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Abstract. Due to the complexity of the multiple scattering

problem for shortwave radiative transfer in Earth’s atmo-

sphere, operational physical retrieval algorithms commonly

use a plane parallel radiative transfer model (RTM). This

so-called one-dimensional (1-D) assumption allows practi-

cal retrieval algorithms to be implemented. In order to un-

derstand the impacts of this assumption for low altitude, un-

resolved clouds observed by OCO-2, the three-dimensional

(3-D) radiative transfer model SHDOM is used to generate

synthetic observations which are then processed by the op-

erational retrieval algorithm based on a 1-D RTM. Simula-

tions are performed over three realistic surface spectral albe-

dos, corresponding to snow, vegetation, and bare soil. The

results show that the existing cloud screening algorithm has

difficulty identifying sub-field of view (FOV), unresolved

clouds that fill less than half of the FOV. The unresolved

clouds introduce a bias in the retrieved CO2 concentration,

as quantified by the dry air mole fraction (XCO2
). The bi-

ases are relatively small (less than 1 ppm) when the albedo

at 2.1 µm is high, which is common over bare land surfaces.

For cases with low 2.1 µm albedo, such as snow, the bias be-

comes much larger, up to 5 ppm. These results indicate that

the XCO2
retrieval appears robust to 3-D scattering effects

from unresolved low level clouds when the short wave in-

frared surface albedo is large, but for darker surfaces these

clouds can introduce significant biases.

1 Introduction

Constraining carbon dioxide fluxes on regional scales has

been an important goal of the earth science community for

many years. Increased knowledge in this area will improve

our current understanding of the different sources and sinks

in the global carbon cycle, as well as improve projections in

future climate change scenarios. Recently, efforts have been

focused on accurate measurements of carbon dioxide con-

centration from satellite platforms, in order to obtain global

data sets to constrain flux inversion models. Measuring car-

bon dioxide in the shortwave region, by observing reflected

solar radiation in near infrared carbon dioxide absorption

bands, has the advantage of sensitivity to the full atmospheric

column. Relying on the thermal emission bands reduces sen-

sitivity to boundary layer carbon dioxide, where most of the

concentration variations reside.

Several satellite sensors have used this technique, includ-

ing the past sensor SCanning Imaging Absorption spec-

troMeter of Atmospheric CHartographY (SCIAMACHY)

on the European Space Agency’s ENVIronmental SATel-

lite (ENVISAT) (Buchwitz et al., 2007), the current Thermal

and Near Infrared Sensor for Carbon Observation Fourier-

Transform Spectrometer (TANSO-FTS) on the Greenhouse

gases Observing SATellite (GOSAT) (Yoshida et al., 2011),

and the Orbiting Carbon Observatory-2 (OCO-2) (Crisp

et al., 2004; Crisp and Johnson, 2005), and the planned mis-

sion CarbonSat (Bovensmann et al., 2010). The current state

of the art retrieval technique uses a combined observation of

the oxygen A-band at 0.76 µm, and CO2 absorption bands

Published by Copernicus Publications on behalf of the European Geosciences Union.



1642 A. Merrelli et al.: Bias in OCO-2 retrievals caused by 3-D radiation scattering

at 1.6 and 2.1 µm, in order to estimate the column-averaged

dry air mole fraction of CO2, termed XCO2
. This definition

of XCO2
is consistent with the OCO-2 retrieval algorithms

(O’Dell et al., 2012) and the Total Carbon Column Observing

Network (TCCON, Wunch et al., 2011a). Each absorption

band is observed at high spectral resolution (O(103) points

per band), to increase the measurement’s information con-

tent.

In clear air columns, this technique is relatively straight-

forward, and can be used for various trace gas concentration

retrievals by observing their associated molecular absorption

bands. For carbon dioxide, the measurement is especially

challenging, since the desired measurement uncertainty is

very small. Miller et al. (2007) estimates an absolute accu-

racy of 1–2 ppm is required for XCO2
(a relative accuracy of

approximately 0.25–0.5 %) in order to substantially reduce

surface flux uncertainties. Any retrievals must account for

variations in other geophysical variables that can alter the

signal (aerosols, surface albedo, and clouds, for example), or

detect their presence in order to appropriately flag the data as

contaminated.

The retrieval problem is an especially challenging one

due to a combination of high complexity of the radiative

transfer problem and high dimensional spectral data. The

radiative transfer model must deal with multiple scattering,

and for OCO-2, polarization. The high spectral resolution

measurement covers regions with many isolated absorption

lines where the individual absorption line shapes and the

instrument spectral response become extremely important.

All practical retrieval methods make the plane parallel as-

sumption to simplify the radiative transfer problem to one di-

mension (1-D). By making this assumption, the atmosphere

is assumed to be horizontally homogeneous. The impact of

this 1-D assumption has not been well explored in the con-

text of trace gas retrievals, although it has been studied in

other contexts, such as retrieval of aerosol near cloud (Vár-

nai et al., 2013) or cloud properties in inhomogeneous cloud

fields (Zhang et al., 2012).

In this study, we investigate how the 1-D radiative transfer

assumption affectsXCO2
retrieval in a specific case: observa-

tions of isolated low clouds with simulated OCO-2 observa-

tions. By using a three-dimensional (3-D) radiative transfer

model, we generate realistic spectra for this particular case

where the sensor’s view contains strong 3-D effects such as

cloud shadowing and lateral photon transport.

The paper is organized as follows: in Sect. 2 the radiative

transfer models and input data sets are described in detail.

This includes a validation analysis to show the new simu-

lation framework is equivalent to an existing OCO-2 simu-

lation program. Important characteristics of the OCO-2 in-

strument are reviewed. In Sect. 3, the operational OCO-2 re-

trieval algorithm is reviewed, with emphasis on the cloud

screening methods. Section 4 describes the specific simu-

lated scenarios, and the results of processing the synthetic

spectra with the retrieval algorithm are presented in Sect. 5.

Finally, the results are discussed and summarized in Sect. 6.

2 Simulating OCO-2 observations

2.1 OCO-2 sensor characteristics

The OCO-2 sensor measures radiance spectra in three nar-

row spectral bands: the oxygen A-band in the near infrared

(NIR) at 0.76 µm wavelength, and the CO2 bands in the

short wave infrared (SWIR) at 1.6 and 2.1 µm. These are

referred to as the O2A, WCO2 (“weak” CO2) and SCO2

(“strong” CO2) bands, for brevity. Each of the three bands is

a 1016 point spectrum covering the absorption feature. This

produces spectral channel spacings of approximately 0.015,

0.03, and 0.04 nm in the middle of the three bands. The in-

strument contains a linearly polarized filter that will be ori-

ented perpendicularly to the principal plane throughout the

orbit, so that the sensor measures the combination of Stokes

vector components (I −Q)/2. The sensor will be operated

in three modes: “nadir”, “glint”, and “target”. In nadir mode,

the sensor will point toward the subsatellite point (rotating to

keep the polarizer orientation as described above)1. This is

the primary mode for over-land retrievals. In glint mode, the

sensor will point near the sun glint point, with the exact an-

gular separation from the glint point to be determined during

on-orbit tests. This is the primary mode for over-ocean re-

trievals, as the ocean surface is very dark in the SWIR spec-

tral range, only reflecting sufficient solar radiation near the

glint point. In target mode, the sensor will repoint through

the orbit to keep a particular point on Earth’s surface in view.

Note that the instrument pointing is achieved through precise

control of the satellite bus yaw, pitch and roll axes via on-

board reaction wheels; i.e., there are no moving fore-optics

components. This study focuses on the nadir mode, so the

glint and target mode are not discussed further.

Lab measurements of the OCO-2 instrument line shape

(ILS) are used to compute the simulated sensor radiance

from monochromatic calculations. The measured ILS shapes

have full width at half maximum (FWHM) of 0.04, 0.08,

and 0.1 nm, in the three bands, implying a spectral resolu-

tion (R ∼ λ/1λ) of 20 000. No measurements of the spatial

response function (SRF) were available for use in this study,

so an approximation was used as a surrogate for the real SRF.

The surrogate SRF first combines the rectangular slit field of

view with the spacecraft motion through the 1/3 s collection

time. When the slit is oriented perpendicularly with respect

1Due to a design error, the instrument’s polarization response is

rotated 90 degrees with respect to the original specification. The in-

strument will orbit in the originally specified orientation for nadir

mode, implying the polarized measurement is (I +Q)/2. In glint

node, the spacecraft will be rotated 60 degrees from the origi-

nally specified orientation, yielding a polarized measurement of

(I + 1/2Q−
√

3/2U)/2.
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to the spacecraft motion, the resulting convolution of the slit

field of view (FOV) and spacecraft motion is a rectangle of

about 1.3km× 2.3 km on the Earth surface. For other ori-

entations, the convolution will yield a parallelogram shape.

Since the slit is oriented according to the scattering principal

plane, the relative orientation changes through the orbit. For

simplicity, the perpendicular slit orientation, and rectangular

IFOV (Instantaneous Field Of View), is used for all simula-

tions. This rectangular SRF is then convolved with a circular

2-D Gaussian function with σ width of 0.6 km for the nadir

view, to approximate the optical blur of the sensor. The re-

sult is an oval shaped SRF, with widths at half-maximum of

1.7km×2.3km. This surrogate SRF ignores some additional

detailed information about the shape of the SRF due to focal

plane readout timing, but these further details are likely not

important for this study, as long as the SRF size and profiles

are approximately accurate.

2.2 Radiative transfer models

During algorithm development support for the original OCO

mission, an OCO simulator was developed at Colorado

State University to produce full orbit simulations (O’Brien

et al., 2009). Development on the simulator has continued

through the NASA Atmospheric CO2 Observations from

Space (ACOS) program, and it has been updated to support

OCO-2. The simulator uses a highly optimized plane-parallel

radiative transfer model to compute radiance in scattering at-

mospheric profiles, including cloud and aerosol layers. The

overall simulator processing pipeline was used as a template

while implementing the 3-D version used in this study. In

short, the 3-D version replicates the same steps as the 1-D

model but replaces the 1-D plane parallel radiative transfer

model with the spherical harmonic discrete ordinate method

(SHDOM) developed by Evans (1998). For brevity, the two

methods will be called the 1-D OCO-2 and 3-D OCO-2 sim-

ulators.

2.3 Inputs to 3-D OCO-2 simulator

Important advances in spectroscopy have been made to ef-

fectively model the OCO-2 bands. The OCO-2 science team

supports development of advanced absorption line models in-

cluding broadening and line mixing effects (Tran and Hart-

mann, 2008; Thompson et al., 2012). The gas absorption

models are used to produce look up tables across the OCO-

2 bands at a frequency resolution of 0.01 cm−1 wave num-

ber, for a representative range of atmospheric pressures and

temperatures. The frequency dimension is thinned with an

optimal subset that uses coarse spacing (up to 2 cm−1) in

the outer line wings, and the full 0.01 cm−1 spacing at line

centers. This optimal subset defines the monochromatic fre-

quency set for individual radiative transfer model runs.

At these monochromatic frequencies, the scattering prop-

erties are computed from a Mie algorithm (using the support

programs supplied with SHDOM) for cloud liquid water and

dust aerosol. For cloud liquid water, a gamma distribution

particle size distribution (PSD) is used:

n(r)= a rα exp(−br). (1)

The α parameter is set to 7, which is equivalent to an effec-

tive variance of 0.1 (Hansen and Travis, 1974). The effec-

tive radius is set to 10 µm. The aerosol is defined by the dust

type within the 1-D OCO-2 simulator, which uses the dust

aerosol data from Dubovik et al. (2002) from Solar Village,

Saudi Arabia. This is a scattering aerosol (ω ∼ 0.96), with ef-

fective radii of 0.1 and 1.9 µm in the fine and coarse modes,

respectively.

SHDOM is run at each of the monochromatic frequencies

in the optimal sampling subset, and computes normalized re-

flectance. Since the optimal sampling list is a sparse subset

of the 0.01 cm−1 monochromatic grid, the SHDOM simu-

lations are linearly interpolated to get continuous sampling.

These reflectances are multiplied by the solar irradiance and

then convolved with the per-channel measured ILS, where

the irradiance and ILS are both defined on the continuous

0.01 cm−1 grid. The result is a spectral data array with 3 di-

mensions (X, Y , and spectral frequency), where the X and Y

grid is defined by the 100 m 3-D grid defining the liquid wa-

ter content (LWC) and aerosol field for SHDOM. One such

spectral data array is simulated for each of the OCO-2 bands.

2.4 Validation with 1-D OCO-2 simulator

In order to validate the radiance spectra produced by the 3-D

OCO-2 simulator, a simple test was performed where the in-

put grid to both simulators was an identical clear atmosphere

column. In this case the SHDOM will essentially reproduce

a 1-D radiative transfer calculation. The differences between

the spectra from each simulator were very small. Figure 1

shows an example OCO-2 observation, with the difference

spectra between the OCO-2 simulator and the 3-D simula-

tion from SHDOM. Note the y axis range on the difference

plot is 3 orders of magnitude smaller than the y axis range

on the radiance spectra, and the red lines show the±1σ lines

from the sensor noise model.

3 ACOS retrieval algorithm

The XCO2
retrieval for OCO-2 was developed by the NASA

ACOS team. The algorithm uses an optimal estimation phys-

ical retrieval, with screening algorithms applied to identify

the subset of the full observation set that will produce high

quality XCO2
retrievals. It has been applied to GOSAT NIR

and SWIR spectral measurements, which have similar spec-

tral characteristics to the OCO-2 measurements.
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Figure 1. Comparing simulated radiance spectra for a clear atmosphere column using the 1-D OCO-2 simulator and the 3-D SHDOM-based

OCO-2 simulator. The left column shows the simulated radiance for each band, and the right column shows the radiance differences (1-D

minus 3-D simulated spectra), with the ±1σ sensor noise level envelope overplotted with red lines. Note the y axis units for the plots in the

left column are a factor of 103 larger than the units on the right column.

3.1 Physical optimal estimation retrieval

The overall design of the optimal estimation (OE) retrieval

is described in O’Dell et al. (2012), Crisp et al. (2012) and

Crisp et al. (2010). For this study, the B3.4 version of the al-

gorithm is used, which has significant differences compared

to the B2.9 algorithm documented in O’Dell et al. (2012).

The newer algorithm retrieves two state variables related to

fluorescence and uses a different aerosol parameterization.

No fluorescence was included in the 3-D OCO2 simulator, so

this part of the retrieval is disabled and the fluorescence vari-

able values within the prior and first guess state vector are set

to zero. In both the B2.9 and B3.4 versions, four atmospheric

scatterers are used: water cloud, ice cloud, and “Kahn 2b”

and “Kahn 3b” aerosols. The Kahn aerosol types are defined

in Kahn et al. (2001). In the B3.4 version, the scattering parti-

cles use a parameterized profile shape instead of allowing the

profile to vary independently across pressure levels. For each

of the four scatterer types, the profile is parameterized with

a vertical Gaussian profile in optical depth, with three free

parameters: the amplitude (the total optical depth), thickness,

and height. The thickness and height are expressed in terms

of pressure normalized by the surface pressure. The Gaus-

sian profile is truncated when the vertical offset is near or

below the surface, in which case the profile is renormalized

such that the integral is equal to the total optical depth. Fig-

ure 2 shows the prior profiles used in the retrieval along with

the 1− σ perturbations to the total optical depth and height

from the a priori covariance. The assumed prior values and

variances are listed in Table 1. All covariances are assumed

Table 1. A priori values and SDs for aerosol and cloud profiles.

Note that the state vector contains the logarithm of the optical depth,

so the σ range is a multiplicative scaling. The pressure heights and

thicknesses are expressed as unitless ratios with the surface pres-

sure.

State Particle A Priori A Priori

Variable Value 1-σ error

Cloud Water 0.0125 6.0

Optical Depth Cloud Ice 0.0125 6.0

Kahn 2b, 3b 0.0125 6.0

Cloud Water 0.75 0.4

Pressure Height Cloud Ice 0.3 0.2

Kahn 2b, 3b 1.0 0.4

Cloud Water 0.1 0.01

Pressure Thickness Cloud Ice 0.04 0.01

Kahn 2b, 3b 0.2 0.01

to be zero. Note that the thickness is tightly constrained by

the prior variance and is effectively a fixed parameter. This

parameterization results in a maximum number of degrees of

freedom of 8 for the scattering particles.

3.2 Pre-screening algorithm

The radiative transfer algorithm at the heart of the OE re-

trieval is a plane parallel code similar to the 1-D OCO-

2 simulator, but further simplified and optimized. On a

Atmos. Meas. Tech., 8, 1641–1656, 2015 www.atmos-meas-tech.net/8/1641/2015/
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Figure 2. Prior optical depth profiles. The thick solid line with

square markers shows the per-layer optical depth prior profile; the

solid lines show the±σ range applied to the optical depths; the dot-

dashed lines show the ±σ range applied to the pressure heights.

standard workstation at the University of Wisconsin (AMD

OpteronTM 4180 CPU), this simplified model takes on the

order of 30 s to compute one iteration of the OE algorithm

(e.g., computing the forward model result and Jacobians at

the state vector update). Compared to the data collection rate

(24 observations per second), this implies that only a small

fraction of the observations will be processed with the phys-

ical OE retrieval. The target for initial operating capability

is to apply the physical retrieval to 6 % of the total observa-

tions. Thus, careful prescreening methods must be applied to

the observations to select the subset most likely to produce

accurate XCO2
retrievals. The precise form of the screening

method is itself a subject of research within the ACOS effort

(Mandrake et al., 2013). In this study, the focus will be on

the “A-band preprocessor” (ABP), described in Taylor et al.

(2012). This prescreening algorithm uses a highly simplified,

single-step retrieval of surface pressure and surface albedo,

assuming a clear sky profile with only Rayleigh scattering. It

uses a subset of the full A-band spectrum. Tests with this al-

gorithm showed that the difference between the retrieved sur-

face pressure and the interpolated ECMWF analysis surface

pressure is an effective cloud screen. The pressure difference

is especially sensitive to higher altitude clouds that intro-

duce large photon path modification. Observations that yield

retrieved surface pressures much different than the forecast

value (>±10 hPa) indicate significant cloud and/or aerosol

contamination in the observed radiance (O’Dell et al., 2012).

In effect, a thick cloud layer can act as a surface, so that the

retrieved surface pressure is related to the cloud top pressure

(CTP). This approach has been proposed as a retrieved cloud

product for previous missions (for example, a CTP measure-

ment for the O2 A-band was originally planned for Cloud-

Sat, see Miller and Stephens, 2001). For OCO-2, however,

the retrieved surface pressure will be primarily used to re-

move cloud-contaminated observations via the ABP. At this

time is not possible to retrieve XCO2
to the required accuracy

from the cloud-contaminated observations.

Following Taylor et al. (2012) and simulation tests with

the B3.4 algorithm, a surface pressure threshold of 10 hPa is

used for the ABP. In addition, a χ2 threshold is computed

by the ABP, based on the noise level predicted by the sensor

noise model (O’Dell et al., 2011) and the radiance level of the

observation. If the computed χ2 is larger than the threshold,

the observation will be screened.

Cloud and aerosol contamination need not be directly in

the sensor’s field of view, and may be produced by signif-

icant multiple scattered radiation from clouds near the field

of view. Such scattered radiation could cause either threshold

(surface pressure or χ2) to be exceeded. In this more gen-

eral sense, the ABP could be viewed as detecting “photon

path modification” in the radiance observation, and thus the

1-D retrieval algorithm will not produce an accurate XCO2

retrieval.

3.3 Post-screening algorithm

In cases where the prescreening method does not correctly

detect a cloud or aerosol contaminated spectrum, the retrieval

may converge to an inaccurate XCO2
result. Therefore, addi-

tional post-screening is performed on the retrieved state vec-

tor in an attempt to eliminate poor quality retrievals. These

post screens are generally made by performing threshold

tests on the retrieved surface pressure, surface albedos, re-

trieved aerosol or cloud optical depths, and reduced χ2 val-

ues for each band. The reduced χ2 is the calculated χ2 value

divided by the number of degrees of freedom, which is ex-

pected to be close to 1 if the modeled and measured spectra

differ only by random sensor noise. The first two post screen

threshold tests are very similar to those used by the ABP,

but use tighter threshold values. The latter two thresholds are

motivated from simulation tests (O’Dell et al., 2012).

The values of the various post screening thresholds are

continually adjusted for the ACOS products by analysis and

comparisons of GOSAT and TCCON retrievals, in order to

minimize the bias in the final retrievedXCO2
. Thus the partic-

ular values prescribed in the B3.4 release documentation are

not necessarily relevant to these simulation experiments, es-

pecially for the reduced χ2 thresholds for the spectral resid-

uals. The residuals will include various model deficiencies

(such as inaccurate absorption line spectroscopy) when com-

pared with real data. No such effects are included in this sim-

ulation and retrieval framework, so the reduced χ2 values

will be close to the theoretical values. To derive χ2 thresh-

olds for these tests, an ensemble of simulated clear sky spec-

tra (with aerosols but no cloud liquid water) was processed

with the L2 algorithm. A threshold of 1.25 was selected for

all three bands, which is 3.6 SDs above the mean reduced

χ2 values over all retrievals. Approximately 0.1 % of all the

clear retrievals exceed this threshold in one of the bands.
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Screening thresholds on the retrieved scattering optical

depths are also important for high accuracy retrievals. The

values used in B3.4 applied to GOSAT high-gain observa-

tions over land are 0.15 for the sum of all four scatterers

(cloud water, cloud ice, and both Kahn aerosol types), 0.07

for cloud water, and 0.045 for cloud ice. For the GOSAT

medium-gain observations over land, these thresholds are

0.1, 0.07, and 0.03, for the total, cloud water, and cloud ice

optical depths, respectively. Since these thresholds were em-

pirically determined for the GOSAT data as processed with

the B3.4 algorithm, they are not necessarily the best choice

for this analysis. Tests with the clear sky retrievals show that

these thresholds were somewhat too restrictive, and the se-

lected thresholds in this analysis are 0.175, 0.1, and 0.03 for

the total, cloud water, and cloud ice optical depths, respec-

tively. These threshold values are consistent with the values

selected for simulation-based tests (O’Dell et al., 2012), and

are still more restrictive than the initially reported threshold

of 0.3 in aerosol optical depth for performingXCO2
retrievals

(Crisp et al., 2004).

4 Retrieval test setup

The specific tests are designed to explore potential retrieval

biases caused by low level clouds. Even without considering

3-D scattering effects, low level layer clouds can be chal-

lenging to identify (O’Dell et al., 2012). A low level layer

cloud can introduce both photon path shortening and length-

ening (Bennartz and Preusker, 2006), which can tend to can-

cel and mask the cloud’s effect on the radiance measurement.

The work presented here can be viewed as an extension of

these previous 1-D simulation efforts to broken or isolated

low clouds, which have strong 3-D scattering effects.

4.1 Scenarios

A single spheroidal liquid water cloud was created in the cen-

ter of a 3.5 km (horizontal) × 2.5 km (vertical) domain. The

grid spacing is 100 m in all three dimensions. Dust aerosol

is evenly distributed within the domain, with a total aerosol

optical depth (AOD) of 0.05 in the vertical dimension. The

cloud has an altitude of 1.6 km, and a fixed thickness of 0.6

km in the z axis. Three cloud sizes are simulated, with the

cloud diameter in the horizontal axes set to 0.6, 0.8 and 1.2

km. Therefore the smallest cloud is spherical, while the 0.8

and 1.2 km clouds are oblate spheroids. The liquid water con-

tent (LWC) has a quadratic profile in all three dimensions.

The cloud fraction within the blurred SRF (see Sect. 2.1)

is not well defined, but it covers roughly 10, 20, and 40 %

of the unblurred, rectangular nadir FOV for the three cloud

sizes. The maximum LWC, in the center of the cloud, is

0.125 gm−3, yielding a maximum liquid water path (LWP)

through the cloud center of 50 gm−2. The maximum visible

optical depth along this same path is approximately 8. Two

Table 2. Lambertian surface albedos, in each of the three OCO-2

spectral bands, for the three surface types.

Surface type O2 A-band Weak CO2 Strong CO2

Snow 0.87 0.10 0.02

Vegetation 0.34 0.22 0.10

Soil 0.25 0.35 0.31

solar zenith angles (SZAs) are used: 35, and 60◦. The surface

is assumed to be Lambertian, with realistic albedo values in

regions classified as snow, vegetated, and soil. Table 2 lists

the selected values.

The SHDOM has the option to run with open or peri-

odic boundary conditions. The periodic boundary condition

is used for all cases. SHDOM is used to simulated a nadir

view using these LWC and aerosol fields. The cloud field

is then a grid of identical clouds with a 3.5 km horizontal

spacing, rather than a single isolated cloud. In Fig. 3, the

nadir sensor view is shown for the three selected surface albe-

dos for a single OCO-2 spectral channel in each of the three

bands. The single channel is chosen at a wavelength between

absorption lines so there is little extinction of the solar radia-

tion. The views are shown for the 35◦ solar zenith angle.

4.2 Creating OCO-2 spectra

Using the spectral data array described in Sect. 2.3, a syn-

thetic OCO-2 observation is generated by applying the surro-

gate SRF (see Sect. 2.1). The 2-D nadir radiance array at each

channel frequency is multiplied by the SRF and summed to

produce the OCO-2 channel radiance. Figure 4 shows ex-

amples of the SRF applied to a low absorption O2A band

channel. The SRF is applied at various positions, by scan-

ning left-to-right over the cloud in the scene. A total of 25

SRF centered positions are used, where the SRF is shifted by

a single 100 m grid cell, and the 10th position is centered in

the 3.5 km domain. Positions 0, 5, 10, 15 and 20 (i.e., the

center of the SRF falls at positions 0.75, 1.25, 1.75, 2.25 and

2.75 km along the x axis in the 100 m grid) are shown in

Fig. 4. The SRF positions move between regions dominated

by clear, cloudy or shadowed high resolution grid cells, de-

pending on the cloud size and solar zenith angle. For brevity,

the positions will be referred to as clear, cloudy and shadow,

depending on which type of high resolution pixel is domi-

nant at that location, but it is apparent that in all cases the

SRF will contain a mixture of all three types.

The process described in the previous section yields a to-

tal of 25 spectra, one per SRF positions for each scenario

(a selected solar zenith angle and surface albedo). For each

spectrum, an ensemble of 37 simulated OCO-2 observations

is generated with independent sensor noise realizations for

each observation. The sensor noise is drawn from a Gaussian

Probability Distribution Function, scaled by the sensor noise

model from O’Dell et al. (2011). Each of these ensembles
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Figure 3. Overhead views of the scene reflectance as simulated by

SHDOM, for a channel within each OCO-2 band that has relatively

low gas absorption. Each of the three columns shows the reflectance

for one of the three OCO-2 bands, and each of the three rows shows

reflectance from one surface type. All images are shown with the

same display scale, to highlight the differences in contrast between

the cloud and surface for the different spectral bands and surface

types.

are processed with the ABP algorithm and the B3.4 L2 re-

trieval code, and the relevant quantities are averaged over the

ensemble members. The ABP uses a subset of the O2A band

(759.18–760.75 nm), while the L2 retrieval runs on the full

3-band spectra. The L2 retrieval uses an input meteorology

data set (in operations, this is taken from a numerical weather

forecast), which is set to the truth values. In other words, the

meteorology sent to the L2 retrieval is the same meteorol-

ogy data used to simulate the spectra with the 3-D OCO-2

simulator.

5 Retrieval test results

5.1 Screening rates

In normal operations, the results of the ABP would be ap-

plied before performing L2 retrievals. In cases where 3-D

effects are important, it is possible that the ABP could pref-

erentially identify cloudy observations in cases where the full

L2 algorithm can produce accurate retrievals. This behavior

would not have been captured in the development of the ABP,

since all radiative transfer models used in the earlier studies

were plane parallel. Therefore, in these experiments, the L2

algorithm is applied to all simulated observations, regardless

of the output from the ABP. This allows full characteriza-

tion of the ABP performance, to verify that it is removing

the cloud-contaminated observations that the L2 algorithm

cannot accurately process.

5.1.1 ABP prescreening

Recall that at each SRF position, an ensemble of 37 spectra

were generated with independent sensor noise. The ensem-

ble allows for a screening fraction to be computed at each

position. Figure 5 shows these fractions as a function of SRF

position, for the various scenarios. The ABP’s performance

appears directly correlated to the O2A band albedo and the

cloud size, as expected. Recall that the ABP retrieves just the

surface pressure from the O2A band (see Sect. 3). Over snow,

since the surface is much more reflective, a larger proportion

of the observed radiance is due to the single scattering off the

surface, which will tend to pull the retrieved pressure to the

surface value. The ABP also detects a cloud mainly when the

SRF is centered on the cloud, but not in the primarily “clear”

or “shadow” positions. A single screening rate for each sce-

nario can be computed by averaging over the SRF positions.

Table 3 shows these results.

5.1.2 Postscreener

Figure 6 shows the postscreening fractions, with the same

layout as Fig. 5 showing the prescreening fractions. The

postscreening fractions are defined with respect to the total

number of simulated observations, since the L2 retrieval was

run on all observations, not just the ones that were not identi-

fied as cloudy by the ABP. Ideally, the postscreened fractions

should be equal or higher than the prescreened fractions from

the ABP. This would imply that the ABP correctly identified

an observation that would not have produced an accurate L2

retrieval. A higher postscreening fraction is also expected,

since the L2 retrieval has access to more information (since

it retrieves from all 3 OCO-2 bands), and uses a more com-

plicated state vector.

For the vegetation and soil surfaces with 60◦ solar zenith

angle, the postscreening fractions as a function of the SRF

position are extremely similar to the prescreening fractions.

For the remaining cases, except for the soil surface at 35◦

solar zenith angle, the post screening method tends to iden-

tify a much larger fraction of cloudy observations. This is

especially true over snow where the fraction reaches nearly

100 % for the 0.8 km cloud. The outlier scenario here is the

soil surface at 35◦ solar zenith angle, where the ABP iden-

tifies a much higher rate of cloud contamination than the

postscreener. This behavior could be described in two ways:

either the ABP could be improperly identifying these obser-

vations, (if these retrievals produce accurate XCO2
retrievals)

or the postscreener could be failing (if the retrieved XCO2
is

not accurate). This behavior will be discussed below in the

context of the state variable biases.

A summary of the postscreen fractions is shown in Table 4.

Note that although the postscreen identifies the highest frac-

tion of the cloud contaminated observations, it also screens

almost 30 % of the clear column test spectra. This suggests

www.atmos-meas-tech.net/8/1641/2015/ Atmos. Meas. Tech., 8, 1641–1656, 2015



1648 A. Merrelli et al.: Bias in OCO-2 retrievals caused by 3-D radiation scattering

Table 3. Percentage of simulated observations identified as cloudy

by prescreener algorithm.

Surface Cloud Prescreen Pct. Prescreen Pct.

Type Size SZA= 35◦ SZA= 60◦

Snow clear 0.0 0.0

Snow 0.6 km 0.0 0.0

Snow 0.8 km 0.0 0.0

Snow 1.2 km 0.0

Vege clear 0.0 0.0

Vege 0.6 km 0.0 0.0

Vege 0.8 km 0.0 0.0

Vege 1.2 km 40.2

Soil clear 0.0 0.0

Soil 0.6 km 0.0 0.0

Soil 0.8 km 34.6 11.6

Soil 1.2 km 70.3

that the postscreen could be improved with scene dependent

thresholds.

5.2 State variable bias

In order to quantify the impact of 3-D radiative transfer ef-

fects on the retrieved state variables, the retrieval outputs will

be compared both to the known truth values as well as the re-

sults from the cloud-free simulations. Since the ACOS XCO2

retrieval is known to have biases even for clear sky retrievals

(O’Dell et al., 2012; Wunch et al., 2011b), the cloud-free

simulations help to separate the bias caused by 3-D radia-

tive transfer effects from the clear sky bias already present in

the retrieval. In any particular scenario, the bias due to 3-D

effects will be the difference between the bias computed in

the cloudy retrievals and the bias computed in the clear sky

retrievals.

As an initial example, the previous case noted in the

screening discussion above is revisited. For the 0.8 km cloud,

over the soil surface with solar zenith of 35◦, the ABP iden-

tified all spectra with the SRF centered above the cloud

as cloud contaminated. However, the postscreen only found

about 20 % of these observations to be cloud contaminated.

Figure 7 shows the bias in the retrieved XCO2
as a function

of the SRF position for this scenario. The bias is defined as

the retrieved values, minus the known truth XCO2
value. The

left subplot shows all converged retrievals; the middle plot

shows the screened retrievals (both prescreen and postscreen

are applied). The set of retrievals shown in the middle plot

would be the actual set retrieved by the full end-to-end L2

processing algorithm. The gap in observations around SRF

position 10 is due to the ABP. The solid horizontal line shows

the mean retrieved XCO2
from the clear sky retrievals per-

formed for this scenario; the bold error bar marker centered

on zero bias shows the 1−σ range predicted by the posterior

covariance from the optimal estimation algorithm. Finally, to

summarize the scatter plots, the distribution of points is con-

densed down to a single box plot in the right subplot, and the

number of points in each is marked along the bottom axis.

The remaining bias distribution plots will match this layout,

with the results condensed into the pair of box plots. The

XCO2
biases shown here indicate that the L2 retrieval is able

to compute an accurate value XCO2
for all cases in this sce-

nario. This suggests that the ABP may be too aggressive in

identifying cloud contamination in this scenario.

5.2.1 XCO2

Figure 8 contains theXCO2
retrieval bias summary for all sce-

narios including the 0.6 and 0.8 km clouds. The 1.2 km cloud

scenarios are not included here, since the screening rates are

high for these cases. The different surface albedos are orga-

nized by row, with the snow, vegetated and soil surfaces in

the top, middle, and bottom rows, respectively.

For the snow surface, theXCO2
biases are large, especially

for the 60◦ solar zenith angle. The 0.6 km cloud case shows

a consistent−5 ppm bias, which is 4 ppm lower than the clear

sky bias. In this case only 12.5 % of the observations would

be screened. For the 0.8 km cloud case, the screening does

reduce the bias magnitude, from −9 to −6 ppm. This is the

only case where the screening algorithms substantially re-

duce the bias magnitude. Over the vegetated surface, the ab-

solute biases are much smaller. The mean biases are within

2 ppm of truth, and within 3 ppm of the clear sky value. Fi-

nally, over soil, the biases are well represented by the clear

sky values. All biases are within approximately 0.3 ppm of

the clear sky bias.

Overall, the magnitude of the biases seem to be most

strongly related to the SCO2 surface albedo. In practice, an

additional postscreen filter on the retrieved SCO2 is used,

which was not used in these tests. A simple cutoff of about

0.05 albedo in the SCO2 band would essentially remove all

the snow observations. The results here suggest the retrievals

over snow are the most sensitive to 3-D radiative transfer ef-

fects, further supporting the use of a screening threshold in

the SCO2 band.

5.2.2 Surface albedo

A key state variable in the optimal estimation retrieval is the

surface albedo in each band. The retrieved values are strongly

influenced by the 3-D radiative transfer effects. In Fig. 9 the

biases for the retrieved SCO2 albedo are shown for the same

case as Fig. 7. The bias is clearly correlated to the SRF po-

sition, and thus to the influence of 3-D radiative transfer ef-

fects. This scenario uses the soil surface, which has an albedo

of 0.31. The range in bias is about 0.03, which is a rela-

tive bias of 10 %. The other retrieved surface albedos show

similar relationships to the SRF position. Also note that the

screening algorithms remove retrievals mostly around SRF
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Figure 4. Overhead view of the scene reflectance multiplied by the SRF at positions 0, 5, 10, 15, and 20, for the 0.6 km cloud in the O2

A-band over the soil surface. The SRF moves from left to right over the high spatial resolution grid. The top row shows the SRF sequence

for the 35◦ solar zenith angle (SZA), and the bottom row shows the sequence for the 60◦ SZA. In the top row, the SRF starts at a position

where the FOV is primarily filled with a “clear” surface view, to a “cloudy” position, and ends at a “shadowed” position. In the bottom row,

the periodic boundary condition used in SHDOM causes the shadow to wrap around to the other side of the high spatial resolution scene for

the larger SZA. For this case, the SRF starts in the “shadowed” position, followed by “cloudy” and then “clear”.

Figure 5. Fraction of simulated spectra identified as cloudy by the

prescreening algorithm.

position 10 (the position centered on the cloud), which is also

where the retrieved SCO2 albedo is the most accurate. The

result is that the bias range, shown by the box plot, is not

reduced.

The summary of SCO2 albedo biases is shown in Fig. 10.

Although the albedo bias is within the range 0.01–0.02 in

all cases, the bias relative to the SCO2 albedo is substan-

tial. A 0.01 albedo bias relative to the 0.02, 0.10, and 0.31

albedo values, for the snow, vegetated, and soil surfaces, re-

spectively, is a relative bias of approximately 50, 10 and 3 %.

Figure 6. Fraction of simulated spectra identified as cloudy by the

post screening algorithm.

5.2.3 Surface pressure

The final retrieved variable for CO2 concentration is the dry

air mole fraction (the XCO2
), which is equivalent to the ratio

of CO2 molecules and O2 molecules in the column. The lat-

ter value is represented by the surface pressure, since the O2

concentration varies much less than the CO2 concentration.

This implies that any bias in the retrieved surface pressure

will directly cause bias in the retrieved XCO2
. Plots for sur-

face pressure bias are shown in Figs. 11 and 12, matching
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Figure 7. Bias in retrieved XCO2
, showing the scatter plot of all

retrievals (left panel) and screened retrievals (middle panel), com-

pared to the single box plot summarizing the bias (right panel). The

error bar drawn with a thick black line, centered on zero bias, is

the predicted posterior error (1σ ) from the optimal estimation al-

gorithm. The thin horizontal line marks the mean bias for retrievals

from a cloud-free simulation. Finally, the number of retrievals in

each box plot is indicated at the bottom of the x axis in the right

panel.

the bias plots in the previous sections for XCO2
and SCO2

surface albedo.

Since surface pressure is used in the ABP and for

postscreening, large surface pressure bias will cause the ob-

servation to be screened. In Fig. 11, the maximum abso-

lute surface pressure bias is in the cloud-centered SRF po-

sitions. These are the most likely to be screened, so in this

case the overall surface pressure bias is reduced somewhat

by the screening algorithms. The summary plot, in Fig. 12,

shows that the overall reduction in bias only occurs in a few

scenarios (both SZA for cloud size 0.8 km over the soil sur-

face). The general patterns in the surface pressure bias are

different than those seen in XCO2
. For XCO2

, the soil sur-

face retrievals show bias very similar to the clear sky bias,

and then the bias increased as the SCO2 albedo decreased,

resulting in very large bias over the snow surface. The re-

sults for surface pressure are more related to the O2A albedo,

since most of the sensitivity to surface pressure comes from

the O2A band measurement. Thus, the surface pressure bias

for the retrievals over the snow surface is quite different than

the vegetation and soil surface albedos. The absolute bias for

the retrievals over the snow surface albedo is about 1.5 hPa

for the 35◦ SZA and less than 0.3 hPa for the 60◦ SZA. The

bias for the retrievals over the vegetation and soil surfaces

are similar, with nearly zero bias for the 0.6 km cloud and

35◦ SZA, and larger absolute bias for the larger cloud size

and SZA.

5.2.4 XCO2
and surface pressure

Since the XCO2
is directly related to the surface pressure,

the joint distribution of bias between these two variables is

worth examining. Figure 13 shows scatter plots of the bi-

ases for these two variables. Each panel corresponds to a sin-

Table 4. Percentage of simulated observations identified as cloudy

by postscreener algorithm.

Surface Cloud Postscreen Pct. Postscreen Pct.

Type Size SZA= 35◦ SZA= 60◦

Snow clear 28.4 1.4

Snow 0.6 km 67.0 12.5

Snow 0.8 km 98.1 66.6

Snow 1.2 km 95.8

Vege clear 1.4 0.0

Vege 0.6 km 48.2 0.0

Vege 0.8 km 80.0 13.2

Vege 1.2 km 68.8

soil clear 2.7 0.0

soil 0.6 km 12.5 0.0

soil 0.8 km 32.3 13.2

soil 1.2 km 71.7

gle scenario, matching the layout seen earlier in Fig. 8. The

black points show the biases for the individual screened re-

trievals, and the large cyan cross shows the clear sky retrieval

bias. The overplotted ellipse in the lower left corner is an ex-

ample posterior covariance from the optimal estimation al-

gorithm. The covariance is computed for each retrieval, but

within each scenario the covariance does not change signifi-

cantly between each retrieval. Note that the display scales in

both the x and y axes are different in each row of plot panels

(corresponding to a single surface albedo). The “flattened”

appearance of the covariance ellipses for the snow surface

albedo scenarios is largely due to the large y-range for the

XCO2
bias display. The ellipse orientation describes the de-

gree of covariance between the two variables, as calculated

by the optimal estimation algorithm. It is clear that there is

no consistent strong covariance, but rather a weak covariance

that is scenario dependent. The retrieval biases also show cor-

relation that is dependent on the scenario. The correlation is

highest in the 60◦ SZA, vegetation scenario, and very low in

all scenarios using the soil albedo.

5.2.5 Profiles of atmospheric scatterers

The optimal estimation retrieval has parameterized profiles

of four atmospheric scatterers (see Sect. 3). Figure 14 shows

the retrieved profiles of cloud water (top row), cloud ice

(middle row) and aerosol (bottom row) optical depth. Since

the two aerosol types were typically strongly correlated, the

profiles were summed and the combined profile is shown in

Fig. 14. The optical depths per layer are represented by the

color scale, ranging from 0 to 0.003. Vertical pressure lev-

els are given on the y axis, and the SRF positions are given

on the x axis. Each column represents the average retrieved

optical depth profile for that SRF position and simulation

scenario. The four cloud and SZA scenarios using the soil
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Figure 8. Summary of XCO2
retrieval bias for all scenarios with 0.6 and 0.8 km clouds. See Fig. 7 for details.

Figure 9. Bias in retrieved SCO2 albedo, with the same layout as

Fig. 7.

surface are shown. Note that the retrieval estimates a signifi-

cant amount of cloud ice optical depth at high altitudes, even

though the simulation did not include any cloud ice at any

level, and no scatterers above the 700 hPa level other than

molecular scattering. The gap in the middle of the second

column (the 0.8 km cloud size, and 35◦ SZA) is due to the

complete screening of these retrievals.

6 Discussion

The overall purpose of the prescreening algorithm is to

quickly identify observations that are sufficiently contami-

nated by cloud to preclude accurate Level 2 XCO2
retrievals.

Characterizing its performance for the scenarios here must

involve a discussion of the prescreening rate as well as the

XCO2
bias with and without applying the prescreening.

In general, the ABP cannot detect the smallest sub-FOV

cloud (0.6 km diameter), and has limited ability to detect

the larger clouds (0.8 and 1.2 km diameter). It is important

to note however that the reasonable accuracy of the ABP

algorithm in identifying homogeneous cloudy scenes, i.e,

100 % FOV contamination, has been shown on simulated

data (O’Dell et al., 2012). Furthermore, comparisons were

favorable against the MODIS cloud mask for select GOSAT

soundings (Taylor et al., 2012). The screening fraction is re-

lated to the albedo in the O2A band, as the screening rates

are highest for the soil surface, and zero for the snow surface

(see Table 3 and Fig. 5). Likely this is due to poor contrast

between the surface and cloud when the surface is bright (for

example, in Fig. 3 the cloud is barely discernible over the

snow surface in the O2A band). For the snow surface, the

XCO2
biases are often quite large, up to 5–10 ppm, so the

ABP is not effective within the scenarios over snow. Screen-
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Figure 10. Summary of SCO2 surface albedo retrieval bias for all
scenarios with 0.6 and 0.8 km clouds, with the same layout as Fig. 8.
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Figure 11. Bias in retrieved surface pressure, with the same layout
as Fig. 7.
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Figure 12. Summary of surface pressure retrieval bias for all sce-
narios with 0.6 and 0.8 km clouds, with the same layout as Fig. 8.

Figure 13. Summary of surface pressure and XCO2 retrieval bias
and covariance for all scenarios with 0.6 and 0.8 km clouds. Plot
panels are arranged in the same order as Fig. 8. In each panel, the
screened retrievals are shown (black points) along with the mean
clear sky retrieval (large cyan cross). The ellipse shows the 1σ pos-
terior covariance for these two retrieved variables, offset by an ar-
bitrary amount for display clarity.

Figure 14. Retrieved optical depth profiles of atmospheric scatter-
ers for four scenarios (cloud sizes 0.6 and 0.8 km for both SZA)
with the soil surface albedo. Each panel shows the profile in a ver-
tical column, with the y axis indicating profile pressure, and the
x axis indicating the SRF position. Top, middle and bottom rows
show the cloud water, cloud ice, and aerosol (sum of the Khan 2b
and 3b) profiles, respectively. The far right column shows the prior
optical depth profiles used by the optimal estimation retrieval.

Figure 10. Summary of SCO2 surface albedo retrieval bias for all scenarios with 0.6 and 0.8 km clouds, with the same layout as Fig. 8.

Figure 11. Bias in retrieved surface pressure, with the same layout

as Fig. 7.

ing out retrievals over snow surfaces could easily be achieved

by other simple tests. For example, filtering could be done

seasonally by latitude to exclude retrievals over likely snow

covered regions, or by requiring a minimum signal level in

the SCO2 band. Operationally, the ACOS retrieval algorithm

has taken similar steps to avoid retrievals over snow and ice

surfaces, by using thresholds on the retrieved albedos to ex-

clude likely snow or ice covered surfaces. These thresholds

remove retrievals with very low SCO2 albedo, or retrievals

with a combination of very high O2A albedo and low SCO2

albedo. Over the vegetated surface, the biases are smaller,

but still significant, up to 2 ppm to the known truth value

and up to 3 ppm relative to the clear sky bias value. These

scenarios are the most concerning for the ABP. The soil sur-

face, in contrast, yields very accurate XCO2
retrievals, with

bias less than 1.5 ppm relative to the known truth value and

within 0.3 ppm relative to the clear sky bias value. In fact, the

L2 retrieval yields accurate XCO2
retrievals even for the pre-

screened observations, indicating the ABP is too restrictive

in some cases.

The postscreen filters applied after the L2 retrieval are

much more effective at identifying the cloud contamination.

In nearly all surface and SZA scenarios the 0.8 km cloud is

identified in more than half of the observations. The vege-

tated and soil surfaces for 60◦ solar zenith angle are the ex-

ception, but the majority of cases are screened at the 1.2 km

cloud size.

The XCO2
biases on the final screened retrievals are gen-

erally equivalent to the bias from the set of all converged re-

trievals. This is illustrated with the box plots in Fig. 8. If the

screening methods were preferentially identifying highXCO2

bias retrievals, then the box plot for the screened retrieval set

should be narrower and closer to the clear sky bias. However,

in all cases the two box plots are equivalent.

For other retrieved state variables, the bias is more signif-

icant. The SCO2 albedo bias results shown in Figs. 9 and

10 show similar behaviors as the XCO2
bias. Specifically, the
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Figure 12. Summary of surface pressure retrieval bias for all scenarios with 0.6 and 0.8 km clouds, with the same layout as Fig. 8.

bias is largest for snow, and smallest for soil, and the screen-

ing does not reduce the mean absolute bias. The latter ef-

fect can be clearly seen in Fig. 9, since the screening tends

to remove observations at SRF position 10 (centered on the

cloud), where the retrieved SCO2 albedo is close to the truth

value.

The retrieved optical depth profiles for the scattering par-

ticles also exhibit large biases. Figure 14 shows the results

for four soil surface cases (0.6 and 0.8 km clouds at both so-

lar zenith angles). The profiles show complicated relation-

ships to the SRF positions, with both the total optical depths

and the profile altitudes changing as the SRF scans over the

scene. Note that from the screening rate results (Tables 3

and 4) most of these retrievals are passed by both screen-

ing algorithms. Since the reduced χ2 was used as part of the

postscreen algorithm, the spectral residuals are small. Thus

the 1-D radiative transfer model is able to recreate the spectra

simulated with the 3-D radiative transfer code well enough

to produce low χ2 values and pass the screening algorithm.

Thus the patterns in the optical depth profiles represent dif-

ferent 1-D plane parallel representations of the 3-D scattering

field in the simulations. These scatterer profiles are very dif-

ferent from the true 3-D distributions. Recall from Sect. 4

that the aerosol layer in the model is evenly distributed in the

lower 2.5 km, which is the approximately the pressure layer

for P > 700 hPa, while the cloud is located at an altitude

of 1.6 km (approximately 800 hPa). The retrieved scatterer

profiles are displaced vertically as the SRF position moves

across the cloud, but the actual scatterers are at fixed alti-

tudes. Only the results for the retrievals over the soil surface

are shown here. The retrievals over other surfaces show qual-

itatively similar behavior, in that the scatterer vertical profiles

change significantly with the SRF position.

7 Conclusions

By processing simulated OCO-2 observations created with

a 3-D radiative transfer model, the impact of 3-D scatter-

ing effects has been estimated for the scenario of low alti-

tude, sub-FOV liquid water clouds. Tests were done for two

solar zenith angles (35 and 60◦), and three surface types

(snow, vegetation, and soil). Overall, the retrieved XCO2

shows biases that are strongly dependent on the SCO2 sur-

face albedo. After screening, the worst case mean bias over

snow is roughly 5 ppm relative to clear sky retrievals, for the

0.8 km cloud and 60◦ solar zenith angle. At the other ex-

treme, the mean retrieved XCO2
bias is less than 0.5 ppm

relative to the clear sky retrieval in all cases. The perfor-

mance of the screening algorithms is highly scene depen-

dent, and no clear general trend is evident in the data. The
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Figure 13. Summary of surface pressure and XCO2
retrieval bias and covariance for all scenarios with 0.6 and 0.8 km clouds. Plot panels are

arranged in the same order as Fig. 8. In each panel, the screened retrievals are shown (black points) along with the mean clear sky retrieval

(large cyan cross). The ellipse shows the 1σ posterior covariance for these two retrieved variables, offset by an arbitrary amount for display

clarity.

Figure 14. Retrieved optical depth profiles of atmospheric scatterers for four scenarios (cloud sizes 0.6 and 0.8 km for both SZA) with the

soil surface albedo. Each panel shows the profile in a vertical column, with the y axis indicating profile pressure, and the x axis indicating the

SRF position. Top, middle and bottom rows show the cloud water, cloud ice, and aerosol (sum of the Khan 2b and 3b) profiles, respectively.

The far right column shows the prior optical depth profiles used by the optimal estimation retrieval.

Atmos. Meas. Tech., 8, 1641–1656, 2015 www.atmos-meas-tech.net/8/1641/2015/
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ABP has difficulty identifying these sub-FOV clouds, but in

many cases the L2 retrieval is still able to retrieve an accu-

rate XCO2
. Neither screening method reduces the mean bias

within a single test case. From the overall perspective of the

entire group of tests, the screening methods do reduce bias by

screening higher fractions of the larger clouds sizes which

do have larger XCO2
bias. Both screening methods primar-

ily detect the cloud-centered SRF positions, so the shadow-

contaminated observations are detected less often.

While the analysis presented here does indicate potentially

large biases in the OCO-2 XCO2
retrievals, at present we do

not know the potential impact on the global XCO2
data set.

A future study is needed to connect these results to measured

spatial and temporal distribution of clouds. The resulting bias

in a global XCO2
data set will depend on the occurrence of

cloudy scenes similar to the presented synthetic scenarios.

The biases could be especially problematic if they are re-

gionally correlated.

During this study, development has continued on the oper-

ational retrieval algorithm past version B3.4. The treatment

of aerosols is quite different in more recent versions. A ge-

ographically dependent aerosol climatology is used to select

the pair of aerosols used for each retrieval from a set of six

aerosol types. Clearly the retrieval biases among the albedo

and aerosol profiles are highly correlated, so the quantitative

behavior may be very different in the new algorithm. How-

ever the general behavior of the retrieved aerosol profile –

where it is highly dependent on the unresolved 3-D cloud

field – should remain unchanged.

Finally, one important caveat on these results is the re-

liance on an unpolarized forward model. Since the actual

OCO-2 measurement is polarized, these results should be re-

peated with the same framework using a fully polarized 3-D

radiative transfer model. It is unknown how the retrieval will

behave differently when working with the (I−Q)/2 radiance

instead of the unpolarized radiance. In addition, it would be

important to extend these analyses to the glint mode obser-

vation. Polarized radiative transfer is even more important

for simulating glint mode observation, since the glint mode

relies on the strongly polarized specular reflection from the

ocean surface. Since this project began, the SHDOM model

has been improved and now can perform the polarized radia-

tive transfer (Evans, 2014).
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