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Abstract. Elemental carbon (EC) is an important constituent

of atmospheric particulate matter because it absorbs solar ra-

diation influencing climate and visibility and it adversely af-

fects human health. The EC measured by thermal methods

such as thermal–optical reflectance (TOR) is operationally

defined as the carbon that volatilizes from quartz filter sam-

ples at elevated temperatures in the presence of oxygen.

Here, methods are presented to accurately predict TOR EC

using Fourier transform infrared (FT-IR) absorbance spec-

tra from atmospheric particulate matter collected on poly-

tetrafluoroethylene (PTFE or Teflon) filters. This method is

similar to the procedure developed for OC in prior work

(Dillner and Takahama, 2015). Transmittance FT-IR analy-

sis is rapid, inexpensive and nondestructive to the PTFE filter

samples which are routinely collected for mass and elemental

analysis in monitoring networks. FT-IR absorbance spectra

are obtained from 794 filter samples from seven Interagency

Monitoring of PROtected Visual Environment (IMPROVE)

sites collected during 2011. Partial least squares regression

is used to calibrate sample FT-IR absorbance spectra to col-

located TOR EC measurements. The FT-IR spectra are di-

vided into calibration and test sets. Two calibrations are de-

veloped: one developed from uniform distribution of sam-

ples across the EC mass range (Uniform EC) and one devel-

oped from a uniform distribution of Low EC mass samples

(EC < 2.4 µg, Low Uniform EC). A hybrid approach which

applies the Low EC calibration to Low EC samples and the

Uniform EC calibration to all other samples is used to pro-

duce predictions for Low EC samples that have mean error

on par with parallel TOR EC samples in the same mass range

and an estimate of the minimum detection limit (MDL) that

is on par with TOR EC MDL. For all samples, this hybrid

approach leads to precise and accurate TOR EC predictions

by FT-IR as indicated by high coefficient of determination

(R2; 0.96), no bias (0.00 µg m−3, a concentration value based

on the nominal IMPROVE sample volume of 32.8 m3), low

error (0.03 µg m−3) and reasonable normalized error (21 %).

These performance metrics can be achieved with various de-

grees of spectral pretreatment (e.g., including or excluding

substrate contributions to the absorbances) and are compa-

rable in precision and accuracy to collocated TOR measure-

ments. Only the normalized error is higher for the FT-IR EC

measurements than for collocated TOR. FT-IR spectra are

also divided into calibration and test sets by the ratios OC/EC

and ammonium/EC to determine the impact of OC and am-

monium on EC prediction. We conclude that FT-IR analysis

with partial least squares regression is a robust method for

accurately predicting TOR EC in IMPROVE network sam-

ples, providing complementary information to TOR OC pre-

dictions (Dillner and Takahama, 2015) and the organic func-

tional group composition and organic matter estimated pre-

viously from the same set of sample spectra (Ruthenburg et

al., 2014).

1 Introduction

Elemental carbon (EC) in atmospheric aerosols adversely

impacts human health (Janssen et al., 2011) and contributes

to climate warming (Bond et al., 2013) and decreased vis-

ibility (Hand et al., 2014). Elemental carbon is measured

by large monitoring networks such as the Interagency Mon-

itoring of PROtected Visual Environments (IMPROVE) net-

work (Hand et al., 2012; Malm et al., 1994) in rural ar-
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eas of the USA, the Speciation Trends Network/Chemical

Speciation Network (Flanagan et al., 2006) in urban ar-

eas of the USA, and the European Monitoring and Evalu-

ation Programme (EMEP; Torseth et al., 2012) throughout

Europe. These regional multi-year data sets are useful for

observing trends in particulate concentrations (Hand et al.,

2013; Hidy et al., 2014; Torseth et al., 2012) and visibil-

ity (Hand et al., 2014), evaluating aerosol transport models

(Mao et al., 2011), constraining climate models (Liu et al.,

2012) and assessing health impacts (Krall et al., 2013). EC

is measured using thermal–optical methods such as thermal–

optical reflectance (TOR) (Chow et al., 2007), NIOSH 5040

(Birch and Cary, 1996) and European Supersites for Atmo-

spheric Aerosol Research (EUSAAR-2 protocol; Cavalli et

al., 2010), in which particles collected on quartz filters are

subjected to a temperature gradient, first in an inert envi-

ronment and then in an oxidizing environment (Chow et al.,

2007). Organic carbon (OC) and EC are operationally de-

fined by the temperature and environmental conditions under

which the carbon evolves from the aerosol sample. Charred

organic material is subtracted from the measured EC based

on laser reflectance or transmittance (Cavalli et al., 2010;

Chow et al., 2007). These thermal–optical methods are not

applicable to the PTFE (polytetrafluoroethylene) media used

for gravimetric mass, elemental composition and sometimes

light absorption in sampling networks because the filter ma-

terial is unstable at high temperatures. TOR methods are also

destructive to the sample and expensive.

Thermal–optical methods are one type of method that

seeks to measure carbon in atmospheric aerosols that is struc-

turally similar to graphite in that it is composed of sp2 bonds

and is strongly light absorbing (Bond and Bergstrom, 2006).

Thermal–optical methods refer to this material as EC. Other

methods use light absorption to characterize sp2-bonded car-

bon in aerosol (Andreae and Gelencsér, 2006) and typi-

cally refer to the constituent being measured as black car-

bon (BC). Continuous light absorption measurements are

made by such instruments as the PSAP (Bond et al., 1999),

aethalometer (Collaud Coen et al., 2010) and multi-angle ab-

sorption photometer (Petzold et al., 2005). Time-integrated

absorption measurements are made from filter samples us-

ing instruments such as the hybrid-integrating plate method

used by the IMPROVE network (White et al., 2015). Fourier

transform infrared (FT-IR) spectroscopy has also been used

to characterize sp2-bonded carbon in particles and other

environmental samples. FT-IR spectra of ground graphite

and activated carbon have prominent peaks at 1580 cm−1

which were assigned to the graphitic structure of the material

(Friedel and Carlson, 1971). FT-IR spectra of ground char-

coal and synthetic and marine sediments had similar peaks

at 1580 cm−1 and additional peaks at 1720 and 1240 cm−1,

which were assigned to carbonyl and single carbon–oxygen

bonds, respectively (Smith et al., 1975). FT-IR and partial

least squares regression (PLSR) have been used to quantify

BC in soil samples by measuring benzene polycarboxylic

acids, which are aromatic markers for black carbon (Borne-

mann et al., 2007). In a companion paper (Takahama et al.,

2015), we will discuss similarities and differences in the vi-

brational modes identified by these previous authors relevant

for quantitative prediction in atmospheric elemental carbon.

However, the presence of wave numbers that correlate to

TOR EC indicates the potential for FT-IR spectra calibrated

to TOR EC using PLSR to predict TOR EC in aerosol sam-

ples.

In this work, FT-IR spectra are calibrated to TOR EC us-

ing PLSR, similar to our previous method for predicting TOR

OC (Dillner and Takahama, 2015). PLSR is a general method

that has been used to calibrate FT-IR spectra of environmen-

tal samples such as dust (Weakley et al., 2014), food (Polshin

et al., 2011) and soil (Bornemann et al., 2007) to constituents

of interest. As described above, thermal–optical methods cur-

rently provide EC measurements in air monitoring network

ambient particle matter samples. Such networks simultane-

ously sample particles on PTFE filters which are used for

gravimetric mass and elemental composition analysis and

can also be used to obtain FT-IR spectra. In this work, EC

is predicted from infrared spectra of PTFE filter samples of

aerosols using PLSR. The methods are developed and tested

using EC from TOR analysis and FT-IR spectra from parallel

PTFE filters from 1 year of samples from seven IMPROVE

sites.

The objective of this work is to demonstrate the feasibil-

ity of predicting TOR EC from infrared spectra as a second

step in developing an inexpensive, fast and nondestructive

method for carbon measurements in particulate matter (PM)

monitoring networks. Prediction of TOR OC was the first

step in developing this method and was established in Dillner

and Takahama (2015). Sampling networks which only col-

lect samples on PTFE filters, such as the Federal Reference

Method network used for compliance with National Ambi-

ent Air Quality Standards for PM mass concentrations in

the United States, can also use the FT-IR and PLSR method

presented here and in Dillner and Takahama (2015) to ob-

tain information about the carbonaceous aerosol provided

that the samples have aerosol composition similar to the cal-

ibration samples. In this work, we will show that the pre-

diction of TOR EC can be accomplished with accuracy on

par with TOR EC measurement precision. Furthermore, we

will mechanistically explain important differences in sample

composition between calibration and test sets that can lead

to increased prediction errors; for this we use additional IM-

PROVE measurements to aid in our interpretation. Finally,

we will demonstrate how sensitivity to sample composition

is manifested in predictions for sites that are not included in

the calibration set.

Atmos. Meas. Tech., 8, 4013–4023, 2015 www.atmos-meas-tech.net/8/4013/2015/



A. M. Dillner and S. Takahama: Predicting TOR EC measurements from infrared spectra 4015

2 Methods

2.1 IMPROVE network samples

This study uses 794 IMPROVE particulate matter samples

collected on PTFE filters and 54 blank PTFE filters. The IM-

PROVE samples were collected at seven sites during 2011

(Fig. S1 in the Supplement). These are the same samples,

blanks and consequent FT-IR spectra used for developing the

OC method in Dillner and Takahama (2015) and the organic

matter/organic carbon method in Ruthenburg et al. (2013).

Additional details are provided in these papers. In the IM-

PROVE network, filter samples of particles less than 2.5 µm

(PM2.5) are collected every third day from midnight to mid-

night local time at a nominal flow rate of 22.8 liters per

minute, which yields a nominal volume of 32.8 m3.

The FT-IR analysis is applied to 25 mm PTFE filters

(Teflon, Pall Gelman, 3.53 cm2 sample area) that are ana-

lyzed for gravimetric mass, elements and light absorption in

the IMPROVE network. Quartz filters collected in parallel

with the PTFE filters are analyzed by TOR and adjusted to

account for charring of organic material prior to reporting

EC mass in the IMPROVE network (Chow et al., 2007). For

this work, the EC values are also adjusted to account for flow

differences between the quartz and PTFE filters.

In order to provide reference performance metrics for the

evaluation of the FT-IR to TOR comparisons (see Sect. 2.4

for a description of the metrics), measurements from seven

IMPROVE sites with collocated TOR measurements (Ever-

glades, Florida; Hercules Glade, Missouri; Hoover, Califor-

nia; Medicine Lake, Montana; Phoenix, Arizona; Saguaro

West, Arizona; Seney, Michigan) are used.

2.2 FT-IR analysis

2.2.1 Spectra acquisition

PTFE filters are analyzed using a Tensor 27 FT-IR spec-

trometer (Bruker Optics, Billerica, MA) equipped with a liq-

uid nitrogen-cooled wide-band mercury cadmium telluride

detector. The samples are analyzed using transmission FT-

IR over the mid-infrared wave number region of 4000 to

420 cm−1 (Ruthenburg et al. (2014) describes the protocol

in further detail). Absorbance spectra are calculated using a

recent spectrum of the empty sample compartment as a zero

reference. Air free of water vapor and carbon dioxide (de-

livered by purge-gas generator; PureGas LLC, Broomfield,

CO) is used to continuously purge the optical compartments

of the instrument and to purge the sample compartment for

4 min before each sample or reference spectrum is acquired.

2.2.2 Spectra preparation

Three different versions of the absorption spectra are used

in our analysis (Fig. S2), corresponding to different pre-

treatments and wavelength selection. (1) “Raw” spectra are

unmodified spectra except that values interpolated during

the zero-filling process are removed. These spectra contain

all 2784 wave numbers. (2) “Baseline-corrected” spectra in-

clude absorbances above 1500 cm−1 and the substrate con-

tribution is removed by subtracting an average blank filter

spectrum and then using linear or polynomial baselines by

spectral region as described by Takahama et al. (2013). These

spectra are standardized to a 2 cm−1 resolution and so con-

tain 1563 wave numbers. (3) “Truncated” spectra are the

raw spectra interpolated to match the wave numbers in the

baseline-corrected spectra, which excludes the PTFE peaks

(the region below 1500 cm−1) and so also contain 1563 wave

numbers.

2.3 Calibration

The FT-IR spectra are calibrated to TOR EC measurements

using PLSR using the kernel pls algorithm, implemented by

the pls library (Mevik and Wehrens, 2007) for the R statisti-

cal package (R Core Team, 2014). Conceptual description of

PLSR can be found in Dillner and Takahama (2015), Taka-

hama et al. (2015) and Ruthenburg et al. (2014) and refer-

ences therein. Briefly, in PLSR the matrix of spectra is de-

composed into factors and their respective weights. Candi-

date models are generated by varying the number of factors

used to reconstruct the EC mass in the calibration filters.

Using the common approach for model selection and as-

sessment (Hastie et al., 2009; Bishop, 2006; Witten et al.,

2011), two-thirds of the 794 samples and two-thirds of the

blanks filters (which are assumed to have 0 EC mass) are

used for developing the calibration and one-third of the sam-

ples and blanks (called the test set) are used to evaluate the

model. Ambient samples with EC below TOR EC MDL are

excluded from the model so as not to train the calibration

with samples that have a low signal-to-noise ratio. K-fold

cross validation with k= 10 is used to estimate the accuracy

of each candidate model. The minimum root mean square er-

ror of cross validation (Mevik and Cederkvist, 2004) is used

to select the model with the least prediction error. This proce-

dure permits development and selection of PLSR models us-

ing only the samples in the calibration set and guards against

over-fitting to a single set of samples. The test set, which has

not been used in model development or selection, is used for

model evaluation.

The above procedures are the same as those used to de-

velop the OC calibration (Dillner and Takahama, 2015). For

EC, possibly on account of lower mass concentrations, addi-

tional methods for including blanks into the calibration are

needed. First, a calibration is developed without blank fil-

ters and used to predict the mass of EC on each blank filter.

The blanks are then ordered by EC mass and every third is

included in the test set and the remaining are put into the cal-

ibration set so that there are similar distributions (both pos-

itive and negative) of blanks in the two sets. Blanks are in-

terspersed in the calibration at regular intervals so that each

www.atmos-meas-tech.net/8/4013/2015/ Atmos. Meas. Tech., 8, 4013–4023, 2015
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Figure 1. Uniform and Nonuniform EC calibrations. The probability density distribution of EC and bias and normalized error (with the

interquartile range shown by error bars) in the calibration (red) and test (blue) sets for the Uniform EC case and three Nonuniform EC cases.

Vertical lines are the median of the EC mass distributions color-coded for calibration and test sets.

iteration of the cross-validation process has a roughly consis-

tent number of blanks used for calibration. Calibrations de-

veloped without ordering the blanks and without interspers-

ing the blanks in the calibration filter set lead to inconsistent

MDL values.

EC is predicted for a sample (i) by taking the product of

the absorbance at wave number j (xi,j ) and the calibration

vector (bj ) as shown in Eq. (1).

ECi =

∑
j

xi,jbj (1)

Blank samples in the test set are used to calculate the MDL.

Multiple calibrations are developed by varying the spectra

type used and by selecting filters for the calibration and test

sets using different ordering regimes. Initially, we develop a

set of calibrations based on uniform and nonuniform distri-

butions of EC in the calibration and test sets. For the Uni-

form case, the samples are ordered by EC mass and every

third sample is put into the test set so the distribution of EC

is the same in the calibration and test sets. Three Nonuniform

cases are developed to assess the impact of EC distribution

on the quality of the calibration. For the Nonuniform cases,

the samples are ordered by EC mass and then selected for

calibration and test set based on where each samples falls

within the range of EC masses. The three Nonuniform cases

are: (1) samples with mass in the highest two-thirds of the

EC mass range are used for calibration and samples with EC

in the lowest third of the EC mass range are used as the test

set (Nonuniform A); (2) samples in the highest and lowest

third of the EC mass range are used to predict samples in

the middle third of the EC mass range (Nonuniform B); and

(3) samples with EC mass in the lowest two-thirds of the EC

range are used to predict samples in the highest third of the

EC mass range (Nonuniform C).

Figure 1 shows the Uniform and three Nonuniform cali-

brations developed for EC. A description of the performance

metrics shown in Fig. 1 are given in Sect. 2.4. The top row

gives the EC distribution of the test and calibration set for

each case. The EC distributions reflect the algorithm used

to select the filters for that case. The median and 25th to

75th percentiles (interquartile range) of the bias and normal-

ized error are shown in the lower two rows of Fig. 1 for each

of the three spectra types (indicated by symbol shape). Small

open symbols are used for sets with low median EC masses.

Larger closed symbols have higher median EC masses. The

EC distributions for the Uniform case shows that the dis-

tribution of samples in the calibration set and test set are

very similar. This leads to predictions with small bias (mid-

dle plot) and median normalized errors (bottom plot) ranging

from 15 to 30 % for the test and calibration sets for the three

spectral treatments. However, when low EC mass samples

are used to predict high EC samples (Nonuniform A) and

high samples are used to predict low EC samples (Nonuni-

form C), the test set is biased, leading to high error, especially

when the EC values are low (Nonuniform C).

In order to eliminate bias in the calibration and improve

prediction capability for Low EC samples, we develop a lo-

calized calibration for samples in the lowest third of the EC

mass range (EC < 2.4 µg). The Low Uniform EC calibration

(or Low EC calibration) uses samples in the calibration set

Atmos. Meas. Tech., 8, 4013–4023, 2015 www.atmos-meas-tech.net/8/4013/2015/
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that are in the lowest third of the EC mass range to pre-

dict samples in the test set that are also in the lowest third

of the EC mass range. Localization of the calibration is a

commonly used method to improve the performance of the

calibration, often at the more difficult to measure low end of

the range. The Uniform (which contains samples across the

whole range of EC; Fig. 1) and Low EC calibrations are used

to predict Low EC test set samples and the resulting error

and MDL are compared in Fig. 2. The mean error or pre-

cision of collocated TOR EC samples below 2.4 µg and the

reported TOR EC MDL are also shown in Fig. 2. The Low

EC calibration reduces the error for all three spectral types

to a value similar to that of the precision of collocated TOR

EC samples in the same mass range. In addition, the MDL

(which is based on the prediction of blank filters) is reduced

to approximately the TOR MDL for all three spectral types.

This comparison indicates that a localized calibration greatly

improves the prediction quality for Low EC samples and that

the error in the FT-IR prediction is due primarily to TOR EC

measurement uncertainty.

A hybrid calibration method, which includes the Uniform

calibration for the whole EC range and the Low EC calibra-

tion for the Low EC range is used for all results presented in

Sect. 3, regardless of the ordering scheme used to select fil-

ters for the calibration and test sets. In the hybrid calibration

method, the Uniform calibration is used to predict all filters

in the test set. Those filters in the test set which are predicted

to be in the lowest third of the EC mass are then analyzed by

the Low EC calibration. The prediction from the full calibra-

tion is used for samples above the lowest third and predic-

tions from the Low EC calibration are used for the Low EC

samples.

A “Base case” hybrid calibration, in which the samples are

chronologically stratified per site (i.e., ordered by date for

each site), is developed as a reference scenario. Every third

sample in the ordered list is put into the test set and the rest

are put into the calibration set. The Base case has the same

samples in the test set as the Base case for the OC predictions

reported earlier (Dillner and Takahama, 2015). Description

of a minor error in the OC calibration set for the Base case is

documented in Sect. S3, and this has been corrected for the

EC calculations in this work. The blanks are calculated and

distributed as previously stated. This ordered set of samples

based on sites and date provides fairly uniform distribution of

EC and aerosol composition in the calibration and test sets. In

addition to the Base case, Uniform and Nonuniform OC/EC,

ammonium/EC and site-specific calibrations are developed

using the hybrid approach and discussed in more detail in

the Sect. 3.

2.4 Methods for evaluating of the quality of calibration

The quality of each calibration is evaluated by calculating

four performance metrics: bias, error, normalized error and

the coefficient of determination (R2) of the linear regression
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Figure 2. Mean error of a Low EC test set (EC < 2.4 µg) and MDL

from the Uniform EC and Low Uniform EC calibrations. The same

Low EC test set is predicted by the Uniform and Low Uniform cal-

ibrations. The mean error of collocated EC samples less than 2.4 µg

and the reported EC MDL for the TOR method are shown for com-

parison.

fit of the predicted FT-IR EC to measured TOR EC. FT-IR

EC is the EC predicted from the FT-IR spectra and the PLSR

calibration model. The bias is the median difference between

measured (TOR EC) and predicted FT-IR EC for the test set.

Error is the median absolute bias. The normalized error for a

single prediction is the error divided by the TOR EC value.

The median normalized error is reported. The performance

metrics are also calculated for the collocated TOR observa-

tions and compared to those of the FT-IR EC to TOR EC

regression. The MDL and precision of the FT-IR method are

calculated and compared to the reported MDL and calculated

precision of the TOR method. The MDL of the FT-IR method

is 3 times the standard deviation of the blanks in the test set

(18 blank filters). MDL for the TOR method is 3 times the

standard deviation of 514 blanks (Desert Research Intitute,

2012). Precision for both FT-IR and TOR are calculated us-

ing the 14 parallel samples in the test set at the Phoenix, AZ,

site.

3 Results

3.1 Predicting TOR EC from infrared spectra

Using the hybrid calibration with the Base case scenario,

Fig. 3 shows the prediction of the calibration samples and the

test set samples along with the collocated TOR samples with

the same EC distribution. The calibration and test sets are

predicted with no bias (nonlinearity is removed by using the

Low EC calibration) and have similar error, normalized error

and R2. The precision between TOR samples is expected to

be better than the error between FT-IR EC and TOR EC be-

cause the TOR samples are collected on the same filter type

and analyzed by the same method and as expected the nor-

malized error is lower for the collocated TOR EC. However,

the error between TOR EC and FT-IR EC is the same as the

www.atmos-meas-tech.net/8/4013/2015/ Atmos. Meas. Tech., 8, 4013–4023, 2015
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Table 1. MDL and precision for Hybrid FT-IR EC and TOR EC.

TOR-EC Hybrid Hybrid Hybrid

FT-IR EC FT-IR EC FT-IR EC

raw spectra baseline truncated

corrected spectra

spectra

MDL (µg m−3)a 0.01b 0.02 0.01 0.02

% below MDL 3 1 2 3

Precision (µg m−3)a 0.11 0.04 0.06 0.06

Mean blank (µg) NRc 0.06± 0.17 0.08± 0.15 0.12± 0.19

a Concentration units of µg m−3 for MDL and precision are based on the IMPROVE volume of

32.8 m3. b Value reported for network (0.44 µg) in concentration units. c Not reported.

Bias = 0.00 µg m3

Error = 0.03 µg m3

Norm. Error = 19 %
R2 = 0.98
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Figure 3. Predicted EC for calibration set (a) and test set (b) for the Base case using a hybrid calibration model. The collocated TOR

samples (c) are from sites with parallel quartz filters that are both analyzed by TOR. Only the Phoenix site has samples in the calibration, test

and collocated data sets. There are 521 samples in the calibration set (a), 265 samples in the test set (b) and 431 samples in the collocated

TOR data set (c). Concentration units of µg m−3 for bias and error are based on the IMPROVE nominal volume of 32.8 m3.

collocated TOR EC precision. The distribution of normal-

ized errors for the calibration and test set for the raw spectra

case and the collocated precision for the TOR samples are

quite similar (Fig. S4a). The Base case bias (0.00 µg m−3)

and absolute error (0.03 µg m−3) are on the same order as

the Base case for TOR OC (test set bias= 0.02 µg m−3 and

error= 0.08 µg m−3; Dillner and Takahama, 2015) and the

R2 values are the same (0.96; Dillner and Takahama, 2015).

The normalized error for the test set (21 %) is higher than

the collocated TOR EC precision (13 %) and higher than

the TOR OC normalized error (11 %). The hybrid calibra-

tion also produces high-quality predictions of EC baseline-

corrected and truncated spectra as indicated by the similarity

in performance metrics for all three spectral types (Fig. S4b).

The distribution of normalized errors for the calibration and

test set for the baseline-corrected and truncated spectral pre-

treatments are similar to raw spectra and the collocated pre-

cision for the TOR samples (Fig. S4a). Section S5 demon-

strates that the number of samples in the calibration set can

be reduced and still provide high-quality predictions. The

analysis suggests that the accuracy of FT-IR EC predictions

is comparable to the precision of collocated TOR EC mea-

surements.

Table 1 gives the MDL and collocated Phoenix sample

precision for the hybrid FT-IR EC predictions for each spec-

tral type and TOR EC. The MDL for all hybrid FT-IR EC

spectral types are approximately the same as TOR EC with

3 % or fewer of the samples below MDL. Section S5 shows

that the MDL is independent of the number of blanks in-

cluded in the calibration and the number of samples included

in the calibration set (from two-thirds to one-third of the

samples). The collocated Phoenix precision is better for the

FT-IR methods than for TOR by about half. The mean pre-

dicted value for the blanks filters (last row of Table 1) is less

than half of the first percentile of predicted EC values for the

raw and baseline-corrected spectra and equivalent to the sec-

ond percentile for the truncated case. The precision is on the

same order for all three spectral types.

An alternate method for estimating EC is to predict to-

tal carbon (TC=OC+EC) and subtract the OC prediction.

This method can lead to higher errors on average than direct

prediction of EC because the errors of both TC and OC are

included in this method of estimation and these errors are

larger than EC errors because EC mass is usually much less

than OC mass. More discussion of this topic is included in

Sect. S6.
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Figure 4. The probability distribution of OC/EC and bias and normalized error (with the interquartile range shown by error bars) in the

calibration (red) and test (blue) sets for five hybrid calibration cases: the Base case, the Uniform OC/EC case and three Nonuniform OC/EC

cases. Vertical lines on the probability distributions are the color-coded median of the OC/EC distributions.

3.2 Evaluating causes of bias and error by selecting the

calibration and test sets based on measured

parameters

In this section, we consider the role of aerosol composi-

tion on the quantification of EC. Aerosol composition is de-

scribed by the distribution of OC/EC and ammonium/EC.

In other work, we show that OC and EC measurements by

FT-IR and PLSR rely on similar wavebands for predictions

(Takahama et al., 2015). Therefore, OC could be considered

an interferant to the measurement of EC. We evaluate this

possible interferant using the ratio of OC to EC because the

impact of OC is likely dependent on its mass relative to EC

mass. Ammonium absorbs FT-IR radiation in the same wave

number region as OC and EC and so can also be considered

an interferant. We use the ratio of ammonium to EC mass

loadings to isolate the effect of ammonium. OC/EC and am-

monium/EC are not correlated to 1/EC (R2 < 0.2), which in-

dicates that impacts observed from EC, OC/EC and ammo-

nium/EC are at least somewhat independent of each other.

Therefore, separate calibrations were developed by ordering

the samples by OC/EC and ammonium/EC.

As was done for Uniform EC case, samples are arranged in

ascending order by the parameter of interest prior to selection

of filters for the calibration and test sets. Every third sam-

ple in the ordered list is put into the test set and the remain-

ing samples are put into the calibration set. These cases are

called the Uniform OC/EC case and Uniform ammonium/EC

case. Three Nonuniform cases are also considered and the

OC/EC Nonuniform cases are detailed here as an example:

samples in the lowest two-thirds of the OC/EC range are used

to predict samples in the highest third of the OC/EC range

(Nonuniform A); the highest and lowest third of the OC/EC

range are used to predict the middle third OC/EC range

(Nonuniform B); and the highest two-thirds of the OC/EC

range are used to predict samples in the lowest third of the

OC/EC range (Nonuniform C). All predictions are based on

the hybrid calibration model (Sect. 3.1) such that Low EC

samples in any of the test sets are predicted using a Low EC

calibration developed for that case.

The top row of subplots in Fig. 4 shows that the distribu-

tion of OC/EC in the test and calibration sets for the Base

case and the Uniform OC/EC case are similar. The three

Nonuniform OC/EC cases have distributions that are differ-

ent for the test and calibrations sets. The Base and Uniform

case have 0 bias and similar normalized error in the test and

calibration sets indicating good predictions for these cases.

When there is a large difference in OC/EC distribution be-

tween the test and calibration sets (Nonuniform cases), the

normalized error is higher and sometimes a bias is induced.

For Nonuniform C, there is a significant negative bias and

the normalized error is about 35 % (10 % higher than the cal-

ibration set). For Nonuniform B, in which the medians are

similar but the distribution of OC/EC is quite different be-

tween the sets, there is less than 10 % higher error in the test

set than the calibration set. For Nonuniform A, in which the

median EC value is in the Low EC range, the median nor-

malized error is at least 60 % and the range of error is high,

which is due to both the difference in the chemical composi-

tion of the aerosol in the test and calibration sets and the Low

EC values.

The impact of ammonium is evaluated using Uniform and

Nonuniform calibrations of ammonium/EC (Fig. 5). Like

EC, the Base case, Uniform case and Nonuniform B case
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Figure 5. The probability distribution of ammonium/EC and bias and normalized error (with the interquartile range shown by error bars) in the

calibration (red) and test (blue) sets for five hybrid calibration cases: the Base case, the Uniform ammonium/EC case and three Nonuniform

ammonium/EC cases. Vertical lines on the probability distributions are the color-coded median of the ammonium/EC distributions.

have near 0 bias and low normalized error. The results for the

Nonuniform A and C cases are very similar to the Nonuni-

form A case for OC/EC. In the Nonuniform C case, the cal-

ibration set contains a higher amount of ammonium and EC

is under-predicted (some of the EC is assumed to be am-

monium) in low ammonium/EC test samples (bias, −0.04 to

−0.06 µg m−3) and the range in bias of individual samples in-

creases. The normalized error increases by about 15 % from

the calibration set to the test set but the error bars are about

the same for the two sets. When low ammonium/EC sam-

ples are used to predict samples with high ammonium/EC

(Nonuniform A), the normalized error becomes very large.

This is due in part to the median EC value being below 2.4 µg.

It is likely that additional error is induced because the cali-

bration set is not trained to disregard ammonium in the pre-

diction of EC, so some of the ammonium is reported to be

EC leading to a positive bias and increased error. The dis-

tribution of EC, OC/EC and ammonium/EC for the test and

calibration sets for the Base, Uniform and Nonuniform cases

are shown in Sect. S7. When the chemical composition, as in-

dicated by OC/EC and ammonium/EC, is different between

the calibration and test sets, the predictions have higher error

than when the chemical compositions are similar.

3.3 Prediction of specific sites

Calibrations are developed using ambient samples for all but

one site in the calibration set. The one site omitted from the

calibration is predicted. Figure 6 shows the distributions of

EC in the test and calibration set and the median and in-

terquartile range of bias and normalized error for all sites.

Three sites, Mesa Verde, Olympic and Trapper Creek, have

median EC mass below 2.4 µg and, although the bias is near

0, they have the highest median (40 to 60 %) and range of

normalized error. As shown with the Low EC calibration and

comparison to collocated TOR samples (Sect. 3.1), these er-

rors are similar to collocated precision of TOR samples in the

same EC range, indicating that the error is due primarily to

TOR analytical error. All other sites have higher EC mass

and are expected to be predicted well, based on EC mass

alone. However, only the Proctor Maple Research Facility is

predicted well (Fig. 6). EC, OC/EC and ammonium/EC dis-

tributions at the Proctor Maple Research Facility are similar

to the calibration set. The increased errors for the remain-

ing three sites, Phoenix, Sac and Fox and St. Marks, are due

to differences in aerosol composition between the calibra-

tion set and these sites. Distributions of EC, OC/EC and am-

monium/EC for the test and calibration sets for all sites are

shown in Sect. S7.

Figure 7 shows the OC/EC and ammonium/EC distribu-

tions at Phoenix and the ammonium/EC distributions for Sac

and Fox and St. Marks. Phoenix, an urban site, has higher EC

than the rural sites (Fig. 6). Phoenix also has lower OC/EC

than the other sites (OC/EC Nonuniform C) and has lower

ammonium/EC than the rural sites (ammonium/EC Nonuni-

form C). All of these compositional differences lead to a neg-

ative bias and increased error as seen in the Phoenix samples

(bias up to 0.03 µg m−3 and error up to 50 %). All six ru-

ral sites have similar OC/EC in the test set and the calibra-

tion set, indicating that OC/EC does not impact the errors

for these sites. Sac and Fox and St. Marks have higher am-

monium/EC than the other sites (similar to ammonium/EC

Nonuniform A except that the EC median is higher). As

shown in Fig. 7, there is an increase range of bias values

and higher error (22 to 40 %) in predictions for these sites
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Figure 6. The distribution of EC and bias and normalized error (with the interquartile range shown by error bars) in the calibration (red) and

test (blue) sets for calibrations developed for each site. Vertical lines are the median of the EC mass distributions color-coded for calibration

and test sets.
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Figure 7. The distribution of OC/EC and bias and normalized error (with the interquartile range shown by error bars) in the calibration (red)

and test (blue) sets for calibrations developed for Phoenix and the distribution of ammonium/EC, bias and normalized error for Phoenix, Sac

and Fox and St. Marks. Vertical lines are the median of the distributions color-coded for calibration and test sets.

compared to the calibration set likely due to ammonium/EC

differences.

We can therefore estimate how well a site not included in

the calibration will be predicted based on the EC, OC/EC

and ammonium/EC for the site. For sites with low EC mass,

the error ranges from 40 to 60 %. Phoenix, which has higher

EC, lower OC/EC and lower ammonium/EC than the rural

sites, has biased predictions and error between 20 and 50 %.

Differences in ammonium/EC alone produce higher errors

up to 40 % for Sac and Fox and St. Marks, especially for the

truncated spectral type.

4 Conclusions

Nondestructive, fast and inexpensive FT-IR analysis of rou-

tinely collected PTFE filters in the IMPROVE network can

be used to predict TOR EC mass in IMPROVE aerosol sam-

ples. The FT-IR spectra and parallel TOR EC measurements
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are used in partial least squares regression to develop calibra-

tions to predict TOR EC. A hybrid approach is used for cali-

bration in which samples with Low EC are calibrated with a

Low EC calibration and all other samples are calibrated with

a calibration that spans the range of EC samples (a descrip-

tion of steps for calibration are included in the Supplement).

The Low EC calibration produces predictions with mean er-

ror similar to that of collocated TOR samples in the same

mass range and similar MDLs, indicating that the errors in

the FT-IR method are primarily due to TOR measurement un-

certainty. All three spectral types produce high-quality pre-

dictions. The hybrid calibrations developed from samples

ordered by site date (Base case), EC, OC/EC and ammo-

nium/EC, produce nearly bias-free predictions with low er-

ror (∼ 0.02 µg m−3 or 20–25 %). Blank filters in the test set

are used to calculate MDL, but the number of blanks in the

calibration set does not impact the value of the MDL. Using

a calibration set that does not have similar composition to the

test set (i.e., using samples in the calibration set that do not

span the full range of EC, OC/EC or ammonium/OC) leads to

higher bias and errors and is not recommended for obtaining

high-quality predictions. In the proposed method, error and

bias are kept to a minimum by including samples in the cal-

ibration set that have a similar composition as the test set, as

indicated by EC, OC/EC and ammonium/EC. Therefore, we

conclude that FT-IR spectra calibrated to TOR EC using par-

tial least squares regression is a robust method for predicting

TOR elemental carbon from particulate matter samples. Fu-

ture work includes establishing that the calibration developed

here can be used to predict TOR EC for samples collected

during other years and developing a calibration that includes

samples with a broader range of aerosol composition.

The Supplement related to this article is available online

at doi:10.5194/amt-8-4013-2015-supplement.
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