
Atmos. Meas. Tech., 8, 1673–1684, 2015

www.atmos-meas-tech.net/8/1673/2015/

doi:10.5194/amt-8-1673-2015

© Author(s) 2015. CC Attribution 3.0 License.

Techniques for analyses of trends in GRUAN data

G. E. Bodeker and S. Kremser

Bodeker Scientific, 42 Russell Street, Alexandra, New Zealand

Correspondence to: G. E. Bodeker (greg@bodekerscientific.com)

Received: 18 August 2014 – Published in Atmos. Meas. Tech. Discuss.: 2 December 2014

Revised: 2 March 2015 – Accepted: 9 March 2015 – Published: 8 April 2015

Abstract. The Global Climate Observing System (GCOS)

Reference Upper Air Network (GRUAN) provides reference

quality RS92 radiosonde measurements of temperature, pres-

sure and humidity. A key attribute of reference quality mea-

surements, and hence GRUAN data, is that each datum has

a well characterized and traceable estimate of the measure-

ment uncertainty. The long-term homogeneity of the mea-

surement records, and their well characterized uncertainties,

make these data suitable for reliably detecting changes in

global and regional climate on decadal time scales. Consid-

erable effort is invested in GRUAN operations to (i) describe

and analyse all sources of measurement uncertainty to the

extent possible, (ii) quantify and synthesize the contribution

of each source of uncertainty to the total measurement un-

certainty, and (iii) verify that the evaluated net uncertainty

is within the required target uncertainty. However, if the cli-

mate science community is not sufficiently well informed on

how to capitalize on this added value, the significant invest-

ment in estimating meaningful measurement uncertainties is

largely wasted. This paper presents and discusses the tech-

niques that will need to be employed to reliably quantify

long-term trends in GRUAN data records. A pedagogical ap-

proach is taken whereby numerical recipes for key parts of

the trend analysis process are explored. The paper discusses

the construction of linear least squares regression models for

trend analysis, boot-strapping approaches to determine un-

certainties in trends, dealing with the combined effects of

autocorrelation in the data and measurement uncertainties in

calculating the uncertainty on trends, best practice for deter-

mining seasonality in trends, how to deal with co-linear ba-

sis functions, and interpreting derived trends. Synthetic data

sets are used to demonstrate these concepts which are then

applied to a first analysis of temperature trends in RS92 ra-

diosonde upper air soundings at the GRUAN site at Linden-

berg, Germany (52.21◦ N, 14.12◦ E).

1 Introduction

Long-term climate data records of essential climate variables

such as temperature, water vapour and ozone are a prereq-

uisite for climate change detection and attribution studies.

Many decades of measurements are typically required to de-

tect a trend at e.g. the 95 % confidence level. Not only do cli-

mate data records need to be temporally homogeneous over

many decades, it is also imperative that the uncertainty on the

trend can be estimated robustly so that we know what level of

confidence to place on the derived trend. Having well char-

acterized measurement uncertainties on the data being anal-

ysed, including traceability of uncertainty estimates to inter-

nationally recognized measurement standards, is essential in

establishing the uncertainty on the resultant trend.

One of the core goals of the Global Climate Observing

System (GCOS) Reference Upper Air Network (GRUAN;

www.gruan.org) is to provide vertical profiles of reference

measurements suitable for reliably detecting changes in

global and regional climate on decadal scales. Reference

measurements require that, at a minimum, the uncertainty of

the measurement (including uncertainties arising from cor-

rections applied) has been determined, the entire measure-

ment procedure and set of processing algorithms are prop-

erly documented and accessible, and that every effort has

been made to tie the observations to an internationally ac-

cepted traceable standard (Seidel et al., 2009). For vertical

profile measurements within GRUAN, uncertainties are also

required to be vertically resolved such that each datum in

a profile is treated as a single measurement result requiring

both the measurement and its uncertainty. Metadata describ-

ing how the measurements were made, what corrections were

applied, what changes were made to the instruments over the

lifetime of the measurements, and the data reduction algo-
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rithms used during the observation and post-observation pe-

riods, are also imperatives for reference quality observations.

Immler et al. (2010) provided the theoretical basis for

developing reference quality upper-air measurements in the

form of GRUAN data products. These fundamental guide-

lines for establishing reference quality atmospheric obser-

vations are based on central concepts of metrology and, in

particular, traceability. They demonstrate that the detailed

analysis of the uncertainty budget of a measurement tech-

nique is the critical step for establishing reference quality

observations. Detailed knowledge of the calibration proce-

dures and data processing algorithms is required as part of

determining the uncertainty budget. Finally, as highlighted

by Immler et al. (2010), uncertainties introduced by correc-

tion schemes adjusting for systematic biases in the measure-

ment system are an important component of the uncertainty

budget. Dirksen et al. (2014) demonstrated the application

of that theoretical basis for creating GRUAN data products

based on Vaisala RS92 radiosonde measurements of temper-

ature, pressure and humidity. The dominant source of uncer-

tainty for radiosonde temperature measurements is solar ra-

diation heating and Dirksen et al. (2014) report on the labora-

tory experiments performed to investigate and model the ef-

fects of solar radiative heating on the RS92’s temperature and

humidity measurements. GRUAN daytime humidity profiles

show up to 15 % enhancement in humidity over Vaisala pro-

cessed profiles, of which two-thirds is due to the radiation dry

bias correction, and one-third is due to an additional calibra-

tion correction. Philipona et al. (2012) reported simultane-

ous solar short-wave radiation, thermal long-wave radiation,

and air temperature measurements with radiosondes from the

Earth’s surface to 35 km altitude and then later demonstrated

the use of these measurements during daytime and nighttime,

under sun-shaded and unshaded conditions, to determine the

radiation-induced error on radiosonde air temperature mea-

surements (Philipona, 2013). They showed that, in general,

solar radiation produces a radiative heating of about +0.2 K

near the surface which linearly increases to about +1 K at

32 km (∼ 10 hPa). It is clear from these studies that signifi-

cant time and effort has been invested in establishing refer-

ence quality measurements within GRUAN.

The goal of detecting a trend in upper-air temperature, and

the uncertainty on that trend, from point source measure-

ments from a radiosonde and their associated measurement

uncertainties, can be challenging. Previous papers (Tiao et

al., 1990; Weatherhead et al., 1998) and books (Kutner et al.,

2005) have provided detailed statistical descriptions of how

to detect trends, and their uncertainties, in geophysical time

series. However, some of these studies require a higher un-

derstanding of statistics than might be available to scientists

who want to quickly and reliably determine the trend and its

uncertainty in a time series. The purpose of this paper is to

take a pedagogical approach, leading the reader through the

various perils and pitfalls that need to be surmounted to cal-

culate a trend and its uncertainty. In this way we hope that

Figure 1. Solid grey line: a synthetic time series created from a

purely periodic signal (plus noise) but still exhibiting a non-zero

trend (upper dashed straight line fit). Line with filled dots: the de-

seasonalized signal with a straight line fit showing no statistically

significant trend.

the considerable effort that has been invested in obtaining

reference quality measurements within GRUAN is exploited

to the utmost.

2 Construction of a regression model

2.1 Why not just fit a straight line?

The first question someone may ask when analysing a time

series for trends is “why can I not just fit a straight line to

the data and look at its slope?”. If you simply want to know

whether the data are trending up or down, with no interest

in what is driving that change, or whether or not that change

is statistically significant, this may be a legitimate approach.

However, consider the synthetic data set shown in Fig. 1. The

10-year time series shown in the upper trace was generated

by repeating the same annual cycle and adding some random

noise. The data are purely periodic and contain no trend. And

yet, if we fit a straight line to these data (dashed line in Fig. 1)

we detect a negative trend. This is the case for almost all such

time series generated with such random noise. Interestingly,

if we derive the trend separately in each month over a large

ensemble of such time series, and average those trends, the

result is a zero trend. The reason for this is that a sinusoid (an

“odd” function) was used to define the annual cycle, starting

with a positive phase in the cycle and ending with a nega-

tive phase, thus causing a negative trend. Doubling the length

of the record from 10 to 20 years reduces the magnitude of

the negative trend, as expected. If we simply want to know

whether the data are trending up or trending down, then this

is a valid approach and the analyses indeed show that the data

are trending down. But is it correct to conclude that there is

a geophysical trend in these data that are constructed purely

as a (noisy) repeating annual cycle? Almost certainly not. So
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we acknowledge that a first step in detecting a geophysical

trend in a time series is to remove the mean annual cycle.

This is shown by the line with filled dots in Fig. 1 with the

straight line fit (dashed line).

But why stop there? There may be other cyclical signals in

the time series, such as the solar cycle or El Niño–Southern

Oscillation (ENSO), that should be removed to avoid their

interference with the underlying geophysical trend. There-

fore, a typical statistical trend model may be of the following

form:

Vt = α+ (β × t)+ (γ ×QBOt )+ (δ×ENSOt )

+ (ε×SOLARt )+R, (1)

where Vt is the data value at time step t (typically year and

month), QBOt is the quasi-biennial oscillation (Reed et al.,

1961; Ribera et al., 2003) with a prescribed value at time

step t , SOLARt is the solar cycle with some prescribed value

at time step t , and, in this case, ENSOt is the normalized

Tahiti minus Darwin sea level pressure (southern oscillation

index) at time step t , though we recognize that a range of

other ENSOt basis functions are available and could be used.

The coefficients α, β, γ , δ and ε are fit coefficients, typically

calculated using a multivariate least squares regression ap-

proach (Moore and McCabe, 2003). The fit coefficient β rep-

resents the trend in the time series. R is the residual, i.e. that

part of the signal that cannot be tracked by the statistical

model and is usually derived by subtracting the model fit (af-

ter it has been calculated) from the original data.

It is possible, maybe even likely, that the trend will be dif-

ferent during different months of the year. For that matter,

perhaps the QBO has a stronger effect in some months than

others. The next section considers the options of how best to

deal with possible seasonal dependence in the fit coefficients.

2.2 Dealing with seasonality in the fit coefficients

One approach is to fit a regression model in the form

of e.g. Eq. (1) completely independently for each month,

i.e. first fit the model to only the January data, then fit the

model to only the February data etc. This results in 12 trend

regression coefficients, one for each month, that capture the

seasonal dependence of the data on each basis function. The

disadvantage of this approach is that the number of fit coeffi-

cients increases by a factor of 12. This significantly increases

the uncertainty on the fit coefficients. The approach also as-

sumes complete independence from one month to the next,

e.g. the trend in month M is completely independent of the

trend in month M − 1 and in month M + 1. This is unlikely

to be the case. Let us assume, as an example, that the fit co-

efficients are a function of season. So the trend coefficient β

in Eq. (1) can be expanded as β = f (t). Clearly the value of

β on 31 December is going to be essentially identical to the

value of β on 1 January i.e. the dependence should be cyclic

in season. It should also be smooth, and it should be a lin-

ear superposition of functions that, when added together, can

Figure 2. The seasonally resolved trend coefficient derived from fit-

ting Eq. (1) (including only the α and β terms) to the synthetic time

series (shown in the inset) together with its 1σ uncertainty (solid

black line with grey shaded area). The trends obtained from linear

fits to the data from each month separately, together with their 1σ

uncertainties, are shown with black dots and vertical error bars re-

spectively.

describe any seasonal periodic structure. These requirements

are met by expanding the coefficient in Fourier series, e.g. the

trend coefficient β is expanded in two Fourier pairs as

β = β0+β1× sin(2π
M

12
)+β2× cos(2π

M

12
)

+β3× sin(4π
M

12
)+β4× cos(4π

M

12
),

where M is the month number. When inserted back into

Eq. (1), this becomes

β × t = β0× t +β1× sin(2π
M

12
)× t +β2× cos(2π

M

12
)× t

+β3× sin(4π
M

12
)× t +β4× cos(4π

M

12
)× t.

Now, the number of fit coefficients increases not from 1 to

12 but from 1 to 5 and the value of the coefficient in month

M is mathematically constrained to be similar to the value in

month M − 1 and M + 1.

A synthetic time series consisting of an annual cycle, a

seasonally dependent trend, and some Gaussian noise added

for realism is shown in the inset in Fig. 2. The trends ex-

tracted from this synthetic time series, first by applying a

truncated version of Eq. (1) to include only the α and β terms,

month by month (black dots in Fig. 2), and then by applying

the truncated Eq. (1) with the α coefficient expanded in four

Fourier pairs and the β coefficient expanded in two Fourier

pairs (black line in Fig. 2), are shown in the main plot in

Fig. 2.

How do we select how many Fourier pairs to use in each

expansion? This is, in part, a judgment call. For terms where

a robust seasonality is expected e.g. the mean annual cycle as
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represented by the seasonality in the offset coefficient (α), 3

or 4 Fourier pairs could confidently be fitted without the dan-

ger of fitting spurious seasonal structure. For the seasonality

in the trend (β coefficient), this depends on our expectation

– if we expect the trend to be the same through all seasons,

then the β coefficient need not be expanded in Fourier pairs

at all. If the trend shows clear seasonality but that seasonality

is sinusoidal in nature, then 1 Fourier pair would be suffi-

cient. The less sinusoidal that seasonality is in structure, the

more Fourier pairs are needed to capture that structure. For

the QBO (γ coefficient in Eq. 1), where some seasonality

in its effect is expected, but where that seasonality may not

be clearly present in the data and is not purely sinusoidal,

2 Fourier pairs would likely be the appropriate balance be-

tween avoiding over-fitting but capturing the seasonality in

the QBO’s effect on the data. For ENSO and SOLAR, be-

cause their effects are seldom seasonally dependent (or too

weak to detect in the data), they are usually not expanded in

Fourier pairs.

Expanding the trend coefficient in Fourier pairs results in

a more coherent picture of the annual structure of the trend

than if linear fits are used to derive trends individually for

each month as shown in Fig. 2. The uncertainty on the trends

is also smaller when the seasonality is accounted for using

Fourier series (grey shaded area in Fig. 2) compared to fitting

individually to each month (uncertainties shown as vertical

error bars in Fig. 2). The calculation of the uncertainties on

the derived trend coefficients is detailed in Sect. 4.

2.3 Pre-treating basis functions

Consider some geophysical quantity measured over the pe-

riod 2002–2009 that has no trend and consists of nothing but

an annual cycle and some unforced variability. Four synthetic

time series of this nature have been created, differing only by

the randomly generated unforced variability added to the si-

nusoidal annual cycle. The results from the fits of Eq. (1) to

the four synthetic time series are shown in Fig. 3. In this case

the ENSO basis function was excluded for clarity.

Even though the time series was constructed to have no

trend, one of the four trend results (listed in panel (b) of

Fig. 3) is found to be statistically significantly different from

zero at the 1σ level (blue line in Fig. 3). This occurs because

the combination of the linear trend term, and the solar cycle

term, over the 2002–2009 period, may, purely fortuitously,

track some of the unforced variability (generated randomly

in our synthetic time series). As can be seen in Fig. 3, when

the regression model assigns variance between the solar cy-

cle and linear trend, solar cycle fits that induce a negative

tendency in the time series are always matched with a posi-

tive linear trend, i.e. the negative tendency contribution from

the solar cycle shown in Fig. 3d (blue line) is mirrored by the

positive linear trend (blue line) in Fig. 3b. Similarly positive

solar cycle tendencies are matched by negative linear trends

(red lines in Fig. 3). This results, in large part, from the fact

Figure 3. Four synthetic monthly mean time series calculated by

adding Gaussian distributed random noise to a repeating mean an-

nual cycle (a) together with the contributions from the trend (b),

QBO (c) and solar cycle (d) basis function derived by fitting Eq. (1)

to the time series in (a). The quantity plotted is artificial and there-

fore unitless. The trend values listed in (b) include their 1σ uncer-

tainties.

that the linear trend and the solar cycle over this 2002–2009

period are close to degenerate, i.e. they are very much like

linear scalings of each other. This makes the combination of

the linear trend and solar cycle basis function very suscep-

tible to fitting the unforced variability on the signal. A non-

zero QBO fit coefficient occurs for the same reason. One way

to avoid this from happening is to take the view that any trend

in the signal must be assigned exclusively to the trend basis

function. The only way to ensure that this happens is to de-

trend each basis function time series. To show the effects of

detrending the solar cycle and QBO basis functions before

fitting Eq. (1), 20 000 trend results equivalent to those listed

in Fig. 3b have been generated from 20 000 time series in-

cluding random noise as in Fig. 3a. First the original solar

cycle and QBO basis functions were used and then solar cy-

cle and QBO basis functions were detrended before their use

in the regression. Histograms of the 20 000 trend results from

these two tests are shown in Fig. 4.
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Figure 4. Histograms generated from 20 000 simulations of trend

results derived from the application of Eq. (1) to synthetic time se-

ries (as shown in Fig. 3a) first with the original solar cycle and QBO

basis functions (dark grey) and then with detrended QBO and solar

cycle basis functions (light grey). The 1σ standard deviations of

Gaussian fits to the histograms are listed together with the mean

trend uncertainties derived from the regression model. The mean

uncertainties were obtained by averaging the uncertainties from the

20 000 trend values.

It is clear from Fig. 4 that when the QBO and solar cycle

basis functions are detrended, the likelihood of obtaining a

trend that is statistically significantly different from zero is

very much reduced i.e. the uncertainty on the trend halves.

But why stop there? By detrending all of the basis func-

tions we ensure that the trend basis function is orthogonal to

all other basis functions. But those remaining basis functions

may not be orthogonal to each other. The basis functions

can all be made orthogonal to each other through a Gram–

Schmidt orthogonalization procedure (Nering, 1963). Con-

sider two basis functions, BF1 and BF2, where BF⊥1=BF1

and the⊥ subscript denotes the orthogonalized version of the

basis function. To find a second vector BF⊥2 that is orthogo-

nal to BF⊥1, we need to find a number X such that

BF⊥2 =X×BF⊥1+BF2, (2)

where BF⊥1 is orthogonal to BF⊥2. Two vectors are orthog-

onal to each other if their inner product (denoted here as

<BF⊥1, BF⊥2>) is equal to zero. Taking the inner product

of Eq. (2) with BF⊥1 and solving for X leads to

X =−
< BF⊥1,BF2 >

< BF⊥1,BF⊥1 >
.

Substituting into Eq. (2) results in

BF⊥2 = BF2−
< BF⊥1,BF2 >

< BF⊥1,BF⊥1 >
BF⊥1.

If we have a third basis function, we derive BF⊥1 and BF⊥2

as described above and we find BF⊥3 in the form of

BF⊥3 =X1×BF⊥1+X2×BF⊥2+BF3,

where BF⊥1 is orthogonal to BF⊥2 and BF⊥2 is orthogonal

to BF⊥3. We take the inner product with BF⊥1 to findX1 and

the inner product with BF⊥2 to find X2. This will then result

in

BF⊥3 = BF3−
< BF⊥1,BF3 >

< BF⊥1,BF⊥1 >
BF⊥1−

< BF⊥2,BF3 >

< BF⊥2,BF⊥2 >
BF⊥2.

The same can be done for the nth basis function to ensure

that all basis functions used within the regression are orthog-

onal to each other. The generic form of the Gram–Schmidt

orthogonalization is

BF⊥n = BFn−

n−1∑
i=1

< BF⊥i,BFn >

< BF⊥i,BF⊥i >
BF⊥i .

Orthogonalization of the basis functions ensures that each

additional basis function only describes the variance not al-

ready explained by the existing basis functions. However, us-

ing orthogonal basis functions in a regression model obfus-

cates the physical interpretation of the contribution of each

basis function to the signal, which is represented by the de-

rived fit coefficients. The contribution of each basis function

to the signal then depends on the order in which the ba-

sis functions were orthogonalized and might lead to differ-

ent conclusions if the basis functions are orthogonalized in a

different order. If orthogonal basis functions have been used

within the regression, care needs to be taken when interpret-

ing the derived fit coefficients.

3 Dealing with lags between cause and effect

It is conceivable that there may be a delay between the

change in a basis function and its effect on the geophysi-

cal quantity being modelled. For example, the effect of the

QBO on ozone can often be shifted in phase; the QBO sig-

nal in tropical ozone is out of phase with the QBO signal in

extra-tropical ozone (see e.g. Fig. 4 of Bodeker et al., 2013).

Consider first the more abstract case of fitting a sinusoidal

function, with an arbitrary phase shift, to some geophysical

variable:

V (t)= α× sin(t +β), (3)

where α is the amplitude of the signal and β is the phase

shift. Noting that

α× sin(t +β)= α× sin(t)cos(β)+α× cos(t)sin(β)

and substituting A= α×cos(β) and B = α× sin(β), Eq. (3)

becomes

V (t)= A× sin(t)+B × cos(t)

with A and B becoming the new fit coefficients. Once A and

B have been determined by fitting the two terms to the data,

the original α and β values can be derived from

α =
√
A2+B2 and β = arctan(

B

A
).
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The key to this solution is that the “cosine” signal is orthogo-

nal to the “sine” signal such that by mixing these signals with

different amplitudes, a sinusoidal signal with arbitrary phase

can be generated. For some studies (e.g. Steinbrecht et al.,

2003; Sioris et al., 2014), two different QBO basis functions

are selected at two different pressure levels such that the sig-

nals are approximately a quarter of a cycle out of phase and

therefore close to orthogonal to each other. This allows for

an arbitrary phase shift in the QBO to be fitted. Austin et al.

(2008) artificially constructed an orthogonal QBO time se-

ries to the base QBO time series to fit for a phase shift in the

base time series, while other studies (e.g. Randel and Wu,

1996) simply use multiple QBO time series to accommodate

phase shifts.

But how can we accommodate lags in basis functions that

are not cyclical e.g. basis functions accounting for the effects

of volcanic eruptions? Generally this is best done by running

the regression model multiple times with different lags ap-

plied and determining which lag leads to a minimum in the

sum of the squares of the regression model residuals.

4 Determining the uncertainty on the trend

One approach to determining the uncertainty on regression

model fit coefficients is the bootstrapping method (Efron and

Tibshirani, 1986). For example, to obtain the uncertainty on

the trend coefficient in a regression model:

1. Fit the regression model (e.g. Eq. 1) to the data.

2. Subtract the regression model fit from the data to obtain

the residuals.

3. Take the signal produced by the regression model fit

and, for each data point in that signal, randomly select

one residual value and add it to the data point. Do this

for the whole signal to generate a new signal which,

while having the same underlying structure as the orig-

inal signal, now has different random noise. Fit the re-

gression model and record the trend value.

4. Repeat step 3 many times (e.g. 10 000) to generate

10 000 estimates of the trend. Calculate the standard de-

viation of those 10 000 values to obtain the estimated

uncertainty on the trend.

Bootstrapping works because a very large ensemble of sig-

nals, each with the same underlying structure as the origi-

nal signal, but with different noise characteristics, is created.

Each of these signals, while statistically indistinguishable,

has a slightly different trend resulting from the noise char-

acteristics of the original data set. It is therefore natural that

the standard deviation of the trends, derived from the ensem-

ble of signals, is the uncertainty on the trend. There are some

complications with the application of bootstrapping that need

to be overcome in some circumstances, e.g. when the time se-

ries is autocorrelated, as discussed in Sect. 5. In this section

we use bootstrapping to test some methodological choices in

the calculation of uncertainties on trend coefficients.

One would expect that the uncertainty on the regression

model fit coefficients, such as the trend, should depend on,

inter alia,

1. The noise (unexplained variance) on the data signal

– the greater the noise the less certain the regression

model fit coefficients should be.

2. The measurement uncertainty on each datum compris-

ing the data signal – the greater the measurement uncer-

tainties the less certain the regression model fit coeffi-

cients should be.

Press et al. (1989) allude to the diagonal elements of the

inverse matrix from the regression model being the variances

(squared uncertainties) of the fitted parameters. The inverse

matrix is given by (ATA)−1, where A is the so-called design

matrix whose N ×M components are constructed from the

M basis functions evaluated at theN times for which data are

available, and from the N measurement uncertainties (σi):

Ai,j =
Xj (xi)

σi
with i = 1,2, . . .,N

and j = 1,2, . . .,M, (4)

where Xj (xi) is the j th basis function evaluated at the ith

time for which data are available. While this inverse ma-

trix (ATA)−1, and hence the uncertainties on the regression

model fit parameters, is sensitive to the measurement uncer-

tainties (satisfying expectation 2 above), it is insensitive to

the noise on the signal since it is a function of the basis func-

tions only and therefore does not take into account in any

way the unexplained variance in the signal being fitted. Press

et al. (1989) suggest that to account for the variance, one can

use the bootstrapping method to estimate quantitative confi-

dence limits on the fitted parameters. Just using the square

root of the diagonal elements of the inverse matrix would not

account for all uncertainties and would most likely underes-

timate the uncertainties on the derived trend.

Bodeker et al. (1998), hereafter referred to as B98, imple-

mented a revision of the measurement uncertainties accord-

ing to Tiao et al. (1990) (hereafter referred to as T90). Their

approach is to run the regression model according to Press

et al. (1989) as a first step but then to account for the unex-

plained variance in the signal by substituting the measure-

ment uncertainties in Eq. (4) with σnew given by

σnew =

√
σ 2
ε + σ

2
orig, (5)

where σorig is the original measurement uncertainty and σ 2
ε is

the variance of the residuals from the first fit derived individ-

ually for each month (T90). The regression model fit is then
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Table 1. The mean 1σ uncertainties of the 500 trend values derived for the B98, W98 and bootstrapping approaches. For more details see

text.

Degree of unexplained Measurement uncertainties 1σ uncertainty on the trend

variance on signal B98 W98 Bootstrapping

none uncert1.0 0.0104 0.0104 0.0104

medium uncert1.0 0.0316 0.0323 0.0322

high uncert1.0 0.0799 0.0823 0.0823

none uncert1.5σ0.5 0.0125 0.0156 0.0165

medium uncert1.5σ0.5 0.0340 0.0350 0.0347

high uncert1.5σ0.5 0.0810 0.0850 0.0832

none uncert4.5σ1.5 0.0374 0.0468 0.0494

medium uncert4.5σ1.5 0.0527 0.0563 0.0581

high uncert4.5σ1.5 0.0929 0.0957 0.0954

repeated using σnew as the revised measurement uncertain-

ties. As a result, the derived uncertainties on the regression

model fit coefficients (obtained from the diagonal elements

of the inverse matrix) become sensitive to both the original

measurement uncertainties and the unexplained variance.

Weatherhead et al. (1998), hereafter referred to as W98,

derived an approximation for the uncertainty (ignoring auto-

correlation – see Sect. 5) on the regression model estimate of

the trend as

σω̂ =
σN

(N/12)3/2
, (6)

where σN is the standard deviation of the residuals of the

time series to which the regression model is being fitted and

N is the number of data points in the time series. However,

this approximation for the uncertainty on the trend is insen-

sitive to the measurement uncertainties and no indication is

given in W98 on how to accommodate that. To include the

W98 approach in our methodological testing, Eq. (5) is ap-

plied to σN of Eq. (6) similar to how it was done in B98. In

this way, the W98 approach now accounts for both measure-

ment uncertainties and unexplained variance in determining

the uncertainty on the trend.

The B98 and W98 approaches to estimate the trend un-

certainty are now compared to each other and to the tradi-

tional bootstrapping approach. Monthly mean synthetic time

series, containing only an annual cycle and no trend and no

autocorrelation, extending from 1990 to 2010, with vary-

ing levels of measurement uncertainty and unexplained vari-

ance, were generated. Different combinations of measure-

ment uncertainties together with different degrees of unex-

plained variance were created to investigate what effect the

measurement uncertainties and the variance have on the de-

rived uncertainty on the trend (which is zero). Clearly, if the

measurements have a larger random uncertainty, the derived

trend should become less certain than for a set of data where

the measurements have a small uncertainty. The same is true

for the unexplained variance on the signal. If we have noisy

data (high variance) the estimated trend will have a larger un-

certainty than for a signal with lower variance since the true

trend might be buried in the noise.

To derive uncertainties that are statistically representative

of the derived trend in each generated time series with ran-

dom noise and random measurement uncertainties, and that

are not affected by the chosen randomness of the noise, 500

synthetic time series for each combination of unexplained

variance and measurement uncertainties (see Table 1) were

generated. Three sets of measurement uncertainties, viz.

– uncertainties set to 1.0 for all measurements – hereafter

referred to as uncert1.0

– uncertainties selected randomly within a Gaussian dis-

tribution of mean 1.5 and standard deviation of 0.5 –

hereafter referred to as uncert1.5σ0.5

– uncertainties selected randomly within a Gaussian dis-

tribution of mean 4.5 and standard deviation of 1.5 –

hereafter referred to as uncert4.5σ1.5

and three sets of unexplained variance on the signal, viz.

– no additional variance

– medium additional variance – random values are cho-

sen from a Gaussian distribution with a mean 0.0 and a

standard deviation of 3.0

– high additional variance – random values are chosen

from a Gaussian distribution with a mean 0.0 and a stan-

dard deviation of 8.0.

Together these are used to create 9× 500 synthetic time se-

ries. For every synthetic time series, the uncertainty on the

trend was derived following the B98 and W98 approaches de-

scribed above. As a reference, the bootstrapping method was

also employed to derive the uncertainties on the trends. An

ensemble of 2000 Monte Carlo simulations was performed

for this purpose. The mean uncertainty of the 500 trend val-

ues derived for each method, was calculated. The results are

summarized in Table 1.
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It is clear from Table 1 that for all cases both the B98

and W98 approaches come close to matching the results

from bootstrapping. Larger uncertainties on the trends are de-

rived for all three methods when the unexplained variance on

the signal and/or the measurement uncertainties increase. By

construction all signals were generated without a trend, with

the result that the derived trends are not statistically signif-

icantly different from zero within the derived 1σ uncertain-

ties. The results presented in Table 1 show that both B98 and

W98 are valuable approaches to estimate uncertainties on the

derived trend.

While the bootstrapping approach accounts for both the

unexplained variance on the signal and the measurement un-

certainties, bootstrapping is computationally demanding and

it does not account for autocorrelation in the signal. Both B98

and W98 can be used if the signal is autocorrelated (see be-

low) and both methods are less computationally demanding

than bootstrapping. W98 is only applicable for estimating

uncertainties on the trend. To derive uncertainties on other

fit coefficients W98 cannot be used. Therefore, as the B98

approach can be used to derive uncertainties on all fit coef-

ficients, this method is used in all further examples and tests

below.

5 Accounting for autocorrelation

Time series of atmospheric climate data records are often au-

tocorrelated e.g. higher than normal temperature on one day

is often followed by anomalously high temperature on the

next day. This autocorrelation results from natural tempo-

ral and spatial scales of many atmospheric phenomena. Such

autocorrelations have the effect of reducing the quantity of

information that would be available from the same number

of independent data points, generally increasing the size of

the error estimates (T90). T90 show that the uncertainty on

trend estimates depends critically on the magnitude of month

to month autocorrelation (serial autocorrelation) in the mea-

surements. For contiguous evenly spaced data, a first order

autoregressive model is constructed as

Rt = φRt−1+ at ,

where Rt is the residual at time t (see Eq. 1), Rt−1 is the

residual at the previous time step, φ is the autocorrelation

coefficient, and the at are the final residuals which should be

free of any autocorrelation. For unequally spaced measure-

ments, or for measurement series with many gaps, a second

order autocorrelation model of the form

Rt = φ1Rt−1+φ2Rt−2+ at

is required (Reinsel et al., 1987).

Appendix A of T90 provides a convenient way to account

for the autocorrelation in the application of Eq. (1). The data

to be regressed are replaced by

V ∗t = Vt − (φ×Vt−1)

and all basis function time series are similarly transformed:

BF∗t = BFt −φBFt−1.

The regression model is rerun and the usual standard error

formulae are used to calculate the uncertainty on the regres-

sion model fit coefficients.

In the presence of autocorrelation, additional changes are

required, e.g. Eq. (5) becomes

σnew =

√
σ 2
ε

1−φ2
+ σ 2

orig

or, if second order autocorrelation is accounted for

σnew =

√(
1−φ2

1+φ2

)
σ 2
ε

[1−φ2]
2−φ2

1

+ σ 2
orig

and finally, Eq. (6) becomes

σω̂ =
σN

(N/12)3/2

√
1+φ

1−φ
, (7)

i.e. the presence of autocorrelation inflates the uncertainty on

the regression model fit coefficients by
√
(1+φ)/(1−φ).

6 GRUAN data

6.1 Application of trend analysis methods to

Lindenberg upper air temperature data

At the time of writing this paper, RS92 radiosonde measure-

ments of upper air temperatures currently comprise the only

official GRUAN data product. RS92 radiosonde flights are

made at a number of sites typically either two or four times

per day (see Fig. 5). The site with the most comprehensive

data record to date is the Lindenberg site which is used below

in the example trend analyses. Figure 5 is not a reflection of

the number of radiosonde flights made at each site, but rather

the number of radiosonde flights that passed all QA/QC

(Quality Assurance/Quality Control) checks imposed in the

centralized data processing; the raw data from these flights

are processed through a centralized RS92 radiosonde data

processing facility located at the GRUAN Lead Centre in

Lindenberg, Germany. A detailed description of the GRUAN

RS92 radiosonde product, and how this product conforms to

the requirements of a reference measurement, is described

in detail in Dirksen et al. (2014). While the currently avail-

able RS92 radiosonde data set is too short for a robust long-

term trend analysis, application of the methodology outlined

above is demonstrated here on the data that are available. The

challenges with applying the method to such a short time se-

ries are outlined below. The results of this very preliminary

trend analysis, presented in Sect. 6.2, should not be over-

interpreted as they are certainly not indicative of longer term

trends in upper air temperatures.
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Figure 5. The availability of RS92 radiosonde data at a sub-set of the GRUAN sites (not all GRUAN sites currently provide RS92 radiosonde

measurements) at the time of the writing of this paper. Each site shows data in four rows indicative of the four 6 h periods through the day.

Vertical columns in the grid indicate individual months with the years are listed across the top. The number of RS92 radiosonde flights

available in each month in each 6 h period is shown using the colour scale in the bottom right corner of the figure.

The time series of GRUAN radiosonde upper air tempera-

tures available from Lindenberg is rather short i.e. a five year

period extending from mid-2009 to mid-2014. The brevity

of this time series makes the fitting of longer-term geophys-

ical drivers of temperature change such as the QBO, ENSO,

and solar cycle difficult, if not impossible. And yet the in-

crease in 10.7 cm solar flux from mid-2009 to mid-2014 may

well have driven changes in temperature above Lindenberg

over this period. If the question to be answered is “what

were the temperature trends over Lindenberg from mid-2009

to mid-2014 as a function of season and altitude over and

above the possible trends induced by periodic drivers such

as QBO, ENSO and solar cycle?”, then basis functions for

these drivers should be included in addition to a trend basis

function. The difficulty then is that if there was a trend in

temperatures over this period, but this trend was not induced

by the solar cycle, then the trend may well still be ascribed to

the solar cycle since the 10.7 cm solar flux showed a steady

increase from mid-2009 to mid-2014. The measurement time

series is simply not long enough to determine the correlation

between the temperature changes and the solar cycle. The

same may be true for ENSO and QBO. If the question to be

answered is “what were the temperature trends over Linden-

berg from mid-2009 to mid-2014 as a function of season and

altitude irrespective of the drivers of those changes?”, then

a regression model consisting of no more than an offset and

trend term in Eq. (1) may be sufficient. Alternatively, a re-

gression model including all potential drivers of temperature

changes, but orthogonalizing all basis functions so that all

basis functions other than the trend basis function are trend-

free, would be appropriate. With these caveats in mind, three

different constructs of the regression model have been ap-

plied to the data:

1. A regression model including offset, trend, QBO,

ENSO and solar cycle basis functions – hereafter re-

ferred to as the all regression.

2. A regression model including only offset and trend basis

functions – hereafter referred to as the reduced regres-

sion.

3. A regression model including offset, trend, QBO,

ENSO and solar cycle basis functions, but where all ba-

sis functions have been sequentially orthogonalized –

hereafter referred to as the all-orthog regression.

The measurement uncertainties, as provided in the GRUAN

data files, are provided to the regression model along

with the measurements. Individual measurements are used

i.e. monthly means are not calculated.

6.2 Upper air temperature trends at Lindenberg

Examples of regression model fits to 00:00 UT temperature

measurements above Lindenberg are shown in Fig. 6. The

all-orthog fits are identical to the all fits and are therefore

not shown; the partitioning of the variance between the basis
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Figure 6. Examples of regression model fits to the 00:00 UT mea-

surements at five selected altitude levels spaced 5 km apart. 1σ un-

certainties are shown as error bars on the regression model fits. Be-

cause the measurement random uncertainties are small i.e. ∼ 0.1 K,

they are not shown.

functions between the all-orthog and all regression model

runs of course differs, as will be shown below. Only sporadic

measurements are available before late 2009 and during these

periods, the uncertainty on the regression model fit is larger.

It is also not immediately obvious that the all fit is superior

to the reduced fit though, in some cases (e.g. early 2011 at 20

and 25 km) the all fit does capture the anomalously higher

temperatures. Similar fits for 12:00 UT data are not shown.

The resultant 00:00 UT trends from the three different ap-

plications of the regression model are shown in Fig. 7.

There are clear differences in the trends between the three

different regression model runs. These differences can aid

the interpretation of the causes of the trends. For example,

a positive trend of 2.71 Kyear−1 is derived from the all re-

gression model fit which reduces to 1.40 Kyear−1 in the all-

orthog fit. This suggests that in the all fit, other basis func-

tions (in this case primarily the solar cycle basis function)

drive a negative trend in temperature which is then partially

compensated for by inflating the positive linear temperature

trend to 2.71 Kyear−1. Together, the negative trends induced

by the other basis functions, together with the positive trend

from the linear trend basis function, track the net trend of

1.40 Kyear−1 that results when all other basis functions are

detrended i.e. from the all-orthog fit. The orthogonalization

process changes all but the first basis function (in our case the

offset basis function) such that the trend basis function in all-

orthog is different from that in reduced (see Eq. 2). This ex-

plains the difference in linear trends between the all-orthog

and reduced fits. As noted in Sect. 2.3, orthogonalizing the

basis functions obfuscates the physical interpretation of the

contribution of each basis function to the signal. Therefore,

comparing now the all and reduced fit results, a trend reduc-

tion from 2.71 to 1.96 Kyear−1 is found. The explanation of

this reduction is similar to that outlined above for the change

from the all and all-orthog fits. Two interpretations of this

result are possible:

1. Changes in solar activity resulted in cooling in May at

∼ 13 km. Other factors, accounted for by the linear trend

term (e.g. changes in greenhouse gas concentrations)

caused warming, larger in absolute magnitude than the

solar cycle induced cooling, resulting in small net pos-

itive trends in temperature seen in the reduced panel of

Fig. 7. The trend in temperature, over and above that

resulting from the QBO, ENSO and solar cycle basis

functions, is that derived from the all regression.

2. Changes in solar activity did not cause cooling in May

at ∼ 13 km. Rather, shorter-term anti-correlations be-

tween temperature and solar activity aliased into a sim-

ulated longer-term negative trend in temperature which

then needed to be compensated by a more positive lin-

ear trend contribution to track the true secular change

in temperature as quantified in the reduced regression

results.

A regression analysis, on its own, cannot determine which of

these two interpretations is correct. It is a fundamental limita-

tion of regression analyses that no physical understanding of

the system is incorporated in the analyses. If, based on phys-

ically implausible mechanisms, an anti-correlation between

temperature and solar activity at 13 km could be excluded,

then interpretation (2) above could be excluded – in which

case the trends quantified in the reduced analyses would best

represent reality. We caution that trends derived from appli-

cation of regression models need to be interpreted. Similar

arguments regarding interpretation of 12:00 UT trends can be

made as for the 00:00 UT trends (not shown here). In general,

as with the 00:00 UT trends, the 12:00 UT trends are seldom

statistically different from zero at the 2σ level.
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Figure 7. 00:00 UT Lindenberg temperature trends as a function of altitude and season for the three different constructs of the regression

model. The trends, in Kelvin/year, are shown using the colour scale at the bottom left. Trends that are not statistically significantly different

from zero at the 1σ level are covered in cross-hatching while trends that are not statistically significantly different from zero at the 2σ level

are covered in single-hatching. Trends with no hatching are statistically significantly different from zero at more than the 2σ level.

7 Conclusions

Regression analysis is seldom a panacea for extracting trends

from geophysical time series. This paper has explored some

of the methodological perils and pitfalls of trend determina-

tion using regression analysis and has reiterated the caveats

by demonstrating the application of the regression model to

short time series of upper air temperature measurements at

the GRUAN site at Lindenberg. The paper demonstrates how

the GRUAN measurement uncertainties, the focus of much

of the effort within GRUAN, can be propagated through to

uncertainties on derived trends in temperature. The Linden-

berg measurement series are too short to derive indicative

upper air temperature trends from the data but are useful as

a pedagogical example of the application of the regression

model. The methodologies described in this paper demon-

strate the care that needs to be taken in the calculation and

interpretation of trends in GRUAN data so that the signifi-

cant investment in GRUAN operations is fully exploited.
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