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Abstract. A novel algorithm for the detection of precipita-

tion is described and tested. The algorithm is applicable to

any modern passive microwave radiometer on board polar

orbiting satellites independent of the observation geometry

and channel frequency assortment. The algorithm is based

on the application of canonical correlation analysis and on

the definition of a threshold to be applied to the result-

ing linear combination of the brightness temperatures in all

available channels. The algorithm has been developed using

a 2-year data set of co-located Special Sensor Microwave

Imager/Sounder (SSMIS) and Tropical Rainfall Measuring

Mission precipitation radar (TRMM-PR) measurements and

Advanced Microwave Sounding Unit (AMSU) Microwave

Humidity Sounder and TRMM-PR measurements. This data

set was partitioned into four classes depending on the back-

ground surface emissivity (vegetated land, arid land, ocean,

and coast) with the same procedure applied for each surface

class. In this paper we describe the procedure and evaluate

the results in comparison with many well-known algorithms

for the detection of precipitation.

The algorithm shows a small rate of false alarms and supe-

rior detection capability; it can efficiently detect (probability

of detection between 0.55 and 0.71) minimum rain rate vary-

ing from 0.14 mmh−1 (AMSU over ocean) to 0.41 (SSMIS

over coast) with the remarkable result of 0.25 mmh−1 over

arid land surfaces.

1 Introduction

The Global Precipitation Measurement mission (GPM) (Hou

et al., 2014) started its operational phase on 28 February

2014 with the launch of the NASA/JAXA GPM Core Ob-

servatory. The goal of the mission is to provide instanta-

neous precipitation measurements with a coverage of less

than 1 h over 60 % of the globe and less than 3 h over

80 % of the globe through the exploitation of a constel-

lation of passive microwave (PMW) radiometers on board

research and operational satellites provided by the United

States, Japan, France/India, and the European Community.

The GPM Core Observatory carries the first spaceborne dual-

frequency precipitation radar, the dual-frequency precipita-

tion radar (DPR), operating at Ku and Ka bands (13 and

35 GHz, respectively) and a conical scanning multichannel

(10–183 GHz) microwave imager, the GPM Microwave Im-

ager (GMI). The GPM constellation consists of radiome-

ters with different scanning geometries (both conical and

cross-track scanning), different assortments of multichannel

frequencies and polarizations, and different spatial resolu-

tions. The microwave imagers and sounders with a coni-

cal scanning observation geometry are (1) the Special Sen-

sor Microwave Imager/Sounder (SSMIS), which measures

microwave energy at 24 discrete frequencies from 19 to

183 GHz (Kunkee et al., 2008), and (2) the Advanced Mi-

crowave Scanning Radiometer 2 (AMSR-2) (Shimoda, 2005)

with channels ranging from 6.9 to 89 GHz. The cross-track

scanners are (1) the Microwave Humidity Sounder (MHS)

(89–190 GHz) on board the NOAA Polar-Orbiting Environ-

mental Satellites (POES) and the EUMETSAT MetOp satel-

lites (Edwards and Pawlak, 2000), (2) the Advanced Tech-

nology Microwave Sounder (ATMS) instrument on board the

NPOESS NPP satellite (Muth et al., 2005) with 22 channels

in the range of frequency 23.8–183 GHz, and (3) Sondeur

Atmosphérique du Profil d’Humidité Intertropicale par Ra-

diométrie (SAPHIR) with six channels in the 183 GHz water

vapor absorption band, carried by the French/Indian satellite
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Megha-Tropiques (Desbois et al., 2003). It is also worth men-

tioning the Advanced Microwave Sounding Unit-A (AMSU-

A), which is another cross-track scanner with 15 channels

ranging from 23.8 to 89 GHz; this last instrument is not in-

cluded in the official GPM constellation, but it is carried by

the same satellites equipped with the MHS radiometer.

Obtaining coherent (and accurate) precipitation estimates

from this assortment of instruments requires a robust inter-

calibration of the brightness temperatures (TBs). The GPM

has established an international team called Intersatellite Cal-

ibration Working Group (X-CAL) in order to address this

need (Wilheit, 2013). Moreover, the estimates themselves

need to be obtained with common procedures and data sets.

The 2014 version of the Bayesian-based Goddard PROFil-

ing algorithm (GPROF2014) (Kummerow et al., 2001, 2011)

will be applied to all passive microwave radiometers in the

GPM constellation and it will be the official NASA PMW

precipitation retrieval algorithm for GPM. However, the in-

consistencies in the precipitation detection deriving from the

use of different radiometers also might significantly affect

the rainfall estimates from such a heterogeneous constella-

tion and precipitation products derived from the combina-

tion of these estimates (i.e., IR/MW merging techniques).

The differences in the available channels, polarization infor-

mation, spatial resolutions, and observation geometry have

a strong impact on the possibility of separating the radiance

due to the background surface from the signal related to pre-

cipitation. Therefore, the limits of each sensor in detecting

precipitation should be carefully analyzed in order to estab-

lish the degree of consistency of the precipitation patterns

(and retrievals) obtained from different radiometers. A cer-

tain degree of coherence between different sensors can be

accomplished by developing common procedures to be ap-

plied to all radiometers to detect efficiently the presence of

precipitation in different environmental conditions. Consis-

tency and accuracy are also the priorities in the development

of our PMW precipitation retrieval algorithms used for the

operational PMW precipitation products within the EUMET-

SAT “Satellite Application Facility on Support to Opera-

tional Hydrology and Water Management” (H-SAF) program

(see Mugnai et al., 2013a). The H-SAF PMW algorithms for

cross-track and conical-scanning radiometers are built upon

the same physical foundations and use common procedures

for the detection of precipitation (see Casella et al., 2013;

Sanò et al., 2013, 2015; Mugnai et al., 2013b; Panegrossi et

al., 2013).

Detection of precipitation from satellite observations using

passive microwave radiometers is a difficult task, since the

brightness temperatures emerging from precipitating clouds

can be similar to those emitted by some surfaces in clear sky

conditions. Precipitation detection is simpler over ocean be-

cause at the low-frequency channels (10–30 GHz) the sur-

face background appears relatively cold (in terms of bright-

ness temperatures) due to the low and nearly uniform sea

surface emissivity. This allows the detection of the absorp-

tion/emission from large rain drops as relatively warm areas.

Over land, the detection of precipitation is more complex as

the rain-layer emission is obscured by the high emissivity of

the background surface. The detection of precipitation still

has some open issues (see Munchak and Skofronick-Jackson,

2013), especially over coast, arid regions, and over snow-

covered surfaces. It is worth noting that some algorithms for

precipitation estimation do not include specific procedures

for the detection of precipitation and provide just a “probabil-

ity of precipitation” (e.g., GPROF from version 7 of the TMI-

GPROF and in the GMI-GPROF; GPM, 2010). However, an

accurate procedure for the detection of precipitation could be

very useful within the estimation schemes in order to sepa-

rate the problem of identifying the precipitating areas from

the problem of estimating the intensity of the rainfall. More-

over, in the regions of the Earth where precipitation is infre-

quent (e.g., in semi-arid regions in the tropics), precipitation

detection is crucial for drought monitoring. Over the last 20

years, different precipitation detection procedures have been

widely used within precipitation retrieval algorithms.

It is quite common in the framework of precipitation esti-

mates to refer to precipitation detection as “screening”. Some

widely used approaches are based on the scattering index (SI)

over land surface (i.e., Grody, 1991; Ferraro, 1997). Another

classical approach makes use of the polarization-corrected

temperatures (Barrett et al., 1988; Spencer et al., 1989; Kidd,

1998; PCT). Unfortunately, these algorithms cannot be ap-

plied to the cross-track scanning radiometers (e.g., AMSU-

A, AMSU-B, MHS, ATMS), because they need both verti-

cal and horizontal polarized channels at the same frequency.

However, the most recent spaceborne radiometers utilize

high-frequency channels (150–160 GHz) and sounding chan-

nels in the 60 GHz oxygen absorption band and the 183 GHz

water vapor absorption band. As a consequence, relatively

new algorithms for the detection of precipitation have been

developed (e.g., Chen and Staelin, 2003, using both the

52.3 GHz channel and the 183 GHz channels and Laviola and

Levizzani, 2011, using the water vapor absorption band chan-

nels around 183 GHz). Recently more efforts have been made

in solving the issue of detection of precipitation: among oth-

ers, Grecu and Anagnostou (2001) applied a neural network

approach, Seto et al. (2005) developed a lookup-database

method, Laviola and Levizzani (2009) proposed a simple

technique based upon a threshold on an AMSU-B channel

combination, and Islam et al. (2014) have built a random for-

est classifier.

In this paper we will describe a precipitation detection

algorithm based on canonical correlation analysis (CCA),

hereafter referred to as the CCA algorithm. The novelty of

the algorithm is that it is applicable to all available PMW ra-

diometers in the GPM constellation, it is in principle very

simple, and it is conditioned to the availability of a large

data set of co-located measurements of multichannel TBs

and quality-controlled precipitation measurements or esti-

mates that can be considered as “truth”. The algorithm was
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inspired by the approach of Petty (2013), who developed

a methodology based on a two-stage principal component

analysis aimed at reducing the dimensionality of the input

in a Bayesian algorithm for the estimation of precipitation

and “distilling” the relevant information from a multidimen-

sional set of channels. The approach of Petty (2013) has been

implemented and validated in two subsequent papers (Petty

and Li, 2013a, 2013b). In this work we have modified and

adapted the approach of Petty (2013) to the problem of pre-

cipitation detection using a simpler surface classification and

without considering the linearization of the TBs into pseu-

dochannels. We will show the CCA algorithm results and

compare them to those obtained from different well-known

precipitation detection schemes used within precipitation re-

trieval algorithms. The CCA algorithm described in this pa-

per is currently applied to the PMW precipitation retrieval

algorithms currently used to deliver operational products of

instantaneous precipitation over European and African re-

gions within the EUMETSAT H-SAF program (Mugnai et

al., 2013a, 2013b; Casella et al., 2013; Sanò et al., 2013,

2015).

This paper is divided into five sections. Section 2 de-

scribes the data sets of co-located measurements of mul-

tichannel TBs from SSMIS and AMSU/MHS and precipi-

tation measurements from the Tropical Rainfall Measuring

Mission precipitation radar (TRMM-PR) used in the train-

ing data set of the CCA algorithm. A description of the pro-

cedures followed to separate the data set depending on the

type of background surface is also provided. Section 3 il-

lustrates the methodology used for the definition of the al-

gorithm based on a training data set. Section 4 shows the

results of the application of the algorithm to a separate test

data set in terms of probability of detection (POD), false-

alarm ratio (FAR) and Heidke skill score (HSS) with vari-

able rain/no-rain thresholds. Results of the comparisons with

other screening algorithms are also provided and the CCA

performance is described in terms of minimum detectable

rain and of total error for each background surface type. Fi-

nally Sect. 5 includes the summary of the main results and

the conclusions.

2 Instruments and data set description

The study was carried out in the area between 36◦ S and

36◦ N in latitude and between 60◦ E and 60◦W in longitude,

covering the African continent, parts of the Arabian Penin-

sula, South America, and the Atlantic and Indian oceans.

All the analyses were performed using coincident obser-

vations of the TRMM-PR with observations from SSMIS

and AMSU/MHS radiometers for the years 2011–2013. The

TRMM-PR was the first spaceborne precipitation radar; it

provided publicly available data until October 2014 and can

be considered the precursor to GPM DPR. It is a 13.8 GHz

radar scanning between −17 and +17◦ with a swath width

of 247 km (after the satellite was boosted to higher orbit in

2001). SSMIS is a conical-scanning radiometer with a scan-

ning angle of 45◦ and a swath width of 1707 km, measuring

passive microwave radiation in 24 channels with frequen-

cies ranging from 19 to 183 GHz. The 19, 37, and 91 GHz

channels are in the vertical and horizontal polarization, while

the 22 GHz channel is present only in the vertical polar-

ization and the 150 GHz is present only in the horizontal

polarization as the channels in the water vapor absorption

band (around 183.31 GHz). Finally, the channels in the oxy-

gen absorption band (50.3–63.2 GHz) are horizontally po-

larized (in the radiometer carried by the Defense Meteoro-

logical Satellite Program (DMSP) F16, channels 1–7 were

incorrectly designed as V polarized) or right-circular polar-

ized. The SSMIS radiometer is carried on board four satel-

lites of the DMSP: the F16, F17, F18, and F19; the launch

of F20 satellite is planned for 2020. AMSU-A and MHS are

both cross-track scanning radiometers on board four satel-

lites: NOAA-18, NOAA-19, Metop A, and Metop B. AMSU-

A has 23 channels between 23.8 and 89 GHz while MHS has

a channel at 89 GHz, at 157 GHz, and three channels in the

183 GHz water vapor absorption band. The polarization mea-

sured by every channel changes with the scan angle which

varies between −48.95 and 48.95◦, and the swath width of

the radiometer is about 1920 km.

We selected all available coincidences (within a 15 min

time window) of the SSMIS radiometer with the TRMM-PR

in the area of interest considering the DMSP-F16 and DMSP-

F17 satellites (i.e., the DMSP-F18 has the 150 GHz channel

malfunctioning since February 2012). The same was done

for the available AMSU/MHS radiometers for the Metop-A,

NOAA-18, and NOAA-19 satellites. Therefore, two data sets

have been created, one of SSMIS-PR coincidences and one

of AMSU/MHS-PR coincidences, with a total of 3889 and

2581 coincident overpasses for the AMSU/MHS and for the

SSMIS data set, respectively.

To obtain co-located vectors of SSMIS or AMSU/MHS

TBs and PR rainfall estimates (TRMM product 2A25), the

horizontal resolution variation with frequency in conically

scanning MW radiometer (SSMIS) and with the observation

angle in the cross-track scanning radiometers (AMSU/MHS)

needs to be taken into account. Moreover, there are sampling

differences between AMSU-A and MHS and between the

SSMIS components (Imager, Environmental, Lower and Up-

per Atmospheric Sounder). Therefore, the TRMM-PR rain-

fall rate at the surface was downscaled to the SSMIS and

MHS nominal resolution, defined as the IFOV size of the

91 GHz/89 GHz channel for the SSMIS/MHS radiometer,

respectively. All the channels with a coarser spatial grid

were resampled using a nearest-neighbor approach; for the

AMSU-A/MHS sensors we have used an IFOV size variable

with the scan angle as described by Bennartz (2000).

The resulting data sets were divided into three classes de-

pending on the background surface – land, ocean, and coast

– using a digital land/sea map at 2 s of arc resolution. The
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land class was subdivided into vegetated land and arid land

(desert). The arid land pixels have been identified by looking

at the mean annual difference between the SSMIS 19 GHz V

and H channels. Grody (1991) has shown how the differ-

ence of the V and H polarized channels is very effective

in identifying desert. Although the presence of clouds may

reduce the polarization difference, this effect may be mini-

mized by averaging the TB difference over a long period. In

this study we have looked at 1 year (2011) of SSMIS obser-

vations over the area of interest, selecting the observations

over land, and remapping them on a regular grid in latitude

and longitude (with 0.5◦ spacing). The difference of the TBs

of the 19 GHz V and H channels (dTB19) was calculated for

each grid point and then averaged over 1 year. The area cor-

responding to each grid point was identified as desert (or arid

land) if the mean annual difference of dTB19 was higher than

15 K:

dTB19 = TB19V−TB19H > 15K. (1)

Figure 1 shows the results of this procedure over the area

of interest. It is clear how the Sahara and the Arabian desert

have been correctly identified as arid land. Smaller areas of

arid land also appear in Iran (including the Dasht-e Kavir

and the Dasht-e lut deserts) and over the African continent

(including the Kalahari desert in southwest Africa and arid

regions in the continental Horn of Africa). However, some

small deserts near to the coast have been not correctly iden-

tified, i.e., the Namib in Namibia and the Danakil Desert on

the African coast of the Red Sea. The coast pixels have been

excluded from this test to eliminate the polarization differ-

ence due to the sea surface emissivity.

The SSMIS-PR and AMSU/MHS-PR data sets have been

both divided into two separate data sets: a training set includ-

ing all data from 2011 and 2012 and a test data set including

data from 2013.

3 Methodology

This section is dedicated to the procedure used to define

the CCA algorithm for which the training data set relative

to the years 2011–2012 has been used. We have considered

all channels of both data sets (AMSU/MHS and SSMIS) ex-

cept the channels in the 50–60 GHz band with a peak of the

weighting function too high for the scope of this work, i.e.,

we have excluded the channels in the 50–60 GHz band with

a frequency higher than 55.5 GHz.

The first test was performed in order to select the combi-

nation of channels that is more suitable to discriminate the

signal deriving from the precipitating cloud (“rain”) from the

signal deriving from the background surface (“no rain”). We

call this monodimensional combination of channels the dis-

criminant function. In order to obtain and test different dis-

criminant functions we have applied two well-known multi-

variate methods: empirical orthogonal function (EOF) anal-

Figure 1. Map of arid land identified using the annual mean of the

19 GHz channels difference (V–H). Dark grey areas are the regions

identified as desert or arid land.

ysis and canonical correlation analysis (Wilks, 1995). Both

procedures consist of a projection of a multidimensional

space (TBs) in a new set of coordinates, and, while the prin-

cipal components (resulting from an EOF analysis) are or-

dered by the increasing variance, the canonical variables (re-

sulting from a CCA) are ordered by the correlation with a

third variable (in our case the logarithm of the surface rain-

fall rate). We have calculated seven candidate discriminant

functions and tested them in a simple discriminant analysis

test. The test consisted in applying three multivariate statis-

tical procedures either on the part of the data sets (SSMIS

and AMSU/MHS) with precipitating pixels (“rain”) or on

the part of the data sets with non-precipitating pixels (“no

rain”) (“rain” or “no rain” pixel definitions are based on the

TRMM-PR 2A25 product). The first procedure consisted of

applying an EOF analysis on the TBs corresponding to “no

rain” pixels, with the resulting combination of channels here-

after called PCAN. Once the principal components were cal-

culated we discarded the first components (linked mostly to

the signal deriving from the surface), in order to obtain a set

of independent components (combination of TBs) with min-

imum signal coming from the surface. A second procedure

consisted of applying an EOF analysis on the TBs corre-

sponding to “rain” pixels, obtaining a combination of chan-

nels hereafter called PCAR, and discarding the last compo-

nents. A third procedure consisted of calculating the CCA

on the “rain” fraction of the data set in order to select the

linear combination of TBs with the maximum correlation to

rainfall (CCAR). We have made comparisons with the results

obtained performing the CCA with respect to log(R) (where

R is the rainfall rate) and to R, finding better performances

for log(R). Therefore we have used the logarithm of rain-

fall rate as a reference variable for CCAR. The objective of

the last two procedures was to enhance the signal emitted by

precipitating clouds. In the work of Petty (2013), two of these

procedures (PCAN and PCAR) were applied to a data set of

TBs in order to enhance the signal from precipitation and to

mask the signal coming from the surface background. In this
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Table 1. Description of the seven-candidate discriminant functions.

Discriminant function Short description Comments/goal

1 PCAN EOF analysis on “no rain” pixels – first component chosen To enhance the signal from the background surface

2 PCAR EOF analysis on “rain” pixels – first component chosen To enhance the signal from precipitation.

3 PCAN-PCAR EOF analysis on “no rain” observations, To mask the background signal and enhance the signal

discarding the first three components, and EOF analysis from precipitation following Petty (2013) .

on “rain” pixels selecting the first component

4 CCAR CCA of TBs for “rain” pixels – first canonical variable To enhance the signal from rain.

5 PCAN-CCAR As in row three, with the difference that the second Same goal as row three, with change from

procedure is a CCA of TBs for “rain” pixels Petty (2013) in the second step.

6 PCAR-CCAR (1) EOF analysis of “rain” pixels – Same goal as row three. As suggested by Wilks (1995), CCA

discarding the last three components. is supposed to be more stable if applied to

(2) CCA application to the selected selected components (eliminating those more

components – first canonical variable affected by random noise).

7 PCAN-PCAR-CCAR As in row three with one more step (as row six): To mask the background signal and enhance the signal

a CCA is applied to the PCAR after from precipitation, row six and three procedures are joined.

the last three components are discarded

study we have tested seven candidate discriminate functions

consisting of different combinations of the three procedures

described above (PCAN, PCAR and CCAR). Table 1 shows

a synthetic description of the seven candidate discriminant

functions.

The ability of each of the seven functions to discriminate

the “rain” and “no rain” pixels has been tested with a sim-

ple linear discriminant analysis (Wilks, 1995). First, the SS-

MIS data set has been considered with a PR-based rain/no-

rain threshold of 0.1 mmh−1 for each surface class. Then the

same analysis was repeated for the AMSU/MHS data set (for

each surface class). The choice of 0.1 mmh−1 threshold for

TRMM-PR was based on the evidence that the minimum de-

tectable rain rate of this instrument, estimated by Kirstetter

et al. (2014) as 0.53 mmh−1 at PR resolution, corresponds

to the peak of the probability density function (pdf) of the

rainfall rates in our data set at full resolution (not shown).

By downscaling the PR rainfall rates to the SSMIS or MHS

nominal resolution, the peak of the pdf of the rainfall rates

shifts to lower values nearly equal to 0.1 mmh−1. The results

in terms of Heidke skill score (which measures the fractional

improvements over random chance) for the SSMIS data set

are shown in Fig. 3. The HSS is defined as

HSS=
2(hc− fm)

(h+m)(m+ c)+ (h+ f )(f + c)
, (2)

where h, m, f , and c are the fractional hits, misses, false

detections, and correct rejections in a contingency table, re-

spectively (Wilks, 1995). The HSS falls within a [−∞,+1]

range, where 1 indicates the perfect score.

Looking at Fig. 2 it is clear how PCAN and PCAR have

relatively low skills over all background surfaces except for

vegetated land. However, CCAR, PCAR-CCAR, and PCAN-

PCAR-CCAR have the best skill score over all surfaces and

Figure 2. Results of the choice of the discriminant function over dif-

ferent background surface for the SSMIS data set: the labels of the

x axis identify the discriminant function used (see text for details)

and the value represented in the y axis is the Heidke skill score.
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behave quite similarly. Finally, PCAN-PCAR and PCAN-

CCAR have a skill variable depending on the surface type.

CCAR shows a high HSS and is a relatively simple pro-

cedure, being the result of a canonical correlation analysis

on the TBs associated with rainfall as observed from the

TRMM-PR. Similar results of the HSS were obtained for the

AMSU/MHS data set. From the results of this analysis we

have chosen the CCAR as the discriminant function of the

CCA algorithm for detection of precipitation.

The CCA algorithm was trained separately for the two data

sets of coincidences of SSMIS with PR and coincidences of

AMSU/MHS with PR using the full set of 2011–2012 ob-

servations. We have also tested how the detection algorithm

would perform with a pseudo-GMI radiometer by selecting

only the channels from the SSMIS data set more similar to

those of the GMI radiometer (i.e., the SSMIS channels in the

50–60 GHz absorption band and at 183± 1 GHz were dis-

carded).

The CCA algorithm has been defined in two steps for

each of the three data sets (SSMIS-PR, AMSU/MHS-PR, and

pseudo GMI-PR) and considering the four different back-

ground surface types. First, we have carried out the CCAR

(i.e., on the TBs of “rain” pixels) to find the coefficients (ai)

of the linear combination of TB channels best correlated to

precipitation (canonical variables, CV), defined as

CV=

n∑
i=1

ai

(
TBi −TB

i

m

)
, (3)

where the index i spans over the n available channels of

the radiometer (SSMIS, AMSU/MHS, or pseudo-GMI), TBi

is the brightness temperature in each pixel, and TB
i

R is the

mean brightness temperature over the full “rain” data set.

Then, we found the threshold value of CV to discriminate

between “rain” and “no rain” pixels (CVth). This was com-

puted by analyzing the variability of HSS over the full data

set for different threshold values CVth (ranging between −2

and 8 K), using the TRMM-PR rainfall product as “truth”

with minimum “rain” threshold of 0.1 mmh−1. The threshold

value CVth, which maximizes the HSS, was selected. This

procedure was repeated for each surface background and ra-

diometer data set. Therefore, for each surface and for each

radiometer a set of coefficients ai and a threshold value CVth

was determined to discriminate between “rain” and “no rain”

pixels.

The CCA algorithm marks those pixels as “rain” where

CV=

n∑
i=1

ai

(
TBi −TB

i

R

)
> CVth. (4)

The resulting coefficient of the CCAR analysis (ai) and the

chosen threshold CVth are therefore defined for each ra-

diometer (SSMIS, AMSU/MHS, or pseudo-GMI) and for

each type of surface background, and they are summarized

in Appendix A.

4 Results

This section shows the results of the application of the al-

gorithm to the test data set relative to the year 2013. In the

tuning of the algorithms we classified the precipitating pixels

adopting an arbitrary rainfall rate threshold of 0.1 mmh−1;

however, it is possible that in some conditions the radio-

metric signal is not suited to detect such light precipitation.

Moreover, an algorithm for the detection of precipitation is

always a compromise between the need for detecting the

lower minimum threshold of rain rate and the requirement

of low detection errors in terms of both false alarms and

misses. In this section we analyze the results of the CCA

algorithm for different rainfall rate thresholds (RRth), using

the TRMM-PR 2A25 product as ground truth for “rain” pix-

els. We compare the results with those obtained from widely

used screening algorithms (presented in Sect. 1), applying

them on the same data sets used for the CCA algorithm.

In particular, we have used four other procedures: (1) the

scattering index (Ferraro, 1997), hereafter F97-SI, i.e., the

scattering index over land and ocean considering also the

estimated columnar water vapor from 19 to 37 GHz over

ocean; (2) the polarization-corrected temperature algorithm

from Spencer et al. (1989) (hereafter SGH-PCT) in which the

PCT is calculated with β = 0.45, considering the pixels with

PCT< 255 K as “rain”; (3) the AMSU/MHS screening algo-

rithm from Chen and Staelin (2003), which uses differences

between the 183 GHz channels and the 53.6 GHz and appli-

cable over each type of surface background considered in this

study (hereafter CS03); and (4) the methodology developed

by Grody and Weng (2008) and employed by many authors

(e.g., Laviola and Levizzani, 2009, 2011), which uses the TB

difference between the MHS channels at 89 GHz (or SSMIS

and GMI-like 91.6 GHz) and 150 GHz as a simple mask in

order to detect the scattering signal from precipitation (here-

after GW08). The “rain” threshold on this TB difference has

been set to 5 K. Table 2 summarizes the screening algorithms

used for comparison in this study.

The results are evaluated in terms of HSS, POD, and FAR,

defined as

POD=
h

(h+m)
; FAR=

f

(f +h)
, (5)

with the same reference to a contingency table as in Eq. (3).

4.1 Discussion of skill scores

Figures 3 and 4 show the results for the SSMIS (and pseudo-

GMI) data sets and for the AMSU/MHS data sets, respec-

tively, for all types of surface background. All tested algo-

rithms have higher POD for higher RRth because high rain

rates are usually associated with precipitating clouds with a

strong radiometric signal (except in some cases such as warm

rain over land). It is worth noting, however, that the impact on

the TBs in the different microwave channels depends on sev-

eral factors, such as the surface background, environmental
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Table 2. Algorithms used for comparison in the study. ∗ Used only for SSMIS and pseudo-GMI data sets.

Acronym Brief description Reference

F97-SI∗ Scattering index over land and ocean using 19 and Ferraro (JGR, 1997)

22 GHz and estimated IWV over ocean using 37 GHz.

SGH-PCT∗ Polarization-corrected temperature (PCT) algorithm; Spencer et al. (JAOT, 1989)

we have calculated the PCT with β = 0.45,

considering the pixels with PCT< 255 K as “rain”.

CS03 Considers differences between the 183 GHz channels and Chen and Staelin (TGRS, 2003)

the 53.6 GHz and is applicable over each type of surface

background considered in this study.

GW08 TB difference between the MHS channel at 89 GHz Grody and Weng (TGRS, 2008)

(or 91.6 GHz for SSMIS and pseudo-GMI) and 150 GHz

to detect the scattering signal from precipitation.

Figure 3. Comparison of the CCA-SSMIS and CCA-GMI algorithms with other similar algorithms for the detection of precipitation using

the PR rain rate with a variable threshold (represented in the x axis) as ground truth for the precipitating pixels. The results are shown in

four columns of panels (one for each surface type) in terms of POD (upper row of panels), FAR (middle row), and HSS (lower row). The

scales are the same for every plot. Solid lines show the statistical indexes resulting from the application of a screening algorithm to the test

data set (year 2013); red crosses are the result of the application of the SSMIS-CCA algorithm to the training data set (years 2011–2012).

and meteorological conditions, and the microphysical struc-

ture of the cloud. FAR grows with RRth as well in all of the

algorithms considered, as a consequence of the fact that by

increasing RRth the size of the areas considered as precipitat-

ing by the TRMM-PR is reduced, while the areas identified

as “rain” by the detection schemes are unchanged. The over-

all performance of the detection schemes can be evaluated by

looking at the HSS (last row in each figure).

In Fig. 3, over every surface the CCA algorithm applied

to SSMIS and pseudo-GMI (CCA-SSMIS and CCA-GMI)

shows almost identical scores. Moreover, the comparison

of the scores of CCA-SSMIS on the training data set (red

crosses in Fig. 4) and test data set (continuous red line) shows

a good agreement between the two, a sign of the stability

of the algorithm. Over arid land, vegetated land, and coast

the CCA-SSMIS performs better (i.e., higher HSS) than the

other algorithms especially due to lower FAR. The SGH-PCT

shows a low POD and a low FAR over all surface background

types. The major drawback of the SGH-PCT algorithm is that

it needs to use both polarizations of the SSMIS (or pseudo-

GMI) 91 GHz channels, and, therefore, it is not applicable to

AMSU/MHS or other cross-track scanning radiometers. It is

also worth noting that the F97-SI algorithm is not suited for

detecting precipitation over desert (arid land) because the use
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Figure 4. Same as Fig. 3 but for the AMSU/MHS data set. The CCA-SSMIS (red solid curve) (results of the CCA algorithm applied to

SSMIS test data set shown in Fig. 3) are shown here for comparison. Red crosses are the result of the application of the CCA-AMSU

algorithm to the training data set (years 2011–2012).

of the SI leads to the misclassification of the signal deriving

from the surface as precipitation (in fact it was not applied

to desert background in the original work by Ferraro, 1997).

Over ocean, the CCA algorithms have higher POD than the

others (while the FAR is comparable to CS03). Over ocean,

CCA-SSMIS and CCA-GMI show higher HSS than the other

algorithms except the F97-SI, which has higher HSS for RRth

larger than 0.3 mm h−1. We can conclude that over ocean the

CCA algorithm is more suitable to detect low precipitation

rates (RRth ≤ 0.2 mmh−1) than the F97-SI; however, F97-SI

is preferable to detect higher precipitation rates.

Figure 4 shows that the CCA-AMSU has a behavior sim-

ilar to the CCA-SSMIS (CCA-GMI). No results for F97-SI

and SGH-PCT are presented in this figure because these two

approaches can not be applied to the AMSU/MHS radiome-

ters, since the 19 GHz channel and the two polarization of

the 89 GHz are not available. Over arid and vegetated land,

the CCA-AMSU performs better than the other algorithms

(higher HSS due to the significantly lower FAR). Over coast,

the CCA-AMSU has skill scores very similar to the other al-

gorithms. Finally, over ocean the CS03 and GW08 seem to

work better (in terms of HSS) for high values of RRth.

A complete and synthetic representation of the skill scores

for all algorithms but for one rain rate threshold (0.1 mmh−1)

is provided in Fig. 5 (CCA-GMI results have been omit-

ted because they are identical to CCA-SSMIS scores). From

this figure it is evident how the CCA algorithm, both for

AMSU/MHS and for SSMIS, performs well in terms of HSS

with respect to the other tested algorithms and how this is

due to the higher POD and to the lower FAR.

4.2 Minimum detectable rate

This section is dedicated to defining the minimum detectable

rainfall rate for the CCA algorithm for each surface type and

sensor and to computing the statistical scores of the algo-

rithm for these thresholds. Figure 6 shows the results of a

binning technique (following Ferraro and Marks, 1995) ap-

plied to the TRMM-PR rainfall rate corresponding to the CV

values (Eq. 4) of each pixel. For each data set (i.e., for SS-

MIS, AMSU/MHS and pseudo-GMI and for four different

types of surface) the CV range of values has been divided

into bins 0.2 K wide, and the mean and the standard devi-

ation of the TRMM-PR rainfall rate corresponding to each

CV value has been calculated for each bin. Each panel shows

the trend of the mean rainfall rate (and standard deviation)

with the CV binned values. A thick vertical dashed line rep-

resents the CV threshold chosen for each radiometer and sur-

face background type as a result of the CCA training (i.e,

CVth in Eq. 5, Sect. 3; the values are also provided in Ap-

pendix A).

Looking at the trend of mean rain rate with CV and at

the rain rate standard deviation it is evident that increasing

values of CV are on average associated with increasing val-

ues of rainfall rate. All the pixels falling in the bins below

CVth are misclassified as “no rain” and they correspond to

the low rainfall values (below 0.5 mmh−1 for all the data

sets). We have considered the minimum detectable rainfall

rate for each data set (RRb) as the mean value corresponding

to the CVth. In Table 3 the values of RRb are reported and

the scores of the CCA algorithm based on these thresholds

are also provided. It is clear from Fig. 6 and Table 3 how the
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Figure 5. Skill score comparison of the CCA algorithm with other precipitation detection algorithms with rain/no-rain threshold (“truth”

from PR 2A25) equal to 0.1 mmh−1.

Figure 6. Binning analysis of the rain rate intensity against CV values: mean (continuous black line) and standard deviation (error bars) of

rain rates inside an interval of CV bins (as large as 0.2 K) are shown. The vertical dashed line represents the CV threshold (CVth) chosen for

each combination of radiometer and surface background.
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Table 3. Value of the mean rain rate corresponding to the CCA threshold set for every radiometer and surface background combination.

Values in bold refer to the test data set while the italics values refer to the training data set.

SSMIS AMSU/MHS GMI

Arid Veg. Coast Ocean Arid Veg. Coast Ocean Arid Veg. Coast Ocean

land land land land land land

RRth (mmh−1) 0.25 0.35 0.41 0.18 0.26 0.31 0.24 0.14 0.33 0.38 0.40 0.18

POD 0.57 0.74 0.62 0.68 0.56 0.73 0.61 0.71 0.60 0.73 0.62 0.67

(RRth) 0.61 0.71 0.55 0.67 0.55 0.69 0.57 0.72 0.60 0.71 0.54 0.67

FAR 0.50 0.49 0.47 0.45 0.55 0.52 0.57 0.47 0.51 0.50 0.47 0.44

(RRth) 0.44 0.49 0.50 0.47 0.52 0.51 0.58 0.43 0.44 0.50 0.50 0.47

HSS 0.53 0.57 0.55 0.58 0.49 0.53 0.45 0.56 0.53 0.56 0.54 0.58

(RRth) 0.58 0.56 0.50 0.56 0.50 0.53 0.42 0.61 0.58 0.55 0.50 0.56

CCA performs better over vegetated land and over ocean for

both SSMIS and AMSU, and RRb is lower over ocean (less

than 0.2 mmh−1) and higher over land (around 0.3 mmh−1).

Over arid land it is possible to discriminate lower values of

rain intensity (around 0.25 mmh−1) but the strong variabil-

ity in the surface emissivity leads to a higher ratio of misses

(lower POD). Over coast the results are quite different be-

tween the SSMIS and the AMSU algorithms: the RRb over

coast for the SSMIS is the highest among all the data sets

(0.41 mmh−1), while the irregular trend of the mean rain rate

over coast for the AMSU/MHS makes the result for RRb over

coast (0.24 mmh−1) uncertain.

Regarding the pseudo-GMI data set, it is worth noting that

it was generated from the SSMIS data set only by discarding

the channels not available in the GMI radiometer (183± 1

and the 50–60 GHz band channels). Therefore, the results are

only to a certain extent representative of the performance of

a CCA algorithm for the real GMI radiometer, since we have

considered only the instrument observation geometry (coni-

cal scanning) and some of the channels frequencies and po-

larizations. The presence of the 10 and 166 GHz channels

with both polarizations (not available on SSMIS) might have

a significant impact on precipitation detection. Moreover, the

differences in the resolution of the GMI and SSMIS sensors

have not been considered, and this may strongly affect the

results on real GMI data. It is worth noting that the almost

identical results obtained for the SSMIS and pseudo-GMI

data sets indicate that the inclusion of the sounding channels

183± 1 and 50–60 GHz has no impact on the precipitation

detection.

4.3 Dependence on precipitation regime

In the following subsection we have analyzed the CCA algo-

rithm scores using the rainType flag as estimated by TRMM

product 2A23 (please refer to TRMM, 2011, for details on

the rainType flag definitions in the TRMM-PR 2A23 prod-

uct). Each PR pixel has been classified into four main rain

categories as

1. stratiform (rainType≥ 100 and < 200)

2. convective (rainType≥ 200 and < 250)

3. shallow convective (rainType≥ 250 and < 300)

4. other (rainType≥ 300).

In the test data sets this information was downscaled to the

SSMIS and MHS nominal resolutions by calculating the frac-

tion of PR precipitating pixels corresponding to each rain

category within each SSMIS and AMSU/MHS pixel. Each

pixel in the SSMIS-PR and AMSU/MHS-PR data sets has

been classified as mainly convective if at least 50 % of the

precipitating part of the pixel was convective. The same cri-

terion was adopted for the other rain categories. If a pixel

was classified as precipitating with no predominance of any

of the main rain type class, it was flagged as mixed.

Table 4 shows the POD score for each rain type class and

for each surface background. Moreover, Table 5 shows the

POD calculated as a function of the fraction of precipitation

in the pixel (for all surface background classes together). It is

clear from Tables 4 to 5 that the CCA algorithm detects con-

vective and stratiform precipitation very well, while it is al-

most insensitive to shallow precipitation over land and coast

and gives medium performances (between 0.30 and 0.58) for

other and mixed precipitation types. However, from Table 5 it

is evident that the detection capability of precipitation grows

with the fraction of precipitation within the SSMIS and MHS

pixels. These results indicate that the non-uniform beam fill-

ing effect can have a significant impact on the detection of

the precipitation, and the impact depends on the predominant

type of precipitation within each pixel (i.e, the most signifi-

cant impact for shallow precipitation, the least significant for

stratiform precipitation, and quite significant for convective

precipitation).
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Table 4. Probability of detection scores classified by surface back-

ground and rain type.

POD

Convective Stratiform Shallow Other Mixed

S
S

M
IS

Arid land 0.61 0.68 – 0.30 0.33

Veg. land 0.76 0.84 0.08 0.55 0.48

Coast 0.68 0.82 0.09 0.39 0.36

Ocean 0.84 0.93 0.42 0.48 0.55

A
M

S
U

/M
H

S Arid land 0.73∗ 0.77 – 0.44∗ 0.33∗

Veg. land 0.76 0.84 0.07∗ 0.45 0.47

Coast 0.75 0.87 0.09 0.30 0.38

Ocean 0.89 0.96 0.40 0.38 0.58

∗ sample 100–500 pixels.

Table 5. Probability of detection scores classified by rain type and

percentage of precipitation in the pixel. No results are provided for

samples with less than 100 pixels.

POD with fraction of precipitation

Fraction Convective Stratiform Shallow Other Mixed

of precip. conv.

S
S

M
IS

> 0.1 0.75 0.87 0.38 0.47 0.53

> 0.2 0.77 0.88 0.44 0.47 0.53

> 0.3 0.79 0.88 0.47 0.47 0.57

> 0.4 0.81 0.89 0.49 0.49 0.62

> 0.5 0.82 0.91 0.51 0.56 0.69

> 0.6 0.84 0.92 0.54 0.59 0.71

> 0.7 0.84 0.93 0.61 0.57 0.81

> 0.8 0.88 0.95 0.68 0.63 0.90

> 0.9 0.89 0.96 0.71 0.70 0.92

A
M

S
U

/M
H

S

> 0.1 0.79 0.89 0.28 0.40 0.52

> 0.2 0.81 0.90 0.32 0.41 0.57

> 0.3 0.84 0.91 0.36 0.45 0.64

> 0.4 0.87 0.93 0.44 0.57 0.70

> 0.5 0.91 0.95 0.57 0.73 0.81

> 0.6 0.93 0.96 0.59 0.81 0.88

> 0.7 0.97 0.97 0.70∗ 0.84 0.94

> 0.8 0.99 0.98 0.75∗ 0.88∗ 0.98

> 0.9 1.00 0.99 – – 1.00

Table 6 shows the results for the false alarms consider-

ing the actual potential presence of rain in the AMSU/MHS

and SSMIS pixel based on the downscaled PR rain/no-rain

flag values (2A23 rainFlag). The first column shows the FAR

scores for each surface type, while the other columns show

the percentage of false alarms counts (for each surface type)

for three different classes of rain/no-rain conditions. The

three classes are as follows.

1. Low rain: SSMIS or AMSU/MHS pixels classified as

“rain certain” (rainFlag equals to 20). For this class,

CCA false alarms refer to PR downscaled rain rates less

than 0.1 mmh−1.

2. Potential rain: SSMIS or AMSU/MHS pixels classified

as “rain possible” or “probable” (rainFlag between 10

and 15). For this class, false alarms refer to PR down-

Table 6. False alarms ratio scores classified by surface and rain flag.

Percentages represent the fraction of false alarm counts for a given

surface type and rainFlag w.r.t the total number of false alarms for

each surface type.

False alarms

Total Low Potential No rain

FAR rain rain

% % %

S
S

M
IS

Arid land 0.29 29.03 52.23 18.74

Veg. land 0.31 27.15 49.25 23.60

Coast 0.36 27.03 45.95 27.03

Ocean 0.39 29.58 35.07 35.35

A
M

S
U

/M
H

S Arid land 0.46 39.27 57.58 3.16

Veg. land 0.32 48.75 45.76 5.49

Coast 0.40 55.16 38.57 6.27

Ocean 0.28 59.57 33.77 6.66

scaled rain rates equal to 0 mmh−1. This class includes

very weak echoes (possibly noise) and non-precipitating

clouds.

3. No rain: SSMIS or AMSU/MHS pixels classified as “no

rain” ” (rainFlag equals to 0).

It is clear from Table 6 that only a relatively small percentage

of the false alarms are associated with “no rain” pixels (es-

pecially for AMSU/MHS ranging between 3 and 6 %), while

a quite significant number of the false alarms are associated

with “low rain” PR observations with low rain rates (for the

SSMIS 27–30 % and for AMSU/MHS 39–60 %) .

5 Conclusions

The CCA algorithm for the detection of precipitation de-

scribed in this paper results from the application of two

main procedures: (1) the application of the canonical corre-

lation analysis to a large data set of coincident PMW multi-

channel observations and precipitation measurements or esti-

mates, which can be considered as “truth” to define canonical

variables for different types of surface background; (2) the

estimation of a threshold value for the canonical variables

that maximizes the Heidke skill score for a given rainfall

rate threshold. The algorithm has been applied to three large

data sets built from coincident SSMIS and AMSU/MHS

measurements and TRMM-PR rainfall products (SSMIS-

PR, AMSU/MHS-PR, and pseudo-GMI-PR). Four different

types of surface background have been considered, and the

results have been compared to other well-known screening

algorithms. The resulting CCA algorithm is simple, and it

can be adapted to any PMW radiometer and to any geograph-

ical region where a large data set of coincident precipitation
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measurements and PMW observations from that radiometer

is available.

The CCA algorithm almost always shows better perfor-

mance in comparison to other well-known algorithms, es-

pecially in terms of low false-alarm ratios. The HSS is al-

ways higher than all other algorithms tested, except for

AMSU/MHS over ocean for high rainfall rate thresholds

> 0.7 mmh−1 and SSMIS over ocean for rainfall rate thresh-

olds > 0.3 mmh−1. The estimate of the minimum rain rate

that is efficiently detected by the algorithm shows val-

ues varying from 0.14 mmh−1 (AMSU/MHS over ocean)

to 0.41 (SSMIS over coast) with the remarkable result of

0.25 mmh−1 over arid land surface. It is worth noting that the

pseudo-GMI data set was generated by selecting the channels

available in the GMI radiometer from the SSMIS data set.

Therefore, the results from the pseudo-GMI data set need to

be looked at with some caution. The geometry of observa-

tion of the two instruments is very similar and the polariza-

tion and frequency of the selected channels almost coincide.

However, the presence of the 10 and 166 GHz channels with

both polarizations (not available on SSMIS) might have a sig-

nificant impact on precipitation detection. In this study the

almost identical results obtained for the SSMIS and pseudo-

GMI data sets are more related to the significance of the oxy-

gen band absorption channels for light precipitation detec-

tion. Our results indicate that the inclusion of the sounding

channels 183± 1 and 50–60 GHz has almost no impact on

precipitation detection.

An analysis of the results based on different precipitation

regimes (as identified by the TRMM-PR) has shown how the

CCA algorithm has very high detection capability for con-

vective and stratiform precipitation. Shallow convective pre-

cipitation detection efficiency strongly depends on the sur-

face background as CCA is almost insensitive to shallow

convective rain over coast and land and gives moderate per-

formances over ocean. Moreover, the results show that the

non-uniform beam filling effect can have a significant impact

on the detection of precipitation, and the impact depends on

the precipitation regime, i.e, highest for shallow precipita-

tion, lowest for stratiform precipitation, and quite significant

for convective precipitation.

The CCA algorithm for the different radiometers (i.e.,

CCA-AMSU, and CCA-SSMIS) seems to perform well, with

a good detection capability and low false alarms ratios. It is

worth noting that only a relatively small percentage of the

CCA false alarms are related to totally rain-free pixels, while

a quite significant contribution comes from pixels with very

low rain rates, i.e., downscaled PR rain rates lower than the

minimum rain/no-rain threshold used (0.1 mmh−1).

The advent of the GPM era requires the combined use of

different PMW radiometers with different channels and dis-

similar observation geometry for global precipitation moni-

toring. This poses a difficult challenge to the scientific com-

munity, i.e., the obtaining of coherent estimates of precipita-

tion from this constellation of radiometers. Much effort is put

into achieving consistency between precipitation pattern and

precipitation estimates from the different sensors. Some fun-

damental improvements in this direction will come from the

use of common procedures applicable to all radiometers for

the detection (and the retrieval) of precipitation, applicable

to all types of background surfaces. The CCA algorithm is

an important step toward this goal, considering it is suitable

for application to any PMW sensor (conical and cross-track

scanning) for which a long time series of data coincidences

with rainfall rate considered as ground truth is available.

The results show a certain level of consistency between the

detection capability of CCA-SSMIS and CCA-AMSU algo-

rithms. It is worth noting that by using different thresholds

and linear combinations of channels for each sensor, the al-

gorithm optimally exploits the characteristics of each sensor.

However, the available channels, polarization information,

spatial resolutions, and observation geometry, which differ

from radiometer to radiometer, introduce fundamental varia-

tions in the precipitation detection capabilities of each sensor

and pose intrinsic limitations to the level of achievable con-

sistency. In the EUMETSAT H-SAF project, the consistency

of the precipitation estimates between cross-track and coni-

cal scanning radiometers has been strongly improved by the

use a common procedure for the detection of the precipitat-

ing clouds (besides the use of the same physical foundation

in the retrieval algorithms; see Mugnai et al., 2013b; Pane-

grossi et al., 2013).

In the near future we plan to develop the CCA algorithm

for GMI, GCOM-W1 AMSR2, and Suomi NPP ATMS. We

are planning to take advantage of the imminent availability

of the GPM DPR products in order to extend and test the

CCA procedure between 65◦ N and 65◦ S, especially over

snow- and ice-covered surfaces. Moreover, the estimates of

the CloudSat Profiling Radar may be used as ground truth

(especially for snowfall and light precipitation) in order to

create an even larger data set of coincident observations of

active and passive MW satellite-borne instruments and ex-

tend the CCA algorithm to higher latitudes and to the polar

regions.

Atmos. Meas. Tech., 8, 1217–1232, 2015 www.atmos-meas-tech.net/8/1217/2015/



D. Casella et al.: Algorithm for detection of precipitation using PMW radiometers 1229

Appendix A

Tables A1–3 show the CV thresholds (CVth), the coefficients,

and mean TB values used by the CCA algorithms for the

SSMIS, pseudo-GMI, and AMSU/MHS data sets. The mean

TBs in the pseudo-GMI data set are identical to the corre-

sponding channels of the SSMIS data set.

Table A1. List of CCA coefficients and CVth thresholds used by the CCA algorithms for the SSMIS radiometer.

SSMIS Arid land Vegetated land Coast Ocean

CVth 2.4 K 0.6 K 1.1 K 1.1 K

Ch. # Ch. name a TBR a TBR a TBR a TBR

(GHz)

1 150 −0.07 274.86 −0.08 277.65 −0.05 277.39 −0.01 277.49

2 183± 6.6 −0.11 272.51 −0.02 267.49 −0.04 270.66 0.00 271.99

3 183± 3 0.01 263.31 0.03 259.86 0.03 262.60 −0.00 263.73

4 183± 1 0.04 249.90 −0.01 247.08 0.00 249.52 0.00 249.70

5 91.6 V −0.04 280.53 −0.01 280.98 −0.04 274.12 0.04 266.26

6 91.6 H 0.07 268.41 0.06 278.17 0.04 258.09 −0.03 240.88

7 19 H 0.03 260.61 0.03 278.43 −0.02 210.99 −0.05 144.39

8 19 V 0.01 290.69 0.02 284.46 −0.04 246.96 0.01 205.56

9 22.2 V 0.02 290.24 0.03 285.60 0.05 263.45 −0.01 237.66

10 37 H −0.02 262.77 −0.03 276.90 0.03 219.56 0.08 164.45

11 37 V −0.03 285.72 −0.02 281.13 −0.02 251.85 0.10 220.26

12 50.3 0.02 275.23 −0.04 275.60 −0.00 262.59 −0.01 249.79

13 52.8 0.02 265.73 −0.01 265.05 −0.00 264.08 −0.02 262.26

14 53.6 0.03 249.90 0.01 249.96 0.01 249.91 −0.02 249.40

15 54.4 0.00 217.64 0.01 217.72 0.01 216.62 0.00 217.05

16 55.5 0.02 211.21 −0.01 210.19 −0.00 210.87 0.00 211.17

Table A2. List of CCA coefficient and CVth threshold used by the CCA algorithms for the pseudo-GMI data set.

GMI Arid Vegetated Coast Ocean

land land

CVth 2.4 K 0.6 K 1.1 K 1.1 K

Ch. # Ch. name a a A a

(GHz)

1 150 −0.06 274.86 −0.08 277.65

2 183± 6.6 −0.12 272.51 −0.02 267.49

3 183± 3 0.06 263.31 0.02 259.86

5 91.6 V −0.04 280.53 −0.01 280.98

6 91.6 H 0.07 268.41 0.05 278.17

7 19 H 0.04 260.61 0.03 278.43

8 19 V 0.03 290.69 0.01 284.46

9 22.2 V 0.03 290.24 0.03 285.60

10 37 H −0.03 262.77 −0.03 276.90

11 37 V −0.03 285.72 −0.03 281.13
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Table A3. List of CCA coefficient and CVth threshold used by the CCA algorithms for the AMSU/MHS data set.

AMSU A-MHS Arid land Vegetated land Coast Ocean

CVth 2.3 K 0.6 K 0.9 K 1.0 K

Ch. # Ch. name (GHz) a TBR a TBR a TBR a TBR

1 89 0.04 284.02 0.06 285.49 0.04 263.60 0.08 239.74

2 150 −0.06 285.12 −0.05 284.45 −0.08 282.53 −0.04 279.56

3 183.3± 1 0.03 253.96 −0.03 250.97 0.01 253.00 −0.02 254.31

4 183.3± 3 0.05 267.25 0.08 263.62 0.02 265.74 0.05 267.37

5 183.3± 7 −0.17 278.89 −0.11 273.11 −0.05 275.31 −0.01 276.41

6 23.8 0.01 285.72 0.04 286.06 0.06 239.15 −0.04 187.14

7 31.4 −0.02 284.17 −0.00 283.86 −0.06 226.90 0.10 166.38

8 50.3 0.01 284.84 −0.06 283.49 0.01 258.43 −0.02 231.73

9 52.8 0.02 276.40 −0.04 274.62 −0.00 269.23 −0.08 262.65

10 53.6 0.04 261.16 0.03 260.27 −0.00 259.34 −0.05 257.62

11 54.4 0.04 240.45 0.05 240.38 −0.00 240.43 0.02 239.96

12 54.9 0.02 230.14 0.04 229.96 −0.01 230.11 0.06 229.86

13 55.5 −0.03 216.91 −0.03 216.33 −0.02 216.60 0.13 216.54
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