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Abstract. Volcanic ash is commonly observed by infrared

detectors on board Earth-orbiting satellites. In the presence

of ice and/or liquid-water clouds, the detected volcanic ash

signature may be altered. In this paper the sensitivity of de-

tection and retrieval of volcanic ash to the presence of ice and

liquid-water clouds was quantified by simulating synthetic

equivalents to satellite infrared images with a 3-D radiative

transfer model. The sensitivity study was made for the two

recent eruptions of Eyjafjallajökull (2010) and Grímsvötn

(2011) using realistic water and ice clouds and volcanic ash

clouds. The water and ice clouds were taken from Euro-

pean Centre for Medium-Range Weather Forecast (ECMWF)

analysis data and the volcanic ash cloud fields from simu-

lations by the Lagrangian particle dispersion model FLEX-

PART. The radiative transfer simulations were made both

with and without ice and liquid-water clouds for the geom-

etry and channels of the Spinning Enhanced Visible and In-

frared Imager (SEVIRI). The synthetic SEVIRI images were

used as input to standard reverse absorption ash detection and

retrieval methods. Ice and liquid-water clouds were on av-

erage found to reduce the number of detected ash-affected

pixels by 6–12 %. However, the effect was highly variable

and for individual scenes up to 40 % of pixels with mass

loading > 0.2 gm−2 could not be detected due to the pres-

ence of water and ice clouds. For coincident pixels, i.e. pixels

where ash was both present in the FLEXPART (hereafter re-

ferred to as “Flexpart”) simulation and detected by the algo-

rithm, the presence of clouds overall increased the retrieved

mean mass loading for the Eyjafjallajökull (2010) eruption

by about 13 %, while for the Grímsvötn (2011) eruption ash-

mass loadings the effect was a 4 % decrease of the retrieved

ash-mass loading. However, larger differences were seen be-

tween scenes (standard deviations of±30 and±20 % for Ey-

jafjallajökull and Grímsvötn, respectively) and even larger

ones within scenes. The impact of ice and liquid-water clouds

on the detection and retrieval of volcanic ash, implies that to

fully appreciate the location and amount of ash, hyperspec-

tral and spectral band measurements by satellite instruments

should be combined with ash dispersion modelling.

1 Introduction

Volcanic ash clouds can have a number of impacts on the en-

vironment and society, including alteration of the radiative

balance of the atmosphere and the Earth’s climate (Robock,

2000; Timmreck, 2012), and disruption to aviation (Casade-

vall, 1994). Infrared (IR) detectors in space are key tools

for tracking and monitoring ash clouds. Commonly used ash

detection methods are variations of the reverse absorption

method (e.g. Prata, 1989; Francis et al., 2012; Prata and

Prata, 2012). This method explores the brightness tempera-

ture difference (1T = T10.8−T12.0) between the 10.8 (T10.8)

and 12.0 (T12.0) µm regions of the thermal infrared spectrum.

For volcanic ash1T < 0, while1T ≥ 0 for liquid water and

ice clouds. This method was, for example, successfully used

on data from the Spinning Enhanced Visible and Infrared

Imager (SEVIRI) on board the Meteosat Second Generation

(MSG, Meteosat-9) geostationary satellite, for the Eyjafjal-

lajökull (2010) eruption (Stohl et al., 2011; Prata and Prata,
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2012). After detection of ash-affected pixels, various meth-

ods (Wen and Rose, 1994; Francis et al., 2012; Prata and

Prata, 2012) may be used to retrieve mass loading and ef-

fective radius of the ash cloud. Several factors influence the

infrared detection and retrieval of volcanic ash, including ash

cloud density and altitude (temperature), ash particle com-

position, shape and size distribution, the atmospheric tem-

perature profile, humidity, and the surface temperature (Wen

and Rose, 1994; Corradini et al., 2008; Kylling et al., 2014).

Also, coarse-sized ash particles are not detectable by this

method as discussed by Stevenson et al. (2015). In addition,

the presence of ice and/or liquid-water clouds may change

1T and affect the detection of ash and the retrieval of ash

cloud properties. It is noted that improved versions of the re-

verse absorption method (split-window) method somewhat

may mitigate the effect of underlying ice and/or liquid-water

clouds see for example (Pavolonis et al. (2006); Pavolonis

(2010); Francis et al. (2012); Pavolonis et al. (2013) for var-

ious approaches.) The above-mentioned methods all require

one or more threshold values to be specified. A probabilistic

method not using thresholds was presented by Mackie and

Watson (2014). Hyperspectral sounders like the Infrared At-

mospheric Sounding Interferometer (IASI) may better dis-

tinguish between ash and ice and water clouds due to the in-

creased number of available channels. Several methods have

been presented to detect ash using hyperspectral sensors; see

for example Clarisse et al. (2010); Gangale et al. (2010);

Clarisse et al. (2013).

In retrievals, assumptions are typically made about the

composition, shape and size distribution of the ash particles.

Ash cloud temperature and surface temperature may either

be retrieved or taken from weather forecast models. The pres-

ence of ice and/or liquid-water clouds is usually not consid-

ered.

The aim of this paper is to investigate the sensitivity of

detection and retrieval of volcanic ash on the presence of

ice and liquid-water clouds. To do so, cases with volcanic

ash in the presence of ice and/or liquid-water clouds must be

compared with very similar cases but without ice and liquid-

water clouds. Both observational and model-based investi-

gations are possible; however, observational approaches are

difficult due to the inherent problem in distinguishing cloudy

and cloudless cases under realistic atmospheric conditions.

Furthermore, ice and liquid-water cloud information together

with volcanic ash cloud information is needed for such an in-

vestigation, but this information is difficult to obtain. Hence,

here a model-based approach is adopted. We choose to per-

form the sensitivity study for the two recent eruptions of the

Eyjafjallajökull (2010) and Grímsvötn (2011), which have

attracted a lot of interest. A 3-D radiative transfer model

was used to simulate images equivalent to the SEVIRI 10.8

and 12.0 µm channels for the full duration of the two erup-

tions. Simulations were made both with and without real-

istic water and ice clouds taken from European Centre for

Medium-Range Weather Forecast (ECMWF) analyses. The

volcanic ash cloud fields were taken from simulations by the

Lagrangian particle dispersion model Flexpart. These syn-

thetic images were used as input to ash detection and retrieval

methods.

Simulated satellite scenes have been used by several au-

thors to evaluate algorithms for detection of liquid water

and ice cloud properties. For example Bugliaro et al. (2011)

simulated a SEVIRI scene over Germany, with cloud input

from the COSMO-EU weather model, to compare and vali-

date cloud retrievals. Jonkheid et al. (2012) developed a fast

SEVIRI simulator to quantify cloud water path retrieval un-

certainties using the Regional Atmospheric Climate Model.

Wind et al. (2013) calculated synthetic Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) radiances using

cloud information from the Goddard Earth Observing Sys-

tem Version 5 (GEOS-5) Earth system model. They used the

simulated radiances as input to standard MODIS retrievals

and compared these with retrievals using real MODIS data

and were able to locate and quantify problems with GEOS-5

cloud optical properties and cloud vertical distributions.

During development of satellite detection and retrieval al-

gorithms, the outcomes of these algorithms must be com-

pared and tested against “true value” data sets. These data

sets may come from either observations or simulations of

the property of interest. By simulated properties we under-

stand properties retrieved from simulated satellite images,

whereas observed properties are retrieved from measured

images. Model properties are input to the radiative trans-

fer model that generated the simulated satellite images. Sev-

eral routes are possible in the comparison of different atmo-

spheric property data sets. Jonkheid et al. (2012) have sum-

marized these routes in their Fig. 1 – Route I: compare ob-

served properties with model properties; Route II: compare

observed and simulated radiances; Route III: compare model

properties with simulated properties; and Route IV: compare

observed properties with simulated properties. Here we use

Route III to quantitatively estimate the effects of liquid water

and ice clouds on detection and retrieval of volcanic ash. This

is done by analysing synthetic SEVIRI-like images simu-

lated with and without ice and liquid-water clouds. For single

scenes qualitative comparisons are made following route IV.

That is, simulated scenes are visually compared with mea-

sured scenes. However, measured images are not quantita-

tively used in the analysis as the simulated scenes are based

on information from the measured images.

The remainder of the paper is organized as follows. In

Sect. 2 the simulation of the IR images is described together

with the input data. The ash detection and retrieval methods

are described in Sect. 3. The results are presented in Sect. 4

and impacts of ice and liquid-water clouds on detection and

retrieval of volcanic ash clouds are discussed in Sect. 5.
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Figure 1. The total ash column as simulated by the Flexpart model (Upper left). Only pixels with column density above 0.2 g m−2 are shown.

The total liquid water (upper centre) and ice water (upper right) cloud columns from ECMWF analysis data. The simulated cloudless (lower

left) and cloudy (lower centre) 10.8 µm brightness temperatures. (lower right) The measured brightness temperature of the 10.8 µm SEVIRI

channel. All data shown are for 12:00 UTC, 15 April, 2010.

2 Simulation of infrared SEVIRI images

Simulation of infrared SEVIRI images in the presence of ash

have been described by Millington et al. (2012) and Kylling

et al. (2013). The latter approach is adopted here. Briefly

stated the radiative transfer is calculated by the 3-D Monte

Carlo code for the physically correct tracing of photons in

cloudy atmospheres (MYSTIC) (Mayer et al., 2010; Emde

et al., 2010; Buras and Mayer, 2011), which gets ash cloud

fields input from the Lagrangian particle dispersion model

Flexpart (Stohl et al., 1998, 2005) and ice and liquid-water

clouds from European Centre for Medium-Range Weather

Forecast (ECMWF) analysis. A 3-D radiative transfer calcu-

lation was adopted as it has been shown by Kylling et al.

(2013) that brightness temperatures may be both over- and

underestimated by 1-D radiative transfer models due to cloud

shadow effects. While Kylling et al. (2013) used the LOW-

TRAN gas absorption parameterization (Pierluissi and Peng,

1985; Ricchiazzi et al., 1998) we here adopt the recent, more

accurate and faster REPTRAN parameterization of Gasteiger

et al. (2014).

Stohl et al. (2011) used Flexpart to calculate the 3-D dis-

persion of ash from the Eyjafallajökull (2010) eruption using

optimized emissions based on inverse modelling with SE-

VIRI and IASI measurements. The ash concentrations were

calculated with a horizontal resolution of 0.25◦×0.25◦ and a

vertical resolution of 250 m for 25 particle size classes with

radii in the range 0.125–125 µm (see Stohl et al. (2011) for

details). Examples of the total ash column from the Flexpart

model simulations are shown in the top left panels of Figs. 1–

2. These two cases are shown as they demonstrate two dif-

ferent effects of ice and liquid-water clouds in volcanic ash

observations, as will be discussed in more detail below. Only

pixels with column density above 0.2 g m−2 are shown. This

limit was chosen as it corresponds to the low contamination

limit of 0.2 mgm−3 for an ash cloud of 1 km vertical thick-

ness defined in connection with the Eyjafjallajökull eruption

(International Air Carrier Association , IACA).

For the Grímsvötn (2011) eruption the 3-D ash clouds esti-

mated by Moxnes et al. (2014) using Flexpart combined with

optimized emissions based on inversion modelling with IASI

measurements, were used as input to the radiative transfer

simulations. The ash particles were assumed to be composed

of andesite, and the refractive index was taken from Pollack

et al. (1973).

The ice and liquid-water clouds were taken from ECMWF

analysis data with horizontal resolution of 0.25◦×0.25◦ and

91 vertical model levels. The 2-D ECMWF ice and liquid wa-

ter fields for the level closest to the Flexpart output layer was

interpolated to the Flexpart output resolution as described

by Kylling et al. (2013). ECMWF data are available every

6 h. Consequently, radiative transfer simulations were per-

formed for 0, 6, 12 and 18 h each day of the eruptions (14

April–24 May, 2010, for Eyjafjallajökull; 21–27 April, 2011,

for Grímsvötn). Examples of total columns of the liquid wa-

ter and ice water cloud profiles are shown in the top centre

and right plots, respectively, of Figs. 1–2. Surface and atmo-

spheric temperatures were also taken from ECMWF analysis.
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Figure 2. Same as Fig. 1, but for 18:00 UTC, 8 May, 2010.

Spectrally resolved surface emissivity maps were adopted

from Seemann et al. (2008).

The ash, ice and liquid-water cloud fields given in lati-

tude/longitude coordinates were horizontally re-gridded to a

200× 320 rectangular grid required by MYSTIC with a res-

olution of about 28× 16 km. The vertical resolution was the

same as for the Flexpart simulation (i.e., 250 m). For each

grid cell the ash, ice and liquid-water cloud optical properties

were calculated as described by Kylling et al. (2013). The ra-

diative transfer calculations were made by the MYSTIC 3-D

model, which was run within the libRadtran model frame-

work (Mayer and Kylling, 2005). While MYSTIC can handle

3-D clouds, the libRadtran/MYSTIC framework does not al-

low 3-D fields of trace gases, including water vapour. Hence

a constant water vapour profile from the subarctic summer at-

mosphere from Anderson et al. (1986) was adopted over the

whole domain. The effect of this simplification is discussed

in section 5. Brightness temperatures were calculated for the

10.8 and 12.0 µm channels and the viewing geometry of SE-

VIRI. Cloudy images with ash, ice and liquid-water clouds

were calculated in addition to cloudless images containing

only ash (see lower left and centre plots of Figs. 1-2 for ex-

amples). A total of 184 (Eyjafjallajökull: 159; Grímsvötn:

25) images were calculated for each channel (2) for cloudy

and cloudless conditions. This totals to 736 simulated im-

ages, each taking about 2 h of CPU hours using 10 nodes on

a Linux cluster.

As MYSTIC uses the Monte Carlo method, the bright-

ness temperature has a statistical uncertainty which was cal-

culated as the standard deviation of the brightness temper-

ature for each pixel. The root mean square of the standard

deviation was 0.15 K for both channels which is better than

the requirements for the noise equivalent delta temperature

(NE1T ) of 0.25 and 0.37 K for the 10.8 and 12.0 µm SE-

VIRI channels and of similar magnitude as the actual NE1T

performance of 0.11 and 0.15 K, respectively (Schmetz et al.,

2002).

3 Ash detection and retrieval

The reverse absorption technique was used to identify pixels

affected by ash (Prata, 1989). A conservative cut-off tem-

perature difference, 1Tcut =−0.5 K, was used to avoid too

many false positives. This means that pixels with 1T <

1Tcut were identified as containing ash. It is noted that water

vapour absorption decrease the magnitude of1T and may be

corrected for (Yu et al., 2002). No water vapour correction

was applied in the analysis presented here. At large view-

ing angles, the SEVIRI pixel size increases significantly; see

Fig. 1 of Prata and Prata (2012); thus, data were required to

have a viewing angle smaller than 70◦.

A spatial noise reduction technique was applied to remove

isolated patches of pixels detected as ash. The spatial noise

reduction was only applied to the measured SEVIRI data

and not to the simulated data due to larger pixel sizes. For

each detection of an ash-affected pixel, the surrounding pix-

els north, south, and to the east and west, were also required

to be identified as ash, otherwise the pixel was rejected. This

is a slightly stronger requirement than the spatial noise re-

duction applied by Francis et al. (2012). They required that

at least six out of nine pixels in a 3× 3 surrounding block

were ash-flagged for the centre pixel to be retained.
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If the optical depth (τ10.8) and effective radius (re) of the

ash cloud are known, the ash-mass loading ml for each pixel

can be calculated (Wen and Rose, 1994):

ml =
4

3
ρ

τre

Qext(re)
. (1)

In Eq. 1 it is assumed that the ash composition and hence the

extinction efficiency (Qext) and density (ρ) are known and

that the size distribution does not vary within the pixel.

The ash cloud optical depth and effective radius were re-

trieved using a modification of the Bayesian optimal estima-

tion technique described by Francis et al. (2012). They used

the SEVIRI 10.8, 12.0 and 13.4 µm brightness temperatures

to retrieve the ash layer pressure, the ash column mass load-

ing and the ash size distribution effective radius. Prata and

Prata (2012) derived the ash cloud optical depth and the ash

size distribution effective radius from the SEVIRI 10.8 and

12.0 µm brightness temperatures using a look-up-table-based

approach. In this study we use the SEVIRI 10.8 and 12.0 µm

brightness temperatures to retrieve the independent ash cloud

optical depth, τ10.8 and the ash size distribution effective ra-

dius by minimizing the cost function (Francis et al., 2012):

J (x)= (x− xb)TB−1(x− xb)

+ (yob
− y(x))TR−1(yob

− y(x)), (2)

where the atmospheric state vector x = (τ10.8, re)„ the prior

atmospheric state vector xb = (0.5,3.5), and B is the error

covariance matrix of the a priori background. The error co-

variance matrix B was assumed to be diagonal, and the vari-

ances of the state variables were set to σ 2
τ10.8
= (10)2 and

σ 2
re
= (10µm)2 (The latter value is from Francis et al., 2012).

The values in B are large compared to the desired retrieval

accuracy; thus the background state only provides a weak

constraint. The observations are the brightness temperatures

at 10.8 and 12.0 µm, yob
= (T10.8,T12.0), while y(x) are the

brightness temperatures for the state vector x as calculated by

the libRadtran radiative transfer model (Mayer and Kylling,

2005) using the DISORT radiative transfer equation solver

(Stamnes et al., 1988). For the forward calculations of y(x),

the ash cloud was assumed to be vertically homogeneous and

1 km thick in the vertical. The measurement error covariance

matrix is denoted by R. The values for R were taken from

Table 1 of Francis et al. (2012) who assumed R to be diago-

nal with R11 = (1.11 K)2 and R22 = (1.11 K)2. For the for-

ward calculations the ash particles were assumed to be spher-

ical, have a log-normal size distribution, and composed of

andesite. The geometric standard deviation of the size distri-

bution was 1.5. The andesite refractive index was taken from

Pollack et al. (1973).

The T10.8 and T12.0 brightness temperatures also depend on

the surface temperature and the ash cloud temperature. These

may either be retrieved by including information from more

channels (Francis et al., 2012); obtained from weather fore-

casting models; or estimated from for example the 12.0 µm

image (Prata and Prata, 2012). Here the latter approach is

chosen. For a given pixel the surface (ash cloud) tempera-

ture is taken to be the maximum (minimum) temperature of

a block of 10× 10 (29× 29) surrounding pixels centred on

the simulated (measured) pixel.

4 Results

The effect of ice and liquid-water clouds on ash detection

and retrieval is qualitatively illustrated below for two selected

SEVIRI scenes during the Eyjafjallajökull (2010) eruption.

Further quantitative evaluations based on cloudy and cloud-

less simulations for the whole eruption periods of the Eyjaf-

jallajökull (2010) and Grímsvötn (2011) eruptions are given

in Sects. 4.1 and 4.2, respectively.

The effect of ice and liquid-water clouds on the simulated

10.8 µm brightness temperatures can be seen in Figs. 1–2.

In the cloudless simulations (lower left plots) the ash cloud

is clearly visible by comparison to the locations of Flexpart

modelled ash cloud. Other variability in the cloudless T10.8

simulations is caused by variations in surface emissivity and

surface temperature, for example over Greenland, the Alps

and the mountain ranges of Norway. Including ice and liquid-

water clouds in the image simulations changes T10.8 dramat-

ically (lower centre).

For qualitative comparison and demonstration of the real-

ism of the simulations, we also show the 10.8 µm brightness

temperatures as measured by SEVIRI for the same time as

the simulated images, in the lower right plots of Figs. 1–2.

There are clear similarities between the cloudy simulated and

measured images. Common features coupled to the addition

of ice and liquid-water clouds are clearly visible; for exam-

ple the cloud systems over Iceland and Sweden in Fig. 1,

and over the east coast of Greenland and northern Spain in

Fig. 2. The ash cloud is seen in both simulated and measured

images, at least in areas with sufficient high ash-mass load-

ings and homogeneous cloud fields. However, numerous dif-

ferences between the simulated cloudy and measured images

discussed by Kylling et al. (2013), are evident, for example

the too warm brightness temperatures in the North Sea in

the simulations. These differences are attributed to inaccu-

rate representation of the cloud and temperature fields used

as input to the radiative transfer simulations, the coarser spa-

tial resolution in the simulations and time-mismatch between

the ECMWF fields and the SEVIRI observations.

The ash detection technique as described previously in

Sect. 3, was applied to the cloudless and cloudy simulated

images. This provides an evaluation of the impact of ice and

water clouds on the ash detection. Figs. 3–4 show examples

of the ash detection on the simulated data from Figs. 1–2. The

pixels with Flexpart ash columns above the low contamina-

tion limit (0.2 g m−2) are compared with the pixels flagged

as ash by the reverse absorption technique in the cloudless

simulation (left) and cloudy simulation (centre) of Figs. 3–4.
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Figure 3. Ash detection: Pixels flagged as ash by the reverse absorption technique in the cloudless simulation (left) and cloudy simulation

(centre) compared to pixels with Flexpart ash columns above the low contamination limit (0.2 g m−2). The colour coding of the pixels are as

follows – coincident (green): pixel identified as ash and contains ash in the Flexpart model simulation; false positive (red): pixel identified

as ash, but does not contain ash; false negative (blue): pixel not flagged as ash, but contains ash. (right) The 1T = T10.8− T12.0 brightness

temperature difference calculated from simulated SEVIRI images with ash and clouds. Only data points with1T <−0.5 K are shown. Data

is for 12:00 UTC, 15 April, 2010.

Figure 4. Same as Fig. 3, but for 18:00 UTC, 8 May, 2010.

The Flexpart columns with ash columns above the low

contamination limit are given as the union of blue and green

pixels. The green pixels are termed coincident pixels and

are those with Flexpart column above the low contamina-

tion limit and identified as containing ash using the ash de-

tection method described previously in Sect. 3. The blue-

coloured pixels are false negatives, i.e. prescribed as ash from

the Flexpart simulations, but detection by the simulated im-

age/detection framework failed. The red pixels are identi-

fied as ash, but they contain no ash according to the Flex-

part simulations; consequently, they are false positives. The

1T = T10.8− T12.0 <−0.5 K brightness temperature differ-

ences calculated from simulated SEVIRI images including

ash and clouds for the same situations are shown in the

right plots of Figs. 3–4. For the Eyjafjallajökull (2010) and

Grímsvötn (2011) eruptions, time series of data similar to

those in Figs. 3–4 were generated. These data and Figs. 3–4

are further discussed in Sects. 4.1 and 4.2 below.

The next step is to apply the ash retrieval technique as

described previously in Sect. 3, to the cloudless and cloudy

simulated images. This allows an evaluation of the impact of

clouds on the ash retrieval. Examples of retrieved ash-mass

loading for the simulated scenes in Figs. 1 and 2 are shown

in Figs. 5 and 6, respectively.

The retrieved ash-mass loadings based on the cloudless

simulated images (left plots Figs. 5 and 6) show the same

maxima and minima structures as the Flexpart ash distribu-

tions (Figs. 1 and 2), but are smaller in magnitude; see dis-

cussion in Sect. 5 for an explanation. Including clouds causes

both over- and under-estimates of the ash-mass loading com-

pared to the cloudless situation (middle and right plots Figs. 5

and 6; see end of Sect. 4.1 for discussion).

For the two cases in Figs. 1–2. the above detection and

retrieval methods were also applied to the SEVIRI measure-

ments. The pixels identified as ash and the ash-mass load-

ing retrieved from the measured SEVIRI data for these two

cases are shown in Fig. 7. By comparing the SEVIRI sim-

ulated cloudy 1T in Figs. 3–4 with the SEVIRI measured

1T in Fig. 7 and by comparing SEVIRI simulated cloud-

less and cloudy retrievals in Figs. 5 and 6 with the SEVIRI

measured retrievals in Fig. 7, it is tempting to conclude that

the cloudy simulations better represent the measurements, at

least for the 15 April when the ice and liquid-water clouds

have a larger effect (cf. left and middle plot of Fig. 5). How-

ever, a direct comparison between the SEVIRI simulated ash

retrieval and the SEVIRI measured ash retrieval is non-trivial

as the simulated data have a coarser spatial resolution com-

pared to the measured SEVIRI data. A thorough and com-

plete comparison of the SEVIRI simulated ash retrieval and

Atmos. Meas. Tech., 8, 1935–1949, 2015 www.atmos-meas-tech.net/8/1935/2015/
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Figure 5. Ash retrieval: the ash-mass loading retrieved from cloudless simulated SEVIRI images (left), and including clouds (middle). The

difference (cloudy–cloudless) between the ash-mass loading retrieved for pixels identified as ash in both the cloudy and cloudless simulations

(right). All data representative for 12:00 UTC, 15 April, 2010.

Figure 6. Same as Fig. 5, but data for 18:00 UTC, 8 May, 2010.

the SEVIRI measured ash retrieval for the Eyjafjallajökull

(2010) and Grímsvötn (2011) eruptions is beyond the scope

of this work.

To further evaluate the effect of clouds on volcanic ash

retrieval, data corresponding to Figs. 5 and 6 were calculated

for all simulated scenes of the Eyjafjallajökull (2010) and

Grímsvötn (2011) eruptions.

4.1 Eyjafjallajökull (2010)

All simulated satellite scenes for the total duration of the Ey-

jafjallajökull (2010) eruption period (14 April–20 May) were

analysed to quantify the effect of clouds. Time series for co-

incidence and false positive ash detections (as in Figs. 3–4),

as well as retrieved total ash-mass loadings (as in Figs. 5 and

6), were generated from all simulated scenes. Figure 8 shows

the time series for the ash detection analysis.

The percentage of pixels in a scene with Flexpart ash

above the low contamination limit is shown by the blue line.

The percentage of coincidences, i.e. Flexpart ash pixels iden-

tified as ash by the reverse absorption technique, is shown by

the green lines. The solid (dashed) green line pertains to sim-

ulations with (without) ice and liquid-water clouds. The red

lines are the percentages of false positives, that is pixels that

are identified as ash by the reverse absorption technique, but

do not contain ash according to the Flexpart data (Flexpart

column smaller than 0.2 g m−2). The number of false nega-

tives, that is pixels that do contain ash but are not detected,

are shown in black. The solid (dashed) black and green lines

adds up to the blue line. A number of interesting features are

present in Fig. 8.

– Far fewer pixels are identified as ash than are present in

the Flexpart simulated ash fields (used as input to the

detection method).

– Clouds on average reduce the number of pixels identi-

fied as ash (compare solid and dashed green lines), but

the magnitude of the impact of clouds varies.

– The number of false positives exhibits a diurnal vari-

ation. The diurnal variation is larger for the cloudless

simulations.

For the whole eruption period only 14.6 % (22.1 %) of

the pixels with ash above the low contamination limit

(0.2 g m−2) are identified as ash for the cloudy (cloudless)

simulation. If a limit of 1.0 g m−2 is used, the number of

pixels identified as ash increases to 54.7 % (74.7 %) for the

cloudy (cloudless) simulation. For coincident pixels there ap-

pears to be no strong dependence in the ash detection on the

satellite viewing angle as demonstrated by the green lines in

Fig. 9.

For satellite viewing angles smaller than 51◦, the detection

efficiency is high (compare blue and green lines in Fig. 9).

The number of false positives increases strongly with in-

creasing viewing angle (red lines in Fig. 9), indicating that

www.atmos-meas-tech.net/8/1935/2015/ Atmos. Meas. Tech., 8, 1935–1949, 2015
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Figure 6. Same as Fig. 5, but data for 1800 UTC, 8 May, 2010.
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Figure 7. (Left plots) The ∆T = T10.8−T12.0 brightness temperature difference calculated from SEVIRI measurements. (Right plots) The
ash mass loading retrieved from measured SEVIRI data. Data are for 1200 UTC, 15 April, 2010 (Upper plots) and 1800 UTC, 8 May, 2010
(Bottom plots). Only data points with ∆T <−0.5 K are shown.

Figure 7. (Left plots) The 1T = T10.8− T12.0 brightness temperature difference calculated from SEVIRI measurements. (right plots) The

ash-mass loading retrieved from measured SEVIRI data. Data are for 12:00 UTC, 15 April, 2010 (upper plots) and 18:00 UTC, 8 May, 2010

(bottom plots). Only data points with 1T <−0.5 K are shown.
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Figure 8. Ash detection time series for the Eyjafjallajökull (2010)

eruption: the percentage of simulated pixels identified as ash (green

lines). Dashed lines are for cloudless and solid lines for cloudy sim-

ulations. (red lines) The percentage of false positive ash pixels with

respect to the total number of pixels in the image. (black lines) The

percentage of false negative ash pixels with respect to the total num-

ber of pixels in the image. (blue line) The percentage of pixels with

Flexpart ash-mass loading above 0.2 g m−2.

at large viewing angles ash detection is less reliable. Inter-

estingly, the number of false positives is larger for the cloud-

less than for the cloudy simulations. The cloudless false posi-

tives are mostly found over land (Scandinavia) and are larger

at night than at day. This is caused by strong atmospheric

temperature inversions near the surface when the surface

cools more strongly than the overlying atmosphere during

nighttime; see Platt and Prata (1993) and Prata and Grant

(Eq. 5 2001). In April the ECMWF surface temperatures

over Scandinavia exhibited comparatively large diurnal vari-

ations. These variations declined in magnitude at the end of

April and into May, as is reflected by the smaller number of

false positives towards the end of the period shown. The pres-
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Figure 9. Ash detection as a function of viewing angle for the Eyjaf-

jallajökull (2010) eruption: the frequency of pixels identified as ash

in the Flexpart simulations (blue line), false positive pixels from ash

detection (red line) and coincidences (green line). Solid (dashed)

lines represent cloudy (cloudless) simulations.

ence of clouds obscures the surface and consequently reduces

the diurnal variation for those pixels affected by clouds. The

pixels not affected by clouds will still have diurnal variation.

Hence, the number of false positives is generally reduced

with the presence of clouds (compare solid and dashed red

lines in Fig. 8). As stated in Sect. 2 the water vapour profile

used in the radiative transfer calculations, is constant over the

domain. This may result in an overly humid atmosphere at
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Figure 10. The relative frequency of false negatives (undetected
ash pixels normalized to the number of Flexpart pixels) as a function
of Flexpart ash mass loading and ash cloud altitude for the Eyjafjal-
lajökull 2010 eruption. Results from cloudy simulation. Cloudless
results are similar.

(black lines in Fig. 8) indicates that for the situation during
the Eyjafjallajökull 2010 eruption, the small temperature dif-525

ference between the Earth’s surface and the ash cloud due to
the low altitude of the ash cloud and small mass loading of
the dispersed ash, were the main reasons for the rather large
number of false negatives.

The presence of clouds tends to obscure ash clouds com-530

pared to cloudless skies (compare solid and dashed green
lines in Fig. 8). The effect of clouds varies as the overlap
with the ash cloud changes. The mean of the number of
pixels detected (excluding false positives) as ash relative to
Flexpart ash pixels for each scene in the cloudy simulations535

was fairly constant between the first (14-21 April) and sec-
ond (5-21 May) eruption periods, being 13.0 % ±9% and
15.6 % ±14.8% respectively. For the cloudless simulations
these numbers are 25.2 % ±17.0% and 21.4 % ±16.0%, in-
dicating that the presence of clouds reduced ash detection540

more in the first period (by 12.2%) than in the second period
(5.8%). The large standard deviations indicate large variabil-
ity between scenes. Upon inspection of individual scenes it is
found that clouds may obscure up to 40% of the Flexpart pix-
els identified as ash. No or small cloud effects are present on545

days 15 April and 6-8 May. It is noted that for some cases (8
May) slightly more pixels are identified as ash for the cloudy
than for the cloudless simulation although the differences are
small.

Further, the presence of clouds on the total ash mass re-550

trieval for the whole Eyjafjallajökull 2010 eruption period
was assessed. The total ash cloud mass for each scene was
calculated from ash mass loading retrievals for cloudless
and cloudy simulated SEVIRI scenes of which examples are
shown in Figs. 5 and 6. Time series of the ash mass load-555

ing for pixels detected as ash and with Flexpart ash columns

above the low contamination limit are shown in the upper
plot of Fig. 11. Notice that only coincident pixels (i.e., Flex-
part ash present and also detected) were used for these cal-
culations. The presence of clouds mainly gives a larger ash560

mass loading estimate compared to a cloudless sky except
for 7-8 May, as seen in the lower plot of Fig. 11. For the
whole eruption the cloudless (cloudy) simulation underesti-
mates the Flexpart mass by about 38% (25%).

4.2 Grímsvötn 2011565

The impact of clouds on ash detection and retrieval is further
analysed for the whole duration of the Grímsvötn eruption,
21-27 May 2011. The modelled and retrieved ash mass load-
ings for the whole period are shown as mosaics in Fig. 12.
The upper left plot illustrates the transport of ash as mod-570

elled by Flexpart at six hourly (0000,0600,1200,1800 h) in-
tervals. The periodic pattern is due to the six hourly sam-
pling. The upper right (lower right) plot shows the ash mass
loading retrieved from the simulated cloudy (cloudless) SE-
VIRI images. The lower left panel shows ash mass loading575

retrieved from SEVIRI measurements for the same 6 hourly
intervals. During the start of the eruption the ash (and SO2)
was transported northwards. A strong signal is seen in the
measured SEVIRI image (lower left). Note that the mass
loadings presented here for the northwards plume are about580

a factor 2 larger than those derived from IASI measurements
and presented by Moxnes et al. (2014). SEVIRI also tracks
the south-easterly movement of the ash cloud for the later
phases of the eruption. This compares well with the IASI
data presented by Moxnes et al. (2014) in their Fig. 2. To585

fully understand the reasons for the difference between SE-
VIRI and IASI in the northwards plume and the agreement
in the south-east plume requires detailed comparison of the
SEVIRI and IASI retrieval, which is beyond the scope of this
study.590

It is noted that the emissions used for the Flexpart esti-
mated ash fields for the Grímsvötn 2011 eruption were based
on IASI data (Moxnes et al., 2014), while for the Eyjafjalla-
jökull 2010 eruption they were based on both IASI and SE-
VIRI data (Stohl et al., 2011). This implies that the qualita-595

tive comparisons of the simulated and measured SEVIRI im-
ages to the Flexpart model simulation are fully independent
only for the Grímsvötn case.

The cloudy simulation (upper right panel in Fig. 12) shows
no ash south and south-east of Iceland as is seen in the600

Flexpart and measured SEVIRI images. Some of this ash
is present in the cloudless simulations (lower right plot,
Fig. 12), but far less than in the Flexpart simulation. Fig. 13
further illustrates the number of pixels that are identified as
ash by the detection algorithm. The number of Flexpart pix-605

els with ash mass loading above the contamination limit is
shown by the blue line, while the percentage of ash pixels
identified as ash for the cloudy and cloudless simulations are
shown as solid and dashed green lines, respectively. For the

Figure 10. The relative frequency of false negatives (undetected ash

pixels normalized to the number of Flexpart pixels) as a function of

Flexpart ash-mass loading and ash cloud altitude for the Eyjafjalla-

jökull (2010) eruption. Results from cloudy simulation. Cloudless

results are similar.

certain locations and as a result, further increases the number

of false positives. See also discussion in Sect. 5.

To further understand why far fewer pixels are identified as

ash than are present in the Flexpart simulated ash fields, the

frequency of false negatives relative to the number of Flex-

part pixels is calculated and shown in Fig. 10 as a function

of ash cloud mass loading and altitude. It is seen that most

ash pixels that miss detection either have a mass loading less

than 0.5 g m−2 or are below the altitude of 3 km. There are

also ash pixels missing detection around 10 km. These are

associated with increased emissions of ash on 15 May (Stohl

et al., 2011) and are missed due to the presence of clouds.

There are also pixels missed around the altitude of 5 km for

mass loadings larger than 5 g m−2. The ash clouds below the

altitude of 3 km may be missed due to either overlying or

overlapping clouds or too small temperature difference with

the underlying surface, where the radiatively effective sur-

face under the ash cloud is the Earth’s surface or an opaque

liquid-water cloud. The mostly small difference between the

number of false negatives between cloudless and cloud sim-

ulations (black lines in Fig. 8) indicates that for the situation

during the Eyjafjallajökull (2010) eruption, the small tem-

perature difference between the Earth’s surface and the ash

cloud due to the low altitude of the ash cloud and small mass

loading of the dispersed ash, were the main reasons for the

rather large number of false negatives.

The presence of clouds tends to obscure ash clouds com-

pared to cloudless skies (compare solid and dashed green

lines in Fig. 8). The effect of clouds varies as the overlap

with the ash cloud changes. The mean of the number of

pixels detected (excluding false positives) as ash relative to

Flexpart ash pixels for each scene in the cloudy simulations

was fairly constant between the first (14–21 April) and sec-
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Figure 11. Ash retrieval time series for the Eyjafjallajökull 2010 eruption: Total ash cloud mass from the Flexpart model (blue line) and as
retrieved from simulated cloudless (green dashed line) and cloudy (green solid line) SEVIRI scenes (top). The difference between the cloudy
and cloudless simulation from the above plot (bottom). Note that only coincident pixels are included in both plots.

eruption 3.6% (10%) of the ash pixels above the low con-610

tamination limit are detected for the cloudy (cloudless) sim-
ulation. If a limit of 1.0 g/m2 is used the number of pixels
identified as ash increases to 4.8% (15.1%) for the cloudy
(cloudless) simulation.

The dependence of Flexpart ash pixels and detected and615

false positive pixels on viewing angle is presented in Fig. 14.
As for the Eyjafjallajökull 2010 eruption, Fig. 9, the number
of false positives increases strongly with viewing angle and
is larger for the cloudless than the cloudy simulation. The
frequency of false negatives as a function of ash mass load-620

ing and ash cloud altitude is given in Fig. 15. The pattern is
similiar to the Eyjafjallajökull 2010 eruption. Most ash pix-
els that miss detection are either at altitudes lower than 4 km
or have a mass loading less than 0.5 g/m2. At the start of the
eruption the plume travelled northwards at altitudes of about625

10-12 km. The pixels missed at this altitude have a too small
mass loading to be detected.

The total ash cloud mass for coincident pixels is shown
in Fig. 16. Only data up to 24 May is shown as for the
cloudy simulation ash is detected only for the first few days630

of the eruption, see Figs. 12 and 13. For the coincident pix-
els in Fig. 16 the cloudless (cloudy) mass overestimates the
Flexpart mass by 28% (24%). This is opposite to the under-
estimation we found in section 4.1 for the Eyjafjallajökull
2010 eruption. However, for shorter time periods, 14-16 May,635

overestimates were also present for the Eyjafjallajökull 2010
eruption Fig. 11.

5 Discussion

The detection of ash affected pixels depends on the dif-
ference between the surface temperature and the ash cloud640

temperature. The effective ash emissions were generally at
higher (about 6 km) altitudes for Eyjafjallajökull compared
to Grímsvötn (2-3 km, except for 22 May), see Fig. 2 in Stohl
et al. (2011) and Fig. 3 in Moxnes et al. (2014), respectively.
The overall lower altitude of the Grímsvötn ash explains why645

relatively less of it was detected in the simulations presented
in Section 4, due to smaller temperature differences between

Figure 11. Ash retrieval time series for the Eyjafjallajökull (2010)

eruption: total ash cloud mass from the Flexpart model (blue line)

and as retrieved from simulated cloudless (green dashed line) and

cloudy (green solid line) SEVIRI scenes (top). The difference be-

tween the cloudy and cloudless simulation from the above plot (bot-

tom). Note that only coincident pixels are included in both plots.

ond (5–21 May) eruption periods, being 13.0 %± 9 % and

15.6 %± 14.8 %, respectively. For the cloudless simulations

these numbers are 25.2 %± 17.0 % and 21.4 %± 16.0 %, in-

dicating that the presence of clouds reduced ash detection

more in the first period (by 12.2 %) than in the second period

(5.8 %). The large standard deviations indicate large variabil-

ity between scenes. Upon inspection of individual scenes it

is found that clouds may obscure up to 40 % of the Flex-

part pixels identified as ash. No or small cloud effects are

present on days 15 April and 6–8 May. It is noted that for

some cases (8 May) slightly more pixels are identified as ash

for the cloudy than for the cloudless simulation, although the

differences are small.

Further, the presence of clouds on the total ash-mass re-

trieval for the whole Eyjafjallajökull (2010) eruption pe-

riod was assessed. The total ash cloud mass for each scene

was calculated from ash-mass loading retrievals for cloud-

less and cloudy simulated SEVIRI scenes of which examples

are shown in Figs. 5 and 6. Time series of the ash-mass load-

ing for pixels detected as ash and with Flexpart ash columns

above the low contamination limit are shown in the upper

plot of Fig. 11. Notice that only coincident pixels (i.e., Flex-

part ash present and also detected) were used for these cal-

culations. The presence of clouds mainly gives a larger ash-

mass loading estimate compared to a cloudless sky except

for 7–8 May, as seen in the lower plot of Fig. 11. For the

whole eruption the cloudless (cloudy) simulation underesti-

mates the Flexpart mass by about 38 % (25 %).

4.2 Grímsvötn (2011)

The impact of clouds on ash detection and retrieval is further

analysed for the whole duration of the Grímsvötn eruption,

www.atmos-meas-tech.net/8/1935/2015/ Atmos. Meas. Tech., 8, 1935–1949, 2015
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21–27 May 2011. The modelled and retrieved ash-mass load-

ings for the whole period are shown as mosaics in Fig. 12.

The upper left plot illustrates the transport of ash as mod-

elled by Flexpart at 6-hourly (00:00, 06:00, 12:00, 18:00 h)

intervals. The periodic pattern is due to the 6-hourly sam-

pling. The upper right (lower right) plot shows the ash-mass

loading retrieved from the simulated cloudy (cloudless) SE-

VIRI images. The lower left panel shows ash-mass loading

retrieved from SEVIRI measurements for the same 6 hourly

intervals. During the start of the eruption, the ash (and SO2)

was transported northwards. A strong signal is seen in the

measured SEVIRI image (lower left). Note that the mass

loadings presented here for the northwards plume are about

a factor 2 larger than those derived from IASI measurements

and presented by Moxnes et al. (2014). SEVIRI also tracks

the south-easterly movement of the ash cloud for the later

phases of the eruption. This compares well with the IASI

data presented by Moxnes et al. (2014) in their Fig. 2. To

fully understand the reasons for the difference between SE-

VIRI and IASI in the northwards plume and the agreement

in the south-east plume requires detailed comparison of the

SEVIRI and IASI retrieval, which is beyond the scope of this

study.

It is noted that the emissions used for the Flexpart es-

timated ash fields for the Grímsvötn (2011) eruption were

based on IASI data (Moxnes et al., 2014), while for the Ey-

jafjallajökull (2010) eruption they were based on both IASI

and SEVIRI data (Stohl et al., 2011). This implies that the

qualitative comparisons of the simulated and measured SE-

VIRI images to the Flexpart model simulation are fully inde-

pendent only for the Grímsvötn case.

The cloudy simulation (upper right panel in Fig. 12) shows

no ash south and south-east of Iceland as is seen in the

Flexpart and measured SEVIRI images. Some of this ash

is present in the cloudless simulations (lower right plot,

Fig. 12), but far less than in the Flexpart simulation. Fig-

ure 13 further illustrates the number of pixels that are identi-

fied as ash by the detection algorithm. The number of Flex-

part pixels with ash-mass loading above the contamination

limit is shown by the blue line, while the percentage of ash

pixels identified as ash for the cloudy and cloudless simula-

tions are shown as solid and dashed green lines, respectively.

For the eruption 3.6 % (10 %) of the ash pixels above the

low contamination limit are detected for the cloudy (cloud-

less) simulation. If a limit of 1.0 g m−2 is used, the number

of pixels identified as ash increases to 4.8 % (15.1 %) for the

cloudy (cloudless) simulation.

The dependence of Flexpart ash pixels and detected and

false positive pixels on viewing angle is presented in Fig. 14.

As for the Eyjafjallajökull (2010) eruption, Fig. 9, the num-

ber of false positives increases strongly with viewing angle

and is larger for the cloudless than the cloudy simulation. The

frequency of false negatives as a function of ash-mass load-

ing and ash cloud altitude is given in Fig. 15. The pattern is

similar to the Eyjafjallajökull (2010) eruption. Most ash pix-

els that miss detection are either at altitudes lower than 4 km

or have a mass loading less than 0.5 g m−2. At the start of the

eruption the plume travelled northwards at altitudes of about

10–12 km. The pixels missed at this altitude have an overly

small mass loading to be detected.

The total ash cloud mass for coincident pixels is shown

in Fig. 16. Only data up to 24 May is shown as for the

cloudy simulation ash is detected only for the first few days

of the eruption; see Figs. 12 and 13. For the coincident pix-

els in Fig. 16 the cloudless (cloudy) mass overestimates the

Flexpart mass by 28 % (24 %). This is opposite to the un-

derestimation we found in Sect. 4.1 for the Eyjafjallajökull

(2010) eruption. However, for shorter time periods, 14–16

May, overestimates were also present for the Eyjafjallajökull

(2010) eruption Fig. 11.

5 Discussion

The detection of ash-affected pixels depends on the differ-

ence between the surface temperature and the ash cloud

temperature. The effective ash emissions were generally at

higher (about 6 km) altitudes for Eyjafjallajökull compared

to Grímsvötn (2–3 km, except for 22 May); see Fig. 2 in Stohl

et al. (2011) and Fig. 3 in Moxnes et al. (2014), respectively.

The overall lower altitude of the Grímsvötn ash explains why

relatively less of it was detected in the simulations presented

in Sect. 4, due to smaller temperature differences between the

ash cloud and the surface and more mixing with low altitude

clouds.

For the Grímsvötn (2011) eruption ash was detected over

the North Sea by both SEVIRI (see lower left plot in Fig. 12)

and IASI (see Fig. 2 in Moxnes et al., 2014). The lack of de-

tected ash in the cloudy simulated scenes (upper right plot in

Fig. 12), and the presence in the cloudless simulated scenes,

lower right plot Fig. 12, indicate that the liquid water and ice

clouds used in the cloudy simulations did not well represent

the real cloud situations. This may be due to the clouds be-

ing misplaced in altitude and/or horizontal position such as

to obscure the Flexpart ash cloud.

The detected ash pixels relative to Flexpart ash pixels with

ash loading > 0.2 g m−2 was on average 14.6 % (22.1 %)

for the cloudy (cloudless) simulation for the Eyjafjalla-

jökull (2010) eruption, and 3.6 % (10.0 %) for the Grímsvötn

(2011) eruption. These numbers increased to 54.7 % (74.7 %)

for the Eyjafjallajökull (2010) eruption and to 4.8 % (15.1 %)

for the Grímsvötn (2011) eruption if only Flexpart ash pix-

els with ash loading> 1.0 g m−2 were considered. These de-

tection efficiencies are low, but are based on the automated

use of the reverse absorption technique alone. In an opera-

tional setting during a volcanic crisis, information from sev-

eral satellites and instruments would be used together with

aircraft and surface observations if available. Furthermore,

once an eruption is identified, ash transport models would be

Atmos. Meas. Tech., 8, 1935–1949, 2015 www.atmos-meas-tech.net/8/1935/2015/
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Figure 12. Modelled and retrieved ash-mass loadings for the Grímsvötn (2011) eruption between 21–27 May 2011 shown as mosaics of

6 hourly fields. (upper left) Flexpart model simulation, (lower left) retrieved from measured SEVIRI images, (upper right) retrieved from

simulated cloudy SEVIRI images, (lower right) retrieved from simulated cloudless SEVIRI images. Note that composites of all individual

6-hourly scenes were constructed by taking for each pixel the maximum value of all scenes. For the measured SEVIRI data (lower left),

all pixels with longitude >10◦W for the 22nd and 23rd , and for all subsequent days pixels with latitude >63◦ N or longitude >25◦W or

longitude >30◦ E have been removed, as they are considered false positives.
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Figure 13. Similar to Fig. 8, but for the Grímsvötn (2011) eruption.

used and judged together with other information to best de-

rive the extent of the ash cloud and forecast its development.

As described in Sect. 2 a constant water vapour profile was

used over the whole domain. For a single scene on 11 May

2010 for the Eyjafjallajökull (2010) eruption Kylling et al.

(2013) estimated that the fixed water vapour profile on aver-

age increased the 10.8–12.0 µm brightness temperature dif-

ference by 0.07 K for pixels identified as ash. As a result, for

the single scene they investigated, about 8 % of ash-affected

pixels missed detection by assuming a fixed water vapour

profile. Consequently, the overall detection efficiency would
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Figure 14. Similar to Fig. 9, but for the Grímsvötn (2011) eruption.

The frequency of pixels identified as ash in the Flexpart simulations

(blue line), false positive pixels from ash detection (red line) and

coincidences (green line) are shown. Solid (dashed) lines represent

cloudy (cloudless) simulations.

increase by including a spatially varying water vapour pro-

file. Since we are mostly interested in the difference in ash

detection and retrieval between the cloudless and cloudy sim-

ulated scenes, which are similarly affected by the assumption

of a constant water vapour profile, it is not anticipated that a

constant water vapour profile will affect the results presented.

The ash-mass loadings retrieved from the simulated im-

ages for coincident pixels are generally lower than the Flex-

part ash-mass loadings for the Eyjafjallajökull (2010) erup-
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Figure 15. Similar to Fig. 10, but for the Grímsvötn (2011) erup-

tion.
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Figure 16. Similar to Fig. 11, but for the Grímsvötn (2011) erup-

tion.

tion, see Fig. 11. For the whole eruption period the Flexpart

mean ash mass for coincident pixels was 1.75× 108 kg. This

compares to 1.09× 108 kg and 1.32× 108 kg for the cloud-

less and cloudy simulations. The opposite occurred for the

Grímsvötn (2011) eruption; the Flexpart mean ash for coin-

cident pixels was 7.19× 106 kg while it was higher for the

cloudless (9.17× 106 kg) and cloudy (8.90× 106 kg) simu-

lations. However, the standard deviations are large being 30

and 20 % for Eyjafjallajökull and Grímsvötn, respectively.

Hence, the cloud impact varies considerably between scenes.

Furthermore, inspection of the right plot of Figs. 5 and 6 re-

veals both under- and overestimates of the mass loading due

to the presence of clouds within a single scene. For individual

pixels the difference may be larger than 100 %.

The ash mass retrieved depends on the surface tempera-

ture. For the present retrieval this was deduced from T12.0,

see Sect. 3. In the presence of clouds T12.0 will be lower com-

pared to a cloudless sky. For an ash cloud overlying a cloud

1T will be smaller than if the cloud was not present. Both

these factors interact to cause both over- and underestimates

of the ash-mass loading.

Clouds do affect the brightness temperatures and hence the

retrieval of ash mass. For cloudless scenes, one might expect

that the simulated cloudless mass loading retrievals should

agree with the mass loading from the Flexpart model. How-

ever, although the ash type, density and particle shape are the

same in the retrieval and the Flexpart simulations there are

also differences. Particularly, the retrieval method assumes a

log-normal particle size distribution (see Sect. 3), which is

different from the size distribution of the Flexpart simulated

ash particles. Indeed, the Flexpart size distribution is differ-

ent for each voxel making up the ash cloud field. It is also

noted that according to Kristiansen et al. (2012), Flexpart

may have too little mass for particles with radii in the 0.5–

5 µm range. This is the size range where the retrieval method

discussed here is most sensitive. The ash cloud thickness is

also different in the Flexpart simulations and in the retrieval.

In the latter, a fixed 1 km thick ash layer is assumed while for

the simulated images the vertical distribution from Flexpart

is used.

The number of false positives increases with viewing an-

gle for both the Eyjafjallajökull (2010) and Grímsvötn (2011)

eruptions, Figs. 9 and 14. However, large viewing angles may

also increase the ash signal due to longer path through the ash

cloud. This was demonstrated by Gu et al. (2005) who found

1T to be larger for MODIS (small viewing angles) than

for GOES (Geostationary Operational Environmental Satel-

lites, large viewing angles) for the Cleveland (2001) erup-

tions. Hence, in this case the larger viewing angle produced

a stronger, more negative 1T , ash signal.

6 Conclusions

The sensitivity of detection and retrieval of volcanic ash to

the presence of ice and liquid-water clouds has been quanti-

fied by simulating synthetic equivalents to satellite infrared

images with a 3-D radiative transfer model. For the sensitiv-

ity study, realistic ice and liquid-water clouds and volcanic

ash clouds representative for the Eyjafjallajökull (2010) and

Grímsvötn (2011) eruptions were used. The ash cloud fields

from the Lagrangian particle dispersion model Flexpart, have

been input to the MYSTIC 3-D radiative transfer model to

simulate SEVIRI-like 10.8 and 12.0 µm brightness tempera-

tures with and without the presence of liquid water and ice

clouds from ECMWF analysis data. Images of brightness

temperatures were simulated at 6-hourly intervals limited by

the temporal resolution of the liquid water and ice clouds

fields from ECMWF. Ash-affected pixels were detected in

the images based on the reverse absorption technique. Fur-

thermore, optimal estimation was used to retrieve ash-mass

loading. Comparisons of the detected and retrieved ash from
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images with and without liquid water and ice clouds showed

the following.

– The detection efficiency (detected ash pixels relative

to Flexpart ash pixels with ash loading > 0.2 g m−2)

was on average 14.6 % (22.1 %) for the cloudy (cloud-

less) simulation for the Eyjafjallajökull (2010) eruption,

and 3.6 % (10.0 %) for the Grímsvötn (2011) eruption.

These numbers increased to 54.7 % (74.7) for the Ey-

jafjallajökull (2010) eruption and to 4.8 % (15.1 %) for

the Grímsvötn (2011) eruption, if only Flexpart ash pix-

els with ash loading > 1.0 g m−2 were considered. It is

noted that these numbers are obtained by an automated

version of the reverse absorption technique. In a real

volcanic crisis, the use of other analysis methods and

instruments together with expert judgment, may signif-

icantly improve the knowledge of the ash cloud extent.

– The mostly small difference between the number of

false negatives between cloudless and cloudy simula-

tions (black lines in Figs. 8 and 13) indicates that for

the situation during the eruptions, the small temperature

difference between the Earth’s surface and the ash cloud

was the main reason for the rather large number of false

negatives. The small temperature difference was due to

the low altitude of the ash cloud.

– The presence of clouds mostly led to identification of

fewer ash-affected pixels (Figs. 8 and 13). On average,

during the full duration of the eruptions, ice and liquid-

water clouds were found to decrease the number of de-

tected ash pixels by about 6–12 %. However, variations

were large between scenes and clouds reduced ash de-

tection by up to 40 % for individual scenes. Dispersed

and thinned ash clouds were most likely to go unde-

tected. For a few cases more ash pixels were identified

in the presence of clouds.

– Diurnal variations were seen in the number of false pos-

itives. These mostly occurred over cloudless land ar-

eas and were caused by large diurnal variations in sur-

face temperatures while the atmospheric temperature re-

mained comparatively constant (nighttime temperature

inversions).

– The number of false positives increased with increasing

viewing angle and the results indicate that care should

be used for data with viewing angles larger than about

69◦. The number of false positives for the cloudless

simulations increased more with viewing angle than the

cloudy simulations. It is noted that due to geometry the

magnitude of the ash signal will increase with increas-

ing viewing angle.

– The presence of ice and liquid-water clouds gave both

smaller (4 % Grímsvötn) and larger (13 % Eyjafjalla-

jökull) mean ash-mass loading compared to the cloud-

less situation for coincident pixels, i.e. pixels where

ash was both present in the Flexpart simulation and

detected by the algorithm. However, large differences

were seen between scenes (standard deviation of±30 %

and ±20 % for Eyjafjallajökull and Grímsvötn, respec-

tively) and even larger within scenes.

The results suggest that a two-layer retrieval (ash cloud

overlying liquid-water cloud) is needed to further im-

prove ash-mass loading estimates under cloudy conditions

(Grainger et al., 2013). Also, detection methods that explore

the temporal behaviour of ash clouds between consecutive

satellite images may prove fruitful (see for example Naeger

and Christopher, 2014). The ultimate goal may be the direct

assimilation of satellite-observed radiances in a weather fore-

cast model that also emits and transports ash.

Ice and liquid-water clouds interfere with the detection and

retrieval of volcanic ash. During a volcanic ash situation, the

complexity of the situation suggests that hyperspectral and

spectral band measurements by satellite instruments should

be combined with inverse ash dispersion modelling (Stohl

et al., 2011) and judged by experts to obtain the best under-

standing of where and how much ash is present.

The present analyses pertain to the situation during the

Eyjafjallajökull (2010) and Grímsvötn (2011) eruptions. For

other eruptions taking place under other meteorological sit-

uations and with other eruption heights the impact of clouds

may be different.
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