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Abstract. We introduce a new dynamic statistical optimiza-

tion algorithm to initialize ionosphere-corrected bending an-

gles of Global Navigation Satellite System (GNSS)-based ra-

dio occultation (RO) measurements. The new algorithm esti-

mates background and observation error covariance matrices

with geographically varying uncertainty profiles and realistic

global-mean correlation matrices. The error covariance ma-

trices estimated by the new approach are more accurate and

realistic than in simplified existing approaches and can there-

fore be used in statistical optimization to provide optimal

bending angle profiles for high-altitude initialization of the

subsequent Abel transform retrieval of refractivity. The new

algorithm is evaluated against the existing Wegener Center

Occultation Processing System version 5.6 (OPSv5.6) algo-

rithm, using simulated data on two test days from January

and July 2008 and real observed CHAllenging Minisatel-

lite Payload (CHAMP) and Constellation Observing System

for Meteorology, Ionosphere, and Climate (COSMIC) mea-

surements from the complete months of January and July

2008. The following is achieved for the new method’s per-

formance compared to OPSv5.6: (1) significant reduction of

random errors (standard deviations) of optimized bending

angles down to about half of their size or more; (2) reduc-

tion of the systematic differences in optimized bending an-

gles for simulated MetOp data; (3) improved retrieval of re-

fractivity and temperature profiles; and (4) realistically esti-

mated global-mean correlation matrices and realistic uncer-

tainty fields for the background and observations. Overall

the results indicate high suitability for employing the new

dynamic approach in the processing of long-term RO data

into a reference climate record, leading to well-characterized

and high-quality atmospheric profiles over the entire strato-

sphere.

1 Introduction

Global Navigation Satellite System (GNSS)-based radio oc-

cultation (RO) is a robust atmospheric remote-sensing tech-

nique that provides accurate atmospheric profiles of the

Earth’s atmosphere (Kursinski et al., 1997; Hajj et al., 2002;

Kirchengast, 2004). This technique has several distinctive ad-

vantages in terms of high accuracy, high vertical resolution,

global coverage, and self-calibration (Anthes, 2011; Yu et

al., 2014). GNSS RO data are now widely used in numerical

weather prediction, climate monitoring, and space weather

research (e.g., Healy and Eyre, 2000; Cucurull and Derber,

2008; Le Marshall et al., 2010; Anthes, 2011; Steiner et al.,

2011; Carter et al., 2013).

Although the RO technique has been rather successful, it

still suffers from some weaknesses. For example, the RO ob-

servations are affected by higher-order ionospheric effects

and observation errors at high altitudes (> 30 km) (Bassiri

and Hajj, 1993; Danzer et al., 2013; Liu et al., 2013, 2015).

These errors propagate downward from bending angles to

refractivity through the Abel integral and also degrade the
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accuracy of the retrieved temperature and other atmospheric

profiles (Healy, 2001; Rieder and Kirchengast, 2001; Gob-

iet and Kirchengast, 2004; Steiner and Kirchengast, 2005).

Therefore, it is very important to have a best-possible initial-

ization of the ionosphere-corrected bending angles at high

altitudes for more accurate climate monitoring.

Statistical optimization is a commonly used method to ini-

tialize RO bending angles at high altitudes (e.g., Sokolovskiy

and Hunt, 1996; Gorbunov et al., 1996; Hocke, 1997; Healy,

2001; Gorbunov, 2002; Gobiet and Kirchengast, 2004; Go-

biet et al., 2007). It is a generalized least-squares approach

that combines an observed RO bending angle profile with a

background bending angle profile (Turchin and Nozik, 1969;

Rodgers, 1976, 2000). The weights of the two types of bend-

ing angles are determined by the inverse of their error co-

variance matrices. The statistical optimization equation used

is (Healy, 2001; Gobiet and Kirchengast, 2004)

αs = αb+Cb(Cb+Co)
−1
· (αo−αb) , (1)

where αs is the statistically optimized bending angle, αb and

αo are the respective (unbiased) background and observed

bending angle profiles, and Cb and Co are the corresponding

error covariance matrices.

In statistical optimization, the more accurately the error

covariance matrices represent the error characteristics, the

more accurate is the optimized bending angle profile. How-

ever, it is not straightforward to obtain such suitable error

covariance matrices, especially for the background bending

angle since they are not supplied together with common cli-

matological models nor is the construction a straightforward

task. Therefore, previous approaches have usually simplified

the calculation of the error covariance matrices.

A typical approach is to estimate the background error

covariance matrix by assuming a constant relative standard

error of the background bending angle and a simple error

correlation structure like exponential fall-off over an atmo-

spheric scale height (Healy, 2001; Rieder and Kirchengast,

2001; Gobiet and Kirchengast, 2004) or disregarding correla-

tions (Sokolovskiy and Hunt, 1996; Hocke, 1997; Gorbunov,

2002; Lohmann, 2005; Gorbunov et al., 1996, 2005, 2006).

Similarly, the observation error covariance matrix is formu-

lated from estimating the observation error at a defined meso-

spheric altitude range (where the RO signal is weak) and

using simple exponential fall-off error correlations (Healy,

2001, Gobiet and Kirchengast, 2004) or again just ignoring

the latter. These rough estimations generally result in inaccu-

rate error covariance matrices and therefore result in inaccu-

rate optimized bending angles that degrade the accuracy of

subsequently retrieved atmospheric profiles. More details on

the various schemes are provided by Li et al. (2013), Sect. 2.1

therein.

Improved accuracy in optimized bending angles was ob-

tained when using an improved statistical optimization algo-

rithm to initialize ionosphere-corrected bending angles (Li,

2013; Li et al., 2013). Li et al. (2013) used European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) short-

range (24 h) forecast fields as background bending angles.

Their background error covariance matrix was accurately

and realistically estimated using large ensembles of ECMWF

short-range forecast, analysis, and RO observed bending an-

gles. It was constructed using daily global fields of estimated

background uncertainty profiles and a daily global-mean cor-

relation matrix. The background uncertainty profile was dy-

namically estimated taking into account its variations with

latitude, longitude, altitude, and day of year. They not only

calculated the random errors of background bending angles

using large ensembles of ECMWF and RO data but also em-

pirically modeled the potential systematic background uncer-

tainty and finally combined these two uncertainties to formu-

late the background uncertainty. The global-mean correlation

matrix was also calculated using large ensembles of ECMWF

analysis and forecast fields. Finally, the biases in the back-

ground bending angles were corrected to avoid the potential

effects on optimized bending angles.

Since this first-version dynamic statistical optimization al-

gorithm dynamically estimated the background error covari-

ance matrix only, it is hereafter referred to as the b-dynamic

algorithm (“b” represents background) in this study. The b-

dynamic algorithm was evaluated by Li et al. (2013) against

the Occultation Processing System version 5.4 (OPSv5.4) al-

gorithm developed by the Wegener Center for Climate and

Global Change (WEGC) (Pirscher, 2010; Ho et al., 2012;

Steiner et al., 2013). It was found that the b-dynamic algo-

rithm significantly reduced random errors of the optimized

bending angles and left less or about equal levels of residual

systematic errors. The quality of the subsequently retrieved

refractivity and temperature profiles was also improved. In

addition, even the dynamically estimated background error

correlation matrix alone was able to improve the optimized

bending angles.

The aim of this study is to obtain even more accurate and

reliable atmospheric profiles for optimal climate monitoring

by advancing the b-dynamic algorithm to a complete dynam-

ical estimation of both background and observation uncer-

tainties and correlations. This is accomplished by employing

a realistically estimated observation error covariance matrix

in addition to the b-dynamic formulation. The observation

error covariance matrix is constructed with dynamically es-

timated observation uncertainties for each occultation event

and daily global-mean correlation matrices from large en-

sembles of data. The observation uncertainty is calculated us-

ing bias-corrected difference profiles of observed RO bend-

ing angle profiles relative to co-located ECMWF forecast

bending angle profiles. The global-mean correlation matrix is

calculated using multiple days of RO bending angle profiles

and co-located ECMWF analysis bending angle profiles. In

addition, the basic b-dynamic algorithm is updated to obtain

even more robust background error covariance matrices. Fi-
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nally, the stability of the new dynamic algorithm is evaluated

using full months of RO data from CHAMP and COSMIC.

The structure of this paper is as follows. Section 2 intro-

duces the methodology of the dynamic statistical optimiza-

tion algorithm. Section 3 evaluates its performance using

both simulated and observed RO data. Finally a summary and

conclusions are given in Sect. 4.

2 The new dynamic statistical optimization algorithm

Figure 1 shows the algorithmic steps of the dynamic statis-

tical optimization algorithm. The new algorithm mainly in-

cludes two parts: (1) the dynamic estimation of the back-

ground error covariance matrix and the bias correction of

background bending angles, and (2) the dynamic estima-

tion of the observation error covariance matrix. Informa-

tion on background/observation uncertainty and on the back-

ground/observation correlation matrix is needed for con-

structing complete background/observation error covariance

matrices. The uncertainty at any vertical level is the square

root of the diagonal value of the error covariance matrix at

that level. The correlation matrix includes correlation func-

tions for all vertical levels. Each such correlation function

comprises the correlation coefficients of the error at the ver-

tical level where it peaks to the errors at all other vertical

levels. In summary, the background/observation uncertain-

ties and the corresponding correlation matrix together for-

mulate the background/observation error covariance matrices

(Gaspari and Cohn, 1999).

Assuming that k = 1,. . . , Nocc are sequentially numbered

RO events of a day, then for each occultation event k the dy-

namic algorithm estimates the (unbiased) background bend-

ing angle profile αkb and its corresponding error covariance

matrix Ckb, as well as the observation error covariance matrix

Cko. Using these three quantities together with the observed

bending angle αko , the statistically optimized bending angle

profile αks can be determined as

αks = α
k
b +Ckb

(
Ckb+Cko

)−1

·

(
αko −α

k
b

)
. (2)

The algorithm for the estimation of αkb and Ckb has been de-

scribed in detail by Li et al. (2013) as part of the b-dynamic

algorithm. It will be briefly summarized in Sect. 2.1, focusing

on the key algorithmic steps and the advances in the dynamic

algorithm. In Sect. 2.2, details on the computation of Cko and

other issues that are critical to the capability of the dynamic

algorithm are provided.

2.1 Dynamic estimation of the background error

covariance matrix and bias calibration of

background bending angles

The dynamic estimation of the background error covariance

matrix includes three algorithmic steps: (1) construction of

basic daily background fields (blue boxes in the left part of

Fig. 1), (2) preparation of the derived daily background fields

(green boxes), and (3) dynamic estimation of the background

error covariance matrix (orange boxes).

In the first step, daily fields of the basic background vari-

ables are prepared using a 10◦ latitude× 20◦ longitude grid

(with the base cell centered at 5◦ N, 10◦ E), at 400 levels from

0.2 to 80.0 km with 200 m steps. This construction of back-

ground variables allows us to suitably capture large-scale

background error dynamics as a function of latitude, longi-

tude, (impact) altitude, and time, and it yields daily fields

on a global 18× 18× 400 grid. Compared to the b-dynamic

algorithm, which used 200 representative impact altitude lev-

els from 0.1 km to 80.0 km with non-equidistant spacing, this

new scheme allows direct use of these variables for the next

step of calculation, avoiding additional vertical interpolation

of all variables and particularly also within correlation matri-

ces.

The data used to calculate these basic background vari-

ables include ECMWF analysis fields and corresponding

24 h forecast fields with a T42L91 resolution at 00:00 and

12:00 UTC, and observed RO bending angles. In calculating

the mean variables in each grid cell, time averaging over 7

days (from 3 days before to 3 days after the day of interest)

and horizontal averaging over geographic domains of at least

1000 km× 3000 km (over 10◦ latitude× 60◦ longitude cells

from 60◦ S to 60◦ N, poleward over larger longitude ranges of

95◦ from 60 to 70◦ N/S, 120◦ from 70 to 80◦ N/S, and 270◦

from 80 to 90◦ N/S) were used. Compared to the b-dynamic

scheme, which used 5 days of data only and smaller geo-

graphic regions (1000 km× 1000 km) for averaging, this up-

date allows more data to be used for more reliable statistical

estimates (especially important for mean observed bending

angles) at each 10◦ latitude× 20◦ longitude grid point, while

still capturing the slow variations of the mean field well.

These calculations include mean variables, the construction

of error correlation matrices, and empirical modeling of bi-

ases. For details see Li et al. (2013).

The second step involves the preparation of the derived

daily background fields. These specific statistical quantities

include (i) the forecast-minus-analysis standard deviations

sf−a, which represent the estimated random uncertainty of the

background bending angles; (ii) the estimated uncertainty of

the mean background bending angle ub; and (iii) the differ-

ence between the mean forecast bending angle and the mean

background bending angle 1ᾱf−b.

In the third step, the background error covariance matrix

is calculated from the fields obtained in step 2. Co-located

profiles of 1ᾱkf−b, ukb, and skf−a are derived by bi-linear hor-

izontal interpolation to the RO event location at all vertical

levels. The combined background standard uncertainty pro-

file uocc
b is then calculated as
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Figure 1. Schematic illustration of the algorithmic steps of the dynamic statistical optimization approach; for description see Sect. 2.1

and 2.2.

uocc
b =

[(
fbc · u

k
b

)2

+

(
skf−a

)2
]1/2

. (3)

Herein the bias coverage factor fbc is introduced as a user-

defined parameter that can be employed to penalize the es-

timated bias-type uncertainty ukb relative to the estimated

random uncertainty skf−a. This enables minimizing the in-

fluence from potential residual background biases, relative

to observation uncertainty, on the resulting optimized pro-

file αks . In this study the bias coverage factor was chosen

to linearly decrease with altitude, setting fbc = 15 at 30 km

(strong penalty in lower stratosphere) and fbc = 1 at 80 km

(no penalty at top boundary). This choice was found to be

useful for climate applications (more discussion of fbc, in-

cluding for comparison also example cases with constant

fbc = 1 and fbc = 5, is given in Sect. 3.2). Using the back-

ground standard uncertainty and the global-mean correlation

matrix Rf−a = Rf−a,ij , the background error covariance ma-

trix Ckb = C
k
b,ij is formulated as

Ckb,ij = u
occ
b,i · u

occ
b,j ·Rf−a,ij . (4)

In order to effectively reduce the residual bias in the back-

ground bending angle αkb (cf. Eq. 2) to within the estimated

uncertainty of the background mean ukb, αkb is calculated by

subtracting the forecast-minus-background mean difference

1ᾱkf−b from the co-located forecast bending angle αkf :

αkb = α
k
f −1ᾱ

k
f−b. (5)

Figure 2 illustrates the estimated relative uncertainty of

the forecast-minus-analysis standard deviation 100·(sf−a/ᾱa)

(top) and the modeled relative systematic bias of the

ECMWF analysis bending angle 100 · (ba/ᾱa) (bottom). ba

is the main component of ukb (cf. Li et al., 2013) and ᾱa is

the ECMWF analysis mean bending angle; ba therefore il-

lustrates the size of the systematic uncertainty term fbc · u
k
b

in Eq. (3) when fbc = 1, i.e., when no user-defined bias

penalty is employed. Any application of a bias coverage fac-

tor fbc>1, such as used in this study for representing climate-

quality retrievals, magnifies this term accordingly.

As a function of latitude (left), forecast-minus-analysis

standard deviation reveals largest errors at high altitudes over

the Antarctic region. The relative standard deviations are

larger than 10 % near 80 km, decreasing to ∼ 5 % at 70 km

Atmos. Meas. Tech., 8, 3447–3465, 2015 www.atmos-meas-tech.net/8/3447/2015/
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Figure 2. Variability of relative standard deviations of forecast-minus-analysis bending angle differences (upper two panels) and of the

systematic uncertainty of the mean analysis bending angle (bottom two panels) as function of latitude (left) and of day of month (right),

respectively.

and to ∼ 3 % at 50 km, and remain at ∼ 1 % below 25 km. In

non-polar regions, the standard deviations amount approxi-

mately to 3 to 4 % near 80 km, decrease to 2 % at 75 km and

remain within 1 to 2 % below. The day-to-day temporal evo-

lution of sf−a at high southern latitudes (60 to 70◦ S) (right)

reveals relatively smooth uncertainty conditions for the en-

tire month of July, without much temporal dynamics in the

uncertainty. In the course of testing, it was found that the es-

timates are consistent with flow-dependent forecast-minus-

analysis error estimates produced by ECMWF’s Ensemble

of Data Assimilations (EDA) system (Isaksen et al., 2010;

Bonavita et al., 2011; M. Bonavita, ECMWF, personal com-

munication, 2012).

Regarding variations of 100 · (ba/ᾱa) as a function of lati-

tude (bottom left), the bias-type uncertainties are also largest

at high altitudes in the Southern Hemisphere. The relative un-

certainties are larger than 7 % near 80 km, decreasing to 5 %

at 60 km, and remain smaller than 3 % below 40 km. In non-

polar regions, the relative uncertainties amount to 4 % near

80 km, decreasing to below 2 % also at 40 km. The temporal

evolution of the systematic uncertainty 100 · (ba/ᾱa) over a

month (bottom right) shows that these relative uncertainties

also reveal little sub-monthly variations, due to the way in

which they are constructed (Li et al., 2013).

Figure 3 shows exemplary global-mean correlation func-

tions (left) and associated correlation lengths (right) for the

5, 15, and 25 July 2008. The correlation functions, plotted

for three representative height levels (30, 50, 70 km), are

rather similar over the month. They have a main peak of

Figure 3. Global-mean error correlation functions from the back-

ground error covariance matrix (left), for the 5, 15, and 25 July 2008

at three representative impact altitude levels (30, 50, and 70 km),

and estimated correlation lengths of the correlation functions (right)

at all impact altitude levels from 20 to 80 km for the same 3 days.

nearly Gaussian shape with negative side peaks at each side.

Further outward, small secondary positive peaks occur, af-

ter which the functions essentially approach zero. The cor-

relation lengths increase rather smoothly with altitude from

about 0.8 km at 20 km to 6 km at 80 km. They also show little

variation over the example month of July 2008.

Overall this behavior indicates that in months without

larger atmospheric anomalies (such as for example sudden

stratospheric warming at high latitudes; e.g., Manney et al.,

2008) a daily update of correlation matrices is not necessar-

ily needed. In a long-term application, however, it is not clear

when and where some (transient) anomalies may occur, so a

www.atmos-meas-tech.net/8/3447/2015/ Atmos. Meas. Tech., 8, 3447–3465, 2015
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daily update of the background fields was used as a cautious

baseline.

2.2 Dynamic estimation of the observation error

covariance matrix

The error covariance matrix of the observed bending an-

gle Cko is calculated using an observation uncertainty profile

uocc
o , estimated on a per-event basis, and a global-mean error

correlation matrix Rocc
o :

Cko = u
occ
o,i u

occ
o,jR

occ
o,ij . (6)

Different to the OPSv5.6 and the b-dynamic algorithm,

which estimate the observation uncertainty uocc
o between

about 65 and 80 km with an MSIS climatology model bend-

ing angle profile as a reference (Li et al., 2013), the full

dynamic algorithm estimates uocc
o as a vertical profile over

the stratopause region and mesosphere, using the co-located

ECMWF forecast bending angle profile as a reference.

More specifically, the first step is to subtract the co-located

forecast bending angle profile αkf from the observed bending

angle profile αko :

1αko = α
k
o −α

k
f . (7)

The difference profile 1αko is then smoothed with a 15 km

window moving average (from 45 km to the top bound of

the profile, usually 80 km). The resulting smoothed differ-

ence profile is denoted as 1α
k

o.

The next step is to subtract the smoothed difference profile

1α
k

o from the original difference profile 1αko in order to ob-

tain a delta-difference profile11αko that essentially contains

only random errors:

11αko =1α
k
o −1α

k

o. (8)

Finally the observation uncertainty at any impact altitude

level i (corresponding to the impact altitude of zi) of each

occultation event, uocc
o,i , is calculated as

uocc
o,i =

√√√√ 1

n− 1

iz+7.5∑
n=iz−7.5

[
11αko,n

]2
, (9)

where n is the number of sample points between zi + 7.5 km

and zi − 7.5 km and where iz−7.5 and iz+7.5 denote the cor-

responding impact altitude indices. Equation (9) is applied

from 45 km to the top of the profile, providing uocc
o,i esti-

mates from 52.5 to 72.5 km; below (above) the value at

52.5 km (72.5 km) is extended downward (upward) just as

a constant value. This construction ensures that variations

over the mesosphere can be accounted for while data below

the stratopause, where the estimated delta-difference profile

11αko may also contain atmospheric variability noise (e.g.,

from gravity wave activity), are not allowed to influence the

estimate.

Figure 4 illustrates the observation uncertainty profile

uocc
o , and intermediate variables from Eqs. (7) and (8), for

six example RO events from 15 July 2008. The simMetOp

events are simulated using the End-to-end GNSS Occulta-

tion Performance Simulation and Processing System soft-

ware version v5.6 (EGOPSv5.6) in the same way as the sim-

MetOp ensemble was produced by Li et al. (2013); for more

details see Sect. 3 below. In each panel, the red line shows

the original difference profile1αko (“delta”), the blue line the

smoothed difference profile 1α
k

o (“deltasmooth”), the green

line the delta-difference profile11αko (“deltadelta”), and the

magenta line the observation uncertainty uocc
o (“Uncert”). It

can be seen that Eqs. (7) and (8) are robust in removing sys-

tematic errors, leaving a good random signal, from which the

uncertainty uocc
o is reliably estimated.

Estimated uncertainties are smallest (near 0.5 µrad) for the

simMetOp events (top) that mimic MetOp/GRAS-type high

performance receiver errors without additional noise effects

(Li et al., 2013) and are distinctively larger for real data from

CHAMP (middle) and COSMIC (bottom). The uncertain-

ties of CHAMP and COSMIC bending angles can be quite

variable, as illustrated, and can reach 10 µrad or more for

CHAMP events, while it is typically only around 2 µrad or so

for COSMIC. Figure 4 also shows that the variation of uncer-

tainty, which often may come from variations in ionospheric

small-scale noise being added onto the RO receiver-related

noise, can be well captured over the mesosphere.

The global-mean observation error correlation matrix Rocc
o

is estimated using the difference profiles between the ob-

served and co-located ECMWF analysis bending angle pro-

files. In this estimation, we first construct a global-mean error

covariance matrix using all available difference profiles from

3 days before to 3 days after the day of interest, i.e., using

the same weekly smoother as for the background estimations.

Then we derive the global-mean correlation matrix by divid-

ing all elements of the covariance matrix by their correspond-

ing square roots of diagonal values. RO observations used for

this calculation included data from COSMIC and GRACE

for January and July 2008, and MetOp-A for July 2008 (no

processed data were available for January 2008). The ob-

tained error correlation matrix Rocc
o is used based on Eq. (6)

for the construction of the observation error covariance ma-

trices Cko, for all RO events k of the day. We did not include

a bias calibration step similar to the background bias calibra-

tion (Eq. 5) at the observation side. Such a step may com-

plement the Cko estimation in the future, however, for sub-

tracting residual ionospheric biases in the observed bending

angle profiles αko before they enter the calculation of mean

observed bending angles (as part of estimating 1ᾱkf−b; Li et

al., 2013) and the statistical optimization equation (Eq. 2).

Figure 5 illustrates representative observation error corre-

lation functions (extracted from Rocc
o ) and associated correla-

tion lengths in the identical format as shown in Fig. 3 for the

background error correlations, for ease of intercomparison

Atmos. Meas. Tech., 8, 3447–3465, 2015 www.atmos-meas-tech.net/8/3447/2015/
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Figure 4. Observation uncertainty and key intermediate variables for six representative RO events, two simMetOp events (top), two CHAMP

events (middle), and two COSMIC events (bottom) from 15 July 2008. “delta” is the difference profile of the RO ionosphere-corrected

bending angle to the co-located ECMWF forecast profile used as a reference, “deltadelta” is the delta-difference profile after subtracting

a smoothed profile “deltasmooth” from the difference profile “delta”, and “Uncert” is the resulting observation uncertainty estimate; for

detailed description see Sect. 2.2.

Figure 5. Global-mean error correlation functions from the obser-

vation error covariance matrix (left), for the 5, 15, and 25 July 2008

at three representative impact altitude levels (30, 50, and 70 km),

and estimated correlation lengths of the correlation functions (right)

at all impact altitude levels from 20 to 80 km for the same 3 days.

For ease of intercomparison the layout is the same as in Fig. 3.

of the different characteristics. By comparing Figs. 3 and 5,

it can be seen that the observation error correlation functions

are basically similar in shape to the background error correla-

tion functions (main peak, negative side peaks, smaller pos-

itive secondary side peaks) albeit with significantly shorter

correlation lengths. In addition, the functional shape of side

peaks is not as smooth as the one for the background. The

correlation length is essentially constant with altitude (above

30 km), amounting to about 0.8 km.

The intra-monthly variation is essentially negligible within

the given July 2008 test month (applies also to January 2008,

not shown), pointing to room for further improvement of the

utility of the estimation for long-term processing, e.g., con-

sidering larger ensemble sizes and sub-global regions. These

slow dynamics of the observation error covariance matrices,

and of the background error covariance matrices as discussed

in Sect. 2.1, enable reliable use also in near-real-time or fast-

track processing (i.e., processing within 3 h or within follow-

on day of observations). Instead of using 7 days centered

about the day being processed (including 3 days before and

after the center day) 7-day-history data (from the previous

day to 7 days prior) may be used in these cases, with in-

significant degradation in performance.

2.3 Other improvements of the new algorithm

In the b-dynamic algorithm of Li et al. (2013), the statisti-

cal optimization was applied exactly down to 30 km. How-

ever, for some noisy RO events especially from CHAMP,

ionosphere-corrected bending angles can be still noisy

around 30 km impact altitude. For these noisy events there

can be a sharp change of bending angle characteristics from

the rather smooth statistically optimized profile above 30 km

to the rather noisy purely observed profile below 30 km.

On the other hand, some (simulated) events may have very

small observation uncertainties at the altitudes below 40 km,

which may lead to degraded robustness of the matrix inver-

sion (Cb+Co)
−1, due to large differences of observation and
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background uncertainties. In order to safeguard against these

effects, we have improved the algorithm as follows.

First, we gracefully adjust the observation uncertainty uo

computed according to Sect. 2.2 based on adjusting the

observation-to-background uncertainty ratio robu = uo/ub

below 40 km, in order to ensure that it approaches a robust

small value at the bottom of the statistical optimization range.

We modify the robu profile to make it linearly transit from the

robu value prevailing at 40 km to robu = 0.1 at 28 km. Typ-

ical values within 28 and 40 km may range from near 0.1

(simMetOp) to around 1 (CHAMP), so the linear transit to

0.1 at 28 km generally implies a decrease of the robu for real

data. In order to avoid any possible sharp change of the robu

profile at 40 km, we smooth the resulting profile by a mov-

ing average filter with 2 km width. Using the modified robu

profile, the observation uncertainty is then reconstructed as

uo(zi)= robu(zi) · ub(zi), enforcing dominance of the obser-

vation information in the optimized profile from 40 km to

28 km. Alternatively to this uo(zi) adjustment used in this

study, the background uncertainty profile may be adjusted,

ub(zi)= uo(zi)/robu(zi), which keeps the effect on the opti-

mized profile the same while leaving the observation uncer-

tainty unchanged.

Second, we apply the statistical optimization down to

28 km and then apply a half-sine-weighted transition across

32 to 28 km between the statistically optimized bending an-

gles and purely observed bending angles. That is, the weight-

ing function over this transition altitude range, w(zi), is for-

mulated as

w(zi)= 0.5 ·

(
sin

(
π

2
·
zi − zsoT

1zsoT

)
+ 1

)
, (10)

where zsoT is the statistically optimized-to-observed bending

angle transition altitude, set to 30 km, and1zsoT is the statis-

tically optimized-to-observed bending angle transition half

width, set to 2 km. Employing w(zi) from 32 to 28 km in the

form

αsoT (zi)= w(zi) ·αs (zi)+ (1−w(zi)) ·αo (zi) , (11)

we get a well-defined gradual transition from optimized

bending angle to observed bending angle. When these two

improvements to the b-dynamic algorithm are applied, the

sometimes “spiky” behavior of some (CHAMP) profiles near

the bottom boundary of statistical optimization discussed by

Li et al. (2013) disappeared.

Another issue requiring caution is the robustness of ma-

trix inversions, especially related to the weighting matrix in

Eq. (2), Cb(Cb+Co)
−1, containing the inversion of the sum-

mary matrix of the observation and background error covari-

ance matrices. Since the observation error correlation func-

tions can be insufficiently smooth and since the main peaks

are close to Gaussian shape, the summary matrix can become

close to ill-conditioned and cannot be accurately inverted in

this case, inducing undue noise into the resulting weighting

matrix.

This could be overcome by replacing the main peak by a

5th-order polynomial function as described by Gaspari and

Cohn (1999), which approximates a Gaussian shape and was

also successfully used in the context of matrix inversion by

Steiner and Kirchengast (2005), Eq. (5) therein (note that a

typo leaked into the z2 term as cited in this equation for z < 1;

the correct denominator is “3” instead of “2”, as in the z2

term cited for the 1 < z branch). After using this approxima-

tion, the inversion was sufficiently robust. Alternatives for

ensuring robustness include the use of even-larger ensemble

sizes in matrix construction and more advanced methods of

matrix inversion such as truncated singular value decompo-

sition.

3 Evaluation of the new dynamic statistical

optimization algorithm

The dynamic algorithm was implemented in the EGOPSv5.6

software (Fritzer et al., 2013) to enable a complete RO re-

trieval. The EGOPSv5.6 system was also used to simu-

late RO observations (simMetOp events) and to retrieve at-

mospheric profiles. The standard RO data processing chain

within this system is the OPSv5.6 retrieval.

We evaluated the new dynamic algorithm against this

OPSv5.6 algorithm, which is, in terms of statistical optimiza-

tion formulation, the same as the OPSv5.4 algorithm used

for comparison by Li et al. (2013). Briefly, the OPSv5.6 al-

gorithm uses ECMWF short-range forecast bending angles

as a background and employs exponential fall-off functions

to express the correlations of both background and observa-

tion uncertainties. The background uncertainty is modeled as

amounting to 15 % of background bending angles. The ob-

servation uncertainty is estimated as the standard deviation of

observed bending angles relative to co-located MSIS model

bending angles in the impact altitude range from 65 km to

about 80 km. For more detailed information on OPSv5.6/v5.4

see Pirscher (2010), Steiner et al. (2013), and Schwaerz et

al. (2013).

In addition to the OPSv5.6 intercomparison, the atmo-

spheric profiles retrieved by the dynamic algorithm are com-

pared with those retrieved by the b-dynamic algorithm (Li et

al., 2013) and with those by the UCAR/COSMIC Data Anal-

ysis and Archive Center (CDAAC) Boulder.

The data sets used for the evaluation include simulated

MetOp data (simMetOp) as well as real observed CHAMP

and COSMIC data. simMetOp data were simulated in the

same way as by Li et al. (2013), using moderate ionosphere

conditions in the forward simulations and using observa-

tional errors representing MetOp/GRAS-type receiving sys-

tem errors.

As a basis for the CHAMP and COSMIC retrievals, excess

phase and orbit data were downloaded from UCAR/CDAAC

Boulder (CDAAC data version 2009.2650 for CHAMP

and 2010.2640 for COSMIC). CDAAC atmospheric profiles
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(atmPrf) used for the comparison of retrieved profiles are

mainly from the same CDAAC data version. Recently repro-

cessed atmospheric profiles provided by CDAAC (version

2014.0140) are also used for comparison, but due to their

very recent release only CHAMP has been used so far. We

denote the CHAMP data version 2009.2650 as “CDAAC”

in figure legends, and version 2014.0140 as “CDAACnew”.

In the evaluation, retrieved RO profiles are shown relative

to co-located reference profiles. For the CHAMP and COS-

MIC data, these co-located reference profiles were extracted

from ECMWF analysis fields; for simMetOp data the “true”

ECMWF analysis field profiles from the forward modeling

were used as a reference. This is the same setup as was used

by Li et al. (2013).

3.1 Algorithm performance for individual profiles

Figure 6 illustrates the effects of statistical optimization on

individual bending angle profiles by a few representative RO

events. The left panels show the background and observation

uncertainties as well as the observation-to-background (Obs-

to-Bgr) weighting ratio robw = 100 · u2
b/(u

2
b+ u

2
o), which

expresses on a percentage scale how the information is

weighted between observations and background. robw is a

convenient approximate variable for this purpose, which ex-

actly applies if the covariance matrices in the statistical op-

timization equation (Eq. 2) are diagonal. Observation un-

certainty is smallest for the simMetOp event (top), largest

for the CHAMP event (middle), and in between for the

COSMIC event (bottom). At 60 km these observation un-

certainties are roughly 0.4, 3, and 1.5 µrad for simMetOp,

CHAMP, and COSMIC, respectively. These differences in

observation uncertainty yield the largest robw for the sim-

MetOp event and the smallest for CHAMP. Related to this,

the altitude where both observations and background re-

ceive equal weight (robw = 50 %), which may be consid-

ered the transition altitude below which the observation in-

formation dominates the retrieval, is highest for simMetOp

(> 60 km), medium for COSMIC (around 55 km), and small-

est for CHAMP (near 45 km). Ongoing follow-on work on

large RO data sets of many months analyzes the robw statisti-

cally and confirms that these few example events are typical

for the respective data sources.

Since bending angles increase roughly exponentially with

decreasing altitude, as seen in the middle column of Fig. 6,

differences among the various retrieved profiles seem to be

small. The right panels, however, actually show the differ-

ences of optimized bending angle profiles relative to their

reference. For the simMetOp event, bending angle differ-

ences from the dynamic algorithm are smallest over all al-

titudes, confirming the high utility of the algorithm, since

here the “true” profile from forward simulation serves as a

reference. The bending angle differences of the b-dynamic

algorithm are similar and the values are also small. The dif-

ferences from the OPSv5.6 algorithm are largest and signifi-

cantly noisier.

For the CHAMP event the relative differences from the

dynamic algorithm, the b-dynamic algorithm, and CDAAC

are smaller than those from the OPSv5.6 algorithm below

50 km. Above about 50 km, the relative differences from the

dynamic algorithm increase and are largest. For the COSMIC

event, bending angles from the dynamic, b-dynamic, and

OPSv5.6 algorithms are rather similar below 50 km. Above

50 km, differences from the dynamic algorithm are tenta-

tively largest. For this event, the differences of CDAAC are

generally larger than of the other three algorithms.

Inspecting further individual RO events (not shown) con-

firmed that the relative differences of simMetOp data from

the dynamic algorithm are consistently smaller and smoother

than those from the other approaches. This underlines the

robust capability of the dynamic algorithm for improving

the quality of the ionosphere-corrected bending angles. For

CHAMP and COSMIC measurements, the relative differ-

ences from the dynamic algorithm are also generally smaller

and smoother than those from other algorithms below 50 km.

However, above 50 km, the differences from both the dy-

namic algorithm and from CDAAC are generally larger than

those from the OPSv5.6 and b-dynamic approaches. This

does not mean that bending angle profiles from the dynamic

and CDAAC algorithms are not accurate at high altitudes,

however; the result mainly depends on the determination of

the weights of the background and observed bending angles

in the statistical optimization.

In the new dynamic algorithm, the estimated relative back-

ground errors at high altitudes are generally larger than those

of the OPSv5.6 algorithm (e.g., in the polar winter regions,

the relative background errors of the dynamic algorithm are

usually larger than 30 % around 60 km, while the OPSv5.6

algorithm assumes a constant error of 15 % at all altitudes).

At the same time the dynamically estimated observation un-

certainties are usually smaller than those of OPSv5.6, which

often sets a large standard value (22 µrad) for events that are

very noisy at high altitudes. Therefore the new dynamic algo-

rithm gives significantly more weight to the observed bend-

ing angles at high altitudes. If a user of the dynamic algo-

rithm wanted less observational weighting, this would need

to be tuned by the bias coverage factor fbc (cf. Eq. 3), which

would accordingly modify the robw. For example, using a

constant setting of fbc = 5, as used for the algorithmic in-

troduction by Li et al. (2013), would significantly change the

robw compared to the linear fbc altitude dependence used in

this study (for more discussion on the effects of fbc choice

see Sect. 3.2 below). Furthermore, similar to what Li et

al. (2013) did for the b-dynamic algorithm, we also inspected

the effects of using two different correlation matrices, i.e., the

estimated global-mean correlation matrices of our dynamic

algorithm and the simple analytical correlation matrices con-

structed by exponential fall-off correlation functions with a

correlation length of 10 km for background and 2 km for ob-
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Figure 6. Background and observation bending angle uncertainty profiles as well as observation-to-background (Obs-to-Bgr) weighting

ratio (left); statistically optimized bending angle profiles from the OPSv5.6, b-dynamic, dynamic, and CDAAC algorithms together with

their reference profile (middle); and difference of the optimized profiles to the reference profile (right). Three example events from 15 July

2008 are illustrated, from simMetOp (top), CHAMP (middle), and COSMIC (bottom), respectively.

servation as used in the OPSv5.6 formulation. The dynami-

cally estimated uncertainties were used for both cases since

we are interested only in the differences from the correlations

in this particular test.

Figure 7 shows the comparison results for these two types

of correlation matrices, again using three exemplary events

from simMetOp, CHAMP, and COSMIC, showing absolute

bending angles (left) and differences to reference (right). The

simMetOp event highlights that bending angle differences

from the full correlation case are much smoother and smaller

than those from the exponential fall-off correlation. For the

real CHAMP and COSMIC events, the magnitudes of the

differences from the two cases are similar, but also here it

is clearly evident that the use of the full correlation leads

to smoother differences than the use of exponential fall-off

correlation. We conclude that the use of adequately realistic

correlation matrices is preferable.

3.2 Statistical performance evaluation results

In this section the performance of the dynamic, b-dynamic,

and OPSv5.6 statistical optimization algorithms are evalu-

ated using simulated MetOp data from 15 January and 15

July 2008 and monthly CHAMP and COSMIC observations

from January and July 2008. In addition, atmospheric pro-

files retrieved and provided by UCAR/CDAAC for the same

time periods are used for comparison. The mean systematic

differences between retrieved and reference profiles and the

associated standard deviations are calculated and analyzed in

bending angle, refractivity, and temperature profiles, similar

to the statistical performance evaluation of the b-dynamic al-

gorithm by Li et al. (2013).

In order to detect and exclude outlier profiles from the sta-

tistical profile ensembles, the quality of retrieved profiles is

checked as follows. Bending angle profiles are checked from

25 to 80 km, and a profile is flagged as bad if a bending angle
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Figure 7. Statistically optimized bending angle profiles together with their reference profile (left) and their difference to the reference

profile (right), of three example events from simMetOp (top), CHAMP (middle), and COSMIC (bottom) from 15 July 2008, using either the

realistic global-mean correlation matrix of the new dynamic method (“full correlation”) or simple exponential fall-off correlation as existing

in OPSv5.6 (“exp.falloff only”).

exceeds a threshold at any impact altitude level, which was

defined based on careful sensitivity tests as the maximum of

either 40 µrad absolute or 25 % relative deviation from the

co-located ECMWF short-range forecast bending angle. In

practice, looking at it from the top downwards, the transi-

tion from the absolute to the relative criterion occurs roughly

around 35 km, where bending angle values start to exceed

160 µrad.

Refractivity and temperature profiles are checked in the

same way as used for OPSv5.6/v5.4 (Schwaerz et al., 2013;

Steiner et al., 2013; Pirscher, 2010), i.e., the deviation from

co-located ECMWF analysis profiles at any altitude level

must not exceed 10 % for refractivity between 5 and 35 km

and 20 K for temperature within 8 and 25 km. These qual-

ity checks are performed on all profiles retrieved with the

EGOPS software. For profiles provided by CDAAC, we

check the CDAAC quality flag and use only profiles flagged

to be of good quality.

Figure 8 shows the systematic differences and standard de-

viations of optimized bending angle profiles of the global en-

sembles of simMetOp from 15 January and 15 July 2008,

and of CHAMP and COSMIC events from January and July

2008. For simMetOp (top), it is clear to see that the perfor-

mance of the dynamic algorithm outperforms the b-dynamic

algorithm and the OPSv5.6 algorithm, exhibiting smallest

systematic differences and associated standard deviations.

Compared to the OPSv5.6 algorithm, the best improvement

is found between 40 and 60 km. These results are very en-

couraging and confirm the fundamental capabilities of the

dynamic algorithm.

Comparison of the CHAMP (middle) and COSMIC (bot-

tom) results from the dynamic algorithm with the OPSv5.6

and CDAAC algorithms shows that the bending angle stan-

dard deviation from the dynamic (and b-dynamic) algorithm

is again generally smaller than that of the OPSv5.6 and

CDAAC results. Above 45 km for CHAMP, and above 55 km

for COSMIC, the standard deviations from the dynamic al-

gorithm exceed those from the OPSv5.6 algorithm. This is

due to increased weight of noisy RO bending angles in the

mesosphere compared to OPSv5.6 as discussed in Sect. 3.1

above. Standard deviations from both CDAAC data versions

are larger than those from the other methods, and particularly

the new data version (shown for CHAMP) exhibits largest

standard deviation already from about 35 km upwards.

Systematic differences of CHAMP and COSMIC data

(differences are calculated against co-located ECMWF anal-

ysis profiles) are rather similar for the dynamic, b-dynamic,

and OPSv5.6 algorithms. The systematic differences from

CDAAC algorithms are also similar, in particular below

about 35 km, but they are larger and feature somewhat dif-

ferent characteristics above about 40 km for July 2008. In

particular the new data version (shown for CHAMP) exhibits

different (oscillatory) behavior both in January and July.

These results indicated that the new dynamic algorithm is

robust and competitive in providing optimized profiles with

biases minimized in a best-possible manner, as should be
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Figure 8. Systematic differences (SysDiff, light lines) and standard

deviations (SD, heavy lines) of statistically optimized bending an-

gles, relative to “perfect” simulated bending angles or co-located

ECMWF analysis bending angles used as a reference, of the global

ensemble of simMetOp events on 15 January and 15 July 2008 (up-

per two panels), and of CHAMP and COSMIC events from the com-

plete months of January and July 2008 (middle and bottom panel,

respectively). Statistics of the OPSv5.6 (black), b-dynamic (blue),

dynamic (red), CDAAC (version 2009.2650 for CHAMP and ver-

sion 2010.2640 for COSMIC, green), and CDAACnew (version

2014.0140 for CHAMP, magenta) statistical optimization methods

are shown. The number of events (NoE) used in the ensemble of

each statistical calculation is also indicated in each panel.

expected from its realistic account for both observation and

background uncertainties and error correlation structures.

Furthermore it can be seen, in particular from the CHAMP

results (CHAMP data have highest observational noise), that

the improved treatment of the transition to purely observed

data around 30 km has mitigated the sharpness of the change

in standard deviation.

In order to discuss the effects of different choices of fbc

on the resulting optimized bending angles, we compared

the choice of this study for linear altitude dependence (see

Sect. 2.1; termed fbc = 1 To 15 here) with the choice in the

algorithmic introduction by Li et al. (2013) (fbc = 5) and

with a reference case intentionally making no use of the bias

penalty option (fbc = 1). Figure 9 shows the comparative re-

Figure 9. Systematic differences (SysDiff, light lines) and standard

deviations (SD, heavy lines) of statistically optimized bending an-

gles, relative to “perfect” simulated bending angles or co-located

ECMWF analysis bending angles used as a reference, of the global

ensemble of simMetOp events on 15 January and 15 July 2008 (up-

per two panels), and of CHAMP and COSMIC events from the

complete months of January and July 2008 (middle and bottom pan-

els, respectively). Results from three different bias coverage factor

choices in the dynamic algorithm – i.e., fbc = 1 (green), fbc = 5

(blue), and fbc = 1 To 15 (red) – as well as from the OPSv5.6 algo-

rithm (black) are shown.

sults for these three fbc choices in the same statistical result

format as used for Fig. 8; the results shown for “Dynamic

fbc = 1 To 15” and OPSv5.6 replicate the ones of Dynamic

and OPSv5.6 of Fig. 8 for context. It can be seen that for sim-

MetOp the fbc = 5 and fbc = 1 To 15 results are rather sim-

ilar, both for systematic differences and standard deviations,

while the fbc = 1 choice indicates how a strong un-penalized

weight of background profiles forces the optimized solution

towards the background at high altitudes (here visible above

about 45 km). As is to be expected, any residual biases in the

background will therefore best survive in the optimized solu-

tion in the case of an fbc = 1 choice. This is the very reason

why the background is intentionally penalized if the dynamic

scheme is employed for climate-quality retrievals that strive

to minimize background influence.
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Figure 10. Systematic differences (SysDiff, light lines) and standard deviations (SD, heavy lines) of statistically optimized bending angles,

relative to “perfect” simulated bending angles used as a reference, of simMetOp events on 15 July 2008. Statistics for the OPSv5.6 (black),

b-dynamic (blue), and dynamic (red) statistical optimization algorithms are shown for six different regions: Global (90◦ S to 90◦ N), TRO

(tropics, 20◦ S to 20◦ N), SHSM (Southern Hemisphere subtropics and midlatitudes, 20 to 60◦ S), NHSM (Northern Hemisphere subtropics

and midlatitudes, 20 to 60◦ N), SHP (Southern Hemisphere polar region, 60 to 90◦ S), and NHP (Northern Hemisphere polar region, 60 to

90◦ N). The number of events (NoE) used in the ensemble of each region is also indicated in the panels.

For the CHAMP and COSMIC data, standard deviations

are largest for the fbc = 1 To 15 case, medium for the fbc = 5

case, and smallest for the fbc = 1 case. This is in line with

the expectation of how the robw changes under these different

choices since the observational noise is more and more miti-

gated the more relative weight the background receives. The

effect on the systematic differences (for CHAMP and COS-

MIC relative to the co-located ECMWF analysis profiles) is

relatively small in these global-scale statistics; but also here

the direction is that no bias penalty forces the results towards

the background mean state at high altitudes.

Overall Fig. 9 demonstrates that the sensitivity to the de-

tailed quantitative choice of fbc is fairly weak, as can be seen

from the moderate differences between these three cases with

very different fbc choices. This is favorable since it implies

that no detailed quantitative tuning of fbc is needed in prac-

tice; the fbc as the only free user-defined variable in the new

dynamic algorithm is rather a clear and transparent option to

predefine the influence of background information according

to what users deem suitable for their application.

In order to evaluate the performance of different statisti-

cal optimization algorithms in different latitude regions, the

systematic differences and standard deviations of optimized

bending angles were calculated for five latitudinal bands in

addition to the global case (90◦ S to 90◦ N), including trop-

ics (TRO, 20◦ S to 20◦ N), Southern Hemisphere/Northern

Hemisphere subtropics and midlatitudes (SHSM/NHSM,

20◦ S/N to 60◦ S/N), and Southern Hemisphere/Northern

Hemisphere polar regions (SHP/NHP, 60◦ S/N to 90◦ S/N).

Figures 10, 11, and 12 show the statistical results for the

global case (for context, same as in right column of Fig. 8)

and for these five regions for simMetOp (Fig. 10), CHAMP

(Fig. 11), and COSMIC (Fig. 12). The July 2008 results

are shown, which are found to be well representative; the

latitude-resolved data characteristics in January 2008 are

similar.

Figure 10 shows that the performance of the dynamic, b-

dynamic, and OPSv5.6 algorithms are rather similar glob-

ally and in the Northern Hemisphere (NHSM, NHP). In the

Southern Hemisphere, and in particular in the SHP region

(Antarctic winter in July), the conditions are evidently more

challenging, such that the OPSv5.6 algorithm accrues in-

creased biases in the upper stratosphere above 50 km. The

new dynamic algorithm underscores its good and reliable ba-

sic performance in all regions, both in terms of biases and

standard deviations.

Figures 11 and 12 for the real bending angle data show that

the performance of all algorithms in all latitude bands except

SHP (Antarctic winter) is consistent and generally similar to

the performance visible from the global ensemble, which we

discussed along with Fig. 8 above. In SHP, both systematic

differences and standard deviations are markedly larger. In

particular the CDAAC results, and most so the new CDAAC

data version, exhibit relatively large systematic differences
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Figure 11. Systematic differences (SysDiff, light lines) and standard deviations (SD, heavy lines) of statistically optimized bending angles,

relative to co-located ECMWF analysis bending angles used as a reference, of CHAMP events from July 2008. Statistics for the OPSv5.6

(black), b-dynamic (blue), dynamic (red), CDAAC (version 2009.2650, green), and CDAACnew (version 2014.014, magenta) statistical

optimization algorithms are shown for the same six regions as in Fig. 10. The figure layout is the same as for Fig. 10.

Figure 12. Systematic differences (SysDiff, light lines) and standard deviations (SD, heavy lines) of statistically optimized bending angles,

relative to co-located ECMWF analysis bending angles used as a reference, of COSMIC events from July 2008. Statistics for the OPSv5.6

(black), b-dynamic (blue), dynamic (red), and CDAAC (version 2010.2640, green) statistical optimization algorithms are shown for the same

six regions as in Fig. 10. The figure layout is the same as for Figs. 10 and 11.

at altitudes above 35 km (up to around 5 %) and also stan-

dard deviations closely reaching or exceeding 10 % even at

altitudes near 50 km. Error characteristics for January (not

shown) in the NHP region (Arctic winter) generally mirror

the SHP July (Antarctic winter) error characteristics.

We consider the new dynamic algorithm in this context

to confirm its robust performance also for real data in all

regions, although the lack of a “true” reference in these

cases does not allow for strong conclusions. In evaluating

future long-term processing application of the algorithm, we
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Figure 13. Systematic differences (SysDiff, light lines) and stan-

dard deviations (SD, heavy lines) of retrieved refractivity profiles,

relative to “perfect” simulated refractivity or co-located ECMWF

analysis refractivity used as a reference, for the global ensemble

of simMetOp events on 15 January and 15 July 2008 (top panels)

and of CHAMP events (middle panels) and COSMIC events (bot-

tom panels) from the complete months of January and July 2008.

Statistics of the OPSv5.6 (black), b-dynamic (blue), dynamic (red),

CDAAC (version 2009.2650 for CHAMP and version 2010.2640

for COSMIC, green), and CDAACnew (version 2014.0140 for

CHAMP, magenta) statistical optimization methods are shown. The

figure layout is the same as for Fig. 8.

will also include stricter validation against independent co-

located data of high quality over the stratosphere and meso-

sphere from other sources such as the Envisat/MIPAS and

TIMED/SABER satellite instruments (Remsberg et al., 2008;

García-Comas et al., 2012).

Figures 13 and 14 show the global statistics results for re-

fractivity (Fig. 13) and temperature (Fig. 14) for simMetOp

(top), CHAMP (middle), and COSMIC (bottom). These re-

fractivity and temperature results reflect the results for the

bending angles in a filtered manner, after having passed

through the Abelian integration (refractivity) and in addi-

tion the hydrostatic integration (temperature), which lead to

smoothing and downward propagation of biases and to re-

duction of standard deviations (e.g., Gobiet and Kirchengast,

2004; Steiner and Kirchengast, 2005). Due to this downward

Figure 14. Systematic differences (SysDiff, light lines) and stan-

dard deviations (SD, heavy lines) of retrieved temperature profiles,

relative to “perfect” simulated temperature or co-located ECMWF

analysis temperature used as a reference, for the global ensemble of

simMetOp events on 15 January and 15 July 2008 (top panels) and

of CHAMP events (middle panels) and COSMIC events (bottom

panels) from the full months of January and July 2008. The figure

layout is the same as for Figs. 8 and 13.

propagation, the differences from the various algorithms be-

come smaller, and results are closely similar below about

40 km and in most cases even above. The most notable differ-

ences from the consistent behavior of the different algorithms

are those of the CDAAC processings above about 50 km,

which exhibit the largest systematic differences and standard

deviations, and the additional deviations of the new CDAAC

version (shown for CHAMP) already from about 35 km up-

wards.

Again we consider the performance of the new dynamic

algorithm robust and encouraging for larger-scale applica-

tions, which may also include further adjustments of param-

eters like fbc and of averaging domains for constructing the

dynamic uncertainty and correlation information.

Figure 15 extends the view of Fig. 7 on the sensitivity

to the choice of correlation modeling to a statistical view.

It depicts the results of global statistics for simMetOp (top)

and COSMIC (bottom), for bending angle (left), refractivity

(middle), and temperature (right), from either operating the
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Figure 15. Bending angle (left), refractivity (middle), and temperature (right) systematic differences (SysDiff, light lines) and standard

deviations (SD, heavy lines), relative to their “perfect simulated” or co-located ECMWF analysis data used as a reference, of the global

ensemble of simMetOp (top) and COSMIC (bottom) events from 15 July 2008, using either the realistic global-mean correlation matrix of

the new dynamic method (“full correlation”) or simple exponential fall-off correlation as in the existing OPSv5.6 (“exp.falloff only”). The

number of events (NoE) in each statistical ensemble is also indicated in the panels.

full dynamic algorithm or from using simplified correlation

modeling with the exponential fall-off approximation. The

simMetOp results show, in line with the results of Fig. 7,

that the use of the realistically modeled full correlations is

a superior choice, though the reduction of systematic differ-

ence relative to the “true” reference is small (after the Abel or

hydrostatic integrations) in refractivity and temperature. The

COSMIC results indicate that the choice of correlation mod-

eling strongly impacts the standard deviation and to a more

limited degree also the systematic differences. While this be-

havior does not itself imply a preference, it is very clear that

the choice of the realistic full correlation modeling will be

the physically more sound and more adequate approach also

for real data.

4 Summary and conclusions

This study presented a new dynamic statistical optimization

algorithm to initialize RO ionosphere-corrected bending an-

gle profiles at high altitudes for optimal climate monitoring

throughout the stratosphere. This dynamic algorithm uses

multiple days of ECMWF analysis, ECMWF short-range

(24 h) forecast, and RO observation data to realistically es-

timate background and observation error covariance matri-

ces. Both the background and observation error covariance

matrices are constructed with geographically varying uncer-

tainty estimation and with a global-mean correlation matrix

estimated on a daily basis. The b-dynamic algorithm recently

introduced by Li et al. (2013) was used as a starting point and

provided for the estimation of the background error covari-

ance matrix and the bias correction of background bending

angles.

The main advancements of the new dynamic algorithm

compared to this previous algorithm are that it (1) adds a dy-

namically estimated observation error covariance matrix with

altitude-dependent observation uncertainty and a realistically

calculated global-mean correlation matrix; (2) updates the al-

gorithm of the calculation of basic statistical mean variables

by using ECMWF and RO data from a longer time window

and larger geographical regions for more accurate and reli-

able estimation; and (3) eliminates weaknesses that existed

near the lower boundary of statistical optimization (30 km)

by improving the uncertainty formulation and transition to

purely observed data across this boundary.

We illustrated and discussed key variables of the dynamic

background and observation error covariance matrices, in-

cluding systematic and random uncertainties and correlation

functions, in order to provide insight and show the realis-

tic character of their behavior. Both the random and sys-

tematic background uncertainties appear to be largest in the

polar regions of the winter hemisphere at mesospheric alti-

tudes. The observation uncertainties capture variations with

altitude, especially in the mesosphere, and can well repre-

sent the error characteristics of RO events, from high-quality

simulated data to comparatively noisy CHAMP data. The ob-

servation error correlation functions show a similar shape to
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background data, but with less functional smoothness and

with much smaller correlation lengths of about 0.8 km (while

background error correlation lengths range from about 1 km

near 20 km to about 6 km near 80 km). All uncertainty and

correlation estimates were found to exhibit little sub-monthly

variations during the test months January and July 2008. In

the case of anomalous sub-monthly conditions (e.g., sudden

stratospheric warming) that will occasionally happen dur-

ing long-term processing periods, we expect more variation,

however.

The new dynamic algorithm was evaluated mainly against

the one currently used in the OPSv5.6 system, using sim-

ulated MetOp data on single days (15 January and 15 July

2008) and real observed CHAMP and COSMIC data from

two full months (January and July 2008). The following was

found for the new dynamic algorithm, in particular compared

to OPSv5.6: (1) it can reduce systematic errors (biases) and

standard deviations of optimized bending angles, as proven

by simMetOp data including “true” reference profiles from

end-to-end simulations, and subsequently also benefits the

error characteristics of retrieved refractivity and temperature

profiles; (2) it can reduce the random errors of optimized

bending angles in the stratosphere for real data, as evaluated

for CHAMP and COSMIC, still at the same time leaving less

or about equal residual systematic error (bias) in the bending

angles; (3) it can better account for the observational noise

in the mesosphere, leading to larger standard deviations than

OPSv5.6 there from greater weight of the observations in the

optimized profiles, albeit without applying any artificial ob-

servation uncertainty values in the case of high noise levels.

Beyond the evaluation of the new dynamic algorithm

against OPSv5.6, atmospheric profiles from UCAR/CDAAC

were also intercompared, including use of very recently re-

leased CHAMP data from the newest (2014) CDAAC data

version. It was found that CDAAC bending angles gener-

ally exhibit markedly higher standard deviations above about

35 km and that in particular the new data version shows com-

paratively large systematic differences and standard devia-

tions. The reasons for this new-version behavior deserve fur-

ther study.

Overall, compared to previous simplified approaches of

statistical optimization, the dynamic algorithm presented

here, which realistically estimates both background and ob-

servation error covariance matrices, contains high capabili-

ties for future large-scale implementation. The evaluation of

the algorithm provided clear evidence that it can deliver re-

liable and accurate atmospheric profiles for atmosphere and

climate applications. The results therefore indicate high suit-

ability for employing the new dynamic approach in the pro-

cessing of long-term RO data into a climate record, leading

to well-characterized and high-quality atmospheric profiles

over the entire stratosphere.
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