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Abstract. A broad range of different of Bayesian cloud

detection schemes is applied to measurements from the

Medium Resolution Imaging Spectrometer (MERIS), the

Advanced Along-Track Scanning Radiometer (AATSR), and

their combination. The cloud detection schemes were de-

signed to be numerically efficient and suited for the pro-

cessing of large numbers of data. Results from the classical

and naive approach to Bayesian cloud masking are discussed

for MERIS and AATSR as well as for their combination. A

sensitivity study on the resolution of multidimensional his-

tograms, which were post-processed by Gaussian smooth-

ing, shows how theoretically insufficient numbers of truth

data can be used to set up accurate classical Bayesian cloud

masks. Sets of exploited features from single and derived

channels are numerically optimized and results for naive and

classical Bayesian cloud masks are presented. The applica-

tion of the Bayesian approach is discussed in terms of repro-

ducing existing algorithms, enhancing existing algorithms,

increasing the robustness of existing algorithms, and on set-

ting up new classification schemes based on manually classi-

fied scenes.

1 Introduction

Cloud masking of Earth observation measurements is an im-

portant and often crucial part of various remote sensing re-

trievals. This includes, but is not limited to, the retrieval of

cloud and aerosol microphysical parameters, the estimation

of cloud cover, ocean color retrievals, and in general, algo-

rithms which include atmospheric correction schemes. Cloud

masking algorithms differ widely in their complexity, com-

putational requirements, and assumptions about what a cloud

is and which physical process is exploited for their detection.

Implementation of particular algorithms are often application

specific, which makes the cloud masks as well application

specific and generally complicates the inter-comparison of

results from different cloud masks.

This paper emphasizes the application of Bayesian meth-

ods for the cloud masking of the complete 9.5 year time

series of the Medium Resolution Imaging Spectrometer

(MERIS) (Rast et al., 1999) and the Advanced Along-Track

Scanning Radiometer (AATSR) (Llewellyn-Jones et al.,

2001) on-board the Environmental Satellite (ENVISAT) and

is part of the European Space Agency (ESA) Cloud CCI

(Climate Change Initiative) project (Hollmann et al., 2013).

Thus, the requirements for the cloud masking scheme, which

is described in Sects. 2 to 5, are robustness, accuracy, and

computational efficiency. Several possible applications of

the Bayesian method are discussed in Sect. 7. Results for

MERIS and AATSR are discussed separately but with a focus

on their combination within the Synergy product, in which

daytime AATSR measurements are mapped on the MERIS

swath and their mutual overlap is used. The Synergy data

set in combination with one of the presented cloud detection

schemes will be used for the retrieval of cloud microphysi-

cal parameters using the FAME-C algorithm which was de-

scribed by Carbajal Henken et al. (2014). The development

within Cloud CCI is ongoing and finalization of the actual

algorithm is planed for the near future.

Major challenges of cloud detection are validation, the cor-

rect classification of scenes with clouds for mountainous re-
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gions and over snow- and ice-covered areas, and the distinc-

tion between clouds and optically thick aerosol plumes such

as dust storms. These points are discussed in more detail in

Sect. 7.

Common approaches to cloud masking are hierarchies of

thresholds (e.g., Rossow and Garder, 1993; Schlundt et al.,

2011), complex statistical models (e.g., Murtagh et al., 2003;

Gómez-Chova et al., 2008), or other Bayesian approaches

(e.g., English et al., 1999; Uddstrom et al., 1999; Merchant

et al., 2005; Mackie et al., 2010a; Heidinger et al., 2012). A

classification scheme for Bayesian cloud masks which helps

to clearly distinguish the various approaches to Bayesian

cloud masking is introduced in Sect. 3 and, in addition, a

short overview of the relevant literature using such schemes

is given.

The results presented here are computational highly ef-

ficient and are very well suited for the processing of large

numbers of data, which makes these results very well suited

for future application to the Ocean Land Colour Instrument

(OLCI) (Nieke, 2008) and the Sea and Land Surface Temper-

ature Radiometer (SLSTR) (Coppo et al., 2010) on-board the

Sentinel-3 satellite (Miguel et al., 2007) and its operational

follow-ups.

2 Bayesian inference for cloud masking

Bayes’ theorem can be used to reverse joint probabilities. It

is appealing to apply it to cloud masking since its theory is

widely adopted, its implementation on a computer system is

straightforward, and its results are probabilities which can be

directly interpreted. The theorem allows the computation of

the probability P(C,F ) that a particular measurement with

feature F is affected by a cloud when the occurrence prob-

abilities P(F ,C) and P(F , C̄) of the feature under cloudy

and non-cloudy conditions are known. Here, P(a,b) denotes

the occurrence probability of a under the condition of the

occurrence of b.

With C being the case that a measurement is affected by

clouds and F being a set of features associated with that mea-

surement, P(C,F ) can be expressed as

P(C,F )=
P(C)P (F ,C)

P (F )

=
P(C)P (F ,C)

P (C)P (F ,C)+P(C̄)P (F , C̄)
, (1)

where P(C) is the background probability of cloudiness and

C̄ is the negation of C, which states that a measurement is

not affected by clouds. The occurrence probability of the

feature P(F ) can be expressed in terms of the joint proba-

bilities P(F ,C) and P(F , C̄), because cloudiness and non-

cloudiness are the only two considered classes for each mea-

surement.

Evaluating Bayes’ theorem involves only a few arithmetic

operations so that a specific implementation can be very fast

and efficient, which is of importance when large numbers of

data are to be processed. Additional computations involve

the feature F and the a priori joint probabilities P(F ,C) and

P(F , C̄), which are discussed in the following sections.

With an appropriate set of thresholds, one can convert the

probability P(C,F ) into a cloud mask. For instance, any

probability strictly higher than 50 % could be interpreted as

cloud, but other thresholds or more classes can be used. This

is discussed in more detail in Sect. 7.1, but this choice clearly

depends on the target application and is independent of the

Bayesian approach. Other applications, such as the construc-

tion of a cost function as described by English et al. (1999),

are also viable alternatives.

Estimating the value of the background probability P(C)

is not discussed in detail in this paper and for all follow-

ing applications a value of 0.5 is used. This choice basi-

cally states that for each measurement an equal probability

of it being cloudy or not cloudy is assumed. This assumption

is of course valid neither on a global nor local scale, and a

rich body of knowledge about the spatial and temporal distri-

bution of cloud occurrence probabilities exists. Such knowl-

edge, typical in the form of external climatologies, could be

used to estimate P(C) but would eventually shift derived cli-

matologies towards the external one, which would then ef-

fectively lead to circular arguments. This point might be of

lower importance for some applications, i.e., operational pro-

cessing by weather services, but within Cloud CCI climato-

logical data sets will be derived from the full MERIS and

AATSR time series and circular arguments are best to be

avoided. Since a decision for the actual value of P(C) has

to be made, its impact on derived data sets should be inves-

tigated and communicated to potential users. In general, the

background probability can be a function of external or auxil-

iary data like position or time of year. In the general case, the

estimation of the joint probabilities P(F ,C) and P(F , C̄)

should be consistent with P(C).

For the special case of P(C)= 0.5, Eq. (1) simplifies to

P(C,F )=
P(F ,C)

P (F ,C)+P(F , C̄)
. (2)

Setting up a particular Bayesian cloud mask algorithm in-

volves several decisions, such as specifying the measurement

feature F and choosing a technique to estimate P(F ,C) and

P(F , C̄), which allows us to group the various possible ap-

proaches to Bayesian cloud masking into distinct subgroups.

This natural grouping allows to clearly separate the presented

approach from other algorithms and is discussed in Sect. 3.

In addition, a short overview about the relevant literature is

given.

3 Classification of Bayesian cloud masks

Several papers on Bayesian approaches to cloud masking

have been published in the past and fundamental differences
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between the various algorithms are often buried in the tech-

nical details of the particular paper. A nomenclature which

aims to clearly separate different approaches to Bayesian

cloud masking is discussed in the following.

Let the feature F from Eq. (1) be a set of nF real num-

bers F = (F1, . . .,FnF
) ∈ RnF , where the Fi are typically de-

termined from measurements M ∈ RnM , auxiliary data A ∈

RnA , and external data E ∈ RnE . The components Fi are

computed from prescribed feature functions fi , which gen-

erally depend on all of the above introduced classes of data:

Fi = fi(M,A,E). In the case of the MERIS and AATSR

Synergy, the set of measurements M includes radiances and

brightness temperatures for a single collocated pixel. Auxil-

iary A data are available with negligible computational cost,

such as time stamps, geolocation, and data flags. External

data may be a function of the available measurements M and

auxiliary data A and their procurement are by definition asso-

ciated with non-negligible computational cost. This category

essentially introduces significant external knowledge about

the measurement and common examples are online radiative

transfer (RT) simulations, nontrivial interpolation in numeri-

cal weather prediction (NWP) data, or the use of climatolo-

gies.

Let us call the feature set F independent when it is only

a function of the measurements M and auxiliary data A and

dependent when external data E are additionally exploited.

Both classes can be further subdivided with respect to weak

and strong dependence to describe F even more precisely.

A weakly dependent feature set could, for example, depend

on interpolation in NWP data, which is of negligible compu-

tational cost, while a strongly dependent feature set could

depend on online RT with non-negligible numerical cost.

Strongly independent feature sets would then depend only

on measurements M , while weakly independent feature sets

could in addition depend on auxiliary data A.

This paper focuses on Bayesian cloud masks based on

strongly independent features. Only MERIS and AATSR

measurements and trivial functions operating on them are

used to construct the feature set. This class of features al-

lows to implement a numerically highly efficient algorithm

with simple opportunities to parallelization and vectoriza-

tion. With no dependency on external data, the algorithm can

be used in non-operational environments where the acquisi-

tion of NWP data can require significant effort. In general,

there is no obvious reason why the techniques which are dis-

cussed in the following sections are limited to the indepen-

dent case.

The second major branch in Bayesian cloud masking

schemes involves the computation of the joint probabilities

P(F ,C) and P(F , C̄). The classical approach aims at the

direct computation of these two joint probabilities, while the

naive approach treats the components Fi of the feature set F

as statistically independent and decouples the joint probabil-

ities on F into a product of joint probabilities of the Fi :

P(F ,C)=
∏
i

P(Fi,C). (3)

One can either construct the feature set very carefully, such

that this strong assumption holds (e.g., follow Merchant et al.

(2005) and their discussion on cloud texture and cloud top

temperature), or simply accept its violation and the possible

effects on the cloud masking scheme. Formally proving the

statement of Eq. (3) seems to be only possible for a rather

limited class of features.

Computing the joint probabilities in the classical approach

can be greatly simplified by assuming an analytic form and

estimating its parameters. Depending on the assumed form,

for instance multivariate Gaussian (e.g., see Uddstrom et al.,

1999; Merchant et al., 2005), the resulting cloud mask could

be called classical Gaussian. As for the naive approach, it

will be difficult to formally prove the validity of such as-

sumptions.

The classical and naive approaches can be mixed when

one or more subsets of the Fi are treated as statistically inde-

pendent, such that the decoupling of P(F ,C) and P(F , C̄)

becomes partial. For this class of Bayesian cloud masks we

propose using the terms “mostly naive” when the majority

of features are decoupled and “mostly classical” when the

majority of features are not decoupled.

This paper is mainly concerned with the discussion of the

classical and naive approach with an emphasis on the classi-

cal one. In conclusion, this paper is mostly concerned with

the application of classical Bayesian cloud masks based on

strongly independent features. As it will be shown later in

the paper, the classical approach gives better results for the

cloud masking in our scenario and the strongly independent

feature set was chosen to allow the implementation of a very

fast algorithm.

Cloud detection methods based on Bayesian probabilities

have been used for cloud masking in the past, and a short

overview is given now but without the attempt to fully out-

line them. English et al. (1999) used Bayesian probability

with strongly dependent features to derive a cost function

for a 1D-Var retrieval of cloudiness. The classification is

based on the exploitation of microwave and infrared chan-

nels and, in addition, external data from NWP simulations.

Uddstrom et al. (1999) used Advanced Very High Resolution

Radiometer (AVHRR) channels, derived channels such as re-

flectance ratios and brightness temperature differences, and

textural measures to construct strongly independent features.

It was found that textural measures are most important for

nighttime measurements. The joint probabilities were sepa-

rated by assuming a multivariate Gaussian form and were ex-

pressed in terms of mean values and associated covariances.

Merchant et al. (2005) used nighttime thermal infrared mea-

surements at 3.7, 11, and 12 µm to construct a mostly clas-

sical Bayesian cloud mask. Textural features were assumed

to be independent from measurements in thermal channels
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and were separated when computing the joint probabilities.

P(C) was estimated from NWP data and the algorithm was

discussed with an emphasis on operational NWP centers such

that these feature are likely only weakly dependent. Mackie

et al. (2010a, b) discussed a mostly classical Bayesian algo-

rithm with strongly dependent features for the 3.9, 11, and

12 µm channel of the SEVIRI instrument. External knowl-

edge is introduced by NWP data, and a fast radiative trans-

fer model and textural features were separated from spectral

features assuming independence. Heidinger et al. (2012) dis-

cussed a naive Bayesian cloud mask with strongly dependent

features for the AVHRR instrument. A surface type classifi-

cation using external MODIS data was used to maximize the

detection rate. CALIPSO lidar measurements were used as

truth data to compute histograms from which the occurrence

probabilities for each feature were estimated.

4 Construction of feature sets

Channels of the MERIS and AATSR instruments cover the

spectral range from 412 nm to 12 µm and are referenced in

this paper by their central wavelength, while for MERIS the

unit of nm and for AATSR the unit µm is used. Figures 1

and 2 show examples of possible features for two particu-

larly interesting scenes over Greenland and in the vicinity

of the Korean peninsula. Each figure shows an RGB im-

age, various single channels, and a selection of trivial func-

tions which combine two channels. Both figures include a

panel with results of the non-Bayesian Synergy cloud mask,

which is briefly discussed in Sect. 6. Figure 1 shows a scene

over Greenland with its center located at 59◦31′12′′W and

79◦0′0′′ N with high and low clouds over a large ice- or snow-

covered region. Figure 2 shows a scene in the vicinity of

the Korean peninsula with its center located at 125◦52′12′′ E

and 37◦45′36′′ N. This scene shows a pronounced dust storm

mixed with a deck of clouds.

Strongly independent features are constructed using a sin-

gle channel or any combination of channels in a trivial func-

tion. Such combinations have been called derived channels in

the literature (e.g., Uddstrom et al., 1999). Considered here

are all basic arithmetic operations (+,−,×,/) and, in addi-

tion, the index function dx(a,b)= (a−b)/(a+b), which can

be used to create indices such as the normalized difference

vegetation index (see Kriegler et al., 1969), the normalized

difference snow index (see Hall et al., 2002), or other gen-

eral channel indices. Even when well-known and generally

accepted combinations of channels and indices are used, it is

unclear whether a specific combination is the best possible

candidate for the particular data set and one has to rely on

the experience of the involved experts.

In contrast to approaches based on expert knowledge, an

objective measure for any given set of feature functions is ex-

ploited to numerically search for the best possible set of fea-

ture functions. Maximizing the Hanssen–Kuipers skill score

Figure 1. Several views of a scene over Greenland from 17 July

2007 with the image centered at 59◦31′12′′W and 79◦0′0′′ N. Sin-

gle panels include a pseudo RGB view, results of the non-Bayesian

Synergy cloud mask (with white indicating clouds; see Sect. 6), as

well as single channels and simple functions operating on two chan-

nels. The function dx denotes the index function and is defined as

dx(a,b)= (a−b)/(a+b). Units are not shown and the color scales

are stretched to maximize the visible contrast.

Figure 2. Similar to Fig. 1 but for a scene near the Korean penin-

sula. The center of the images is located at 125◦52′12′′ E and

37◦45′36′′ N.

(see Hanssen and Kuipers, 1965; Woodcock, 1976) with re-

spect to a given validation data set is an appropriate met-

ric for this problem. It is also sometimes referred to as a

Hanssen–Kuipers discriminant and is essentially the differ-

ence of the hit rate and the false alarm rate of the cloud mask

with respect to a validation data source. It covers the range

of −1 to +1, with +1 being a perfect representation of the

validation source. From now on, only the term “skill score”

is used.
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Validation of cloud masks for MERIS and AATSR on-

board ENVISAT is a difficult task since no generally ac-

cepted and available set of truth data exists. A generally used

approach is to generate truth data by means of manual classi-

fication of images by human experts or the use of data from

ground-based stations. Converting a ground truth to a pixel-

by-pixel truth can be complicated, and possibly insufficient

spatial coverage can limit the applicability of that approach.

Consequently, most approaches for generating truth data for

MERIS and AATSR are based on the manual classification

of sample data by human experts (e.g., Gómez-Chova et al.,

2006, 2008; Schlundt et al., 2011). Such data sets can be

called artificial truth because, although they are used as if

they were truth, it is arguable whether such data sets are in

fact truth.

To demonstrate the feasibility of the Bayesian approach,

results from the Synergy cloud mask (see Gómez-Chova

et al. (2008) and Sect. 6 for a brief description) were cho-

sen as a source of artificial truth data; it is therefore assessed

whether Bayesian cloud masks can reproduce this Synergy

cloud mask. The major advantage of this approach is that

large numbers of artificial truth data can be created without

significant effort. Clearly, all shortcomings of this seeding

algorithm will be present in this data set and will limit the

success of the application of the Bayesian technique.

Optimizing the choice for a particular set of feature func-

tions is not straightforward, since this problem is noncontinu-

ous with a varying number of free parameters. First, the num-

ber of feature functions has to be set. Then, for each feature,

a feature function from the pool of considered functions has

to be selected. The identity function, all four basic arithmetic

operations, and the index function are considered as feature

functions. As a last step, the input channels for each feature

function must be set. Depending on the chosen functions and

channels, a maximum of 2× nF channels can be included in

the computation of a feature set with nF elements.

Then, for a particular feature set, the prerequisites for com-

puting the joint probabilities must be carried out, which is de-

scribed in detail in Sect. 5. Once this step is completed, the

Hanssen–Kuipers skill score for the selected set of validation

data can be computed.

The only numeric optimization procedure that we are

aware of, which is generally applicable to this situation, is

a random search in the huge search space spanned by this

outlined procedure. This is quite a different approach to that

of a human expert, who would likely start an educated search

but might not attempt to cover the whole search space. The

number of possible combinations depends on the number of

chosen features and the number of available channels (22 in

the case of the MERIS and AATSR Synergy) and can be es-

timated using the binomial coefficient. In the simplest case,

where merely the identity function is used, no channel is

used more than once, and four features are to be selected, the

search space spans
(

22
4

)
= 7315 elements. When only func-

tions of two channels are to be selected and re-selected and

channels can be used multiple times, then the search space

consists of
(

5×(222
−22)

4

)
=

(
2310

4

)
≈ 1.2×1012 entries. The

enormous size of the search space makes it difficult to com-

pletely cover it by a search, but the random search can be al-

lowed to run appropriately long such that a result of sufficient

quality is obtained. One can expect that a large number of dif-

ferent sets of feature functions will essentially exhibit very

similar classification skills. The considered feature functions

are not symmetric under a change of the parameter order, but

the overall classification result might be approximately sym-

metric. This alone would decrease the search space by a fac-

tor of approximately 16. In addition, the classification results

might be only weakly dependent with respect to the feature

function itself; i.e., the index function dx(a,b) might be as

effective as a ratio a/b, which would decrease the effective

size of the search space.

The proposed random search might not be able to cover

the complete search space, but with a sufficiently long run-

time one will be able to find solutions with a sufficiently

high skill score. In addition, unusual combinations of chan-

nels might be found which would not be considered in an

educated search by a human expert. The features shown in

Figs. 1 and 2 are frequently found in searches when results

from the non-Bayesian Synergy cloud mask are used as arti-

ficial truth.

The physical meaning of a certain feature set and why

it might be better or worse than a different one is not dis-

cussed here and is also not within the scope of this paper.

This knowledge is very useful for educated searches but is

not necessarily needed in this setup. However, for the experi-

enced expert it might be only slightly surprising which chan-

nels are found to be successful by the optimization scheme.

There is also no apparent reason why human experts should

not compete with the optimization scheme in order to find

an optimum set of features. This is especially important for

applications where only a small fraction of the search space

can be tested using the optimization approach.

Implementing such a search strategy is straightforward. A

generator of random feature functions must be implemented

and each of these instances can be tested for its skill score

with respect to the artificial truth. This procedure is easily

parallelizable, and one could store only the results with a

higher skill score rather than some predefined value. At any

given time during an ongoing search, one can sort these re-

sults and evaluate the top results.

5 Estimation of background joint probabilities

The background joint probabilities P(F ,C) and P(F , C̄)

could be computed in various ways, but here only the fre-

quentist approach based on sample data is considered. A

sufficiently large number of already-classified measurements

are converted into their corresponding set of features, and

www.atmos-meas-tech.net/8/1757/2015/ Atmos. Meas. Tech., 8, 1757–1771, 2015
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probability density histograms are produced, from which the

probabilities are estimated. In the naive Bayesian approach,

as many one-dimensional histograms as there are features are

needed, while in the classical Bayesian approach a single

nF -dimensional histogram is used. When these histograms

are stored in a computer system, the handling of any reason-

able number of one-dimensional histograms poses no spe-

cific problem, while an array of dimension nF grows rapidly

in memory with increasing number of bins nB . For the sake

of simplicity, the same number of bins is assumed for each

particular dimension. With four bits per float and twenty bins

per feature, one would need 0.6 Gb to store a single his-

togram for four features but already about 4883 Gb for seven

features. This limits the practical number of features for the

classical Bayesian approach to about four to six at the time

of writing this paper.

However, the main argument of Uddstrom et al. (1999) and

Heidinger et al. (2012) against the use of the classical ap-

proach is that one has generally not enough truth data avail-

able to robustly derive the histograms in a completely fre-

quentist way. This can be a valid point for real truth data,

which are limited in principle, but not so much for artifi-

cial truth data. Here, the number of available data is merely

a function of the available human labor for manual classi-

fication or computational resources when an existing cloud

masking scheme is used to produce artificial truth data.

Both left panels of Fig. 3 and 4 show results of two-

dimensional histograms for MERIS and AATSR Synergy

data. For both cases, almost 1 million spectra were used to

compute both histograms. Shown is the difference between

the histograms for C and C̄. Both choices of features recreate

the Synergy cloud mask reasonably well with a skill score of

about 0.76. The cloud masking setup is discussed in detail in

Sect. 7. The main point here is that with enough data points

these histograms can be computed. The two-dimensional

case was chosen since this is simple to visualize.

Both right panels of Figs. 3 and 4 show remarkably similar

histograms with just barely smaller skill score values of about

0.75, but only 1000 randomly selected measurements from

the original data set were used to produce these histograms.

A simple Gaussian smoothing filter was applied to both his-

tograms and each Gaussian smoothing factor was chosen

such that the skill score as a function of the Gaussian smooth-

ing was maximized. This is the first main result of this paper.

This numerical experiment shows that, at least for some sets

of feature functions, the nF -dimensional histograms can be

approximated by using very few data points and an appropri-

ate Gaussian smoothing factor. The best smoothing factor for

both cases is slightly different and is obtained from optimiza-

tion. More detailed results are shown in Sect. 7.1. In addition

to the previously discussed parameters, e.g., the construction

of features, classical Bayesian cloud masks are defined by the

number of bins used in the histograms and the chosen Gaus-

sian smoothing parameter, which is discussed in Sect. 7.1.

It should be noted that this is an extreme case and we

do not propose to use so few data points to construct

cloud masks for real-world applications. These two examples

merely show how well this approach operates and that a sur-

prisingly small number of data might be sufficient to explore

the application of classical Bayesian cloud masks.

The Gaussian smoothing approach works reasonably well

and is so far only justified by its actual success for a partic-

ular problem, where in fact sufficient numbers of artificial

truth data are available. Its general application to situations

with limited numbers of such data is therefore not very well

justified. However, numerical experiments with the available

data have shown that this approach yields remarkably good

results. Other functional kernels have not been tested, but

the Gaussian approach seems sufficient since the convoluted

histograms yield nearly the same skill score as the original

histograms. Success of this approach is likely based on the

fact that the smoothing procedure distributes data to neigh-

bor bins but does not strongly change the defining spectral

features of the measurements. That is, it implicitly creates

data which could represent different viewing geometries or

situations with slightly varying optical parameters. Hence,

this approach is not justified by first principles but rather

with working examples which strengthen our expectations

that this approach will work reasonably well for any other

set of features.

6 Synergy cloud mask

The Synergy cloud mask is discussed in detail by Gómez-

Chova et al. (2008) and is implemented as an external pro-

cessor for the BEAM toolbox (Fomferra and Brockmann,

2005). It is based on radiative transfer simulations covering

all spectral bands of MERIS and AATSR and statistical anal-

ysis of classified data by human experts. Within the frame

of the ESA Cloud CCI project phase 1, the years 2007–2009

of the MERIS and AATSR time series were processed. The

derived cloud cover (or cloud number) was assessed in sev-

eral validation exercises, e.g., compared to cloud numbers

from the GEWEX CA database (Stubenrauch et al., 2012),

which consists of a number of data sets with gridded and

monthly mean cloud number derived from a variety of satel-

lite instruments. Results of global mean cloud number are in

line with GEWEX cloud numbers (Hollmann and Lecomte,

2013). The cloud mask product from the years 2007 to 2009

can be used as a large source of artificial truth data for the

synergy data set.

7 Application to MERIS, AATSR, and their synergistic

product

When the computation of P(F ,C) and P(F , C̄) is based on

the frequentist approach and artificial truth data, then three

major applications of the technique become feasible. Re-
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Figure 3. Difference of the two-dimensional histograms for P(F ,C) and P(F , C̄). The left panel show a direct results using 990 000 globally

distributed measurements, while for the right panel only 1000 measurements were used. The histograms on the right side were post-processed

using Gaussian smoothing with a width parameter of 1.84.
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Figure 4. Similar to Fig. 3 but for a different set of features and a different Gaussian smoothing factor of 2.15. This set of features includes

the MERIS Oxygen A band absorption channel.

sults from existing algorithms can be reproduced using the

Bayesian technique, which could potentially speed up and

simplify the cloud masking of large numbers of data. With

the Synergy cloud mask from Sect. 6 as an example, this pro-

cedure is discussed in the following Sect. 7.1. When the ex-

isting algorithm is reproduced reasonably well, one can use

this technique to further enhance the algorithm, which is dis-

cussed in Sect. 7.2. A simple example in which data classi-

fied by a human expert are used to set up a Bayesian cloud

mask is discussed in Sect. 7.3.

7.1 Reproduction of existing algorithms

A Bayesian cloud mask can be used to approximate indepen-

dent algorithms but with the advantage of possibly drastically

decreased computation times. However, it is not obvious that

a particular algorithm is reproducible to a sufficient extent

with this technique. Artificial truth data from the Synergy

cloud mask, which was shortly discussed in Sect. 4, are used

as a test case and a large number of Bayesian cloud masks

with different feature sets were created and ranked accord-

ing to their skill score. The joint probabilities were estimated

using globally equally distributed data from the year 2007,

and similarly distributed data from the year 2008 were used

to compute the skill score, which is used to assess the ability

of the cloud mask to reproduce the Synergy cloud mask. The

regional and temporal even distribution of the initial data is

crucial to cover the widest possible range of combinations of

surface reflectance, atmospheric condition, and non-cloudy

and cloudy cases. Correct classifications are only limited by

the information content carried within their set of features

when the background probabilities are estimated such that

they cover the same representative range of surface and at-

mospheric conditions. For instance, when bright snow and

desert surfaces are not included in the set of cloud-free cases,

such examples could be easily misclassified as cloudy, even

when the set of features would be in principle sufficient for a

correct classification.

The presented results do not have to represent a global op-

timum since only a small fraction of the search space was

covered in the finite search time. Depending on the number
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Figure 5. Global distribution of skill scores for a classical Bayesian

cloud mask using only two strongly independent features. Data are

shown for the year 2008 and the joint probabilities of the mask were

estimated with data from the year 2007. The global skill score is

0.78 and the used features are shown in the title of the figure.

of features and the classical or naive Bayesian approach, a

certain upper bound of skill scores for any test case was not

exceeded, but many feature sets with similar skill score to

that soft limit were found.

Figures 5 and 6 show the global distribution of skill scores

for two classical Bayesian cloud masks based on sets of two

and four features. The increase to four features improves the

results, although not dramatically for the mean global skill

score. The two feature sets were the best candidates within

the allowed search time for the full Synergy set of channels.

The results are best for ocean areas and worst for areas with

mountains (Nepal, west coast of northern USA, deserts (Sa-

hara, Arabian peninsula), and ice- and snow-covered areas

(poles, Siberia). These are actually the areas where one natu-

rally would expect major difficulties in detecting clouds. The

local skill scores in these areas were significantly improved

by increasing the number of used features to four.

Interpreting spatial patterns of skill score or reproducibil-

ity is not straightforward. It is difficult to differentiate be-

tween poor reproducibility caused by inherent limitations of

the selected feature set and that caused by inconsistencies or

errors in the truth data. In general, when one decides to trust

the truth data, one can only explore the state of methodologi-

cal parameters such as the selected features or bin size of the

histograms in order to optimize the reproducibility. It is then

up to the potential user whether a certain skill score meets

the requirements for the desired application.

The data used to produce Figs. 5 and 6 were sorted and

used to generate the overview shown in Fig. 7. Shown is

the computed cloud probability from the two Bayesian cloud

masks, separated for the cloudy and non-cloudy group as

classified by the Synergy cloud mask. The threshold of 0.5

cloud probability is also shown and was used as separa-

tion between the cloudy and non-cloudy class. This repre-

sentation shows the cause of non-unity skill score. Here, the

misses (number of red points before crossing the blue line vs.

those beyond) and the false alarms (number of green points
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Figure 6. Similar to Fig. 5 but for a different classical Bayesian

cloud mask based on four strongly independent features. The global

skill score is 0.83.

Table 1. Best found results for feature sets of classical Bayesian

cloud masks with two strongly independent features which best

recreate Synergy cloud mask results. The results are separated for

the Synergy of MERIS and AATSR, MERIS, and AATSR. Chan-

nels are referenced by their central wavelength. MERIS channels

use the unit nm, while AATSR channels use µm.

nF Instrument Skill Feature set

score

2 Synergy 0.781 620–900 nm, 412 nm–11 µm

2 Synergy 0.780 442 nm–11 µm, 778–708 nm

2 Synergy 0.776 885–620 nm, dx(11 µm, 442 nm)

2 MERIS 0.781 412 nm, dx(885, 865 nm)

2 MERIS 0.774 412 nm, dx(900, 681 nm)

2 MERIS 0.773 442 nm, dx(900, 708 nm)

2 AATSR 0.707 12/0.55 µm, 3.7/11 µm

2 AATSR 0.706 0.55/3.7 µm, dx(3.7, 12 µm)

2 AATSR 0.706 0.55/12 µm, dx(12, 3.7 µm)

after crossing the blue line vs. number of points before cross-

ing) are quite similar. Figure 7 shows that the Bayesian cloud

mask with four features exhibits a much smoother distribu-

tion of probabilities and a decreased rate of misses, while the

improvement of the false alarm rate is only minor. Also, the

impact of changing the threshold value can be nicely seen.

The overall skill score seems to be almost unaffected when

changing the threshold. The false alarm rate decreases when

the threshold is increased, but at the same time the rate of

misses increases, which would decrease the skill score.

Similar results can be achieved by using different combi-

nations of feature functions and channels. An overview of

results for the Synergy data, MERIS, and AATSR alone is

given in Tables 1, 2, and 3. Tables 1 and 2 show results

for classical Bayesian cloud masks with strongly indepen-

dent feature sets for two and four features, respectively. Ta-

ble 3 shows results for naive Bayesian cloud masks with

five strongly independent features. Classical Bayesian cloud

masks based on two strongly independent features show best

results when the complete Synergy channel set or MERIS
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Table 2. Similar to Table 1 but for classical Bayesian cloud masks based on four strongly independent features.

nF Instrument Skill Feature set

score

4 Synergy 0.826 1.6 µm, 681/778 nm, dx(0.55 µm, 760 nm), dx(11 µm, 412 nm)

4 Synergy 0.821 412 nm, 12 µm, 753 nm× 1.6 µm, dx(11, 12 µm)

4 Synergy 0.820 442 nm, 3.7–11 µm, 3.7 µm× 12 µm, dx(665, 753 nm)

4 MERIS 0.822 412 nm, 900 nm× 510 nm, dx(760, 620 nm), dx(885, 865 nm)

4 MERIS 0.821 753/510 nm, 442 nm× 412 nm, dx(865, 753 nm), dx(885, 760 nm)

4 MERIS 0.818 442, 665/900 nm, dx(560, 510 nm), dx(865, 885 nm)

4 AATSR 0.765 12, 0.55 µm, 12/3.7 µm, 0.55/0.87 µm

4 AATSR 0.757 0.67 µm, 12/3.7 µm, 0.87/0.55 µm, 11/0.67 µm

4 AATSR 0.757 0.55/0.87 µm, 12 µm× 3.7 µm, dx(0.55, 3.7 µm), dx(12, 11 µm)

Table 3. Similar to Table 3 but for naive Bayesian cloud masks based on five strongly independent features.

nF Instrument Skill Feature set

score

5 Synergy 0.756 12 µm, 760, 412, 560 nm× 490 nm, dx(0.87 µm, 865 nm)

5 Synergy 0.751 681–900 nm, 11 µm–412 nm, 0.87 µm/865 nm, 560 nm× 3.7 µm, dx(708, 490nm)

5 Synergy 0.750 778, 560 nm, 11 µm–412 nm, 900–620 nm, dx(1.6 µm, 442 nm)

5 MERIS 0.753 412, 442, 865, 560/490 nm, dx(681, 900 nm)

5 MERIS 0.750 412, 510–708 nm, dx(885, 760 nm), dx(665, 900 nm), dx(620, 412 nm)

5 MERIS 0.749 760, 412, 865–490 nm, dx(900, 708 nm), dx(681, 778nm)

5 AATSR 0.695 11, 12 µm, 11–0.87 µm, 3.7/11 µm, 12 µm× 0.55 µm

5 AATSR 0.692 0.55, 11 µm, 3.7–12 µm, 11–0.87 µm, dx(11, 12 µm)

5 AATSR 0.691 11 µm, 12–3.7 µm, 11 µm× 3.7 µm, dx(0.87, 11 µm), dx(0.55, 12 µm)

alone is used. The results for AATSR alone are significantly

inferior. For the Synergy data set, the 11 µm channel in com-

bination with a MERIS channel in the blue (412 and 442nm)

is found in all three top results. For MERIS alone, a com-

bination of a channel in the blue and an index of red and

short-wave infrared channels is found in the top results. It

is quite counterintuitive that the best results for MERIS are

achieved with only three different channels, while the algo-

rithm had the freedom to select up to four channels. The best

result for the set of Synergy channels included four channels,

which relates more to the naive intuition that more channels

carry more information and would therefore be better suited

for the application. However, since the search space was not

fully covered, a better solution for MERIS with four channels

could still be found.

Table 2 shows similar results but for classical Bayesian

cloud masks based on a set of four features. Again, Synergy

and MERIS results are significantly better than those from

AATSR, while the Synergy results are only slightly better

then those from MERIS alone. All possible feature functions

are used within the results but of course not all the time for

any result.

Similar studies were also performed for higher numbers of

features, but no results with significantly higher skill scores

were found. The skill score results for using three features

are positioned right in the middle of the two discussed re-

sults, such that four features seems to be the best choice to

reproduce the Synergy cloud mask with a classical Bayesian

cloud mask based on strongly independent features.

Similar searches for naive Bayesian cloud masks with

strongly independent features were performed for 5 and 15

features, and results for five features are shown in Table 3.

The search with 15 features did not show significantly bet-

ter result than the ones shown. In general, these results are

not as successful in reproducing the Synergy cloud mask as

the approaches with the classical Bayesian cloud mask. Skill

scores for AATSR alone are smaller than for MERIS and

Synergy and also generally smaller than for the classical ap-

proach with four features.

Concluding this aspect, it is possible to find feature sets

that reproduce the Synergy cloud mask reasonably well even

without covering the complete search space. For a soft upper

limit of the skill score, different feature sets with similar skill

score can be found. This is actually not surprising and repre-

sents the fact that the same classification results in terms of
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Figure 7. Cloud probability from the two classical Bayesian cloud

masks from Fig. 5 (dashed line, P(C,FA)) and Fig. 6 (solid line,

P(C,FB )) separated by cases which were labeled as cloudy (red)

and non-cloudy (green) by the Synergy cloud mask. The same data

as in Figs. 5 and 6 were used and the results were sorted for a better

overview. The threshold of 0.5 cloud probability is marked with a

blue line.

skill score can be achieved with many different feature sets.

From a technical point, it is then sufficient to choose one of

those results with best skill scores, even if this might not be

the absolute global maximum.

Some commonly used features, such as the brightness tem-

perature difference of 11 and 12 µm, did not appear in the

shown results. However, this does not indicate that the found

features are in general superior to those missing. It simply

states that during the search no set of features were found

which included them and shows better results. Restricting

the search space to cover only selected features is simple

and could be used to limit the results to features with known

physical meaning.

For both classical and naive Bayesian cloud masks, a spe-

cific set of features should be evaluated as a whole. The effect

of a certain feature on the skill score for the total feature set

can be estimated by evaluating results for a particular set with

and without the feature in question. The effect on the skill

score when adding a feature to a given set might strongly de-

pend on the original feature set. In addition, features which

show only poor reproduction skill when used alone might

significantly improve the skill score for a certain set of fea-

tures.

Next, the impact of the number of bins nB , Gaussian

smoothing value, and sample size of the artificial truth data

set is discussed. The sensitivity of the Bayesian cloud mask

in terms of skill score with respect to a certain feature set

is shown in Figs. 8 and 9. Both figures show skill scores

for Synergy cloud mask artificial truth data with respect to

number of bins, Gaussian smoothing factor, and sample size

of the artificial truth data. Figure 8 shows an extreme case

where only 100 randomly selected globally distributed cases

were used as artificial truth. Again, the year 2007 was used as
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Figure 8. Skill score of a classical Bayesian cloud mask with four

strongly independent features with respect to number of bins for

each dimension of the underlying histograms and the applied Gaus-

sian smoothing. Artificial truth data are taken from 2007 and skill

scores were computed for the year 2008. Only 100 randomly se-

lected and globally distributed spectra were used to compute the

histograms. This selection was repeated 10 times and mean values

for the skill score are shown. The standard deviation on the last sig-

nificant digit is shown in parenthesis.

pool for the artificial truth and the year 2008 to compute the

skill score. The skill scores of the cloud mask which is based

on such a small sample size clearly depends on the sample

itself. The procedure was repeated 10 times and the achieved

mean skill score is shown. The standard deviation in the last

digit is shown in parenthesis.

With no Gaussian smoothing applied, the skill score

clearly decreases with increasing number of bins since the

sample size is much too small for this resolution. Also, the

impact of the sample is largest when the standard deviation is

highest. The skill score increases with increasing number of

bins and Gaussian smoothing until a maximum is reached.

With the increasing bin number and smoothing, the skill

score decreases only slightly. In this case, an optimal set of

bin size and smoothing can be found. When smaller vales are

used, the skill scores are drastically reduced, but when larger

values are used, the skill score decreases only slightly.

A similar sensitivity study is shown in Fig. 9, but here

a much larger sample size of artificial truth data was used.

Again, without Gaussian smoothing the smallest number of

bins shows the best results, while with increasing number of

bins the skill score decreased because the total number of

bins grows with the fourth potential of the number of bins.

A large plateau of consistently stable and high skill score

values is found for numbers of bins above 25 and Gaussian

smoothing above 0.9.

In both cases, for small and very large sample sizes of

artificial truth data the skill score decreases with increasing

Gaussian smoothing for small numbers of bins. This clearly

shows that too strong Gaussian smoothing can destroy infor-

mation in an accurately estimated histogram but distributes
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Figure 9. Similar to Fig. 8 but the sample size of the artificial truth

was 1000 times larger with 100 k cases.

information in incomplete histograms such that it better rep-

resents the true probability density.

In general, one can not perform such studies to assess the

optimal number of bins and value of Gaussian smoothing

parameter, because only an insufficient number of artificial

truth data might be available. The presented results from nu-

merical experiments indicate that for four features and a suf-

ficiently large sample of artificial truth data, a bin size of

40 with a Gaussian smoothing of 1.5 is a good choice. This

result holds not only for the presented feature set but also

for many other sets which have been assessed during this re-

search.

7.2 Enhancements of existing algorithms

It was shown so far that Bayesian cloud masks can be used

to reproduce at least one existing cloud mask up to a certain

extent. It is unclear, however, what the limiting factors are in

global skill score with respect to this particular cloud mask.

A major contributor to this upper limit can be inconsistencies

in the artificial truth data set. Examples are shown in panel a

and b of Figs. 10 and 11, which actually show the surround-

ings of the scenes shown in Figs. 1 and 2. Both figures show

some classification errors of the Synergy cloud mask. The top

part of Fig. 10 shows a partly cloudy scene over a large ice-

or snow-covered area which is completely masked as cloudy

(white areas in panel b). In addition, the arrow-shaped land

area in the lower part of the figure (Brodeur Peninsula on

Baffin Island) is clearly not cloudy but is classified as cloudy.

Similarly in Fig. 11, the complete dust storm east of the Ko-

rean peninsula is marked as cloudy. Such classification er-

rors introduce inconsistencies which affect the produced his-

tograms and are in general difficult to reproduce with an in-

dependent system.

The appearance of such errors does not mean that the algo-

rithm should be abandoned and with it all the work that has

been invested into developing it. Panels c and d in Figs. 10

and 11 show how the Bayesian cloud mask technique can be

Figure 10. (a) shows an RGB view of a larger area of the scene

which is shown in Fig. 1. (b) shows results of the non-Bayesian

Synergy cloud mask with some classification errors over the top

snow and ice region and the arrow-shaped land area in the bottom

of the figure. (c) shows results of a Bayesian cloud mask which is

based on corrected artificial truth from this scene and the one shown

in Fig. 11. (c) shows the cloud probability results of this Bayesian

cloud mask.

used to enhance this existing algorithm when errors in the

artificial truth data are manually corrected by an human ex-

pert. Synergy cloud mask results from these two orbits were

manually corrected and used as artificial truth to produce a

classical Bayesian cloud mask based on four strongly inde-

pendent features. The two orbits were then reprocessed and

the resulting cloud masks and cloud probabilities are shown.

Some artifacts at land and ice boundaries are still present, but

the major classification errors were strongly reduced.

This result is merely shown as proof of concept for the en-

hancement of existing algorithms. The shown case was lim-

ited to only two scenes which were manually corrected and

used as artificial truth for the Bayesian cloud mask, which

is therefore only strictly applicable to these two scenes. In

a realistic approach, one would need some knowledge on

where the existing algorithm performs below the require-

ments. This poses no real limitation and will always be the

case; otherwise one would have no incentive to improve the

existing algorithm. These cases, e.g., limited to certain areas,

known weather conditions, or certain periods of time, could

be excluded from the artificial truth data set while other cor-

rectly classified results are still included. These introduced
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Figure 11. Similar to Fig. 10 but a larger area corresponding to

Fig. 2 is shown. (b) shows results of the non-Bayesian Synergy

cloud mask where the strong dust storm is completely classified as

cloud. (c) shows results of a Bayesian cloud mask which is based

on corrected artificial truth from this scene and the one shown in

Fig. 10. (c) shows the cloud probability results of this Bayesian

cloud mask.

data gaps, or better representativity gaps, can then be filled

with artificial truth data from manual classification. Such an

approach can be used to focus the attention of the human ex-

perts to areas where their expertise is most strongly needed

and to use their available labor in the most efficient way.

As discussed in Sect. 7.1, possibly many different fea-

ture sets can be used to recreate the algorithms which were

used to produce the artificial truth data. This property can

be used to produce much more robust cloud masking algo-

rithms. When the seeding algorithm cannot cope with miss-

ing data when, e.g., a certain needed channel is flagged as

unusable or saturated, one can simply switch to a different

Bayesian cloud mask which does not depend on that chan-

nel. The operational version of the cloud mask for the Cloud

CCI project contains several ranked Bayesian cloud masks,

and when the top mask fails to produce a result, a mask of

lower rank is used until the last mask is used or the algo-

rithm produces a result. This approach can greatly reduce the

number of unprocessed measurements for a cloud masking

scheme.

7.3 Cloud masks from manually classified data

Human experts can produce artificial truth data of high qual-

ity by careful manual classification of MERIS, AATSR, or

Synergy images. It is of great advantage that the spatial res-

olution of MERIS and AATSR images is high enough that

spatial and spectral patterns together can be used to clas-

sify data points. Cloud shadows, for instance, can be used to

clearly distinguish clouds from snow and ice surfaces. In that

respect, the algorithm itself is not based on spatial informa-

tion, but it was surely used to create the artificial truth data.

It is beyond the scope of this paper to produce a cloud mask

with global applicability, but it should be demonstrated how

straightforward such a procedure would be. The results pre-

sented here are then clearly applicable to OLCI and SLSTR

on-board the upcoming Sentinel-3 satellite.

The same two orbits which were discussed in Sects. 4

and 7.2 are used for the procedure. Both orbits contain scenes

which are in general difficult to classify accurately, such as

clouds over a snow- and ice-covered region, cloud-free snow-

and ice-covered surfaces, or a pronounced dust storm. The

manual classification setup was designed such that no spe-

cial computational knowledge is needed to perform the cloud

classification. For each test orbit, image files containing sev-

eral layers were created. The various image layers include

an RGB image, contrast stretched gray-scale images from

Synergy channels, and several feature functions which were

found to be of good performance in the Bayesian framework.

To classify actual pixels, the human expert has to color ar-

eas (e.g., blue color for cloud free and red color for cloudy)

in a blank image layer. By adjusting the transparency of the

single layers, each scene can be carefully inspected before

a decision is made. The actual shape of the colored areas is

of lower importance as well as the actual number of classi-

fied areas. However, the total variability of possible cases and

scenes should be included in the classification.

Results of this procedure are shown in Fig. 12. The left-

most two panels show an RGB view of the scene and with

blue and red color the areas which were classified by the hu-

man expert. The actual number of the classified area is small

compared to the total size of the scene. Then, this data set

was used as artificial truth and a classical Bayesian cloud

mask with four strongly independent features was set up to

process the two orbits. The resulting cloud masks are shown

in the middle two panels, while the actual cloud probability

is shown in the two rightmost panels.

The Bayesian cloud mask is clearly able to separate the

clouds from the snow and ice underground, does not misclas-

sify the land area (see Sect. 7.2), and is able to mostly sepa-

rate clouds from the dust storm. Most importantly, the human

expert does not need to be an expert on how to implement this

mask or how to design hierarchies of thresholds; rather, they

simply translate classification decisions into cloud mask re-

sults. These images can be stored for future enhancements of
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Figure 12. Manual classifications of the scenes shown in Figs. 1 and 2. Shown are the cloudy and non-cloudy classification together with

an RGB view for two scenes (two leftmost panels, blue is non-cloudy, red is cloudy), the resulting cloud mask (two middle panels), and the

cloud probability (rightmost two panels).

the artificial truth data set and as self-describing documenta-

tion of the algorithm.

This approach is most straightforward when the spatial

resolution of the instrument in question is high enough that

the human expert can use the spatial pattern information to

correctly classify cloudy from non-cloudy areas. For global

applicability, a higher number of orbits with representative

spatial and seasonal sampling should be included in the set

of considered artificial truth data. Especially complex cases

such as scenes with ice, snow, sun glint, mountains, or dust

storms should be included in the classification effort.

8 Conclusions

The application of the classical and naive Bayesian cloud

masking technique to MERIS, AATSR, and their Synergy

was discussed in detail. Bayesian cloud masks based on in-

dependent features are numerically highly efficient and are

very well suited for the fast processing of large numbers of

data. This technique will be applied to a reprocessing of the

9.5 year time series of MERIS and AATSR measurements

within ESA’s Cloud CCI project.

Details of the actual implementation of the Bayesian cloud

mask for Cloud CCI are not part of this paper. The algo-

rithm is implemented in Python and is based on the multi-

processing, SciPy, and NumPy libraries (van der Walt et al.,

2011). Effective parallelization is achieved trough separa-

tion of CPU bound and input / output (I/O) tasks. Process-

ing time per orbit is largely dominated by I/O and the ac-

tual time spend in the Bayesian scheme is 1 order of magni-

tude smaller than the total run time. Currently, the scheme

supports the classical and naive approach for independent

Bayesian cloud masks. The final set of features for process-

ing the complete Cloud CCI period of 9.5 years will be de-

termined in the near future before starting the generation of

level 3 data.

Sufficient numbers of artificial truth data and the frequen-

tist approach can be used to estimate multidimensional his-

tograms for the estimation of background joint probabili-

ties. Gaussian smoothing of appropriate width can be used

to drastically reduce the actual numbers of truth data needed

to compute histograms for the classical Bayesian approach.

This post-processing step greatly simplifies our ability to fur-

ther explore the classical Bayesian approach.

Due to restrictions of modern computer hardware, the

practical limit for the classical Bayesian approach is reached

with six to seven features. This does not actually restrict

its applicability, since trivial feature functions can be used

which combine any number of measurements into a single

feature.

It was found that classical Bayesian cloud masks with

four strongly independent features are the best choice for the

cloud masking of MERIS, AATSR, and their Synergy mea-

surements when the Synergy cloud mask is used as a bench-

mark. The classical approach gave significantly better results

then the naive approach. MERIS and the MERIS–AATSR

Synergy give very similar results in terms of cloud classifi-

cation, while AATSR alone shows significantly smaller skill

scores. The MERIS Oxygen-A absorption channel was found
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to be present in the best results when the set of selected fea-

ture functions and channels was numerically optimized.

The broad spectral range and the number of available

channels within the Synergy data set can be used to set up

Bayesian cloud masks with very similar classification skill

but based on different combinations of channels. This can

be used to design cloud masking schemes which are robust

against partially missing data.

It was shown how Bayesian cloud masks can be used to

reproduce the results of existing algorithms, improve exist-

ing algorithms and how to set up new classification schemes

based on manual classification by human experts. Reproduc-

ing existing algorithms offers the perspective of increased

numerical efficiency and processing robustness. The ap-

proach based on manual image classification is straightfor-

ward for the human expert. Classified scenes can be stored

and revisited if the produced cloud masks show misclassifi-

cations in certain areas or weather conditions. When errors

are not traceable to errors in the manual classification, addi-

tional scenes can be added to the set of artificial truth data to

increase the chance of correct classification.

The presented results for MERIS and AATSR can be used

to implement an accurate and highly efficient cloud masking

scheme for OLCI and SLSTR on-board the upcoming Sen-

tinel 3 satellite. Especially the additional oxygen absorption

channels from the OLCI instrument might be used within an

improved and numerically efficient cloud classification algo-

rithm.

Although this paper is focused on strongly independent

Bayesian cloud masks, there is no apparent reason which

prevents the application of the introduced techniques to the

case of dependent Bayesian cloud masks. It is straightfor-

ward to include external information such as clear sky radi-

ance estimators or NWP fields in the proposed optimization

strategy for the construction of features. The application of

Gaussian smoothing to derived histogram fields is indepen-

dent of external information and can be used to reduce the

numbers of needed truth data. To actually assess the added

value of the external data, one must assure that the quality of

the truth data is sufficient. In the case of MERIS and AATSR,

one likely needs a reasonable large set of manually classified

data.
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