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Abstract. Finding the number and best locations of fixed air

quality monitoring stations at street level is challenging be-

cause of the complexity of the urban environment and the

large number of factors affecting the pollutants concentra-

tion. Data sets of such urban parameters as land use, building

morphology and street geometry in high-resolution grid cells

in combination with direct measurements of airborne pollu-

tants at high frequency (1–10 s) along a reasonable number of

streets can be used to interpolate concentration of pollutants

in a whole gridded domain and determine the optimum num-

ber of monitoring sites and best locations for a network of

fixed monitors at ground level. In this context, a data-driven

modeling methodology is developed based on the applica-

tion of Self-Organizing Map (SOM) to approximate the non-

linear relations between urban parameters (80 in this work)

and aerosol pollution data, such as mass and number concen-

trations measured along streets of a commercial/residential

neighborhood of Singapore. Cross-validations between mea-

sured and predicted aerosol concentrations based on the ur-

ban parameters at each individual grid cell showed satisfying

results. This proof of concept study showed that the selected

urban parameters proved to be an appropriate indirect mea-

sure of aerosol concentrations within the studied area. The

potential locations for fixed air quality monitors are identified

through clustering of areas (i.e., group of cells) with similar

urban patterns. The typological center of each cluster corre-

sponds to the most representative cell for all other cells in

the cluster. In the studied neighborhood four different clus-

ters were identified and for each cluster potential sites for air

quality monitoring at ground level are identified.

1 Introduction

Air quality monitoring is needed to guide regulations for

public health protection (Craig et al., 2008). At city scale it

is performed through networks of monitoring stations cover-

ing large geographic areas (i.e., 2–25 km2). The monitoring

stations are placed above the urban canopy layer, where pol-

lution measurements are not directly impacted by local emis-

sions or obstructed wind flow (i.e., adjacent buildings). Usu-

ally rooftops provide adequate monitoring locations. They

provide information about the average urban ambient pol-

lution at district scale to which the general population is ex-

posed, which is used for both regulatory and advisory pur-

poses (Hidy and Pennell, 2010). However, the ambient pol-

lutants reported by these stations do not count for the spatial

variability at microscale (e.g., Moore et al., 2009; Salimi et

al., 2013) and do not always represent the pollution to which

people are exposed during their daily activities (Nerriere et

al., 2005). Significant variations can be expected at ground

level, even between sites within close proximity. The high-

est outdoor exposure to pollutants for many dwellers occurs

while commuting or carrying out activities in proximity to

emission sources (e.g., walking along busy streets). Figure 1

contrasts the difference between concentrations of particles

measured along streets and at a site over the urban canopy
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Figure 1. Time series of PM2.5 mass concentration measured above

the urban canopy (background) and along the streets of the commer-

cial/residential neighborhood of Rochor, Singapore investigated in

this work, and the hourly 24 h average concentrations reported by

the local environmental agency (ambient level) on 10 July 2013 dur-

ing the evening rush hour.

layer of the neighborhood of Singapore used as a case study

in this work.

Despite the stark difference between ambient and ground-

level pollution concentrations, monitoring networks include

only a few ground level monitoring stations with the pur-

pose of characterizing traffic emissions rather than for policy

advisory. This is usually the case everywhere and not only

of Singapore. The deployment of comprehensive monitoring

networks at ground level is hampered by the large number of

monitors and associated costs (i.e., equipment, operation and

maintenance) needed to represent the urban heterogeneity in

terms of land use, buildings morphology and distribution of

emission. To overcome this limitation and expand existing

air quality monitoring networks a new method is proposed to

determine the minimum number of stations at ground level

and their best potential locations.

Modeling techniques, such as Computational Fluid Dy-

namics (CFD) and Large-Eddy Simulation (LES) have been

used to investigate the dispersion and distribution of pollu-

tants under the urban canopy (e.g., Li et al., 2006; Tomi-

naga and Stathopoulos, 2013). However, the complexity of

the urban structure has limited their application to simplified

geometries (i.e., urban morphologies), idealized atmospheric

conditions and particular distributions of emission sources

(e.g., Li et al., 2012; Tominaga and Stathopoulos, 2013).

With recent advancements in computational and sensing

technologies, data-driven approaches, also known as inverse

or empirical modeling are an alternative to solve the problem

of modeling in complex systems (Kolehmainen et al., 2001;

Voukantsis et al., 2010), such as those imposed by the ur-

ban heterogeneity on the distribution of air pollutants at street

level. The basic idea under these models is that if there are

underlying rules controlling a system, they can be found from

a set of data by means of statistical and probabilistic meth-

ods. Therefore, with a statistically reasonable amount of air

pollution observations and data on urban parameters, a data-

driven mathematical model can be constructed to interpolate

the pollutants concentration to a whole gridded domain with

an acceptable level of accuracy, without a descriptive theory

of the real phenomena in advance.

Considering the number of potential urban parameters

controlling the pollution distribution at ground level, the

modeling challenge turns into the identification of the non-

linear functional relations between the urban parameters

and concentration of atmospheric pollutants. This view in-

verts the problem of modeling from a deductive and theory-

grounded approach to an inductive and data-driven approach

as it is similarly described in Inverse Problem Theory (Taran-

tola, 2005).

The application of Self Organizing Map (SOM) as a data-

driven modeling approach is used to find the association be-

tween particulate matter concentration at ground level and

urban parameters in its vicinity. The model (trained SOM) is

then applied to approximate the concentration of pollutants

in a whole gridded domain based on the urban parameters

of each particular cell. The resulting maps showing the spa-

tial distribution of concentration of pollutants are expected

to provide valuable information for epidemiological and risk

assessments, as well as to identify hot spots of pollution.

The trained SOM is also used in combination with a clus-

tering algorithm to determine the number of similar domains

in the area, representing the optimum number of monitoring

stations to cover the different urban patterns within the stud-

ied domain. The center of each cluster is the best potential

location in terms of representativeness of the urban parame-

ters.

The proposed data-driven model is tested using a data

set of over 80 urban parameters and high frequency (1 or

10 s) measurements of aerosol pollution along a reasonable

number of streets in a heterogeneous residential/commercial

neighborhood of Singapore, selected as a case study. Fine-

grained urban parameters spatially distributed in grid cells of

100× 100 m include information on street networks, land-

use patterns, demographics, vehicular traffic, building and

street topology, etc. The aerosol pollution measurements

were performed using a set of portable and battery oper-

ated sensors. The measured variables were mass concentra-

tion of particles with aerodynamic diameters ≤ 10, 2.5 and

1 µm (PM10, PM2.5 and PM1), particle number concentration

(PN), active surface area (ASA), and mass concentrations of

black carbon (BC) and particle-bound polycyclic aromatic

hydrocarbons (pPAHs).

It is important to point out that the study presented here is a

proof of concept with the aim of testing SOM. The proposed

methodology is not a receptor model. It does not determine

any source apportionment. Receptor models utilize chemi-

cal measurements to calculate the relative contributions from

major sources at specific locations (e.g., Viana et al., 2008).

The article first describes the main features of SOM

methodology and its capabilities for multidimensional data
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visualization, nonlinear function approximation, and data

clustering. Then the urban parameters and aerosol pollu-

tion measurements are introduced. The application of SOM

to our case is presented in three sections. The first section

describes the application of SOM as a nonlinear function

approximation method between urban parameters and mea-

sured aerosol concentrations. The efficiency of the approx-

imation functions is evaluated through cross-validations be-

tween predicted and observed data. The second section ex-

plains the application of SOM to interpolate the measured

pollution data from selected grid cells to the complete grid-

ded domain. The third section describes the combination of

SOM and a clustering algorithm to determine the optimum

number of monitoring sites and their best locations in terms

of representativeness and information gain. Maps of spatially

interpolated aerosol concentrations present the results of the

approach based on the SOM proposed here. The candidate

locations for monitoring stations for each one of the identi-

fied types of urban patterns (i.e., clusters) are indicated in a

final map showing also the representativeness of each grid

cell within its respective cluster.

2 Methods

This section starts with a brief description of SOM as a data-

driven modeling approach. The following section describes

the selected neighborhood of Singapore as a study area and

provides details of the urban parameters used for the model

evaluation. Then, the aerosol pollution measurements are in-

troduced.

2.1 Self Organizing Map

Self Organizing Map is a data-driven modeling method in-

troduced by Kohonen (1982). From a mathematical point

of view, SOM acts as a nonlinear data transformation in

which data from a high-dimensional space are transformed

to a low-dimensional space (usually a space of two or three

dimensions), while the topology of the original high di-

mensional space is preserved. Topology preservation means

that if two data points are similar (i.e., close) in the high-

dimensional space, they are necessarily close in the new

low-dimensional space. This low-dimensional space, which

is normally represented by a planar grid with a fixed num-

ber of points, is called a map. Each node of this map has

its own coordinates (xi1,xi2) and a high-dimensional vector

(W i = {wi1, . . .,win}) where the original observed data are

n dimensional vectors.

In comparison with other data transformation methods,

SOM has the advantage of delivering two-dimensional maps

visualizing smoothly changing patterns of data from the orig-

inal high-dimensional space. In addition, SOM can also be

used to predict values of parameters or dimensions using

data of each other parameter through nonlinear approxima-

tion functions (Barreto and Souza, 2006). In the field of en-

vironmental modeling, data-driven methods, such as neural

networks (e.g., Multi-Layer Perceptron Learning), Support

Vector Machines (SVM) and time series forecasting meth-

ods such as the Autoregressive Integrated Moving Average

(ARIMA) modeling technique, have been previously applied

based on the availability of massive measured data (e.g.,

Kolehmainen, 2004; Kolehmainen et al., 2001). In a recent

study Nguyen et al. (2014) used low-resolution satellite im-

ages in combination with SVM to estimate aerosol concen-

tration at ground level from urban surfaces with no need for

in situ measurements. However, they were not able to iden-

tify the urban parameters’ influence on the aerosol concen-

tration. Similarly, Hirtl et al. (2014) used satellite images,

ground-based measurements and the support vector regres-

sion method to improve air quality forecasts at regional scale.

In summary, SOM is a generic, robust and powerful

method that has been employed in several application do-

mains (Kohonnen, 2013). It can be used for visualization of

high-dimensional data and data exploration (Kolehmainen,

2004), state space modeling and clustering (Bieringer, 2013)

and most importantly, as a nonlinear function approximation

method without reducing the complexity of the system (Bar-

reto and Souza, 2006).

2.2 Study area and urban parameters

The availability of parameters such as urban topology, land

use, vehicular traffic, roads dimensions, etc. at fine spatial

resolution makes Singapore a perfect place to investigate the

influence of those parameters in the air quality at ground

level. For the selected domain of 35.1 km2, divided in cells

of 100× 100 m, 80 urban parameters were tested. The main

categories of parameters are listed in Table 1. The complete

list of parameters is provided in the Supplementary Material.

Figure 2 shows the urban area selected to test the data-

driven method proposed here. This area encompasses the dis-

trict of Rochor, which meets the heterogeneity requirements

to investigate the nonlinear correlations between urban pa-

rameters and air pollution at ground level. The district of Ro-

chor covers the historic neighborhood of Little India, which

is characterized by two types of building typologies: shop-

houses and residential towers. Shop-houses are multifunc-

tional row houses of 3–5 stories, while the residential towers

are up to 30 stories and can be built on a multi-story base with

retail function. Rochor contains multiple urban land uses that

range from residential to small-scale industrial workshops.

The urban parameters used to train SOM were those listed

in the land use section of the Singapore Master Plan 2008

within each grid cell. Land use is derived as the number of

square meters for each category.

The studied area is formed by different street layouts.

Some roads are eight-lane transit streets, others shopping

streets or back lanes with service functionality (e.g., garbage

collection). To identify the individual street typology, differ-
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Figure 2. Location of the commercial/residential district of Rochor, Singapore, selected as an urban domain to test the data-driven method

proposed here. (a) The streets and alleys marked in red correspond to the route followed for the aerosol measurements. The red star indicates

the location of the background site and the blue dot the entrance of the subway station of Farrer Park. (b) Panoramic photo of Rochor showing

the heterogonous landscape formed by shop houses and residential towers.

Table 1. Main categories of urban parameters with influence on the

aerosols concentration at ground level of the residential/commercial

neighborhood of Rochor, Singapore, used as a study case.

Category Data source

Land use Singapore Master Plan 2008

Street network and Singapore Land Transport Authority

connectivity

Building topology NAVTEQ Building Footprint

Singapore Master Plan 2008

ent graph measures (Hillier et al., 1976) were applied to a

street graph encompassing the entire city-state of Singapore

with different distance ranges to identify the major and minor

roads.

2.3 Particles pollution measurements

For the evaluation of the data-driven method proposed here

we measured a number of variables that characterize the

aerosols pollution at ground level. Particles were chosen

among the typical monitored air pollutants in cities because

they are responsible for driving the worst air quality condi-

tions in Singapore, as well as in many other cities (Velasco

and Roth, 2012).

The aerosol pollution data were collected at ground level

along streets, alleys and public areas of Rochor and from

a site placed above the urban canopy (a balcony in a 28th

floor) called thereafter background site. The purpose of this

site was to measure particles concentrations at ambient level,

as typical monitoring stations do. The route followed during

the ground measurements and the location of the background

site is shown in Fig. 2. The ground level route was designed

to cover as much as possible the different land uses and urban

topologies of the selected neighborhood.

Seven parameters of aerosol pollution were measured in

situ using portable and battery-operated sensors. The set

of sensors included two DustTrak Aerosol Monitors (TSI

8534) to measure size-segregated mass-fraction concentra-

tions (PM1, PM2.5 and PM10) at ground level and at the

background site. Similarly, two handheld condensation par-

ticle counters (TSI 3007) were used to measure the PN con-

centration (only particles with a diameter < 1 µm). Concen-

trations of BC and pPAHs, and the joint ASA of all par-

ticles were only measured at ground level using a Micro-

Aethalometer (AE51, AethLabs), a Photoelectric Aerosol

Sensor (Ecochem Analytics PAS-2000CE), and a Diffusion

Charging Sensor (Ecochem Analytics DC-2000CE), respec-

tively. All sensors were synchronized and programmed for

1 s readings, with the exception of the sensors measuring

pPAHs and ASA, which were programmed for 10 s readings.

For the ground level measurements, the instruments measur-

ing mass and number concentrations were hand carried near

breathing height, while the other instruments were carried in

a backpack with sampling line inlets at the same height. A

Global Positioning System (GPS) was used to geo-reference

the aerosol pollution readings. Additional information about

the instruments and data post-processing is provided in the

Supplementary Material.

The measurements were limited to the evening period

from 18:00 to 20:00 h on weekdays. Using commuter data

from the subway station of Farrer Park located in the mid-

dle of the neighborhood of Rochor (see Fig. 2), we found

that this is the period of major influx of people, and there-

fore of major interest from a health risk point of view. The

ground level route of 3.5 km was covered 20 times along

10 days of July 2013. None of the measurement days were

affected by rain or smoke-haze from wildfires in neighbor-

ing islands (e.g., Sumatra and Kalimantan). Constant meteo-

rological conditions, as well as constant intensity of anthro-
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pogenic activities (i.e., aerosol emissions) were assumed dur-

ing the 2 h of measurements.

Using the location of each measurement obtained by the

GPS readings properly synchronized with the particle sen-

sors, an identification flag was assigned to each measurement

point using as reference the closest grid cell and its corre-

sponding urban parameters.

The measurements at the background site were used to

verify that the ambient concentrations were constant during

the 2-h measurement periods, and the ground-level measure-

ments were used to train SOM. Two reasons explain this:

(1) the differences between the concentrations measured at

ground level and the background site showed a small vari-

ability and had therefore an insignificant influence on train-

ing SOM. Statistically, the combination of a random function

f (x)= µ(x)± σ and a constant function g (x)= c would

result in f (x)+g (x)= µ(x)+c± σ that has the same vari-

ation as f (x), and consequently has no effect on the function

approximation problem. (2) The urban parameters are infor-

mative to explain the variations at ground level, but not at

ambient level, where pollutants are usually well-mixed and

chemical reactions are also important.

3 Application of SOM as a nonlinear function

approximation method between urban parameters

and aerosol pollution data

This section describes step by step the application of SOM

as a data-driven method to approximate the nonlinear func-

tions between the urban parameters and aerosol pollution

data measured at ground level. The model is validated by

cross-validations between the values predicted by SOM and

the measured values. The involved steps are basically the fol-

lowing three:

– Step 1: Data transformation from a high to a low dimen-

sional space;

– Step 2: Modeling the nonlinear functions between urban

parameters and aerosol variables;

– Step 3: Validation and hypothesis testing.

3.1 Step 1: Data transformation from a high to a low

dimensional space

A Self Organizing Map is capable of delivering two-

dimensional maps in which smoothly changing patterns of

the original high-dimensional space can be visualized. Fig-

ure 3 shows the interrelations between the different aerosol

variables after training an SOM by simply using the aver-

ages of the measurements for each grid cell. Two patterns are

observed, one linearly correlated for PM1, PM2.5 and PM10,

and one nonlinearly correlated between the other variables

(PN concentration, BC, pPAHs and ASA). The first pattern

starts with high values in the lower-right corner of the trained

map, increasing toward the opposite upper-left corner of the

map. The second pattern shows high values in the lower-left

corner increasing towards the opposite upper-right corner.

The two different patterns are not surprising. In areas in-

fluenced by traffic emissions, such as the district of Rochor,

ultrafine particles (UFP ≤ 100 nm in diameter) typically rep-

resent > 90 % of PN concentration (Morawska et al., 2008).

The UFP emitted directly by combustion processes or formed

in the air as the hot exhaust gasses are expelled from the ve-

hicles tailpipes represent the main source of BC and pPAHs,

and are strongly correlated with both PN concentration and

total ASA. Because the mass concentration of PM1, PM2.5

and PM10 are several orders of magnitude larger than UFP,

their concentrations do not correlate with the other mea-

sured aerosol variables. We can conclude that measurements

of only two aerosol parameters would have been necessary.

Considering the instruments’ cost and importance of the pa-

rameters for health and risk assessments, we recommend

considering only measurements of BC or PN concentration

in addition to PM1 for future studies.

In addition to the smooth pattern created by the SOM, the

probabilistic distribution of the original data set (i.e., mea-

surement vectors of each grid cell) can be also obtained from

the trained map, as shown in Fig. 4. In this diagram, called a

“hit-map”, each hexagonal unit is a node of the SOM, where

the size of the black points within each unit is relative to the

number of similar observation points placed in that unit dur-

ing the training phase. Hence, the data points and nodes are

similar to each other in the same area of the map. This creates

a smooth probabilistic pattern on top of the SOM, in which

the frequency of observed patterns (proportional to the size

of the black points) can be used for resampling and simula-

tion of the observed patterns. For a detailed description of

this idea one can refer to Bieringer et al. (2013).

3.2 Step 2: Modeling the nonlinear functions between

urban parameters and aerosol variables

The already trained SOM in combination with algorithms

such as theK-nearest neighborhood (KNN) and Radial Basis

Function (RBF) represents a powerful nonlinear function ap-

proximation method. For example, using a data set Z= X∪Y

in which X= {x1, . . .,xn} and Y=
{
y1, . . .,ym

}
under the

assumption of yj = f (X) for new data sets without yj , a

trained SOM based on data set Z, combined with KNN or

RBF can predict with high accuracy the most likely yj based

on the observed X (Barreto and Souza, 2006). Hence, our

assumption of nonlinear relations between X: all urban pa-

rameters and Y: all measured aerosol variables. To overcome

the limitation imposed by not collecting aerosol data over the

complete domain (only 98 out of 3510 grid cells were moni-

tored), we considered similar aerosol concentrations for grid

cells with similar urban parameters. Under these assumptions

the SOM was trained only with urban parameters, produc-

ing patterns based on the grid cells’ similarity in terms of
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Figure 3. Visualization created by an SOM of the patterns in two-dimension maps (component planes) for the different particle variables

measured at street level.

Figure 4. Distribution of training data in the trained SOM (hit-

map) based on their similarity in urban parameters. Each hexagon

is a node in the SOM and the size of the black points within each

hexagon is proportional to the number of training data placed in that

node during the training phase. The gray shaded square indicates

the projection of a new grid cell on the trained SOM (only on urban

parameters) within the region with K-most similar nodes after the

computation of Euclidean distances between the weighted vectors

in the trained SOM and the original vectors of urban parameters Xi .

The triangles indicate grid cells with direct aerosol measurements.

these parameters and not of aerosol concentrations. For a grid

cell with no direct measurements, the aerosol concentrations

were predicted as the weighted average of the concentrations

in grid cells with measurements and similar node (urban pa-

rameters) in the trained SOM. The weighted averages were

computed using normalized similarity values between cells

of the same node. If a projected cell presents a null similarity

with any cells with measurements, the approach cannot pre-

dict its concentrations. The following steps describe in detail

the prediction process:

1. Train an SOM based only on urban parameters (with

normalized values for each parameters) covering the

whole domain and including grids with and without di-

rect aerosol measurements.

2. For each grid cell i with urban parameters Xi :

2.1. Project the grid cell i into the trained SOM and find

theK most similar nodes in terms of urban parame-

ters through the computation of Euclidean distances

between the weighted vectors in the trained SOM

and Xi (see Fig. 4).

2.2. Within the selected region of nodes (red contour

in Fig. 4) find the grid cells with aerosol measure-

ments (Xr) (triangles in Fig. 4).

2.3. Calculate the normalized similarity between the se-

lected cells and those with measurements (i.e., Xi
and Xr). Similarity is calculated based on the Eu-

clidean distance between each pair of high dimen-

sional vectors.

2.4. Based on the following two recommendations cal-

culate the aerosol concentrations for cell i:

Atmos. Meas. Tech., 8, 3563–3575, 2015 www.atmos-meas-tech.net/8/3563/2015/
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– Calculate the weighted average concentrations

from the selected cells with measurements. The

weight is based on the normalized similarity of

the urban parameters between cell i and those

cells with measurements (i.e., Xr) for the se-

lected node.

– If weights are close to each other with no

dominant weights from a few of the selected

cells, use the measurement median instead of

the mean to prevent bias from extreme values

when calculating the average concentrations.

Geometric means are also an option.

With the assumption of existing relationships between ur-

ban parameters and aerosol concentrations, the SOM creates

a smooth map of emergent urban patterns. It is worth men-

tioning that in the trained SOM map, the grid cells represent-

ing the spatial surface of the neighborhood in the physical

space are not necessarily placed in the same region if they do

not have similar urban patterns.

The number of nodes in the SOM, defined as the width and

height of the trained map, is important to optimize the SOM

training procedure. In our experiment we selected a map of

20× 25 nodes based on the size of the training data (with

3510 grid cells and 500 nodes, on average each node will rep-

resent around 7 similar grid cell, if they follow a uniform dis-

tribution). Different grid sizes did not show to be important,

but very large or very small map sizes showed direct effects

on the quality of the training algorithm in terms of quantiza-

tion and topographic errors (Kohonen, 2001). The number of

similar nodes in neighborhood search, K , is also important

to optimize the process of data-driven modeling. We tested

different K values finding that values between 1 and 5 are

good enough for cross-validation. Another assumption that

we have in the current implementation was that all the ur-

ban parameters are equally important. However, performing

the feature (i.e., urban parameter) selection and extraction in

a systematic manner could also optimize the training proce-

dure as suggested by Guyon and Elisseeff (2003). Feature se-

lection and extraction is a computationally complex problem.

The number of potential combinations of urban parameters is

on the order of 2n− 1, where n is the number of features in-

cluding all the possible transformations (e.g., z= a+ blog

(x)). Methods such as the Genetic Algorithm can help to

solve this optimization issue in a reasonable time (Niska et

al., 2004).

3.3 Step 3: validation and hypothesis testing

Before applying the SOM to predict the aerosol concentra-

tions in the entire domain, the nonlinear relationships be-

tween the different urban parameters and aerosol concentra-

tions approximated by SOM must be tested. We performed

cross-validations between the predicted values by SOM and

Figure 5. Relative errors distribution of the predicted aerosol con-

centrations based on the randomly selected validation data.

the real values to validate the proposed data-driven modeling

approach.

Because of the limited number of grid cells with measure-

ments, the cross-validation was performed using 10 % of the

samples in 20 iterations. This means that we removed ran-

domly 10 % of the cells with measurements for every itera-

tion and predicted their aerosol concentrations based on the

remaining cells with measurements. The statistical metrics of

the cross-validations shown in Table 2 demonstrate the abil-

ity of SOM to preserve the nonlinear relations between the

urban parameters and aerosol concentrations. Figure 5 shows

that the relative errors of the predicted aerosol concentrations

are tightly distributed around zero with a relatively longer left

tail for all of the particles, indicating a tendency to underes-

timate real values.

4 Application of SOM as a data-driven model to

interpolate concentrations of aerosols in a gridded

domain

Once the cross-validation has demonstrated satisfying re-

sults, we can proceed to interpolate the aerosol concen-

trations in the complete gridded domain. The interpolation

methodology is essentially the same as the methodology used

in the previous section for the cross-validation. The only dif-

ference is the addition of a confidence measure for the pre-

dicted concentrations. This confidence measure is based on

the similarity between the urban parameters and grid cells

with measurements. If no similar grid cell with direct mea-
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Figure 6. Distribution of the probabilistic confidence levels of the predicted aerosol concentrations using the nonlinear approximation

function of SOM, overlaid on a map of the studied neighborhood of Rochor, Singapore.

surements is available for a particular set of grid cells with

a similar urban pattern, a null confidence value will be ob-

tained and no concentration will be predicted. In our study

case, this situation occurred for regions with no urban sim-

ilarity with the region where the measurements were per-

formed. The confidence value for each cell was computed

following the next steps:

1. The grid cells from the complete domain are divided

into cells with measured data (XM) and no measured

data (XNM).

2. The XM cells are projected into the trained SOM to cal-

culate the Euclidean distance of each grid cell (disti)

with its K most similar nodes of SOM.

3. The median of the calculated distances for XM cells is

used as a norm for the XNM cells, (norm_dist). If the

Euclidian distance for an XNM cell is smaller or equal

to this norm, the confidence will be one, in contrast if

it is larger (i.e., less similarity with the XM cells) the

confidence will tend to zero. The confidence value for

XNM cells is computed as:

Confidencei =min(1,1− (disti − norm_dist)/disti). (1)

Figure 6 shows the confidence values of each grid cell over-

laid on a map of the studied domain. As expected, the cells

with high confidence values were those with similar pat-

terns to cells with measured data. The distribution of cells

with confidence values > 0.5 are relatively equally distributed

over the built-up regions. Regions with null confidence cor-

respond primarily to open spaces, such as public parks where

measurements were not conducted. In general, we can affirm

that the proposed method is capable of interpolating aerosol

pollution data at ground level within the built-up areas of

a heterogeneous neighborhood of 35.1 km2 using measured

data from less than 3 % of the total gridded domain.

5 Potential locations for fixed monitors based on

clusters of grid cells with similar urban patterns

Similar to previous sections, after the good cross-validation

results between the predicted values by the nonlinear approx-

imations and the measured aerosol pollution data, we can ap-

ply a clustering algorithm based on the urban parameters to

determine the optimum number of fixed monitoring sites and

their best locations (grid cells) in terms of representativeness

and maximum information gain over the whole domain.

Clustering algorithms have the task of finding the optimum

number of groups from a given data set. The members (i.e.,

grid cells) of a group must be as much as possible similar to
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Table 2. Efficiency of SOM to approximate nonlinear relationships between urban parameters and aerosol concentrations. The cross-

validation was performed using 10 % of the samples in 20 interactions as explained in the text.

Aerosol variable Based on median values of Based on arithmetic mean values of

similar grid cells similar grid cells

Median of Mean of Median of Mean of

accuracy (%) accuracy (%) accuracy (%) accuracy (%)

PM1 92.18 85.81 93.03 87.13

PM2.5 92.16 85.87 92.98 87.21

PM10 92.64 87.27 93.21 87.20

Particle number 89.34 85.97 90.24 86.48

Black carbon 78.08 69.37 79.10 67.34

pPAHs 78.72 70.67 82.42 70.98

Active surface area 88.36 75.06 88.67 76.81

Average accuracy (%) 87.35 80.00 88.52 80.45

Min accuracy (%) 78.08 69.37 79.10 67.34

Max accuracy (%) 92.64 87.27 93.21 87.21

Figure 7. Application of the heuristic elbow method to identify the

optimal number of clusters in which the grid cells of the studied

domain of Rochor can be grouped. The drastic decrease of the clus-

tering index with four clusters suggests that additional clusters will

not significantly improve the clustering quality.

each other and dissimilar to members of other groups. Each

cluster must represent an individual group with a specific set

of parameters. The clustering algorithm must also be capable

of identifying the most informative (representative) members

of that cluster within each cluster.

The K-means clustering algorithm is frequently used in

combination with a SOM. The SOM acts like a first step fil-

tering and smoothing of the data points and then K-means is

applied to nodes of the trained SOM knowing the number of

clusters in advance.

In practice, this number is determined by heuristic meth-

ods, such as the elbow method (Tibshirani et al., 2001). For

our case study, the elbow method suggests that four clusters

are enough for the whole gridded domain. It means that four

main types of urban settings define the neighborhood of Ro-

chor. As shown in Fig. 7, the clustering index (metric to eval-

uate the clusters compactness and separation) decreases dras-

tically with four clusters. More clusters do not represent any

major improvement.

Figure 8a shows the distribution of grid cells within the

trained map by SOM. The size of the black spot is propor-

tional to the number of training data in each node. After ap-

plying theK-means clustering algorithm the cells grouped in

four clusters can be observed in Fig. 8b. The size of the inter-

nal spots indicates the representativeness degree of the cells

to their clusters. The centroid point (mean value across all

the dimensions) of each cluster can be considered as its most

representative point. In this context, the grid cells with the

highest representativeness degree within each cluster should

be considered as candidate locations for monitoring air qual-

ity stations.

6 Results

The methodology based on the data-driven model of SOM

developed in this work offers two outcomes of potential rele-

vance for the air quality management in cities. Maps showing

the spatial distribution of aerosol concentrations at ground

level within the whole gridded domain represent the first out-

come. The second outcome and main goal of this work is the

finding of the optimum number of fixed monitoring stations

and their potential best locations to cover the different types

of urban settings (i.e., clusters) of the studied neighborhood.

Figure 9 shows the spatial distribution of PM2.5 within

the gridded domain including measured and estimated data

as an example of the first outcome. Similar to Fig. 6, the

grid cells with no data correspond to cells with null inter-

polation confidence, where no prediction was possible due to

the lack of similarity in terms of urban parameters with the

grid cells with direct measurements. Constraining the anal-

ysis to grid cells with measured and interpolated data with

confidence values ≥ 0.5, the average PM2.5 concentration at
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Figure 8. (a) Distribution of grid cells after applying the K-means

clustering algorithm. Each cluster is represented by a different color.

The size of the internal spots indicates the representativeness degree

of each cell to its cluster. Cells with larger spots are more represen-

tative. (b) Distribution of grid cells within the trained map by SOM.

The size of the black points is proportional to the number of train-

ing data, which are placed in the same area of SOM based on their

similarities.

ground level in the neighborhood of Rochor is 31.3 µg m−3

during the evening period from 18:00 to 20:00 h. This con-

centration is 1.25 times higher than the 24 h average con-

centration of 25 µg m−3 recommended as guideline by the

World Health Organization (WHO). Similarly, only 10 % of

the grid cells report concentrations below the WHO guide-

line and 75 % are higher than 31.0 µg m−3. In comparison

with the average concentration of 18.8 µg m−3 measured at

the background site, only two cells present smaller concen-

trations. Table 3 shows detailed statistics of the aerosol con-

centrations predicted for the whole gridded domain.

Although the measurements were conducted during the

period of major influx of people, and therefore of major in-

terest from a health risk point of view, the nonlinear relations

between urban parameters and aerosol pollution data ob-

tained by SOM cannot be representative for the whole diurnal

course. They are only representative of the rush-hour period

monitored. The nonlinear relationships will vary through-

out the day as a consequence of the variability in the emis-

sions’ intensity within the studied neighborhood. However,

the aerosol measurements during the evening rush-hour had

the unique purpose of testing SOM. The proposed method-

ology is expected to be used in the design of future long-

term studies. Maps showing the spatial distribution of pollu-

tants concentration at ground level in fine-grained domains

will provide valuable information for epidemiological and

risk assessments. We already discussed the poor ability of

typical ambient monitoring stations to represent the pollu-

tion levels at the height where urban dwellers carry out the

majority of their activities. This is of particular concern in

the ubiquitous environments affected by vehicular emissions.

Many epidemiological studies have found significant health

effects due to exposure to vehicular traffic (e.g., Lipfert and

Figure 9. Spatial distribution of PM2.5 at the studied neighborhood

of Rochor during the evening rush hour (18–20 h) on weekdays,

including measured and interpolated data. The data interpolation

was based on the aerosol pollution measurements conducted along

the ground level route of 3.5 km marked in Fig. 2 during 10 days of

June 2013.

Wyzga, 2008). Although these studies have investigated var-

ious exposure criteria, including traffic intensity and proxim-

ity, control strategies have generally not yet been proposed

on a widespread basis, in part due to the lack of long term air

pollution monitoring at street level, as well as of a method-

ology to understand the relationships between pollutant con-

centrations and urban parameters. In a following article we

will discuss the features and roles of those parameters in the

air quality of the studied neighborhood of Rochor. The under-

standing of these relationships might be also useful for urban

planning, in particular when designing strategies to improve

urban mobility promoting walking and cycling as a means to

cover the so called first and last miles (distances that com-

muters must cover in getting to and from public transporta-

tion).

Figure 10 summarizes the application of SOM as a data-

driven method to find the optimum number of monitoring sta-

tions and their potential locations in terms of representative-

ness. The top candidate grid cell(s) for each one of the four

different urban settings that form the residential/commercial

neighborhood of Rochor are marked over the individual maps

of each urban setting. The grid cells were brought back to the

real two-dimensional space using as reference their latitude

and longitude data. The next step in the selection of sites is

to visit the candidate locations and verify that enough space

is available for a fixed monitoring station, the security con-

ditions and continuous access to power. The location must

fulfill the criteria to assure the proper performance of the air
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Table 3. Statistics of the aerosol concentrations predicted by SOM for the complete gridded domain of the neighborhood of Rochor on

weekdays during the evening rush hour (18–20 h). The analysis considers only grid cells with measured or extrapolated data with confidence

values ≥ 0.5.

Aerosol Mean SD Min 25 % 50 % 75 % 95 % Max

PM1 (µg m−3) 30.96 3.32 14.60 30.66 31.02 32.88 35.23 66.37

PM2.5 (µg m−3) 31.26 3.34 14.83 30.95 31.33 33.18 35.57 67.58

PM10 (µg m−3) 33.98 3.35 15.86 33.72 34.29 35.70 38.46 71.73

Particle number (# cm−3) 46585 7154 20427 42659 44044 53311 57932 92240

Black carbon (µg m−3) 6.82 2.11 1.94 4.93 6.40 8.65 10.42 25.85

pPAHs (ng m−3) 78.26 27.14 27.72 57.14 73.16 102.57 119.26 345.00

Active surface area (mm2 m−3) 149.09 17.23 43.55 133.57 153.99 162.20 178.95 225.50

Confidence 0.85 0.16 0.50 0.73 0.90 1.00 1.00 1.00

Figure 10. Distribution of the grid cells in the real two-dimensional space grouped in the four different clusters (i.e., urban settings) that

form the neighborhood of Rochor, Singapore. The color intensity indicates the representativeness degree. Grid cells colored more intensely

represent better the urban parameters of their corresponding clusters. The most representative grid cells of each cluster (highest value(s)) are

marked in red as the candidate locations for fixed air quality stations. The gray areas correspond to buildings.
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quality monitors. For further guidance the reader may refer to

handbooks for air quality monitoring (e.g., US-EPA, 2013).

If we select more than one candidate location for each clus-

ter (say three top candidates, each selected independently),

another optimization step would be necessary to find the best

four monitoring stations out of 12 candidate points (three lo-

cations for four clusters) in a way to minimize the overlap

between stations of different clusters and maximize the total

physical coverage of the monitoring stations.

7 Conclusions

The capability of SOM as a data-driven modeling method

to approximate nonlinear relationships between multiple ur-

ban parameters and air pollution data at ground level was

demonstrated using a database of urban parameters spatially

distributed in high-resolution grid cells created with pur-

poses different to air quality monitoring (e.g., urban plan-

ning) and aerosol pollution data collected during a short field

study. The good agreement between measured and predicted

aerosol concentrations showed that the group of urban pa-

rameters used in this work provides a good indirect measure

of aerosol pollution at ground level within the studied neigh-

borhood. The same methodology can also be used for any

gaseous pollutant. Every pollutant, depending on its origin

and physical and chemical characteristics will present differ-

ent nonlinear relationships.

The satisfying results of SOM to approximate nonlinear

relationships from multidimensional data gave the opportu-

nity to apply SOM as a method to interpolate aerosol pollu-

tion data in a complete gridded domain, including grid cells

with no direct measurements. In the same context, SOM in

combination with a clustering algorithm was used to deter-

mine the optimum number of locations for monitoring sites

to cover the different urban settings or clusters forming the

studied neighborhood, as well as to find their best location

in terms of representativeness of urban patterns within their

clusters.

The data-driving modeling methodology developed in this

work as a proof of concept must be relatively easy to im-

plement to other urban domains if such urban parameters as

street networks, land-use patterns, demographics, transporta-

tion data, and building and street topology are available in

databases of high spatial resolution. The aerosol pollution

measurements should not represent a major cost if portable

and battery-operated sensors are used, as in this work. We

evaluated seven different aerosol parameters, but measure-

ments only of black carbon or particle number concentration

in addition to PM1 would have only been necessary accord-

ing to the nonlinear correlations between aerosol parameters,

identified visually by SOM.

The Supplement related to this article is available online

at doi:10.5194/amt-8-3563-2015-supplement.
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