD %, which are discussed

in later sections.

3 Results and discussion

3.1 Validation of MISR and GOCART products with

AERONET observations

During the period 2006 through 2009, there were

1492 MISR–AERONET matched data records for AOD and

ANG over the 32 AERONET sites. Figure 3 and Table 1

show that both MISR Best Estimate and MISR Lowest Resid

AOD retrievals are strongly correlated with AERONET data.

www.atmos-meas-tech.net/8/1157/2015/ Atmos. Meas. Tech., 8, 1157–1171, 2015
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Table 1. Validations of MISR, GOCART, and our work’s aerosol optical properties by AERONET in different AOD conditions.

Range N Mean_A Mean SD Slope Intercept r or γ

(error) (error)

AOD All MISR1 1492 0.1 0.13 0.056 0.8 (0.015) 0.05 (0.002) 0.79

MISR2 0.13 0.058 0.8 (0.016) 0.05 (0.002) 0.78

GOCART 0.09 0.045 0.27 (0.013) 0.06 (0.002) 0.5

Adj. MISR 0.13 0.057 0.79 (0.015) 0.05 (0.002) 0.79

ANG All MISR1 1492 1.27 1.26 0.42 0.28 (0.02) 0.91 (0.03) 0.29

MISR2 1.29 0.49 0.24 (0.03) 0.96 (0.04) 0.23

GOCART 1.17 0.25 0.26 (0.01) 0.84 (0.02) 0.43

Adj. MISR 1.21 0.26 0.29 (0.01) 0.84 (0.02) 0.45

AOD MISR1 1336 1.23 1.24 0.42 0.25 (0.02) 0.93 (0.03) 0.28

≤0.2 MISR2 1.35 0.49 0.19 (0.03) 1 (0.04) 0.18

Adj. MISR 1.18 0.26 0.27 (0.01) 0.86 (0.02) 0.42

AOD MISR1 156 1.55 1.4 0.39 0.44 (0.08) 0.73 (0.24) 0.4

≥ 0.2 MISR2 1.49 0.39 0.57 (0.08) 0.59 (0.13) 0.49

Adj. MISR 1.38 0.25 0.42 (0.05) 0.74 (0.08) 0.5

AAOD All MISR1 107 0.018 0.009 0.01 0.36 (0.04) 0.5

MISR2 0.01 0.011 0.39 (0.05) 0.56

GOCART 0.009 0.006 0.34 (0.03) 0.5

Adj. MISR 0.013 0.011 0.55 (0.05) 0.74

AOD MISR1 79 0.015 0.007 0.009 0.27 (0.05) 0.47

≤0.5 MISR2 0.008 0.01 0.29 (0.05) 0.53

Adj. MISR 0.011 0.009 0.51 (0.05) 0.73

AOD MISR1 28 0.023 0.014 0.012 0.48 (0.08) 0.61

≥ 0.5 MISR2 0.015 0.013 0.53 (0.09) 0.65

Adj. MISR 0.018 0.016 0.6 (0.11) 0.75

N is sample size. MISR1, MISR2, and Adj. MISR represent operational “MISR Best Estimate”, “MISR Lowest Resid”, and adjusted MISR data

from this study, respectively. Mean_A is AERONET mean. SD is standard deviation. “r or γ ” represents the correlation coefficients for AOD and

ANG, and the mean ratio for AAOD. Results from the current study are highlighted in bold font for easy identification. All the regression slopes

are statistically significant (p < 0.0001).

The agreement between MISR Best Estimate and MISR

Lowest Resid was also reported in previous studies (Liu et

al., 2004). Our validation effort confirms that MISR-retrieved

AOD is fairly robust, even when the retrieved particle prop-

erties are not well constrained, due to the multi-angle nature

of the data (Kahn et al., 2001, 2010). Compared to the MISR

retrievals, GOCART yields a smaller value for the slope and

correlation coefficient against AERONET AOD. Many fac-

tors may contribute to these results. The model AOD calcula-

tion is based on simulated particle mass and assumed aerosol

optical parameters (Martin et al., 2003). First, uncertainties

in the simulated aerosol mass may be attributed to the emis-

sions inventories used, wet and dry deposition parameteri-

zations, chemical evolution mechanisms, and meteorologi-

cal fields (e.g., relative humidity). Second, aerosol composi-

tion and microphysical and optical properties – such as par-

ticle size distributions, refractive indices and/or hygroscopic

growth factors used by the model – are assumed indepen-

dently and may be incorrect. For example, GOCART does

not include nitrate aerosol and does not consider particle in-

ternal mixing. Third, the GOCART simulations at 1◦×1.25◦

spatial resolution usually do not represent the high AOD

near the source within the model grid cell, resulting in lower

mean AOD values than AERONET point observations near

sources. Nevertheless, the GOCART model reproduces the

correct seasonal variability at most sites, especially in places

where biomass burning or dust aerosol dominates (Chin et

al., 2002a). Table 1 indicates that both the mean value of

GOCART AOD over the contiguous USA (0.09) and the

standard deviation (SD: 0.045) are comparable with those of

AERONET (Mean_A:0.1) and MISR (SD: ∼ 0.056).

Linear regression of the MISR Best Estimate ANG against

the AERONET observations, for all data regardless of AOD,

yields a low correlation and a flat slope (Fig. 3.2a and Ta-

ble 1). Although the values of ANG among the 74 MISR

mixtures have a wide range (from 3.8 to −0.2, as shown

in Fig. 1), if many different mixtures meet the MISR algo-

rithm acceptance criteria, ANG calculated from the average

of AOD values obtained in each MISR spectral channel tends

toward the mean value of unity (Kahn et al., 2009). More-
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Figure 3. Validation of “MISR Best Estimate” (a), “MISR Lowest Resid” (b), GOCART (c), and AOD from this study (d); AOD along row

1, ANG along row 2, and AAOD along row 3, by comparison with AERONET observations. The black (for rows 2 and 3, over-plotted with

blue and red points), blue, and red points represent all AOD, AOD≤0.2, and AOD > 0.2 conditions, respectively. For AAOD, blue and red

points are divided at AOD= 0.5 rather than 0.2. The black, blue, and red lines represent the corresponding regression lines. The dashed line

is the y= x line. AERONET AAOD is only retrieved when the AOD at 440 nm is greater than 0.4 and the solar zenith angle is larger than

50. Only 107 matched MISR–AERONET AAOD data records are found in our study region.

over, when mid-visible AODs are below about 0.2, which

occurs commonly over the USA (1336 records shown in Ta-

ble 1), the MISR radiances tend to have insufficient infor-

mation to constrain particle properties (Kahn et al., 2009).

This is illustrated by the blue and red points in Fig. 3.2a,

which are for AOD≤0.2 and AOD > 0.2, respectively. For

the blue points, MISR shows poor ANG retrievals (r: 0.28;

SD: 0.49) for the entire data set. However, the correlation

coefficient for the red points increases to 0.40, and the SD

reduces to 0.39. Similarly, Fig. 3.2b shows the relationships

between MISR Lowest Resid and AERONET ANG in black,

and MISR Lowest Resid vs. AERONET ANG but separated

by AOD = 0.2 in blue and red. Again, the correlation coeffi-

cient improves significantly from 0.23 for the entire data set

and 0.18 for AOD≤0.2 to 0.49 for AOD > 0.2, and the SD

reduces to 0.39.

Although its mean value is lower than MISR, the corre-

lation between GOCART-simulated ANG and AERONET is

better than MISR when all data are included, mainly because

low AOD does not reduce the aerosol-type information in

the model. The lower ANG in GOCART is mainly due to

having too weak a spectral dependence of sulfate aerosol ex-

tinction resulting from too large a standard deviation for the

sulfate particle size distribution, based on the Optical Prop-

erties of Aerosols and Clouds (OPAC) database (Hess et al.,

1998), used in calculating the optical properties (Chin et al.,

2009). As a result, constraining the MISR results with GO-

CART in some cases makes the comparison with AERONET

poorer than the unconstrained MISR product (Table 1). This

demonstrates the dependence of our approach on the quality

of the model (but see Sects. 3.3, 3.4, and Table 2 for further

discussion). Despite the limitations, the GOCART model is

validated against many observations, and it captures the over-

all spatial and temporal features of aerosol type. Therefore,

ANG and AAOD constraints from the model become useful

for sub-selecting MISR aerosol type in situations where the

retrieval is ambiguous, e.g., when total AOD is less than 0.2,

a regular occurrence over the USA (Reid et al., 1999; Russell

et al., 2010).

Given that both the AOD and solar zenith angle conditions

must be met for such retrievals to be of high quality, there are

far fewer AERONET sky-scan AAOD results compared with

direct-sun AOD measurements, and many more assumptions

are required to derive aerosol absorption. In our analysis,

we found only 107 matched MISR–AERONET AAOD data

records, compared with 1492 AOD matches, making our re-

sults less statistically robust. MISR Best Estimate AAOD at

558 nm, with a mean value of 0.009, is much lower than the

AERONET AAOD (0.018), and the SD is as high as 0.01.

We calculated the ratio of mean retrieved AAOD to mean
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AERONET AAOD (γ : 0.5) and the regression slope (0.36),

i.e., with zero intercept, to show its underestimation, and no

meaningful correlation coefficient is derived due to the poor

agreement. MISR Lowest Resid AAOD shows similar un-

derestimation with a γ of 0.56, a slope of 0.39, and a SD of

0.011. This is expected because spherical absorbing aerosol

optical analogs are lacking in the V22 MISR aerosol cli-

matology (Kahn et al., 2010), so SSA generally tends to be

too high in places where absorbing aerosol occurs, skewing

MISR AAOD too low. Another contributing factor is that the

aerosol loading in the contiguous USA is too low to provide

more AAOD or SSA information in the MISR radiances. We

analyzed the AAOD comparison for AOD > 0.5 (red points

in Fig. 3.3a and b) and AOD≤0.5 (blue points). Both MISR

Best Estimate and MISR Lowest Resid AAOD ratios (γ ) are

greater than the overall mean ratio when AOD > 0.5, and are

lower when AOD≤0.5. The GOCART model also underesti-

mates the AAOD with a γ of 0.43, but it provides a more lin-

ear trend when compared with AERONET (Fig. 3.3c). A pre-

vious study also found similar underestimation for GOCART

AAOD simulations over the USA (Chin et al., 2009). The

adjusted MISR AAOD takes advantage of GOCART simula-

tions’ better trend and achieves greater γ values at both AOD

value ranges (Fig. 3.3d and Table 1). Note that the adjusted

AAOD value can come out higher than both the MISR and

GOCART values because the AAOD threshold is based on

the ratio of AAOD over AOD rather than the AAOD values

themselves.

3.2 Sensitivity analysis and validation of our algorithm

Our validation suggests that the MISR Best Estimate and

MISR Lowest Resid parameters could be used essentially

interchangeably for AOD, and both parameters show gen-

erally poor performance for ANG and AAOD in the study

region. We chose MISR Best Estimate, which contains more

mixtures, to represent the MISR-retrieved aerosol parame-

ters. The goal of the sensitivity analysis in this section is to

select the optimum εANG % and εAAOD % to achieve better

agreement between adjusted MISR AOD, ANG, and AAOD

results and those of AERONET. We used the correlation co-

efficients of AOD (rAOD) and ANG (rANG) between adjusted

MISR and AERONET and the ratio of mean adjusted MISR

AAOD to mean AERONET AAOD (γAAOD) to measure the

performance of our method. Figure 4 shows the distributions

of rAOD, rANG, and γAAOD, with εANG % and εAAOD % vary-

ing from 0 to 100 %. When both εANG and εAAOD are 100 %,

our rAOD, rANG, and γAAOD are equal to the corresponding

original MISR correlation coefficients and ratios in Table 1.

1. AOD: when εANG % or εAAOD % is lower than 30 %,

our rAOD increases with the number of successful mix-

tures. When both εANG % and εAAOD % are larger than

30 % (inside the red region of Fig. 4a), rAOD is stable

at a relatively high value (> 0.75), almost equal to the

Figure 4. Sensitivity analysis for correlations between adjusted

MISR (a) AOD, (b) ANG, (c) AAOD and AERONET by thresh-

olds of ANG and AAOD. The axes specify the percent of mixtures

passing the MISR retrieval acceptance criteria coming closest to

the GOCART model value that is retained by our method (Eqs. 4

and 5), so a smaller number means the model is used to provide a

tighter constraint. The resulting agreement is then assessed based on

MISR–AERONET coincident observations. The color from blue to

red represents the correlation coefficients (for AOD of Fig. 4.a and

ANG of Fig. 4.b) or the mean ratio (for AAOD of Fig. 4.c) from

low to high; so for each panel, colors toward “red” indicate bet-

ter MISR–AERONET agreement when the GOCART–MISR agree-

ment criteria specified by the axes are applied.

original rMISR−AOD (0.79) in Fig. 3a. Our findings here

indicate that MISR AOD is at least as good as – and

is generally better than – the corresponding GOCART

values for mid-visible AOD below about 0.15 or 0.2. In
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Table 2. The correlation coefficients (for AOD and ANG) and mean ratio (for AAOD) between MISR, our result (in the specific thresholds),

and AERONET.

εANG % εAAOD % r_AOD r_ANG γ _AAOD

East
MISR 0.86 0.2 0.5

Adj. MISR 20 % 50 % 0.86 0.41 0.68

West
MISR 0.68 0.26 0.48

Adj. MISR 30 % 50 % 0.7 0.42 0.99

Spring
MISR 0.59 0.27 0.34

Adj. MISR 20 % 40 % 0.58 0.5 0.41

Summer
MISR 0.73 0.43 0.52

Adj. MISR 30 % 100 % 0.74 0.48 0.93

Fall
MISR 0.86 0.18 0.55

Adj. MISR 40 % 40 % 0.87 0.24 0.98

Winter
MISR 0.76 0.27 0.25

Adj. MISR 40 % 60 % 0.77 0.3 0.47

T _ANG and T _AAOD are the thresholds of ANG and AAOD, respectively. Results from the current study are

highlighted in bold font for easy identification.

general, MISR AOD retrievals contain unique informa-

tion that the transport model is unlikely able to improve

upon, except to the extent that aerosol type affects the

result, which occurs preferentially at higher AOD (Kahn

et al., 2001, 2010).

2. ANG: our rANG is negatively correlated with εANG %, as

might be expected (requiring tighter MISR–GOCART

ANG agreement produces better correlation with

AERONET), but is generally positively correlated with

εAAOD %. When εAAOD % is low, rANG usually in-

creases with the εAAOD % value, indicating better ANG

results when very tight agreement with transport model

absorption is not imposed. This is probably related to

the MISR V22 climatology containing only a single

size of spherical absorbing particles (Kahn et al., 2010).

When εAAOD % is larger than 40 %, rANG depends only

on εANG %, reflecting greater MISR sensitivity to parti-

cle size than absorption (Kahn et al., 1998). Our anal-

ysis indicates that setting a relatively stringent (low)

GOCART ANG threshold can significantly improve the

correlation between MISR ANG and AERONET. As

shown in the red region of Fig. 4b, rANG approaches

0.43, which is much higher than rMISR−ANG uncon-

strained by the model (0.29 in Fig. 3.2a).

3. AAOD: the relationship between γAAOD and the values

of εAAOD % and εANG % is complex (Fig. 4c). When

εAAOD % is between about 20 and 80 %, γAAOD is nega-

tively correlated with εAAOD %. In this regime, a tighter

GOCART constraint on the MISR mixtures improves

MISR–AERONET AAOD agreement. γAAOD also im-

proves somewhat with a tighter εANG % constraint, at

least when εAAOD %>∼ 50 %. However, when εAAOD %

<∼ 40 %, γAAOD is relatively independent of εANG %.

That is, given the MISR V22 algorithm aerosol mix-

ture climatology, constraining the retrieved particle size

with the model contributes to improving γAAOD when

the model-based AAOD constraint on the retrieval is

loose, but less so when it is tight. As shown in the red

region of Fig. 4c, when εAAOD % is lower than roughly

60 % and εANG % is higher than 20 %, γAAOD could be

in the range of ∼ 0.7–0.82, which is much higher than

the original γMISR−AAOD (0.5) in Fig. 3.3a.

A set of appropriate thresholds should improve rANG and

at least not diminish rAOD, while keeping γAAOD as close to

1.0 as possible. Note that these thresholds are optimized only

for a given data set. For example, by checking the overlap-

ping red regions among Figs. 4a, b, and c, we set εANG %

and εAAOD % to 30 and 50 %, respectively, for the entire data

set (the black crosses in each panel of Fig. 4). Plots similar

to Fig. 4, but stratified by season and region, are given in the

Supplement (Fig. S1).

3.3 Validation of adjusted MISR aerosol optical

properties

Given the different influences of GOCART aerosol simula-

tions on MISR aerosol retrievals, we divided our data into

two groups (ANG is grouped by AOD≤ 0.2 and AOD > 0.2;

AAOD is grouped by AOD≤ 0.5 and AOD > 0.5). The corre-

sponding thresholds and results are presented in Table 2. The

agreement between adjusted MISR AOD and AERONET is

similar to that of the MISR operational product (Fig. 3 and

Table 1). As expected, the GOCART-based aerosol-type con-

straints have little effect on MISR AOD over the contiguous

USA.
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Figure 5. Distributions of seasonally averaged ANG from MISR retrievals (a), GOCART simulations (b), this study (c), and AERONET

measurements (superposed as circles in column c) for the years 2006 to 2009, in spring (row 1), summer (row 2), fall (row 3), and winter

(row 4). AERONET and GOCART data are temporally and spatially matched to MISR cloud-free conditions.

Although the mean adjusted MISR ANG is slightly worse

than the operational MISR data due to the low bias in

GOCART, the SD, slope, and correlation coefficient of the

adjusted MISR retrievals are all in better agreement with

AERONET (Table 1 and Fig. 3d). Table 2 indicates that the

greatest improvement is found in spring, probably because

GOCART simulates springtime dust emissions well.

For AAOD, our method generates more accurate mean

AAOD and ratio than operational MISR data (Table 1).

Especially where MISR information content is lacking

(AOD≤0.5), the adjusted MISR AAOD is closer to

AERONET than the operational data, and the improvements

are more significant than those when AOD > 0.5. Results in

certain seasons or regions are stronger than for the data set

taken as a whole. For example, Table 2 shows that the ratios

in the west and in the fall are close to 1, almost a factor of

2 higher than those of the operational MISR product. How-

ever, these results should be treated with caution given the

very small sample size.

3.4 Spatial-temporal patterns of MISR, GOCART, and

our aerosol optical properties

We compared the seasonal distribution of ANG to AAOD

(Figs. 5 to 6) of MISR, GOCART, and adjusted MISR data
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Figure 6. Same as Fig. 5, but for AAOD distributions. Note the color bar is from 0 to 0.016.

over the contiguous USA. We also present the mean value

of the entire data set, as well as the data stratified by sea-

son and location, in Table 3. As the adjusted AODs are very

similar to the original MISR values, the associated maps are

given in the Supplement (Fig. S2). In addition to calculat-

ing a direct mean value, we also characterized the AOD,

ANG, and AAOD number distributions according the value

bins (Fig. S3). Our statistics are consistent with a previous

multi-year, multi-site AOD validation study (O’Neill et al.,

2000). GOCART, MISR, and adjusted MISR AOD data all

follow lognormal distributions for the entire data set and re-

gional and seasonal subsets. ANG appears more Gaussian,

and AAOD is too poorly sampled in the available data to

draw a conclusion. The operational MISR and adjusted re-

sults are very similar, and both are higher than GOCART.

1. ANG: Fig. 5 and Table 3 show that the spatial-temporal

patterns, and the mean value of the adjusted MISR ANG

falls between the operational MISR and GOCART val-

ues. Geographically, all three data sets show ANG val-

ues in the east are significantly higher than those in the

west. All three data sets indicate the minimum ANG

values are found in spring. The low values found in

the west and spring can probably be attributed to dust

transport. Yu et al. (2012) found approximately 56 of

the 140 Tg of fine dust exported from Asia in the spring

of 2005 reached the west coast of North America. The

contribution of Asian dust becomes weaker in the sum-
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Table 3. Mean values of MISR, GOCART, and our work’s aerosol optical properties over the contiguous USA.

All East West Spring Summer Fall Winter

MISR 0.14 0.16 0.13 0.17 0.18 0.1 0.083

AOD GOCART 0.092 0.11 0.079 0.12 0.1 0.075 0.058

Adj. MISR 0.14 0.15 0.13 0.17 0.18 0.097 0.082

MISR 1.24 1.34 1.16 1.15 1.19 1.32 1.34

ANG GOCART 1.19 1.24 1.14 0.94 1.28 1.27 1.26

Adj. MISR 1.22 1.28 1.15 1 1.26 1.32 1.31

MISR 0.0035 0.0043 0.0023 0.0042 0.0045 0.0027 0.0021

AAOD GOCART 0.0059 0.0061 0.0057 0.0081 0.006 0.0048 0.0039

Adj. MISR 0.0059 0.006 0.0058 0.007 0.0071 0.0044 0.0042

mer and fall, and decreases to 30–50 % of the springtime

maximum over the eastern USA (Fairlie et al., 2007),

although the western USA also has local dust sources.

MISR ANG yields large uncertainties when dust par-

ticles are abundant, due to the limited, non-spherical

dust optical analogs in the V22 climatology. For ex-

ample, Kalashnikova et al. (2005) found that a lack of

very absorbing, plate-like dust particles in the MISR re-

trieval algorithm climatology can lead to AOD underes-

timation and might thus introduce ANG biases. In the

MISR research algorithm, arbitrarily large numbers of

mixtures can be included, each of which can contain

up to four individual aerosol components (Kahn et al.,

2001). Our findings support the dust analysis and re-

search algorithm conclusions that MISR operational re-

trievals would benefit from having more dust particle

types. Compared to MISR and AERONET data, GO-

CART ANG values in the east, especially for some

northeastern sites (e.g., GSFC), are significantly lower,

which is consistent with a previous study (Chin et al.,

2009). Overall, the spatial-temporal distribution of the

adjusted MISR ANG is more similar to the GOCART

distribution than to the operational MISR in the west

in spring and summer, but it is more similar to the op-

erational MISR distribution than GOCART in the east

in fall and winter. Unlike the lognormal distribution of

AOD, our statistics indicate that MISR, GOCART, and

the adjusted MSIR ANG data follow approximately nor-

mal distributions (Fig. S3).

2. AAOD: Fig. 6 and Table 3 show large AAOD distribu-

tion differences among the three data sets. The mean

MISR AAOD in the contiguous USA during 2006 to

2009 is much lower than the GOCART and the ad-

justed MISR AAOD. When we limited our data to

those with column MISR AOD values greater than or

equal to 0.2, which accounted for about 19 % of the

raw data, the mean MISR AAOD increases to 0.0095.

As concluded in Sect. 3.1 and in earlier work, it in-

dicates that more AAOD information can be inferred

from the MISR radiances when AOD is high. GO-

CART shows smooth regional change in the contigu-

ous USA (mean AAOD around 0.006 for both the east

and the west), except high AAOD values in the south-

west and northeast, and the values in spring and summer

are higher than those during fall and winter. Geograph-

ically, the adjusted MISR AAOD distribution shows

that the high-absorbing-aerosol regions (e.g., the north

and the southeast) are similar to those in the opera-

tional MISR product, but the values are closer to those

given by AERONET than the operational MISR. Fig-

ure 6 indicates that there is a positive relationship be-

tween our high AAOD and the NLCD forest and shrub-

land cover type (Fig. 2), where wildfires or prescribed

burns can release more absorbing particles, such as

BC and OC (Zhang and Kondragunta, 2008). The an-

thropogenic and wildfire emissions from western North

America are mostly transported north and east, eventu-

ally merging with eastern US pollution outflow to the

Atlantic (Li et al., 2005b). The presence of elevated

aerosol layers from biomass burning outflow across the

Gulf of Mexico also has a large impact on the south-

east (Wang et al., 2009). Seasonally, the relatively high

values in the adjusted MISR AAOD may be caused

by dust transport in spring and fire emissions in sum-

mer (Ichoku et al., 2008). As mentioned in Sect. 2.4,

our AAOD depends not only on the MISR AOD val-

ues but also on the fraction of GOCART AAOD and the

successful MISR-retrieved mixture distributions. There-

fore, making quantitative improvements to the satel-

lite component aerosol retrieval is difficult. First, there

are large uncertainties in GOCART data quality and

MISR’s ability to distinguish light-absorbing and non-

absorbing aerosols (Kahn et al., 2001; Liu et al., 2007a).

If fewer absorbing mixtures pass the MISR EOF algo-

rithm and/or an inappropriate GOCART AAOD fraction

is used in our method, it would likely result in lower ab-

sorbing aerosol levels. Second, the SSA values of pre-

defined mixtures in the V22 MISR climatology overall

are too high for the contiguous USA, making the AAOD
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too low. To bridge the gaps, new aerosol optical mod-

els need to be added to the standard algorithm climatol-

ogy (Kahn et al., 2010). Our statistics indicate that the

AAOD distribution is different from those of AOD (the

lognormal distribution) and ANG (the normal distribu-

tion). AAOD data appear to follow an approximate ex-

ponential distribution, but sampling is too poor to draw

strong conclusions, and most values are less than 0.01.

4 Conclusions

We have developed a new method to refine the aerosol optical

properties derived in the operational MISR aerosol product

over land, with the help of GOCART simulations. We applied

this method to the contiguous USA from 2006 to 2009. In

this study, we first processed a set of successful MISR mix-

tures, which contain AOD, ANG, SSA, and aerosol compo-

nent information. We then used the corresponding GOCART

aerosol optical properties to select subsets of those mixtures.

Sensitivity analysis shows that setting the ANG and AAOD

thresholds at almost 30 and 50 %, respectively, can achieve

better agreement between the ANG and AAOD results and

those of AERONET for the entire USA than with the op-

erational MISR data. Finally, new aerosol optical properties

were calculated from the adjusted mixtures.

We validated the MISR products and GOCART sim-

ulations of AOD, ANG, and AAOD using coincident

AERONET measurements and estimated the seasonal distri-

butions of these quantities over the contiguous USA from

2006 to 2009. For AOD, GOCART constraints did not pro-

vide any statistically significant improvement to the opera-

tional MISR AOD values, compared to AERONET. Since

GOCART can simulate ANG based on assumed size distri-

butions, which is in some respects closer to AERONET val-

ues than retrieved by the V22 MISR algorithm in the study

region, using a stringent ANG threshold (30 %) significantly

improves the correlation between the adjusted MISR ANG

values and AERONET, though the mean ANG value was

slightly worsened due to poor assumed particle size distri-

bution in the model. The best agreement is found in spring,

probably because GOCART provides good dust simulations.

The spatial and temporal distribution of the adjusted ANG

tends to be more similar to the GOCART or MISR distribu-

tion when either performs well. All three data sets demon-

strate the west and the spring have lower ANG values, likely

due to the impact of dust. For AAOD, model constraints help

bring the underestimated MISR AAOD closer to AERONET.

For example, setting an AAOD threshold of 50 % increases

the ratio of adjusted MISR AAOD over AERONET to 0.74.

Some of the limitations of this analysis can be addressed

by introducing more aerosol components and mixtures into

the MISR retrieval algorithm (Kahn et al., 2010). This pro-

cess will also require building new aerosol look-up tables and

rerunning the EOF algorithm. Second, other CTMs could

also be used to constrain MISR mixtures, especially when

the information is lacking in the MISR radiances themselves,

e.g., at low AOD. More sensitivity analyses should be con-

ducted based on other aerosol parameters and assessment

criteria. Finally, similar studies could be carried out in de-

veloping countries and other regions that have heavy anthro-

pogenic (or absorbing) aerosols, where aerosol type is not

well retrieved by MISR alone.

The Supplement related to this article is available online

at doi:10.5194/amt-8-1157-2015-supplement.
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