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Abstract. Atmospheric amines may play a crucial role in for-

mation of new aerosol particles via nucleation with sulfuric

acid. Recent studies have revealed that concentrations below

1 pptV can significantly promote nucleation of sulfuric acid

particles. While sulfuric acid detection is relatively straight-

forward, no amine measurements to date have been able to

reach the critical sub-pptV concentration range and atmo-

spheric amine concentrations are in general poorly charac-

terized. In this work we present a proof-of-concept of an in-

strument capable of detecting dimethyl amine (DMA) with

concentrations even down to 70 ppqV (parts per quadrillion,

0.07 pptV) for a 15 min integration time. Detection of ammo-

nia and amines other than dimethyl amine is discussed. We

also report results from the first ambient measurements per-

formed in spring 2013 at a boreal forest site. While minute

signals above the signal-to-noise ratio that could be attributed

to trimethyl or propyl amine were observed, DMA concentra-

tion never exceeded the detection threshold of ambient mea-

surements (150 ppqV), thereby questioning, though not ex-

cluding, the role of DMA in nucleation at this location.

1 Introduction

Formation of secondary aerosol particles and cloud conden-

sation nuclei in the atmosphere is initiated by nucleation. The

role of sulfuric acid in nucleation is well established (e.g.

Weber et al., 1995; Riipinen et al., 2007; Sipilä et al., 2010).

However, sulfuric acid alone, or with water, does not nucle-

ate efficiently enough to explain atmospheric nucleation rates

(Kirkby et al., 2011); rather additional vapours are required

to stabilize nucleating clusters. Ammonia (Ball et al., 1999;

Vehkamäki et al., 2004; Kirkby et al., 2011) and amines

(Kurten et al., 2008; Berndt et al., 2010, 2014; Erupe et al.,

2011; Kirkby et al., 2011) are proposed to act as stabiliz-

ing agents of sulfuric acid clusters in atmospheric new parti-

cle nucleation. Recently, Almeida et al. (2013) showed that

dimethyl amine concentrations below 1 pptV can dramati-

cally enhance formation rates of new sulfuric acid particles

(by several orders of magnitude); further, concentrations as

low as just a few pptV can saturate the nucleation rate at at-

mospheric sulfuric acid concentrations. Enhancement of the

particle formation rate is due to dimethyl amine’s ability to

Published by Copernicus Publications on behalf of the European Geosciences Union.



4002 M. Sipilä et al.: Proof-of-concept and first ambient data from boreal forest

stabilize molecular sulfuric acid clusters, minimizing evap-

oration and enabling further growth (Almeida et al., 2013).

Amines other than dimethyl amine can have a similar effect

on nucleation (Berndt et al., 2014), but no experiments to

date have probed the atmospherically important concentra-

tion range from ppqV to a few pptV.

Atmospheric measurements of amines are rare (Ge et al.,

2011; Hanson et al., 2011; Yu et al., 2012; Freshour et al.,

2014). Gas phase concentrations of these bases are usually

low, and reliable measurement of atmospheric amine con-

centrations is far from sufficient to evaluate their role in

atmospheric chemistry and physics. For example, from the

SMEAR II field station (Hyytiälä, southern Finland; Hari and

Kulmala, 2005), where the nucleation process has been seri-

ously investigated for two decades, there are no reliable data

for amine concentrations. First attempts to quantify concen-

trations of dimethyl or ethyl amine (DMA/EA) and trimethyl

or propyl amine (TMA/PA) were performed by Sellegri et

al. (2005), who applied an ambient pressure protonated water

cluster-based chemical ionization mass spectrometer. Selle-

gri et al. (2005) reported observations of TMA with the con-

centration exceeding 10 pptV. However, that signal is most

likely explained by an isotope of protonated acetone, occur-

ring at the same integer mass as protonated TMA, making

the observation questionable. No other amines were detected,

suggesting that DMA concentrations were below few pptV.

Note that DMA and EA (and also TMA and PA) have identi-

cal elemental composition and can thus not be separated from

each other via mass spectrometry (MS).

More recently, amine concentrations at SMEAR II were

published by Kieloaho et al. (2013). Amines collected

on phosphoric acid-impregnated fibreglass filters (through

a polytetrafluoroethylene (PTFE) filter) were subsequently

analysed via liquid chromatography electrospray ionization

mass spectrometry (LC-ESI-MS). They reported remark-

ably high gas phase amine concentrations, with DMA/EA

and TMA/PA concentrations exceeding 100 pptV in autumn.

Concentrations in spring time, relevant for comparison to our

present work, were also reasonably high, up to a few tens of

pptV for both DMA/EA and TMA/PA. This observation is

in conflict with Schobesberger et al. (2015) who measured

natural ion cluster distributions at SMEAR II during nucle-

ation and found much more ammonia than amine composi-

tion in bisulfate–sulfuric acid–base clusters. Based on that

observation and targeted laboratory experiments, Schobes-

berger et al. (2015) concluded that DMA concentration at

the site should be less than 1 pptV. Obviously, this discrep-

ancy should be resolved.

Despite some drawbacks, atmospheric pressure chemical

ionization mass spectrometry (APCI-MS) as applied by Sel-

legri et al. (2005) is a promising approach for ultrahigh-

sensitivity online gas phase amine detection. Nitric acid

has been measured by using bisulfate ion as primary ion

(Mauldin et al., 1998). For acids, such as sulfuric acid, de-

tection limits down to 1 ppqV have been achieved with the

APCI-MS technique when the nitrate ion has been used as

the primary ion (e.g. Eisele and Tanner, 1993; Jokinen et

al., 2012). With the APCI-MS technique, interference from

compounds in particle phase is minimized, whereas, in tech-

niques utilizing sample collection and subsequent analysis

(e.g. LC-MS), the separation between particle and gas phases

is difficult.

APCI-MS approaches in use today rely on proton transfer

reaction using protonated water clusters (Hanson et al., 2011)

or protonated ethanol or acetone (Yu et al., 2012). Product

ions which are guided through a differentially pumped sec-

tion comprising collision dissociation chamber and an oc-

topole ion guide are subsequently detected by a quadrupole

mass spectrometer (Hanson et al., 2011; Yu et al., 2012).

Using the above technique with protonated ethanol, Yu et

al. (2012) reported a limit of detection (LOD) of 7 pptV for

dimethyl amine and from 8 to 41 pptV for a series of other

small alkylamines. Hanson et al. (2011) reported amine de-

tection at “sub-pptV” levels by means of protonated water

cluster ionization. This sub-pptV measurement range is still

above the ppqV range reachable in the case of NO−3 ioniza-

tion detection of strong acids. These approaches may also

suffer from flaws interfering with reliable amine detection

and quantification: (i) outgassing of amines from gas lines

and surfaces of chemical ionization system, (ii) non-collision

limit charging efficiency, and (iii) uncertainty in identifica-

tion of the elemental composition of detected ion due to in-

sufficient mass resolution of the quadrupole mass spectrom-

eter. Further problems in high-sensitivity amine measure-

ments can be caused by amine contamination in the zero gas

required for determination of instrument background.

Here we describe a chemical ionization system that uti-

lizes ion-induced clustering of sulfuric acid and amines or

ammonia, with ions detected with an atmospheric pressure

interface time-of-flight mass spectrometer (APi-TOF, Junni-

nen et al., 2010). This approach addresses the above issues

that can complicate amine detection. Instrument response to

ammonia and dimethyl amine was studied by calibrations

performed in the CLOUD facility at CERN (e.g. Kirkby et

al., 2011; Almeida et al., 2013). The instrument was used for

quantification of ammonia and dimethyl amine as well as for

qualitative detection of other amines in CLOUD at CERN

and at the SMEAR II boreal forest field station in Hyytiälä,

southern Finland, during the PEGASOS campaign in spring

2013.

2 Instrument

The instrument uses the nitrate ion atmospheric pressure

chemical ionization (CI) system combined with an APi-TOF

(Junninen et al., 2010) as described in Jokinen et al. (2012).

Two modifications were made to the original instrument

(Jokinen et al., 2012). First, due to multiple problems associ-

ated with use and transportation of radioactive materials, the
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radioactive 10 MBq Am-241 ion source was replaced by a

Hamamatsu (model L9490) soft (< 9.5 keV) X-ray tube. Sec-

ond, a system for introducing gaseous sulfuric acid (H2SO4)

in the sample flow was developed. A schematic representa-

tion of the instrument is shown in Fig. 1.

Operation of the chemical ionization ion-induced nucle-

ation inlet is based on chemical ionization of sulfuric acid,

H2SO4 (≡SA) by nitrate ions, NO−3 , to form bisulfate ions,

HSO−4 (≡SA−), and subsequent formation of bisulfate ion–

sulfuric acid clusters:

NO−3 +SA→ HNO3+SA− (R1)

SA−+SA→ SA ·SA− (“dimer”) (R2)

SA ·SA−+SA→ (SA)2 ·SA− (“trimer”). (R3)

In the presence of dimethyl amine (DMA):

(SA)2 ·SA−+DMA→ DMA · (SA)2 ·SA−. (R4)

Further clustering of sulfuric acid takes place:

(SA)2 ·SA−+SA↔ (SA)3 ·SA− (“tetramer”) (R5)

after which, besides DMA, ammonia (NH3) can also stick to

the clusters:

(SA)3 ·SA−+DMA→ DMA · (SA)3 ·SA− (R6)

(SA)3 ·SA−+NH3↔ NH3 · (SA)3 ·SA−. (R7)

If sufficient sulfuric acid is present in the ambient sample it

is possible that DMA (at very low concentrations) is bound

to sulfuric acid. In that case the following reaction can also

occur:

SA ·SA−+SA ·DMA→ DMA · (SA)2 ·SA−. (R8)

Clusters formed in reactions (R2)–(R8) can also decompose

(evaporate), specifically in the reduced pressure in the APi

interface to the mass spectrometer. Evaporation rates for re-

actions (R1)–(R8) at +25 ◦C have been calculated to be: R2:

2.70× 10−15, R3: 5.60× 10−3, R4 and R8: 5.28× 10−2, R5:

24.1, R6: 1.89 and R7: 27.4 s−1 (Ortega et al., 2014). In re-

actions (R2)–(R4) and (R8), only the forward reaction needs

to be considered. Due to their highly negative formation free

energy, clusters formed in these reactions should be virtually

non-evaporating in the 0.1 s residence time of the CI-system.

DMA· (SA3)SA− formed in reaction (R6) should also be sta-

ble in our timescale with a lifetime of the cluster of the order

of 0.5 s at+25 ◦C. However, the most probable fate of DMA·

(SA3)SA− is not loss of SA but dissociation to neutral DMA·

(SA2) and SA·SA−. Therefore, addition of another SA to the

highly stable DMA·(SA2)SA− may result in a loss of the

Figure 1. Schematic of the bisulfate – cluster chemical ionization

atmospheric pressure interface time-of-flight mass spectrometer.

DMA altogether from the ion, especially when the instru-

ment is operated at temperatures above +25 ◦C.

This assumption of stability does not apply to reactions

(R5) and (R7), which complicate the detection of ammonia

or amines which do not form stable adducts with (SA)2SA−

similar to reaction (R4). The backward (evaporation) rates

for reactions (R5) and (R7) will also be temperature sen-

sitive. Thus, stable detection of compounds clustering only

with (SA)3·SA− requires precise temperature control of the

instrument.

Presence of (SA)4·SA− is unlikely at the ∼+20 ◦C op-

erating temperature of our system (Ortega et al., 2014) but

the clusters formed in reactions (R4), (R6) and (R7) can still

add another SA molecule, forming a reasonably stable clus-

ter. For example, for NH3·(SA)4·SA−, the evaporation rate is

2.29 s−1 (+25 ◦C, Ortega et al., 2014). Evaporation rates for

DMA·(SA)4·SA− are not reported. Attachment of a fifth sul-

furic acid can give ion signals from the bases clustered with

the SA trimer to pentamer (DMA) or with the tetramer or

pentamer (NH3). Further reactions where an additional DMA

or NH3 molecule attaches to cluster can occur but should

not significantly affect the cluster distribution at expected

low amine concentrations. These clusters containing multi-

ple bases are readily detected with TOF-MS (see later).

Besides evaporation in the CI-system, clusters can de-

compose in energetic collisions in the electric fields of APi

quadrupoles. Also the cluster temperature will increase as

a result of the collisions with the residual gas molecules

thereby increasing the cluster evaporation rates. Detailed un-

derstanding of these effects is a hot topic in MS in general,

but will require significant experimental and modelling ef-

forts. Collision energies inside APi are not very tempera-

ture dependent and thus once the fields are stable any de-

clustering processes should be independent on environmen-

tal conditions. However, since the tuning significantly af-
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Figure 2. Dimethyl (DMA) and/or ethyl amine (EA) and diethyl

amine (DEA) form stable clusters already with bisulfate “trimer”,

whereas ammonia, methyl amine (MA) and trimethyl/propyl amine

(TMA/PA) are detected with “tetramer” or larger clusters.

fects the ion transmission, fragmentation and evaporation, it

is highly important that instruments are calibrated using the

same settings as used in the field measurements.

In our experiment, electric fields inside the APi were opti-

mized by manually tuning to provide maximum transmission

and minimum fragmentation for the preferred mass range

through the APi. In the present experiment we did not tune

the instrument specifically for the purpose but we used the

settings optimized for dimethyl amine–sulfuric acid nucle-

ation experiments presented in Kürten et al. (2014). There-

fore, the sensitivity of the instrument could still be improved

by improving the APi transmission, especially in the mass

range of 300–500 Da.

An overview of sticking preferences of various amines

is shown in Fig. 2, depicting signals observed from labo-

ratory indoor air mixed with a high concentration (several

1010 molecules cm−3) of sulfuric acid vapour. While sig-

nals from DMA/EA, and diethyl/butyl amine (DEA/BA) are

roughly as abundant with both the “trimer” and “tetramer”,

the signals from NH3, MMA and TMA/PA are larger with

the tetramer. This observation, albeit qualitative, indicates

that DMA/EA and DEA/BA can be detected with higher sen-

sitivity than ammonia and other small amines, because the

“trimer” concentration in the system is significantly higher

than that of the “tetramer” and larger sulfuric acid clusters.

Figure 3 shows the operation of the NO−3 CI-system in

more detail (Eisele and Tanner, 1993; Jokinen et al., 2011),

including COMSOL computational fluid dynamical mod-

elling. The system is comprised of a 3/4′′ inlet tube through

which the sample is drawn with a flow rate of 10 L min−1.

A cylinder (coaxial to the inlet tube) is held at −130 V po-

tential, separating the ion production region from the sample

tube at ground potential. Still coaxial to that is an outer cylin-

der also kept at−130 V potential. An X-ray source irradiates

Figure 3. Operation principle of NO−
3

CI system used to pro-

duce bisulfate–sulfuric acid–base clusters from ambient amines and

added sulfuric acid present in the sample flow. Upper plot represents

the flow profile inside the system. Lower plot depicts the electric

potential inside the system. In the upper panel, the black thick line

shows the ion trajectory in the case where all electric potentials are

set to zero and ions “go with the flow”. In the lower panel, the black

thick line shows electric fields guiding ions toward the centreline of

the ion source, allowing ions to mix and interact with the sample

and eventually be transported to the pinhole of the mass spectrom-

eter. The original concept as presented by Eisele and Tanner (1993)

was adopted by Jokinen et al. (2011) and coupled to the APi-TOF

mass spectrometer.

the space between these two cylinders through an aluminium

window at the outer cylinder surface.

Sheath gas (ideally cryogenic N2) flows at 20 L min−1 in

the space between the cylinders and carries the ions produced

downstream toward the ion–molecule reaction (IMR) tube.

HNO3 vapour added into the sheath flow promptly converts

ions (formed from the X-rays) to NO−3 (HNO3)n,n=0−2 ions

or ion clusters. After entering the IMR region, an electric

field (−110 V) between the IMR tube and the ground po-

tential of the sample tube pushes the ions toward the sam-

ple (centreline) flow. Flows (sheath and sample) and electric

field strength are balanced so that ions do not hit the sample

tube wall, rather following an axial trajectory after entering

the sample flow. Ions then interact with the sample flow for

up to 340 ms before the electric field guides the ions into the

0.7 L min−1 flow through the pinhole into the atmospheric

pressure interface of the TOF mass spectrometer.

The upper panel of Fig. 3 shows the flow velocity profile

and nitrate ion trajectory in the absence of any electric poten-

tial in the drift tube or in the ion source. Ions travel close to

the wall of the drift tube and exit the system with excess flow

without interacting with the sample flow. In this case ions do

not enter the mass spectrometer. The lower panel of Fig. 3 de-

picts the electric potential and the nitrate ion trajectory with

the electric field on. The electric field and gas flows guide the

ions from the ion production region to the centreline of the

drift tube and eventually through the pinhole into the APi-

Atmos. Meas. Tech., 8, 4001–4011, 2015 www.atmos-meas-tech.net/8/4001/2015/



M. Sipilä et al.: Proof-of-concept and first ambient data from boreal forest 4005

TOF. This nitrate ion based CI-APi-TOF has been used in

many recent laboratory and ambient air studies probing at-

mospheric chemistry and particle formation (e.g. Mauldin et

al., 2012; Almeida et al., 2013; Ehn et al., 2014; Kürten et al.,

2014). It has been shown to be highly sensitive toward sul-

furic acid, sulfuric acid–amine clusters, and highly oxidized

low volatility organics.

For direct amine measurements bisulfate–sulfuric acid

clusters need to be generated first. Therefore, preceding the

nitrate CI system, a flow (1–2 L min−1) saturated in sulfu-

ric acid vapour is mixed with the sample air. The saturator

is a temperature-controlled (+20 ◦C) rotating coaxial design

(Fig. 4). The coaxial design allows a significantly more com-

pact construction than a cylindrical design, while rotation

continuously wets the walls with liquid sulfuric acid. This

minimized unwanted wall effects; e.g. clean glass surfaces

act as a sink to sulfuric acid vapour in contrast to liquid acid

coatings. The glass tube connecting the rotating saturator to

the sample inlet is as short as possible (5 cm). Mixing of sul-

furic acid vapour and the sample gas then takes place in the

20 cm distance before the sample air enters the drift tube/ion

interaction region. The detailed mixing process is not well

known; it most likely involves both small-scale turbulence,

as well as diffusion. Sulfuric acid concentration in the result-

ing mixture is in the range of 2–6× 1010 molecules cm−3.

After entering the IMR tube, reactions (R1)–(R8) result in

prompt formation of bisulfate–sulfuric acid–base clusters for

mass spectrometric analysis. Neutral sulfuric acid–base nu-

cleation can occur both in the sample tube as well as in the

IMR tube; in the latter, ionization of neutral clusters by NO−3
or SA− can also occur. However, since ion-induced cluster-

ing is significantly faster (due to the ion-enhanced collision

rate) than neutral cluster formation, neutral processes likely

play a minor role.

Three problems that have previously limited amine mea-

surements (see the Introduction) are, to a large extent, solved

with the present approach. Firstly, outgassing of amines from

flow system walls is effectively prevented by acid coating of

all gas lines and CI-source surfaces. Stainless steel surfaces

in the sheath gas line are also extensively coated with HNO3

added to sheath gas flow. Such acid coating activates tube

walls with respect to base deposition and prevents desorp-

tion. Only the wall of 3/4 inch diam. 40 cm long inlet tube ex-

tending to ambient atmosphere is not actively acidified. Also

the use of cryogenic nitrogen as a sheath gas and stainless

steel surfaces in instrument as well as in gas lines between

the nitrogen Dewar and the instrument help in decreasing the

background signals.

The second problem, the non-collision limit charging ef-

ficiency, is solved for DMA by the choice of the ioniza-

tion method. DMA sticks to sulfuric acid trimer and tetramer

without significant evaporation. This, however, is not the case

with ammonia. Other amines also need to be thoroughly in-

vestigated.

Figure 4. Schematic of the rotating sulfuric acid saturator. The sat-

urator is connected to the sample tube as in Fig. 1.

The third problem, identification of the atomic composi-

tion of detected ion, is solved by application of high mass

resolution TOF mass spectrometer. The mass resolution of

the APi-TOF is ∼ 4000 Th/Th and the mass accuracy is

< 20 ppm. This is facilitated in data post-processing utiliz-

ing high-resolution peak identification and isotopic patterns

(tofTools, Junninen et al., 2010). Combined with high selec-

tivity of the ionization method, many unwanted compounds

are not ionized, or resolved in a very clean mass spectrum.

3 Sensitivity studies

Sensitivity was studied in the CLOUD experiment at CERN.

For a detailed description of the facility see Kirkby et

al. (2011) and Almeida et al. (2013). Briefly, the CLOUD

facility is designed for studying nucleation and growth of

secondary aerosol, cloud droplet activation and freezing and

the effect of galactic cosmic radiation on those processes,

under precisely defined laboratory conditions. The CLOUD

chamber itself is a 26 m3 electropolished stainless steel tank

equipped with a UV-light system and precise temperature

control. Lifetime of condensable gases against wall loss is

in the range of few minutes. Air inside the chamber is pre-

pared from cryogenic nitrogen and oxygen. Input gases are

precisely controlled and the gas composition is continuously

monitored by an extensive suite of analysing instruments.

DMA and/or NH3 were mixed with the flows of cryogenic

oxygen and nitrogen, prior to entering the chamber. The cal-

culation of the volume mixing ratios is based on a balance

between the flow of DMA into the chamber and its loss to

the chamber walls. While the amount of the inflowing DMA

is directly obtained from the mass flow controller settings,

the wall loss rate is derived from two independent methods.

The first one relates the measured wall loss rate of sulfuric

acid to the one of dimethylamine taking into account that the

loss rate is proportional to the square root of the diffusivity

for the different molecules (Crump and Seinfeld, 1981). The

second method involves directly measured decay rates when

the flow of DMA is shut off after a sufficiently long period

when DMA was present at high mixing ratios (several tens of

pptv). These measured decay rates were obtained using ni-

trate cluster ions for the DMA detection. A detailed descrip-

tion of the DMA quantification by this method will be given

www.atmos-meas-tech.net/8/4001/2015/ Atmos. Meas. Tech., 8, 4001–4011, 2015



4006 M. Sipilä et al.: Proof-of-concept and first ambient data from boreal forest

Figure 5. Mass spectra with [DMA] = 2.22 pptV, the lowest stud-

ied [DMA]; and the background signal (in the absence of added

DMA) without and after the baking and flushing of the CLOUD

chamber. Integration time is 15 min. The principal peak is located

at 435.92 Th; the first of the isotopes 436.92 Th is partly overlap-

ping with signal from an unidentified compound. The second iso-

tope at 437.92 Th is, however, clearly visible. The signal at 437.6 Th

originates from a chlorine-containing substance, whose source is

unknown. Lowest detection limit was defined as three times the

background signal at main peak (435.92 Th) and was found to be

70 ppqV (0.07 pptV). Practically, ultimate sensitivity is limited by

contamination in blank air or on inlet surfaces. A high-resolution fit

of DMA is also shown and represents the ideal distribution of signal

in the absence of overlapping signals from other compounds.

in forthcoming publications. For the scope of this paper it is

sufficient to note that just the relative change in the DMA sig-

nal is required to obtain the wall loss rate, while the absolute

measurement is not a necessity. Overall, the different meth-

ods for determination of the DMA mixing ratios, including

also the direct IC measurement (Praplan et al., 2012), yield

consistent results and the error bars in Fig. 6 indicate the un-

certainty.

3.1 Sensitivity for DMA

The CIMS system described in this work was calibrated

against the concentration in the CLOUD chamber with

[DMA] ranging from 2.2 to 34.9 pptV. These experiments in-

cluded simultaneous generation of sulfuric acid (from SO2

oxidation) at atmospheric levels to investigate of sulfuric

acid–DMA nucleation. Sulfuric acid present in the chamber

could affect DMA detection via clustering with the DMA

which could slightly affect the measurement to a pure DMA

system. However, since sulfuric acid concentrations were

representative of the atmosphere, the presence of sulfuric

acid makes the calibration system more atmospherically rel-

evant. In Fig. 5, example mass spectra around mass/charge

436 Th, the mass of the DMA-tetramer cluster, show sig-

nals with [DMA] = 2.22 pptV and with no added DMA

(i.e. chemical background of the system with CLOUD tank

filled with cryogenic N2 / O2 mixture) without special clean-

Figure 6. Response of bisulfate cluster signal to [DMA] = 0–

35 pptV. DMA concentration in the CLOUD tank was adjusted by

adjusting the DMA-containing flow to the chamber.

ing procedure and after cleaning the chamber by baking at

∼ 100 ◦C and flushing with cryogenic air in presence of O3

and OH (UV-light) to desorb and/or oxidize any contami-

nants on the chamber wall. The main isotope at 437.92 Th

is clearly visible demonstrating the sensitivity and the reso-

lution of the method. The isotopic distribution and the exact

mass of the main peak allow unambiguous identification of

the atomic composition of the cluster ion.

The response of the instrument as a function of [DMA]

is shown in Fig. 6. DMA is observed in the clusters with

(SA)2−4·SA−, with DMA·(SA)3·SA− being the most abun-

dant cluster. Summing up the detected clusters yields the to-

tal signal of DMA. The signal is normalized by (SA)2·SA−,

the dominant reagent ion at the end of the IMR tube. The

(SA)2·SA− should be the ion to which most of the DMA at-

tach according to reaction (R4) (before the further attachment

of sulfuric acid), since DMA cannot attach to (SA)0−1·SA−

and larger clusters (SA)>2·SA− are far more sparse. It is pos-

sible that a significant fraction of neutral DMA molecules

enter the IMR region bound to sulfuric acid. In that case, re-

action (R8) can play a role as well, and normalization to sum

of bisulfate dimer and trimer might be appropriate. However,

the results in Fig. 6 are independent on the choice of normal-

ization method.

All detected ions correlate extremely well with the DMA

concentration calculated from the flows injected in the cham-

ber. The correlation between the normalized sum of detected

clusters and DMA concentration is excellent, R2
= 0.9994.

Such linearity demonstrates the performance of our instru-

ment and, also, the superior control and performance of the

CLOUD chamber facility. DMA·(SA)2−4·SA− clusters are

also very stable and, therefore, temperature variations in IMR

tube do not alter cluster distributions or detection efficiency.

The limit of detection (defined as three times the background

signal) was found to be 73 ppqV (or 0.07 pptV) for 15 min

integration, representing roughly a 10- to 100-fold improve-

ment in comparison to other existing techniques (Hanson et
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al., 2011; Yu et al., 2012). It should also be noted that with

time-of-flight mass spectrometer all signals are integrated si-

multaneously while, in contrast, with quadrupole MS only

one mass is detected at a time. Thus, if several amines are to

be measured, the LOD is unaffected. A calibration coefficient

is obtained from the slope of the linear fit, C = 491 pptV. The

calibration coefficient is used to convert the signal to concen-

tration according to

[DMA] = C×

∑
n=2−4SA−SAnDMA

SA−SA2

. (1)

3.2 Sensitivity for ammonia

Sensitivity for ammonia was studied exactly as for DMA.

Ammonia easily evaporates from the “trimer” SA cluster, un-

like DMA; and since the “tetramer” cluster is relatively un-

stable at near room temperature in the IMR tube, much lower

sensitivity is expected. Calibration results were far more scat-

tered possibly due to either fluctuating (or poorly defined

NH3 concentration, at low [NH3]) in the CLOUD chamber

or temperature variations in the IMR tube affecting clus-

ter stability. Instrument temperature was not controlled, e.g.

drifted with ambient temperature in the facility; therefore,

temperature-sensitive evaporation rates would be reflected

in ammonia detection sensitivity. If temperature fluctuations

were the cause of variable signals, a LOD of few tens of pptV

could be achieved with proper temperature control. Using

only the highest ammonia concentration (90 pptV) used in

calibration experiment, an approximate calibration coeffi-

cient of C = 2.9× 104 pptV was obtained. This coefficient

is subject to significant uncertainty, at least a factor of 5.

Major improvements are required before an instrument can

be used for quantitative ammonia measurements. In the case

of ammonia, the signal is normalized to “tetramer” and the

equation

[NH3] = C×

∑
n=3−4SA−SAnNH3

SA−SA3

(2)

is used for converting the signal to concentration.

4 Application to field measurements at SMEAR II

Field measurements were conducted at the Smear II boreal

forest field station (Hari and Kulmala, 2005) at Hyytiälä in

southern Finland during the PEGASOS campaign, 1 April–

15 June 2013. Initially ambient air filtered with amine-

specific gas mask filter (pumped using a standard membrane

pump) was used to provide the 20 L min−1 sheath air flow for

the ion source. Background signals from amines and ammo-

nia were unacceptably high, even though the acidified walls

of the sheath gas lines likely scavenged a significant fraction

of those bases. Therefore, the sheath air was promptly substi-

tuted with a flow of cryogenic nitrogen. Figure 7 shows how

the change in sheath gas affected the signals, also indicating

the sensitivity to any artificial source of amines, a problem

associated with amine measurements in general.

A portion of time series of ammonia and DMA is shown

in Fig. 8, with concentrations calculated with the calibra-

tion coefficients obtained from the CERN calibration. Back-

grounds, measured daily by substituting cryogenic nitrogen

in the sample flow, are not subtracted; rather they are shown

in the shaded blue regions. In the case of ammonia, N2 flush-

ing yielded a factor of 5–10 decrease in detected signal, cor-

responding to background “concentration” of few tens of

pptV (using the nominal calibration coefficient determined

above). Average ammonia concentration during the stable

operation period with N2 sheath gas (from 7 May to 2 June,

2013) was approximately 610 pptV, subject to significant un-

certainty of at least a factor of 5 due to the uncertainty (see

above) in the calibration coefficient. Thus, ammonia mea-

surements reported here should only be taken as a proof-of-

concept to monitor ammonia together with DMA and possi-

bly other amines.

In the case of DMA, signals (always) increased dur-

ing background N2 flushing, reaching levels corresponding

to 250 ppqV (0.25 pptV) in concentration (Fig. 8, see also

Fig. 9a). The source of DMA is likely somewhere in the

stainless steel line, mass flow controller or pressure regu-

lator between the N2 Dewar and the sample inlet; or, less

likely, from contamination (during flow switching) in the

40 cm long non-acidified part of the sample tube. Neverthe-

less, since no meaningful background level could be deter-

mined, the observed ambient signals, corresponding to 40 to

150 ppqV amine concentration, may be all due to chemical

background in the instrument and, thus, not a single data

point can be reliably attributed to DMA concentrations in

the ambient atmosphere. An upper limit for DMA concen-

tration can be obtained if we assume that the only artifi-

cial source of DMA was the zero air fed to the instrument

during the background measurement. In that case the upper

limit of [DMA] ranged from a few tens up to approximately

1500 ppqV during the whole measurement period when the

instrument worked stably (7 May to 2 June 2013). However,

since we had no calibration standard available in field mea-

surements, our results should be treated with caution and

considered as a proof-of-concept rather than a solid fact.

During this time period, several nucleation events were ob-

served. Our observation of low DMA levels indicates that the

nucleation process unlikely involved DMA to a significant

extent (Almeida et al., 2013) and other amines or non-nitrous

organics are possibly needed to explain the new particle for-

mation rates.

Though the DMA concentration was found to be reason-

ably low, or even negligible, other amines, TMA or possibly

PA, exceeded the detection (background) threshold. Since

no calibration exists for amines other than DMA, those sig-

nals cannot be reliably converted to concentrations. However,

since bisulfate–sulfuric acid–DMA clusters are very stable, it

www.atmos-meas-tech.net/8/4001/2015/ Atmos. Meas. Tech., 8, 4001–4011, 2015



4008 M. Sipilä et al.: Proof-of-concept and first ambient data from boreal forest

Figure 7. Purity of sheath gas is important for high-sensitivity de-

tection. Cryogenic N2 resulted in 3–5 times lower background than

ambient air filtered with particle filter and amine-specific gas mask

filter. Still both ammonia and dimethyl amine are visible in the spec-

tra, with signals corresponding to several tens of pptV for ammonia

and ∼ 100 ppqV for dimethyl amine. Data are taken with zero air

(N2) fed into the sample inlet.

is likely that other amines are detected with similar or lower

sensitivity as DMA. Thus, we can report the lower limit con-

centrations for other detected amines by applying the cali-

bration coefficient obtained for DMA. Example mass spectra

from (a) DMA/EA, (b) ammonia, (c) TMA/PA and (d) a C4-

amine (e.g. DEA) are presented together with corresponding

zero measurements in Fig. 9. Signals from DMA/EA and C-4

amine increase during zero gas flushing, while ammonia and

TMA/PA show clear and moderate reduction upon zero mea-

surement, respectively, the latter suggesting the presence of

TMA/PA with concentrations larger than a few tens or hun-

dreds of ppqV. However, for these extremely small signals,

exact mass determination is not definitive; nor could the iso-

topes be resolved from the background spectrum. Therefore,

the identification of the compound as TMA/PA is not certain.

Though the role of DMA in particle nucleation seems un-

certain, the possible detection of TMA/PA leaves open the

possibility that other amines might contribute to nucleation.

Our result regarding [DMA] agrees with Schobesberger et

al. (2015), suggesting sub-pptV DMA concentrations. How-

ever, our values are in serious conflict with the concentrations

of DMA/EA reported by Kieloaho et al. (2013). The reason

could be that the entire signal in Kieloaho et al. (2013) was

due to EA while we were completely insensitive to EA – for

example, we could only detect DMA. However, it would be

surprising that, while we obviously detect several amines, in-

cluding DMA, MMA, TMA/PA and DEA (Fig. 2), the sensi-

tivity for EA would be so poor. Another possibility could be

in particle phase amine evaporation from the PTFE filter used

to remove particulate matter from the sample in Kieloaho et

al. (2013). Also, we performed our measurements at the open

area of the measurement container field of SMEAR II, some

10–20 m from the uniform forested area, while Kieloaho et

Figure 8. Portion of a time series measured at SMEAR II boreal

forest field station. While ammonia concentration exceeds the de-

tection threshold determined by the zero measurement (indicated

by the blue shaded regions), the DMA signal increases when zero

air is fed into the instrument, indicating that DMA concentrations in

ambient atmosphere were at maximum 150 ppqV during the mea-

surement period. Evaluation of ambient concentration is limited by

apparent contamination in “zero air” from N2 flushing of inlet lines.

That is, the [DMA/EA] depicted here represents the upper limit of

ambient concentration.

al. (2013) sampled inside the forest below the canopy. Amine

lifetimes against oxidation and adsorption to particle phase

should be at least a few minutes (even with unity uptake co-

efficient), and therefore the small difference in measurement

location should not cause such a major discrepancy.

5 Conclusions

A bisulfate–cluster based atmospheric pressure chemical ion-

ization system was developed and integrated into a time-of-

flight mass spectrometer. Calibrations demonstrated that, un-

der ideal conditions, there is a limit of detection for dimethyl

amine (DMA) of less than 70 parts per quadrillion (ppqV)

for a 15 min integration. Sensitivity of the system for DMA

is approximately 10- to 100-fold higher than reported for

other existing methods. Performance results from minimiza-

tion of amine outgassing from system surfaces, collision-

limited ionization and high mass resolution of the applied

mass spectrometer. Extreme cleanliness of added gas flows

is also crucial.

Besides DMA, other small alkyl amines and ammonia can

be detected. Detection of ammonia with the present system,

however, suffers from imperfect temperature control result-

ing in varying stability of bisulfate–sulfuric acid–ammonia

clusters which is likely reflected in variable instrument re-

sponse. Further efforts are required to understand the clus-

tering dynamics of amines other than DMA and to calibrate

the instrument against well-quantified concentration of these

amines. In field measurements at a boreal forest site, DMA

concentration was below ∼ 150 ppqV throughout the whole

measurement period in May–June 2013, suggesting that it is
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Figure 9. Examples of signals representing ambient measurement (blue) and zero (black) measurement. Zero gas (cryo N2) contains more

gas phase DMA/EA and a C4-amine (e.g. DEA) than ambient air. Only ammonia and potentially trimethyl/propyl amine (TMA/PA) signals

exceed the signals from zero gas measurement. Red bars show the exact masses of isotopes and expected isotopic distribution normalized to

the height of the main peak.

unlikely that DMA played a major role in atmospheric nu-

cleation of new aerosol particles observed simultaneously at

the site. However, since no calibration standard was available

during field measurements, our results should be treated with

caution and considered as a proof-of-concept. Tentative ob-

servations on the existence of other amines (trimethyl and/or

propyl amine) leave open the possibility of amine contribu-

tion to new particle formation.
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