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Abstract. This work performs cloud classification on all-sky

images. To deal with mixed cloud types in one image, we

propose performing block division and block-based classi-

fication. In addition to classical statistical texture features,

the proposed method incorporates local binary pattern, which

extracts local texture features in the feature vector. The com-

bined feature can effectively preserve global information as

well as more discriminating local texture features of different

cloud types. The experimental results have shown that apply-

ing the combined feature results in higher classification accu-

racy compared to using classical statistical texture features.

In our experiments, it is also validated that using block-based

classification outperforms classification on the entire images.

Moreover, we report the classification accuracy using dif-

ferent classifiers including the k-nearest neighbor classifier,

Bayesian classifier, and support vector machine.

1 Introduction

The demand for sustainable and green energy is growing as

fossil fuel bases decline and gas emissions increase. Solar

energy is one emerging green energy that has been improved

significantly in recent years. Recently, a large number of pho-

tovoltaics (PV) were installed worldwide. However, the main

challenge of PVs is that the produced electricity is often vari-

able and intermittent. The fluctuation of the supply makes the

energy expensive and prevents it from prevalence. Due to the

unpredictable nature, the grid operators usually need to adopt

a more conservative strategy and reserve enough power. If the

reserved power is not used, it is a waste. If the reserved power

is not enough, a blackout will happen. To utilize solar energy

more effectively, integrated and large-scale PV systems need

to overcome the unstable nature of solar resources. PV grid

operators desire mechanisms of scheduling, dispatching, and

allocating energy resources adaptively. Obtaining an accurate

estimation of the resources that can be exploited is helpful

for reducing costs and achieving better efficiency. Therefore,

the ability to perform accurate short-term forecast on surface

solar irradiance is desired.

The unstable and intermittent nature of solar resources is

due to the influences of cloud cover and cloud types. The

height and the thickness of the clouds vary for different types

of clouds. Therefore, the impact on the irradiance caused by

different types of clouds also varies a lot (Martínez-Chico

et al., 2011; Fu and Cheng, 2013). Large-scale cloud infor-

mation is available from satellite images. However, the spa-

tial and temporal resolutions provided by satellite images

are not high enough for short-term prediction. As a conse-

quence, devices that capture all-sky images are designed to

monitor the sun and the clouds. Devices developed more re-

cently include a whole-sky imager developed by Scripps In-

stitute of Oceanography at the University of California (Li

et al., 2004; Kassianov et al., 2005), a whole-sky camera de-

signed by Spain’s University of Girona (Long et al., 2006),

an all-sky imager developed by Japan’s Communications Re-

search Laboratory (Kubota et al., 2003), and a total-sky im-

ager by Yankee Environmental Systems (Pfister et al., 2003;

Calbo and Sabburg, 2008). With the all-sky images captured

by these devices, analyzing the cloud activities on a basis of
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more refined scales is feasible. Such analysis on cloud activi-

ties include cloud-cover detection, cloud tracking, and cloud

classification. The purpose of cloud classification is to distin-

guish the cloud types and hopefully figure out their impacts

on the change of irradiance.

In the work of Martínez-Chico et al. (2011), the clouds

were classified into different attenuation groups according

to different levels of attenuation of the direct solar radia-

tion reaching the surface. The authors also analyzed the an-

nual and seasonal frequencies of each cloud group. However,

this work did not propose any method for extracting features

from images and performing classification based on image

features. For works of cloud classification using sky image

features, we review the following existing methods. The re-

search by Calbo and Sabburg (2008) used features based on

Fourier transform along with simple statistics such as stan-

dard deviation, smoothness, moments, uniformity, and en-

tropy. The features are extracted from intensity images and

red-to-blue components ratio (R/B) images. The classifier

they used was based on the supervised classification paral-

lelepiped technique.

In the work of Heinle et al. (2010) statistical features such

as mean, standard deviation, skewness, and difference are uti-

lized. Also, textural features including energy, entropy, con-

trast, and homogeneity are computed from the grey-level co-

occurrence matrices (GLCM). Instead of extracting features

from intensity images, the authors reported the color com-

ponent for which each individual feature should be calcu-

lated. This work used a k-nearest neighbor (k-NN) classifier

to classify the clouds into seven different types. Kazantzidis

et al. (2012) improved the method of Heinle et al. by dividing

the data set into subclasses according to solar zenith angle,

cloud coverage, and visible fraction of the solar disk. Other

features such as autocorrelation, edge frequency, Law’s fea-

tures, and primitive length are also tested for cloud classifi-

cation (Singh and Glennen, 2005).

The statistical features utilized in these works are basic

and simplified descriptors. The abilities of these descriptors

are more restricted since a certain amount of information is

lost in the simplification process. In addition to the simple

statistical features, we extract the local texture features us-

ing local binary patterns (LBPs) (Suruliandi et al., 2012).

The texture information encoded by LBP forms higher di-

mensional feature vectors compared to traditional statistical

features. Therefore, we perform dimension reduction on the

extracted feature vector before performing classification.

Figure 1 illustrates the proposed system framework. An

all-sky image is divided into blocks before the features are

extracted. The existing works classified the clouds based on

the entire scene. However, very often there are mixed cloud

types in the scene of an all-sky image as can be observed

in Fig. 2. Therefore, we divide the scene into blocks and

perform classification based on the feature of each block.

After block division, the system extracts statistical and tex-

ture features based on local patterns from each block. Then,

Figure 1. System framework.

principal component analysis (PCA) (Duda et al., 2001) is

performed to reduce the dimensionality of the extracted fea-

ture vectors. For classification, we compare several classi-

fiers, including k-NN, Bayesian classifier with regularized

discriminant analysis (Cheng et al., 2010), and support vec-

tor machine (SVM) (Cristianini and Shawe-Taylor, 2000). In

this work, the blocks are classified into cirrus, cirrostratus,

scattered cumulus or altocumulus, cumulus or cumulonim-

bus, stratus, and clear sky. In the post-processing step, the

classification results from the classifier are examined using

the cloud-cover information. Furthermore, a voting scheme

is proposed to summarize the classified label of the entire

image from the class labels of all the blocks.

2 Data and methodology

This section outlines the data sources and samples as well as

the methodology used for classification.

2.1 All-sky images

The all-sky images used in this research are captured by the

all-sky camera manufactured by the Santa Barbara Instru-

ment Group. The charge-coupled device is Kodak KAI-0340.

The lens of the camera is Fujinon FE185C046HA-1. The fo-

cal length is 1.4 mm and focal ratio range is f/1.4 to f/16.

The device covers a field of view of 185◦. The RGB images

are stored in bitmap format with resolution 640× 480. The

data set is provided by the Industrial Technology Research

Institute of Taiwan.

Figure 3 displays the six types of clouds on which the

system will perform classification. Cirrus clouds and cirro-

stratus clouds are high and thin clouds. The main differ-

ence between cirrus clouds and cirrostratus clouds is that the
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area of cirrostratus is larger. Altocumulus or scattered cu-

mulus clouds are mid- to low-altitude clouds which look like

blobs of cotton. Cumulus or cumulonimbus clouds are lower-

altitude clouds which have noticeable vertical development

and are often darker and larger. Stratus clouds are flat, wide-

area clouds at lower altitude.

2.2 Block division

In practice, there might be more than one cloud type in one

sky image, as shown in Fig. 2. In Fig. 2a, some cumulus

clouds present in the scene, and there are some cirrostra-

tus clouds around the sun area. In Fig. 2b, a cumulus cloud

blocks the sun, and some altocumulus and cirrus clouds also

exist in other regions of the image. Mixing up the features of

cumulus, altocumulus, and cirrostratus clouds tends to con-

fuse the classifier. Therefore, under such conditions of mixed

cloud types, it is not appropriate to use the features of the

entire image and classify the whole image as a certain cloud

type. To solve this problem, we divide the entire scene into

blocks and perform classification based on blocks. An exam-

ple of the divided block is shown in Fig. 4 with block size

60× 80 pixels. The feature vector of a block represents the

characteristics of the cloud type in the block only. Such de-

sign will reduce the confusing conditions of mixing up fea-

tures of different cloud types. Additionally, we can obtain

more detailed information about the location of each cloud

type. This information is very helpful since the clouds in the

regions closer to the sun have higher impact on the irradiance

changes.

2.3 Feature extraction

This work combines the statistical features proposed in the

work by Heinle et al. (2010) and the distribution of local tex-

ture features using LBP codes (Suruliandi et al., 2012). The

statistical features represent the spectral and texture informa-

tion in a global view. On the contrary, the LBP codes encode

the local characteristics of the gradient and texture features.

2.3.1 Statistical features

The statistical feature vector used in the work by Heinle et

al. (2010) includes statistical spectral features and statisti-

cal textual features. The statistical spectral features include

the following dimensions: mean of R components, mean of

B components, standard deviation of B component, skew-

ness of B component, and differences of R–G, R–B, and

G–B components. The statistical textual features are statisti-

cal measures computed from GLCM (Haralick et al., 1973),

including energy, entropy, contrast, and homogeneity of the

GLCM. Also, the cloud-cover ratio is considered as a fea-

ture. The details of these statistical features can be found in

the work by Heinle et al. (2010).

2.3.2 Distribution of local texture features

In addition to the above-mentioned statistical features, we

enhance the texture features by applying LBPs (Suruliandi

et al., 2012). The LBPP,R code for a pixel (xc, yc) is defined

in Eq. (1). In this equation, gc denotes the grey-level value of

the center pixel (xc, yc), and gp denotes the grey-level value

of its neighboring pixel. The parameter P sets the number of

neighboring pixels that are considered when computing the

binary codes. The parameter R sets the distance between the

center pixel and its neighbors. For LBP8,1 codes, we consider

the eight neighboring pixels whose distance with the center

pixel is 1. The code represents the local texture characteris-

tics around (xc,yc).

LBPP,R(xc,yc)=

P−1∑
p=0

s(gp− gc)2
p (1)

s(gp− gc)=

{
1 gp− gc ≥ 0

0 gp− gc < 0
(2)

For each pixel in the image, a P bit binary number is com-

puted. When representing the LBP texture feature of a region

using a feature vector, the convention is to construct an LBP
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histogram by voting with the codes of all the pixels in the

region. The LBP histogram characterizes the distribution of

local texture features of the region.

We apply the LBPP,R codes with P = 8 and R = 1 to ex-

tract local texture features in this work. For LBP8,1 codes,

there are 256 distinct values since the code is an 8 bit bi-

nary number. Therefore, 256 histogram bins are required

for all the distinct codes. However, it has been shown that

some codes appear more frequently than others, concentrat-

ing the votes in the histogram in a few bins. The codes that

appear with higher frequencies are the uniform LBP codes.

Researches have shown that uniform LBP codes account for

over 90 % of all LBP codes. The uniform LBP codes are the

codes that have at most two zero-to-one or one-to-zero transi-

tions. Among the 256 distinct LBP codes, 58 LBP codes are

uniform. As a consequence, we can use 58 bins for the uni-

form LBP codes and one extra bin for all the non-uniform

LBP codes in the histogram. In total, the number of his-

togram bins is reduced to 59 instead of 256.

Because clouds of a certain type might be rotated, we fur-

ther consider rotation invariant LBP code. To make the LBP

code invariant to rotation, the code is circularly shifted to

a minimum code number. In Eq. (3), ROR(LBPP,R, i) per-

forms a circular bit-wise right shift on LBPP,R for i times.

For rotation invariant LBP, there are nine uniform patterns.

Therefore, only 10 bins are required for the histogram of uni-

form rotation invariant LBPs.

LBPRIP,R =min{ROR(LBPP,R, i)|i = 0, 1, · · ·, P − 1} (3)

To obtain the distribution of the local texture patterns and

to retain the localized information as well, we divide each

block into Ncell cells when constructing the feature vector.

One LBP histogram is generated for each cell. And then the

Ncell histograms are concatenated to form the feature vec-

tor. In other words, for each image block, we generate a

59×Ncell dimensional feature vector for uniform LBPs and

a 10×Ncell dimensional feature vector for uniform rotation

invariant LBPs.

2.3.3 Combining statistical features and distribution of

local texture features

The feature vectors described in Sect. 2.3.1 and 2.3.2 can be

concatenated to obtain the combined feature vector. We de-

note combined feature A as the vector obtained by concate-

nating statistical features and uniform LBP histogram. We

denote combined feature B as the vector obtained by con-

catenating statistical features and uniform rotation invariant

Atmos. Meas. Tech., 8, 1173–1182, 2015 www.atmos-meas-tech.net/8/1173/2015/
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LBP histogram. Since the statistical feature vector has 12 di-

mensions, combined feature A and combined feature B have

12+59×Ncell and 12+10×Ncell dimensions, respectively.

2.4 Dimension reduction

PCA (Duda et al., 2001) is a commonly used way to re-

duce the dimensions of the feature vectors. To reduce the

dependency among different feature dimensions, PCA seeks

to find a set of new orthogonal bases to re-express the data

more effectively. The new orthogonal bases, which are called

principal components, are linear combinations of the original

bases. Considering the variability in the data as an impor-

tant and desired characteristic, PCA will preserve most of

the data variability to the first (often few) principal compo-

nents. Suppose that the original data set X has D1 dimen-

sions and there are N samples in the data set. The matrix X

is a D1×N matrix whose columns are the original feature

vectors. The PCA will select the first D2 eigenvectors cor-

responding to the first largest D2 eigenvalues of the matrix

XTX, which is proportional to the empirical sample covari-

ance matrix of the original data setX. TheseD2 eigenvectors

define the principal component directions. Then the original

data are projected on to the principal components to obtain

the data with reduced dimensions in the new coordinate sys-

tem. The criterion to selectD2 is usually based on the follow-

ing equation. In Eq. (4), λk denotes the kth eigenvalue of the

matrix XTX. In other words, we preserve the first D2 eigen-

vectors so that ratio between the sum of the absolute values

of the firstD2 eigenvalues and the sum of the absolute values

of all the eigenvalues is larger than a threshold ThrPCA.

D2∑
k=1

|λk|

D1∑
k=1

|λk|

> ThrPCA (4)

2.5 Classifiers

In addition to the basic k-NN classifier, this work also utilizes

a Bayesian classifier with regularized discriminant analysis

and a support vector machine in the experiments.

2.5.1 Bayesian classifier with regularized discriminant

analysis

Given an unknown sample x the Bayesian classifier will

classify it as the most probable class, ωk , with the highest

posterior probability, P(ωk|x). According to Bayes’ theo-

rem, the posterior probability can be decomposed into sev-

eral terms as shown in Eq. (5). In Eq. (5), the denominator is

the probability of the sample P(x), which does not depend

on the class label and thus does not affect the decision pro-

cess. The numerator includes the prior probability P(ωk) and

class-conditional probability P(x|ωk). The prior probability

Figure 5. Decision boundary of support vector machine.

is the probability of observing a certain class before the fea-

ture of unknown sample x is taken into account. The class-

conditional probability is learned from the training samples.

It is usually modeled using Gaussian functions, as defined

in Eq. (6). For simplicity, we can assume that all the classes

have the same prior probabilities. It is also possible to set the

prior probabilities according to the frequency of appearance

of each class in the training data set.

P(ωk|x)=
P(ωk)P (x|ωk)

P (x)
(5)

P(x|ωk)=
1

(2π)p/2|6k|1/2
e−

1
2
(x−µk)6k(x−µk)

T

(6)

To model class-conditional probabilities as Gaussians, we

need to estimate the parameters of the Gaussians from the

training data. Regularization techniques help reduce variance

without adding too much model bias when estimating the pa-

rameters for high-dimensional data (Cheng et al., 2010). In

eigenvalue decomposition regularized discriminant analysis

(EDRDA) (Bensmail and Celeux, 1996), the covariance ma-

trix
∑
k for the kth class is re-parameterized in terms of its

eigenvalue decomposition
∑
k = αkDkAkD

T
k , where αk =∣∣∑

k

∣∣1/p and Dk is the matrix of eigenvectors of
∑
k . The

matrix Ak is a diagonal matrix such that |Ak| = 1 with the

normalized eigenvalues of
∑
k on the diagonal in a decreas-

ing order. By allowing each of the parameters αk, Ak, Dk to

be either the same or different among different classes, eight

discriminant models can be obtained. Furthermore, six more

models are obtained by modeling the covariance matrix as a

diagonal matrix or a scalar multiple of the identity matrix.

More specifically,
∑
k = αkBk leads to four more less com-

plex models, where Bk is a diagonal matrix with |Bk| = 1.

The models requiring the smallest numbers of parameters

are to assume spherical shapes, i.e., Ak is an identity ma-

trix, which leads to model αkI and model αI . Among the 14
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1178 H.-Y. Cheng and C.-C. Yu: Block-based cloud classification

Figure 6. Example of correcting a stratus block as cumulus.

Figure 7. Example of training blocks.

models, there are nine models whose maximum likelihood

(ML) estimation of the covariance matrix can be computed

in closed form. For other models, the ML estimation needs

to be computed through an iterative procedure. To acceler-

ate the model selection process, this work only considers the

nine EDRDA models that have closed-form solutions for ML

parameter estimation.

2.5.2 Support vector machine

Given a set of training samples, the SVM will learn lin-

ear decision boundaries that maximize the margins between

the decision boundaries and the training samples. Using a

two-class case as an example, the margins are illustrated in

Fig. 5. The intension is to lower the generalization error of

Atmos. Meas. Tech., 8, 1173–1182, 2015 www.atmos-meas-tech.net/8/1173/2015/
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the trained classifier with the large margins. The reason is

that unseen testing samples may fall within the large margin

and hopefully will still be correctly classified. To determine

the hyper-plane that results in maximized margin, the sup-

port vector machine solves the quadratic programming op-

timization problem. Furthermore, to effectively handle non-

linear separable data in the real world, the concept of soft

margin and the usage of kernel functions are applied in the

SVM. The details can be found in the work of Cristianini

and Shawe-Taylor (2000). In this work, we apply SVM with

radial basis functions as kernel functions.

2.6 Post-processing

In the process of block division, the important information

of global cloud-cover percentage is inevitably lost. There-

fore, we examine the classification result of each block in the

post-processing step. Connected component analysis is per-

formed on the cloud detection results. If a block is classified

as stratus but the size of the cloud component is lower than

the threshold, the label of the block is revised to cumulus. An

example is shown in Fig. 6. The cloud detection result with

connected component labeling is shown in Fig. 6b. Differ-

ent connected components are illustrated in different colors.

The numbers on each component denote the number of pix-

els in the component. We can observe that three blocks are

re-labeled as cumulus. In our experiments, the threshold for

revising the classification result is 12 000 pixels.

The subsequent application modules can utilize the classi-

fication result of each individual block with the knowledge of

the location of the block. The classification results of all the

blocks in an image can also be gathered to obtain a summa-

rized label for the entire image. A simple way to summarize

the labels in an image is to perform voting. From the classi-

fication results in Fig. 6, we have the knowledge that there

are more votes for class 3 than other classes in this all-sky

image.

3 Experiments and discussions

In this section, we report experimental results and discuss the

performance of the proposed block-based cloud classifica-

tion framework. For training purposes, we select 1800 blocks

from the images and manually label the ground truth of these

blocks. Selected training blocks for the six classes are shown

in Fig. 7. Note that the block size used in our experiments

is 60× 80 pixels. We manually classified the ground truth of

3000 images in the data set in order to calculate the summa-

rized classification accuracy for whole images. Since there

are mixed cloud conditions in many images, each image can

be associated with at most two ground truth labels. For a

mixed cloud type image, the voting result is considered cor-

rect if the classified label matches any of the two ground truth

labels. Figure 8 displays some examples of images that are

associated with two ground truth labels. Figure 8a is labeled

as both class 2 and class 4. Figure 8b is labeled as both class 1

and class 3. Due to the privacy issue of the data provider, we

use a mask on the image to eliminate the surrounding build-

ings. The experiment data set includes all-sky images from

08:30 to 15:30 (UTC+ 8 h). Therefore, the data set does not

include the cases when the sun is close to the mask limits.

To select the proper threshold ThrPCA for dimension re-

duction, we plot the accuracy using different ThrPCA in

Fig. 9. We use the 1800 blocks with ground truth labels and

perform 10-fold cross validation (CV) when conducting this

experiment. Note that the CV accuracy in Fig. 9 is based on

the classification result of the Bayesian classifier. Both PCA

and non-centered PCA (Cadima and Jolliffe, 2009) are con-

sidered in our experiment. The classification accuracy of ap-

plying PCA is higher than applying non-centered PCA. We

observe that when ThrPCA ranges from 93 to ∼ 94 %, the

CV accuracy is higher for both uniform LBPs and combined

feature A. Therefore, we select ThrPCA = 93 % for uniform

LBPs and combined feature A in the rest of the experiments.

According to Fig. 9, we select ThrPCA = 95 % for uniform

rotational invariant LBPs and combined feature B. In Fig. 9,

when ThrPCA equals 100 %, it is equivalent to not applying

www.atmos-meas-tech.net/8/1173/2015/ Atmos. Meas. Tech., 8, 1173–1182, 2015
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Figure 9. Selection of the threshold ThrPCA for dimension reduction.

Figure 10. Classification accuracy on blocks using different feature and classifier combinations.

dimensionality reduction. For combined feature A and com-

bined feature B, the advantage of applying PCA is more obvi-

ous since the dimensionality is higher. The statistical feature

vector has only 12 dimensions. Therefore, there is no need to

apply PCA on the statistical feature vector.

To compare the effect of various features and classifiers,

Fig. 10 shows the 10-fold cross-validated classification ac-

curacy on the 1800 blocks with ground truth labels using

different features and classifiers. Compared with the statis-

tical features and k-NN classifier used in the work by Heinle

et al. (2010), the proposed combined features with Bayesian

classifier or SVM demonstrate higher classification rates. It

is clear that local texture feature alone does not perform bet-

ter than statistical features. However, when combined with

statistical features, additional information provided by dis-

tribution of local texture features can significantly improve

the classification accuracy. We can observe that combined

feature A slightly outperforms combined feature B when us-

ing the Bayesian classifier and SVM. Although intuitively

we think that features with rotation invariant characteristics

should be preferable for cloud classification, combined fea-

ture A performs slightly better in practice. It might be due

to the small dimensionality of combined feature B. Overall,

the method using combined feature A and the Bayesian clas-

sifier with regularized discriminant analysis has the highest

cross-validated classification accuracy in our experiments.

Figure 11 displays selected classification results using com-

bined feature A and the Bayesian classifier with regularized

discriminant analysis. Although there are inevitably some

misclassified blocks, most blocks are correctly classified in

Fig. 11. Note that classification labels are not displayed on

incomplete blocks and the block where the sun resides in

Fig. 11.

To observe the advantage of block-based classification,

Fig. 12 shows the classification accuracy on the 3000 images

in the data set with and without the block voting scheme.

In this experiment, the classifier is Bayesian classifier. Since

features from mixed cloud conditions will not be mixed up

in a single feature vector, the classification rates using block

voting schemes are higher. Moreover, another advantage of

Atmos. Meas. Tech., 8, 1173–1182, 2015 www.atmos-meas-tech.net/8/1173/2015/
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Figure 12. Comparison of whole-image classification and block-

based classification with voting scheme.

block-based classification is that the classification result of

each individual block with the knowledge of the block loca-

tion can be utilized by subsequent application modules.

We perform an experiment to compare the proposed

method with the method of Kazantzidis et al. (2012). The

method of Kazantzidis et al. outperforms the proposed work

with the concept of subclass division. In addition to com-

paring the method proposed by Kazantzidis et al., we also

apply the concept of subclass division in our framework in

the experiment. Since we have the information of the source

image from which a training or testing block is selected, we

could obtain the information needed to separate a block into

subclasses. The subclasses are divided according to the so-

lar zenith angle, global cloud coverage of the all-sky image,

Figure 13. Comparison of classification results of different methods

on the effect of subclass division and block voting.

and the visible fraction of the solar disk. In Fig. 13 we can

observe that applying subclass division is indeed helpful for

improving the classification accuracy. However, we perform

an experiment on applying block-based classification using

the features in the work of Kazantzidis et al. In the work of

Kazantzidis et al., the existence of raindrops is used as a fea-

ture in the feature vector. The existence of raindrops is based

on the indicator of the image in which the block resides in

the case of applying block-based classification. As shown in

Fig. 13, applying block-based classification with the voting

mechanism is also helpful for improving the classification

accuracy in this case. It can be observed that using combined

statistical features and distribution of local texture features,

www.atmos-meas-tech.net/8/1173/2015/ Atmos. Meas. Tech., 8, 1173–1182, 2015
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block voting, and subclass division would yield the best re-

sult.

4 Conclusions

Cloud classification is an important task for improving short-

term solar irradiance prediction since different types of

clouds have different effects on the change of solar irradi-

ance. In this work, an automatic cloud-classification method

for all-sky images is proposed. The classification is per-

formed based on fixed-size blocks in the all-sky images. In

addition to the statistical features in the literature, we com-

bine the histogram of local texture patterns in the feature vec-

tor. With more discriminate features provided by local tex-

ture patterns, the proposed combined feature can improve

the classification accuracy. Replacing k-NN classifier with

more sophisticated supervised learning methods can further

enhance the recognition results. Bayesian classifier with reg-

ularized discriminant analysis outperforms other classifiers

on this data set in our experiments. This work also com-

pares the classification accuracy with and without the vot-

ing scheme. With block-based classification and the voting

scheme, the classification results on images with mixed cloud

type conditions were shown to be better. Although the global

cloud coverage feature is lost in the block-based feature ex-

traction process, the global cloud coverage information can

still be used to divide the data set into subclasses, as sug-

gested in the work of Kazantzidis et al., to improve the clas-

sification accuracy of the proposed framework. For future

work in component-based cloud classification, each detected

connected component of cloud can be classified separately.

In this way, the situation of mixed cloud types could be

analyzed with even better precision and the information of

the cloud coverage can be preserved. However, the perfor-

mance of component-based classification would be highly

dependent on the cloud detection accuracy. Therefore, cur-

rent cloud detection methods need to be improved in order

to lead to satisfactory component-based classification results.

In addition to component-based cloud classification, another

potential future work is to integrate the proposed cloud clas-

sification method in a short-term irradiance prediction sys-

tem to obtain more accurate prediction results.
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