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Abstract. The Campbell–Stokes sunshine recorder (CSSR)

has been one of the most commonly used instruments for

measuring sunshine duration (SD) through the burn length of

a given CSSR card. Many authors have used SD to obtain

information about cloudiness and solar radiation (by using

Ångström–Prescott type formulas), but the burn width has

not been used systematically. In principle, the burn width in-

creases for increasing direct beam irradiance. The aim of this

research is to show the relationship between burn width and

direct solar irradiance (DSI) and to prove whether this re-

lationship depends on the type of CSSR and burning card.

A method of analysis based on image processing of digital

scanned images of burned cards is used. With this method,

the temporal evolution of the burn width with 1 min reso-

lution can be obtained. From this, SD is easily calculated

and compared with the traditional (i.e., visual) determina-

tion. The method tends to slightly overestimate SD, but the

thresholds that are used in the image processing could be ad-

justed to obtain an improved estimation. Regarding the burn

width, experimental results show that there is a high corre-

lation between two different models of CSSRs, as well as a

strong relationship between burn widths and DSI at a high-

temporal resolution. Thus, for example, hourly DSI may be

estimated from the burn width with higher accuracy than

based on burn length (for one of the CSSR, relative root mean

squared error is 24 and 30 %, respectively; mean bias error

is −0.6 and −30.0 W m−2, respectively). The method offers

a practical way to exploit long-term sets of CSSR cards to

create long time series of DSI. Since DSI is affected by at-

mospheric aerosol content, CSSR records may also become

a proxy measurement for turbidity and atmospheric aerosol

loading.

1 Introduction

Sunshine duration (SD) is a useful indicator of the amount

of solar radiation arriving on the earth and a key variable for

various sectors, including tourism, public health, agriculture,

and energy. According to the World Meteorological Organi-

zation (WMO, 2008), the SD for a given period is defined as

the total time length of those sub-periods for which the di-

rect solar irradiance exceeds 120 W m−2. For climatological

purposes, the units used are “hours per day” as well as per-

centage quantities such as “relative daily sunshine duration”,

where SD is divided by the maximum possible SD (i.e., as if

sky was clear and a bright sun was present during the entire

day, from sunrise to sunset).

One of the most used instruments to measure SD is the

Campbell–Stokes sunshine recorder (CSSR). It was invented

in the late 19th century to provide a measurement of the du-

ration of bright sunlight by making a burn mark on a piece of

specially treated cardboard. The measurement of the length

of the burn for a given card gives daily SD. For details on the

history of the CSSR, we refer to Stanhill (2003) and Sanchez-

Lorenzo et al. (2013). In brief, the main parts of a current

CSSR are a sphere made of transparent glass and a rounded

metal frame placed behind the sphere. The glass sphere is

designed to focus the Sun’s rays onto a piece of recording

cardboard. The metal frame part has three overlapping sets
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of grooves to hold the recording cards for the winter, sum-

mer, and spring/autumn periods. The recording card has to

be replaced daily after sunset. Different designs of cards ex-

ist with hourly and half-hourly divisions marked across these

cards, enabling determination of the times of sunshine, and

an estimated resolution of 0.1 h. For further details on the

instrument and instructions for obtaining uniform results, as

well as other traditional instruments for measuring SD, see

Middleton (1969) and WMO (2008).

Over the last few years, various automated instruments

and other methods for obtaining SD have been developed,

which are summarized in WMO (2008). One of these is

the pyrheliometric method, which is based on direct irradi-

ance measurements (e.g., Hinssen, 2006; Hinssen and Knap,

2007; Vuerich et al., 2012). Another way of determining

SD is by means of automatic instruments specifically de-

signed to this end, which have become commercially avail-

able (Wood et al., 2003; Kerr and Tabony, 2004; Matuszko,

2014). These instruments detect direct solar radiation and

count the time interval during which the irradiance exceeds a

certain threshold. Progressively, many weather stations have

changed traditional manual instruments (such as CSSR and

Jordan photographic recorders) to these automatic systems.

Moreover, different methods exist nowadays to estimate SD

from geostationary satellite data, which potentially provide

improved spatial coverage and representativeness (Olseth

and Skartveit, 2001; Good, 2010; Kothe et al., 2013).

Despite the fact that new models of sunshine recorders

do not require daily attention by an observer and their

data reduction (i.e., the process of recording and storing

the SD data) is faster and more accurate, there is a con-

sensus with regard to preserving CSSR type instruments at

long-established (in some cases more than 120 years ago),

well-maintained, and freely exposed meteorological stations

(Stanhill, 2003; Wood and Harrison, 2011; Sanchez-Lorenzo

et al., 2013).

A change of the instrument used to measure SD can af-

fect the homogeneity of the data series. This may lead to sig-

nificant errors when evaluating trends and may hinder the

possibility of determining long-term secular trends (Powell,

1983; Steurer and Karl, 1991; Brázdil et al., 1994; Stanhill

and Cohen, 2008). Among the studies that analyze long se-

ries of SD, some works choose to restrict the period in order

to avoid instrumental changes, therefore not encompassing

the entire period of observation (Angell et al., 1984). Other

studies assess the homogeneity of the SD series, such as re-

search conducted in the United States (Cerveny and Balling,

1990; Stanhill and Cohen, 2005), United Kingdom (Kerr and

Tabony, 2004), Iberian Peninsula (Guijarro, 2007; Sanchez-

Lorenzo et al., 2007), Japan (Katsuyama, 1987; Stanhill and

Cohen, 2008), China (Xia, 2010), and Switzerland (Sanchez-

Lorenzo and Wild, 2012). The results of these studies point

towards the need for further research, including homogeniza-

tion of the long-term SD series and the necessity of simulta-

neous measurements by both traditional and automatic in-

strumentation (Aguilar et al., 2003).

Differences between types of SD measurements might be

attributed to their particular characteristics and limitations.

As the longer SD series are generally measured using CSSR,

the errors connected with this instrument are well-described

(Painter, 1981; Brázdil et al., 1994). The two major problems

with CSSR when comparing their measurements with other

methods or instruments lie in the variability of the level of

direct irradiance which produces a burn and the overburn-

ing of the card in conditions of intermittent high irradiance

(Stanhill, 2003). These difficulties can be added to the ob-

vious element of subjectivity in measuring the burn length

on the CSSR cards (Brázdil et al., 1994). The problem of

overburning is very difficult to evaluate as one small burst

of high direct irradiance causes a burn apparently lasting far

longer than the few seconds of its actual duration; standard

methods have therefore been proposed to take into account

this fact when evaluating the burn lengths (WMO, 2008). De-

spite these rules, during events of very broken cloudiness a

measurement of SD by means of CSSR can be significantly

overestimated (Painter, 1981; Kerr and Tabony, 2004).

Regarding the first problem, defining the direct irradiance

value that produces burning (“burning threshold”) is a well-

known issue. One proof is the variability of values that the

WMO has given: in 1971, WMO suggested that the thresh-

old can vary between 70 and 280 W m−2; in 1976, WMO rec-

ommended a threshold value of 200 W m−2; finally, in 1981,

a value of 120 W m−2 was recommended (WMO, 2008).

Gueymard (1993) tried to give some scientific justification

to this value. Nevertheless, Bider (1958), Jaenicke and Kas-

ten (1978), and Roldán et al. (2005) showed a large variety

of burning thresholds for different CSSR. Similarly, Helmes

and Jaenicke (1984) described the effects of using different

types of recording cards. In addition, the measurement of

threshold values indicated that there were notable losses of

record, which must be attributed to dew or other water de-

posits on the glass sphere. Painter (1981) obtained monthly

averaged threshold values ranging from 16 to 142 W m−2 de-

spite some thresholds up to 400 W m−2 that were obtained

in particular conditions. From the above discussion it is clear

that long time series of SD include errors of several kinds and

that their removal is a complicated issue. It is also important

to stress that the problem of thresholds is not exclusive to the

CSSR; it has been studied for other instruments such as the

Foster sunshine recorder (Baker and Haines, 1969; Benson

et al., 1984; Michalsky, 1992).

SD series also provide additional embedded information

on other magnitudes. For example, many authors relate SD

for a period of time with direct and global (the sum of the so-

lar direct and diffuse contributions) irradiance with the use of

the so-called Ångström–Prescott type formulas (e.g., Sears et

al., 1981; Benson et al., 1984; Martínez-Lozano et al., 1984;

Stanhill, 1998; Power, 2001; Suehrcke, 2000; Bakirci, 2009),

which were first proposed by Ångström (1924) and further
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modified by Prescott (1940). In addition, R. Jaenicke and

L. Helmes developed a series of pioneering studies present-

ing a method to determine atmospheric turbidity from SD

records and cloud cover data (Jaenicke and Kasten, 1978;

Helmes and Jaenicke, 1984, 1985, 1986) that has recently

aroused interest (for a review, see Sanchez-Romero et al.,

2014). SD data are also used in other fields such as agricul-

ture (Monteith, 1977; Stanhill and Cohen, 2001) or hydro-

logical modeling (Döll et al., 2003).

This paper describes an analysis method to derive direct

solar irradiance (DSI) from the CSSR burned cards by using

digital image processing. The idea we assume here was first

proposed by Wright (1935): the size of the burn at any point

is related to the strength of the DSI focused on the card at

that time. Galindo Estrada and Fournier D’Albe (1960) ap-

plied a similar approach: they compared daily values of the

mass loss of burned cards (which is related to the perfora-

tion of the card and thus to mean burn width) with pyrhe-

liometer readings. The hypothesis of using the burn width of

CSSRs to obtain DSI data has recently been revisited, and

several studies have shown the potential of the burn width of

CSSR cards as a proxy for DSI (e.g., Wood and Harrison,

2011; Horseman et al., 2013); however, here a more com-

plete research is presented, comparing burn width and DSI

for a relatively long period of time (2 years) and investigat-

ing results at high-temporal resolution. As long-term records

of SD cards are available at some historical meteorological

stations, e.g., Blue Hill Observatory in United States (Magee

et al., 2014; Mike Iacono, personal communication, 2014),

the reconstruction of DSI for these sites can reach more than

100 years from the present day. Section 2 provides a descrip-

tion of data and instruments used in this research. In Sect. 3

we describe the semiautomatic method proposed for deter-

mining the width of the burned traces. In Sect. 4 we show

the application of the new treatment of the CSSR cards, first

to determine the daily SD and second to estimate the DSI at

hourly resolution. Finally, conclusions of this study and sug-

gestions for further research are presented in Sect. 5.

2 Instruments and data

Exposed cards from CSSRs and meteorological and radia-

tive measurements used in the present study come from a

weather and radiometric station located on the roof of a

building of the University of Girona (41.962◦ N, 2.829◦ E,

115 m a.s.l.). Girona is a city located in the northeast of the

Iberian Peninsula, about 30 km from the Mediterranean Sea.

It has a Mediterranean climate, with moderate winters and

hot summers and maximum precipitation during autumn and

spring. The mean height of the horizon for the CSSRs is 4.2◦,

with a minimum of 0.2◦ at azimuth angle 86◦W and a maxi-

mum of 9.2◦ at azimuth angle 21◦ E (Fig. 1). Note that the

Sun rises over the horizon at angular heights greater than

5◦ (except during summer period), while in the evening the

Figure 1. Solar path for the 21st of each month (red lines) and hori-

zon height for each azimuth angle (blue line).

Sun sets at much lower angular heights during most months.

This means that the SD records and DSI measurements are

slightly affected in the morning, but we assume that this issue

does not affect the relationship between both variables.

Two different models of CSSR have been used (Fig. 2, top

panel) with three different cards for each CSSR (Fig. 2, bot-

tom panel), which are used for different periods along the

year. Hours and half-hours are printed on every card, as also

shown in Fig. 2 (bottom panel). One of the CSSR and cards

is from Thies Clima (hereafter referred to as CSSR1); the

other CSSR is from Negretti & Zambra, manufactured in the

1980s with cards of the model Mod.98 (hereafter referred

to as CSSR2), formerly used by the Spanish Meteorologi-

cal Agency (AEMET). DSI is measured by a pyrheliometer

(CH-1 model) from Kipp & Zonen mounted on a Sun tracker.

The DSI is measured every second, and values are stored

as 1 min averages. The station is also equipped with mete-

orological sensors to measure temperature, humidity, wind

speed, precipitation, etc., as well as a ceilometer, a multifilter

rotating shadowband radiometer, and other radiometric sen-

sors. In addition, a whole sky camera is continuously taking

pictures of the sky dome.

We have processed 239 cards covering the period from

January 2012 to January 2014 for each type of CSSR. We

have 94 winter cards (from 16 October to 28/29 February),

56 equinoctial cards (from 1 March to 15 April and from

1 September to 15 October), and 89 summer cards (from

16 April to 31 August). The number of cards is limited be-

cause we did not add cards every day, and we removed the

cards that were too damaged due to the rain or had no traces

of burns.

3 Semiautomatic method for reading the burned traces

We have developed a semiautomatic method to retrieve infor-

mation from the burned cards. We have considered “burned”

not only the perforated part but also the black-grey area

(scorched area) present on the edges of the burn. The method

is very effective in detecting the burned areas of the CSSR

cards and can be summarized in four steps. First, we scan
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Figure 2. (Top) Details of the two different CSSRs mounted in

Girona (NE Spain), and (bottom) an example of the 3 types of cards

used during summer, winter, and equinoctial seasons, respectively

(the longer the daylight hours, the longer the card): (1) summer card

of Thies Clima; (2) summer card of Mod.98; (3) equinoctial card of

Thies Clima (note that although the card edges are not symmetric,

the markings are); (4) equinoctial card of Mod.98; (5) winter card

of Thies Clima; and (6) Winter card of Mod.98.

each card on a suitable background. Second, we apply a dig-

ital process that increases the contrast of the burned area.

Third, the middle of the day, 12 true solar time (TST), on the

card is determined. Finally, the burn width is measured, with

the help of a computer program, along cross sections spaced

every minute. A schematic illustration of the different steps

can also be seen in Fig. 3. With this, we obtain daily evolu-

tion of the burn width on a resolution of 1 min; the length of

the burn (i.e., SD) can be easily determined. These four steps

are detailed in the following sections. Our method is similar

to the method of Horseman et al. (2013), but there are also

significant differences that will be highlighted below.

3.1 Image capture

Similar to Horseman et al. (2013), scanning the burned card

is the first step of our method and the more time-consuming

manual part. For this purpose we use a commercial scanner

(model HP Scanjet 5590). As sensors in image scanners al-

ter with time and use, a method to calibrate the scanner must

be applied regularly (Horseman et al., 2013). We use a stan-

dard image format, 24 bit RGB BMP (bitmap), and the same

dimension (2340× 1700 pixels) for all scans. Unlike Horse-

man et al. (2013), we use a green background (Fig. 3a) for

scanning the cards in order to obtain a contrast with the card,

which is blue (face) and white (hour markers and other in-

formation). The positioning of the card on the scanner does

not need to be precise, which simplifies and speeds up the

card scanning process. Before the scanning, an evaluation is

done to remove those cards that do not present any burn or

to control for those that present any anomalies (stains on the

card face, deformations due to the rain, etc.).

3.2 Image treatment

On used cards, the edges of the burned or scorched traces

are, for the most part, black-brown, occasionally with some

grey ash. As stated by Fan and Zhang (2013), there are no

abrupt changes in grey intensity between the weak scorch

and the card face, but their signatures on the RGB color co-

ordinates are noticeably different. This fact will be the basis

for identifying the burned parts of the card by using the Im-

age Processing Toolbox from MatLab on the RGB image.

First, we build an image called Im1 (Fig. 3b.1), in which the

pixels corresponding to the white markers in the card (hour

and half-hour markers) have the value “1” and the rest of the

pixels have “0”. To distinguish the white pixels, a threshold

of R > 200 is applied on the red component (which ranges

from 0 to 255). Then we build a second image, called Im2

(Fig. 3b.2), distinguishing the blue area of the card. The se-

lection is made applying the condition B −R < 20 on the

red and blue components. In Im2, the pixels in blue areas

are labeled as “0” and all the other pixels (green, black, grey,

and white) are labeled as “1”. Next, by subtracting Im1 from

Im2 and setting all pixels to 0 where the difference is neg-

ative, an image with pixels labeled “1” for the burn and the

background (black, grey, and green) and labeled “0” for the

unburned part of the card (blue and white) is obtained. There

is still some “noise” in this image (that is, pixels of one kind

surrounded by eight pixels of the other kind); this noise is

removed from the image to obtain the final processed image

(Fig. 3c; 1 pixels in white, 0 pixels in black). Note that this

process is entirely automatic. The choice of the thresholds

(R > 200 for Im1 and B −R < 20 for Im2) has been empir-

ically determined after performing various checks and will

certainly affect the identification of the burn but, as long as

they are used consistently throughout the two card archives,

their exact absolute values are not very important.

3.3 Image positioning

Unlike Horseman et al. (2013), the positioning of the card

within the image also requires some manual intervention.

This is convenient for checking the scan and the image treat-

ment and necessary to convert the image of the burned pix-

els into length (millimeters of width) and into time (minutes

along the day). Although this step slows down the process,
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Figure 3. Steps of the semiautomatic method for retrieving informa-

tion from the CSSR burned cards and for a certain day: (a) captured

image, (b) treated image, (c) positioned image, and (d) measured

burn width over time.

it allows using our method for any type of card. We need

to manually identify two or three points (depending on the

shape of the card) to find the middle of the day (12 TST).

More specifically, in curved cards (summer and winter cards)

we mark three points (two on the ends of the outer arc and

the third close to the center of the outer arc) to find the center

and the radius of the outer circumferences (the same pro-

cess could be applied for the inner arc). Then, as these cards

are symmetric about the midday marker, it is easy to find all

points in the image belonging to the outer or inner arc and

the point corresponding to noon (Fig. 3d). In the equinoctial

cards, finding the midday point is even easier than in the pre-

vious ones: knowing two points (at both ends of the outer or

inner contour) provides sufficient information to locate the

midday point.

3.4 Measurement of burning width

The Horseman et al. (2013) method rectifies the image of

each card (that is, images are transformed to a representa-

tion with a straight burned trace) before extracting the burn

width, thus simplifying geometrical calculations. Contrarily,

we consider here continuous radial sections that cover the

whole card and measure the burn width (i.e., the length from

the first to the last “burned” pixels) along each section. Be-

cause the size and shape of each card type is known and stan-

dardized, we know the radii of the outer and inner boundaries

and their distance; thus there is no need to cross the whole

image, rather just the area where the card is placed. For the

equinoctial cards, parallel sections are performed instead of

radial sections.

We continue by defining the relation between angular (or

linear) displacement and time: as we know the angle (or dis-

tance) between the two edges that we defined in the previous

step, and we also know the interval of time that corresponds

to these two points (this time is fixed in each type of card),

the relation between angle (or distance) and time is immedi-

ate. For example, for winter and summer cards, a 1 min dis-

placement corresponds to an angular displacement of 0.064◦;

in the case of equinoctial cards, 1 min displacement corre-

sponds to a linear displacement of 0.294 mm (0.317 mm) for

CSSR1 (CSSR2). If we consider a resolution of one pixel,

the resolution of the burn width is 0.126 mm in all cards (for

the scanner used).

As we know the point corresponding with 12 TST, con-

secutive angular displacements (corresponding to a 1 min

temporal resolution) towards the left are applied, the radial

sections between the inner radius to the outer radius are in-

spected, and the distance between the first and last “1” pixel

in the radial section is computed. Thus, we obtain the tem-

poral evolution of the burn width for the morning. We pro-

ceed in a similar way (but towards the right) to obtain the

afternoon evolution of the burn width. With this, the daily

evolution of the burn width in each card is finally obtained

(Fig. 3e). Note that all processes in this last step are fully

automatic.

4 Applications of the measurements of the burn width

The semiautomatic method proposed to process the burned

cards can help in the assessment of different types of errors

that can affect the SD measurements (Sect. 4.1). The method

can also be useful in order to provide a record of DSI, since

the burn width can be used as a proxy for pyrheliometer mea-

surements (Sect. 4.2).

4.1 Assessment of the measurement of SD

As summarized by Brázdil et al. (1994), the sources of errors

in the SD series related to the use of CSSRs are (i) the age-

ing of the glass ball, which with increasing operation time
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Table 1. The first two columns are the mean value of SD by manual

and semiautomatic methods, respectively. The third column is the

value of SD from pyrheliometric method by using a DSI threshold

(in parenthesis) that would approach the corresponding mean SD

using the semiautomatic method. Recall that the “true” mean SD

(by using 120 W m−2 as the DSI threshold) is 7.16 h.

Manual Semiautomatic DSI threshold

SD1 7.31 h 7.53 h 7.49 h (55 W m−2)

SD2 7.10 h 7.22 h 7.21 h (110 W m−2)

becomes less transparent, (ii) the replacement of the recorder

by a new device manufactured by different companies, and

(iii) the variability of the recording card (e.g., different qual-

ity, color, or material). In order to homogenize the worldwide

measurements of SD, a specific design of the CSSR was rec-

ommended as the reference in the 1960s (WMO, 1962). This,

however, did not eliminate all the problems, especially when

long-term series with records before and after the 1960s are

used to study SD trends. Thus, we will here quantify these

errors/differences in the observations by using our digital

method applied to two different CSSRs that use different

burning cards.

One of the major problems when comparing SD measure-

ments from different CSSR devices and card types is the vari-

ability of the level of DSI that produces a burn (e.g., Stan-

hill, 2003; Sanchez-Romero et al., 2014). Here we define the

SDpyr method as considering a threshold of 120 W m−2 in

DSI in order to calculate SD; that is, counting the minutes

when DSI is greater than 120 W m−2. By doing so, the mean

value found for our database is 7.16 h, which can be taken

as the reference (correct value) for other estimations. Table 1

shows the mean value obtained when using different methods

of estimating SD applied both to CSSR1 and CSSR2. To ob-

tain SD with the semiautomatic method described in Sect. 3

(SDaut), all minutes showing burn are counted. As shown

in Fig. 4a for CSSR1, retrieved SD using the SDaut and the

SDpyr methods agree very well (i.e., correlation coefficients

are higher than 0.98 for both instruments), although a minor

overestimation is apparent. The semiautomatic method gives

a mean SD deviation with respect to SDpyr of 0.37 h (4.9 %)

and 0.06 h (0.8 %) for CSSR1 and CSSR2, respectively. Al-

though both instruments give a slight overestimation of SD,

it is more pronounced for CSSR1, which shows a somewhat

higher sensitivity than CSSR2. The instrument sensitivities

can also be quantified by searching for the DSI threshold

values that would give the corresponding mean SDaut: 55

and 110 W m−2 for CSSR1 and CSRR2, respectively; these

threshold values are lower than the 120 Wm−2 suggested by

the WMO.

Therefore, there is some overestimation in the SD given

by SDaut, which was expected because some instructions

and recommendations (WMO, 2008) are not applied in the

Figure 4. Scatter plots of the (a) daily SD obtained for CSSR1 from

both SDaut (blue crosses) and SDman (red points) methods against

SDpyr, considering the threshold of 120 W m−2 in DSI; and (b) the

daily SD obtained by the two CSSR using the automatic method. In

each graphic we also represent the 1 : 1 line (black line).

method. For example, when SD is retrieved by reading the

cards manually (SDman), the time length is reduced at each

end by an amount equal to half the radius of curvature of the

end of the burn in the case of a clear burn with round ends; on

the other hand, an amount of 0.1h is subtracted from the total

length of the burned segment in the case of a clear burn that

is temporarily reduced in width by at least one-third. Con-

trarily, SDaut accounts strictly for all minutes where a burn

(or a scorch) is detected, without any further correction, so

it tends to (slightly) overestimate SD. Among the possible

improvements in the SDaut method, the introduction of the

advice proposed by WMO (WMO, 2008) in the algorithm

would reduce the differences between SDaut and SDpyr.

Table 1 also shows the mean SD that is obtained by the

SDman method (we processed all cards in the usual visual

way). As expected they are slightly lower than values found

with the SDaut method, but the general agreement between

the SDaut and SDman methods is very good for both instru-

ments: the mean deviation of SDaut with respect SDman is

0.22 h (2.9 %) for CSSR1 and only 0.12 h (1.7 %) for CSSR2.

Figure 4a shows (for CSSR1) the excellent agreement be-

tween daily SD obtained from both SDaut and SDman meth-

ods with SDpyr. It is important to notice that, for low values

of SD, SDman gives also higher values than SDpyr (as it does

SDaut); this must be related to the overburning of the card

in conditions of broken cloudiness (Stanhill, 2003; Sanchez-

Romero et al., 2014).

From the above results, we confirm that 120 W m−2 is a

suitable DSI threshold. Nevertheless, it is worth noting that

there is a high variability in the exact threshold that gives

the best agreement of SD for each particular card along

the year (not shown). This large seasonal variability was

pointed out by Painter (1981), Michalsky (1992), and Roldán

et al. (2005). The position of the card on the CSSR, the hu-

midity conditions (Bider, 1958; Painter, 1981), and the poor

horizon at the location of the instruments (especially in the

morning between October and April) are factors that could

explain such high variability.
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Figure 5. (a, b) Daily evolution of burn width (blue line for CSSR1 and red line for CSSR2) and DSI (green line) for 2 different days.

(c) Scatter plot of the burn width in CSSR2 (h2) versus that of CSSR1 (h1) on hourly resolution. We also represent the 1 : 1 line (black line)

and the linear regression fit (green line).

The differences between instruments are evident in Fig. 4b

and in Table 1. CSSR1 gives slightly greater values than

CSSR2 for both SDaut and SDman methods. It could be due

to the ageing of the glass sphere, as the latter is an instrument

from the 1980s and the former was brand new at the begin-

ning of our research, or be related to the different quality and

colors of the recording cards used for each device (Brázdil et

al., 1994). In this sense, note that the semiautomatic method

uses the same threshold values in the image segmentation

when defining the burned regions for both types of CSSR

and cards; an improved method could tune a particular color

threshold for each CSSR or card in order for SDaut to match

almost exactly SDpyr (or SDman if pyrheliometric measure-

ments are not available).

All mean differences found are similar to the uncertainty

usually assigned to the measurement of SD (i.e., 0.1 h), and

even in the case of the automatic method, the difference be-

tween CSSR is much lower than the maximum errors of

around 7 % suggested by Brázdil et al. (1994), referring to

different instruments or to the ageing of the glass sphere. In

fact, other radiometric variables have similar or even higher

uncertainties: global solar radiation has instrumental errors

of around 5 and 2 % for the monthly and annual means, re-

spectively (Gilgen et al., 1998; for more information about

instrumental errors of radiation data, see for example Vig-

nola et al., 2012). With the improvements proposed above,

not only the linear-relationship between SDman and SDaut

would be even better, but also the differences between two

different CSSR would be reduced to almost nil.

4.2 Burn width and its relationship with DSI

Figure 5a and b shows the daily evolution of the burn width

for the two CSSR and for 2 different days (one mostly sunny

and the other with scattered and broken cloudiness). In this

figure and hereafter, we refer to the burn width for CSSR1

and CSSR2 as h1 and h2, respectively. It is evident that the

evolution of the burn width shows an excellent agreement for

both recorders (and also with DSI), with a correlation coeffi-

cient higher than 0.90 when all the 1 min records are taken.

Nevertheless, for some days there might be a shift of up to a

few minutes between CSSR and DSI data. This is likely the

result of a slight misalignment of the cards from their correct

position in the CSSR device. Thus, if analysis with less than

a few minutes resolution is to be performed, we would need

to consider this misalignment; in the present study, hourly

averages of burn width and of DSI will be used onwards. As

an example of the strong relationship, Fig. 5c shows the scat-

ter plot, the linear fit, and the correlation coefficient of h2

against h1 on hourly basis. Note that the slope of the linear

regression is lower than 1, i.e., burn width on CSSR1 is no-

tably higher than that on CSSR2, as was expected given the

higher sensitivity of CSSR1 found above. The same analy-

ses have been performed separately for each set of seasonal

cards (not shown), revealing that the correlation coefficients

are almost 1 for all card types and the slopes of the linear re-

gressions are also very similar for all seasons. In other words,

the relationship between h1 and h2 is almost constant during

the year.

The mean difference between h1 and h2 is 1.03 mm at

1 min resolution, which is a relative difference of 32 % with

respect to h1 (much higher than the difference in daily SD).

This value agrees with the slope of the fit of hourly averages

(0.69), which points to a relative difference of 31 %. Wood

and Harrison (2011) already stated that the burns in one site

could be thinner than those in another site although DSI con-

ditions were the same (e.g., due to differences between in-

www.atmos-meas-tech.net/8/183/2015/ Atmos. Meas. Tech., 8, 183–194, 2015



190 A. Sanchez-Romero et al.: Using digital image processing to characterize the CSSR

Figure 6. (a) Scatter plots in hourly resolution of the DSI against

normalized width for CSSR1. The fitted logistic function and the

correlation coefficient are also shown (black line). (b) The same but

for CSSR2.

struments). Similarly, in our study we find that h1 and h2 are

different (although highly correlated with each other). Then,

when estimating the DSI from burn width data, it will be im-

portant to know which instrument has been used. This is sim-

ilar to what happens with Ångström–Prescott equations that

relate global solar radiation with SD, where parameters de-

pend on local calibration and time interval (Martínez-Lozano

et al., 1984). Note, however, that the latter parameters must

be adjusted for different climates (typical atmospheric tur-

bidity), while the former depend on the specific instrument.

In Fig. 5a and b we can also see the daily evolution of

DSI. The evolution of DSI, h1, and h2 shows a strong rela-

tionship, also displayed in Fig. 6, that suggests a fit between

burn width and DSI. Wright (1935) and Lally (2008) pro-

posed an exponential fit for the estimation of DSI from burn

width (DSIW). These studies did not consider many days and

that is probably why they did not find that increasing burn

width tends toward a certain maximum value of DSI as a

horizontal asymptote. The effect of DSI on burn width de-

creases, and other factors have a role in the measure of burn

width (e.g., the atmospheric or the card conditions). This is

seen in Fig. 6: from a certain value of burn width, the value

of DSI does not vary too much and tends toward a maxi-

mum value. Thus, in order to do a fit with consideration of

an exponential growing and a horizontal asymptote, a logistic

function is proposed:

DSIW =
L

1+ Ke−Gh′
. (1)

In this equation, h′ is the normalized burn width (i.e., the

value of burn width divided by its 95-percentile value, for

each CSSR). The function depends on some parameters hav-

ing physical meanings: L is fixed to the 95-percentile value

of DSI, K is related to the threshold DSI (i.e., the DSIW value

in the y intercept), and G is related to the growth ratio. We

consider K and G as the free-parameters for the fit. Figure 6

shows the scatter plot between burn width and DSI, the lo-

gistic fit (DSIW), and the correlation coefficient for the two

Figure 7. (a) Scatter plots in hourly resolution of the DSI against

SD for CSSR1. The exponential regression (black line) and the cor-

relation coefficient are also displayed. (b) The same but for CSSR2.

CSSRs, on an hourly basis. We can see that the growth ratio

(G value) is similar in both CSSRs and that the K value is

higher in CSSR1 than CSSR2; this is consistent with the fact

that CSSR1 has a lower DSI threshold than CSSR2 because

CSSR1 is more sensitive than CSSR2.

We compare our method based on measuring the burn

width with the estimations of DSI using hourly SD, i.e.,

counting the minutes with burn within each hour (DSISD).

Stanhill (1998) presented a similar approach and suggested

both linear and quadratic regressions, but for our data we

have found it more appropriate to fit exponential functions,

which are shown in Fig. 7 for both CSSRs. It is impor-

tant to note that values of DSI for SD equal to 1 h (that is,

for sun shining along the whole hour) range from 200 to

1000 W m−2, thus making it difficult to obtain a good esti-

mation of DSI for completely clear-sky hours. In addition,

the cases of SD equal to 1 h are the most probable (more

than 62 % of all the cases for the two CSSRs).

As seen in Fig. 5a and b, DSI affects burn width at very

short time scales (1 min); the advantages of using the burn

width instead of SD to estimate DSI even at hourly resolu-

tion are shown in Table 2 and in Fig. 8. In Table 2 we can

see different statistical indexes comparing the estimated DSI

with the measured DSI for each method along with the pa-

rameters describing the relationship between both variables.

It is clear that the method based on burn width gives bet-

ter results, especially if we look at the columns of the mean

bias error, intercept value, and relative root mean squared er-

ror. These results show that the burn width gives more infor-

mation about the variation of DSI high-resolution temporal

data (1 h), whereas counting the time length of the burn for

short periods only gives information as to whether the Sun

is visible (i.e., whether DSI is higher than a certain value).

It is remarkable that the correlation between DSI and burn

width at hourly resolution is as good as other relationships

found by other authors at lower temporal resolution (daily,

monthly, seasonally, or annually) using only SD and linear

and quadratic correlations (Benson et al., 1984; Louche et

al., 1991; Nfaoui and Buret, 1993; Maduekwe and Chendo,

1995; Stanhill, 1998; Power, 2001).
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Table 2. Statistical parameters of estimations of hourly DSI when compared with DSI measurements by different methods and instruments

(from mean burn width, h1, h2 and hourly sunshine duration, SD1, SD2; Stanhill, 1998). MBE is the mean bias error; RMSE is the root

mean square error; RRMSE is the relative root mean square error; R2 is the coefficient of determination; A is the slope of the regression line;

and B is the y intercept of the regression line.

METHOD MBE RMSE RRMSE R2 A B

(W m−2) (W m−2) (%) (W m−2)

DSIW CSSR1 −0.6 129 23.9 0.81 1.00 −3.20

DSIW CSRR2 6.6 147 27.1 0.75 1.01 −1.23

DSISD CSSR1 −30.0 165 30.5 0.70 0.98 −16.7

DSISD CSSR2 −29.0 159 29.0 0.71 0.98 −20.7

Stanhill (linear) – – 48.4 0.74 – –

Stanhill (quadratic) – – 44.7 0.78 – –

Figure 8. Box plots of the differences between estimated and true

DSI for (a) estimation based on burn width and (b) estimation based

on SD. It is applied for CSSR1.

In Fig. 8, box plots for the residuals between the esti-

mated and measured DSI, in bins of 100 W m−2 width, are

represented for the two methods: (a) DSIW and (b) DSISD

(only results for CSSR1 are presented, as they are simi-

lar for CSSR2). Again, the burn width method gives better

mean values and less dispersion than the SD method. Note

that the burn width method can give values of DSI up to

925 W m−2 (the parameter L in Eq. 1) covering nearly the

whole DSI range, while the SD method cannot give values

above 673 W m−2 (for CSSR1, according to the exponential

fit found for our data). This is a consequence of a previous

statement: for hourly SD close to 1 h it is not possible to dis-

tinguish values of DSI ranging from 200 to 1000 W m−2.

5 Conclusions and future research

In this study we use a semiautomatic method to obtain the

temporal evolution of the burn width in Campbell–Stokes

sunshine recorder (CSSR) cards. This method is also capa-

ble of producing very good results as far as sunshine duration

(SD) measurements are concerned. The mean overestimation

in daily SD derived from this method, when compared to the

value from a pyrheliometer by using the standard DSI thresh-

old of 120 W m−2, is less than 5 %, which is very close to

the accepted uncertainty of the traditional manual screening

of cards. Differences could be reduced if advice proposed

by WMO is taken regarding the rounded ends of the burned

areas and the cases of intermittent burning. In addition, the

thresholds applied in the image processing could be defined

differently for each card type. These improvements, however,

will be the subject of future research.

The two CSSRs studied here give almost the same SD de-

spite different geometries and cardboard types, but CSSR1

is slightly more sensitive than the CSSR2, therefore produc-

ing systematically longer SD: mean bias of 0.1–0.3 h de-

pending on the method (manual or automatic). This differ-

ence is very small and of the same order as the instrumen-

tal uncertainty. Again, the differing sensitivity of CSSR1 and

CSSR2 is shown by the threshold values that should be ap-

plied to DSI for an exact match of CSSR SD values: 55 and

110 W m−2, respectively. The different sensitivity of the in-

struments is also reflected in the burn width measurements:

the mean relative difference is about 30 % (CSSR1 burns

wider than CSSR2 burns). Thus, it is important to know

which instrument has been used if we want to estimate other

magnitudes such as DSI.

Hourly DSI can be satisfactorily estimated from the burn

width measurements. The estimation based on burn width

by using a logistic fit is better than that based on counting

the time length of the burn (i.e., hourly SD). For example,

in the case of CSSR1 we have obtained a mean bias error

of −0.6 W m−2, a coefficient of determination of 0.81, and

a relative root mean squared error of 24 % when comparing

hourly DSI estimations from burn width with actual measure-

ments (the corresponding values for CSSR2 are 6.6 W m−2,

0.75, and 27 %). These indexes are notably better than those

obtained when SD is used (−30 W m−2, 0.70, and 30 % ap-

proximately for the two instruments). This result shows that

the burn width gives more information about the variation

of DSI on high-resolution temporal data, while the other

method is useful only for estimations for longer periods (e.g.,

daily). The parameters of the equation that relates burn width

with DSI depend on the sensitivity of the instrument and the

maximum DSI of the region.
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Future research may consider taking into account the per-

forated part of the burn (Roberts, 2012) as well as the burn

width (perforated plus scorch parts); a priori, this would help

in the estimation of DSI and help to explain the reason for

the tail in the scatter plot of burn width versus DSI. Another

point to consider is the use of different threshold values when

defining the burned regions depending on the type of CSSR

and cards; the thresholding process is the most important fac-

tor if we are interested in relating the burn width with DSI,

so it is crucial to define it correctly for each CSSR and card.

Moreover, further analysis needs to consider the shift be-

tween the burn and DSI measurements if analyses with less

than a few minutes resolution are to be performed.

Once this method is implemented, other magnitudes can

be introduced. Since DSI is affected by atmospheric turbid-

ity, especially at times near sunrise and sunset because of

the longer optical path, having an estimation of DSI from

the burn width may be used to estimate turbidity, i.e., CSSR

records can become a proxy measurement for turbidity and

atmospheric aerosol loading. This possibility has been pro-

posed before by Jaenicke and Kasten (1978), Helmes and

Jaenicke (1984, 1985, 1986), and more recently by Horse-

man et al. (2008, 2013) as reviewed by Sanchez-Romero et

al. (2014).

Thus, the measurements of burn width in CSSR cards ob-

tained from the semiautomatic method described in this study

can provide a way to create time series of solar irradiance in

less than daily resolution, a fact that was proposed before

by some authors (Wright, 1935; Wood and Harrison, 2011;

Horseman et al., 2013). We have shown that it is possible

to use readily available technology to mine the archives of a

simple, reliable, and widely used meteorological instrument

to provide a proxy record of DSI. In our case, the process

of scanning and manual intervention can last only 1.5–2 min

for each card; i.e., it is possible to process a year of exposed

cards in about 12 h of work. In fact, the reconstruction can

reach as much as around 120 years from the present day be-

cause long-term records of SD cards are available at some

historical meteorological stations such as, for example, the

Blue Hill Observatory in Milton, Massachusetts (US), where

CSSR cards have been stored since the late 1880s (Magee et

al., 2014; Mike Iacono, personal communication, 2014).
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