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Abstract. The mixing height is a key parameter for many

applications that relate surface–atmosphere exchange fluxes

to atmospheric mixing ratios, e.g., in atmospheric transport

modeling of pollutants. The mixing height can be estimated

with various methods: profile measurements from radioson-

des as well as remote sensing (e.g., optical backscatter mea-

surements). For quantitative applications, it is important to

estimate not only the mixing height itself but also the uncer-

tainty associated with this estimate. However, classical er-

ror propagation typically fails on mixing height estimates

that use thresholds in vertical profiles of some measured

or measurement-derived quantity. Therefore, we propose a

method to estimate the uncertainty of an estimation of the

mixing height. The uncertainty we calculate is related not

to the physics of the boundary layer (e.g., entrainment zone

thickness) but to the quality of the analyzed signals. The

method relies on the concept of statistical confidence and

on the knowledge of the measurement errors. It can also be

applied to problems outside atmospheric mixing height re-

trievals where properties have to be assigned to a specific

position, e.g., the location of a local extreme.

1 Introduction

In good scientific practice, uncertainties or errors must be

provided for all physical quantities which are measured or

estimated. Unfortunately, for a wide class of estimations it

is not straightforward to apply standard error propagation

on the result. This is the case for many applications where

thresholds have to be identified in noisy signals. The aim of

this work is to provide a rigorous way to estimate uncertain-

ties for this class of operations. This is the general case of the

localization of a local property. Examples of local properties

for a signal are maximum and minimum values. A more gen-

eral example can be seen as the property to have a certain

value or threshold. This is also the case for the location of

mixing height (MH), which can be defined by local proper-

ties of the data used for its estimation.

The top of the mixed layer or MH is the thickness of the

layer adjacent to the ground where any pollutants or con-

stituent emitted within it or entrained from above will be

vertically mixed by convection or mechanical turbulence on

a reasonably short timescale. This timescale is about 1 h or

less according to Seibert et al. (1998).

The mixed layer is a sublayer of the planetary boundary

layer (PBL), which is the atmospheric layer that is closest to

the ground. In the PBL, several processes control exchange

of energy, water and pollutants between the surface and the

free atmosphere. The structure of the PBL is variable as de-

tailed by Stull (1988).

The knowledge of MH has been considered fundamental

for modeling dispersion of pollution since Holzworth (1964).

This is because it defines the volume where ground fluxes

are diluted. In more recent times, a strong effort has gone

toward the determination of fluxes of greenhouse gases from

atmospheric mixing ratio measurements (Gurney et al., 2002;

Rödenbeck et al., 2003; Peters et al., 2007). The impact of

model errors on MH estimations is considered one of the pri-

mary sources of uncertainties in the inverse estimates of re-

gional CO2 surface–atmosphere fluxes (Gerbig et al., 2008;

Kretschmer et al., 2012). The uncertainties or localization er-

ror estimated on the MH retrieved from atmospheric profiles

can be used as a valuable tool to reduce the model uncertain-

ties as demonstrated in Kretschmer et al. (2014).
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Figure 1. Idealized profile of potential temperature θs(z). The tiny

black line represents the profile, and the blue area around it repre-

sents a hypothetical measurement error of ±0.125 K. The cyan line

is the potential temperature of standard atmosphere. The horizontal

black line represents the MH, and the vertical dotted line the tem-

perature at the ground. The spatial resolution used in this plot is

10 m.

This paper introduces a rigorous method to derive uncer-

tainties in the localization of a property, with a special focus

on mixing height retrievals as an example. This allows for

more quantitative assessments of the quality of retrievals and

can provide useful information especially when comparing

different observation-based retrieval methods with one an-

other or with mixing heights diagnosed in weather prediction

models. Note that this proposed method does not address un-

certainties related to assumptions about the boundary layer

physics, or related to its spatial and temporal variability.

In Sect. 2 we introduce the implementation of the parcel

method in the form of an algorithm as it is used in this work.

The mainly theoretical part introducing the error retrieval

method is described in Sect. 3. An application to other MH

retrieval methods, in addition to the parcel method, is pre-

sented in Sect. 4.

2 Localizing the mixing height

Several methods for detecting MH are reported in the litera-

ture, depending on meteorological conditions and instrumen-

tation used (Seibert et al., 2000). However, in order to explain

our methodology to estimate uncertainties, we use the parcel

method as proposed by Holzworth (1964) for its simplicity.

According to Holzworth (1964), vigorous vertical mixing is

driven by thermal convection. The parcel method was defined

by Holzworth (1964, Sect. 2) for maximum mixing depths as

“maximum mixing depths were estimated by extending a dry

adiabat from the maximum surface temperature to its inter-

section with the most recently observed temperature profile.”.

Figure 1 provides a clear example of this method.

The driving idea is that warmer air in contact with the

ground reaches an altitude where a capping inversion is lo-

cated. For practical use in convective conditions – when the

impact from wind shear can be neglected – the MH is lo-

cated at the altitude h where the virtual potential temperature

θv(h)= θvh as defined in Eq. (1) is equal to the virtual poten-

tial temperature θv(0)= θv0 at the surface.

θv(z)= Te(z)

[
P0

P(z)

]γ
≈ (T (z)+ bMR)

[
P0

P(z)

]γ
, (1)

where Te is the equivalent temperature or the temperature

that the air parcel would have if all the water vapor con-

densed, releasing its latent heat. MR is the mass mixing ratio

of water vapor, P(z) is the pressure at altitude z, P0 is a ref-

erence pressure, and b represents the ratio of latent heat of

vaporization to the specific heat of dry air at constant pres-

sure. Taking P0 = P(0) then results in θv(0)= Te(0).

We chose this methodology to estimate MH because it

uses a smaller number of environmental profiles than the bulk

Richardson number method. In our numerical examples, we

do not consider humidity, so we will focus on potential tem-

perature θ(z), which can be obtained from Eq. (1) by setting

MR= 0.

Real examples of vertical profiles of virtual potential tem-

perature are presented in Sect. 4. Here instead we present

a synthetically generated profile in Fig. 1.

We found convenient the use of an analytical function to

describe the potential temperature profile, because in this

way we can control the more relevant aspects of the profile,

which are the excess temperature at the ground and the uni-

formity of potential temperature within the mixed layer. The

use of an analytical function helps also to study effects of

spatial resolution and smoothing. The profile θs(z) presented

in Fig. 1 can be seen as an almost neutral profile of potential

temperature. The black solid curve represents the ideal sig-

nal, and the blue area around the signal represents the ±1σ

error. The error and the excess temperature at the ground are

chosen together for explanatory purposes and are not directly

related to the physics of the mixed layer.

Looking at Fig. 1, we can see how the parcel method

works. The MH is located at the altitude h where the poten-

tial temperature θv(h) equals the ground potential tempera-

ture θv(0). The idealized values depicted by the black curve

are affected by measurement errors. The uncertainty is repre-

sented by a blue region around the signal. Assuming normal

errors, the amplitude of the blue region at a fixed altitude

represents the area where we expect a probability of 68 % to

measure θv(h). This implies that, when we attempt to esti-

mate MH on a noisy signal, we will detect an altitude around

the region of interest and not the exact location.
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Table 1. Vaisala RS92-SGP (Vaisala, 2015) sensors specifications

in range pressure of 1080–100 hPa.

RS92-SGP

Quantity Range Error

Pressure 1080 to 100 hPa 0.2 hPa

Temperature −90 to +60◦C 0.1 ◦C

Relative humidity 0 to 100 % 2.5 %

Wind speed 0.15 ms−1

Wind direction 2 ◦

Under steady conditions, we would get an estimated MH

and a properly estimated uncertainty by repeating the mea-

surements many times. However, in the real word, the con-

ditions are typically not steady and the measurements can-

not be repeated often enough (if at all) to obtain a statisti-

cally consistent set of estimates. Therefore, a methodology is

needed that retrieves the localization error from a single pro-

file. Our methodology requires the knowledge of the errors

of the measured profiles, so that it is possible to propagate it

onto the signals we want to analyze. The error propagation

on potential temperature and on the bulk Richardson number

profiles are provided in the Appendix.

The meteorological quantities observed by radiosondes

are pressure, temperature, relative humidity, wind speed, and

wind direction. The data for the practical examples used in

this work are part of the data set of radiosonde data of the

Lindenberg Meteorological Observatory in Germany (WMO

station 10393). The data are collected regularly every 6 h.

The measurements are extensively described in Beyrich and

Leps (2012). The model of radiosondes used is the Vaisala

RS92-SGP (Vaisala, 2015). The technical specifications of

the measurements are described in Table 1.

In practice, the method that is used more widely to produce

estimates of MH is the so-called bulk Richardson number

method. In Sect. 4 we apply our method to assess the local-

ization error of two variants of the bulk Richardson number

method described by Vogelezang and Holtslag (1996).

2.1 Defining an algorithm for the parcel method

After the choice of a methodology to detect MH on meteoro-

logical profiles, we have many options for implementing it as

an algorithm. Again, the parcel method defines the MH at the

altitude where the virtual potential temperature equals θv(0).

From an operational point of view, the parcel method can be

seen in many different ways.

From an abstract point of view – not related to the actual

meteorological concept – the core of the method is detecting

the location where a certain threshold value is reached. This

is a very common task in signal analysis, commonly called

threshold detection. To implement a threshold detection, one

must consider different properties of the signal. The signal

Figure 2. Results of a Monte Carlo for the parcel method as de-

tailed in algorithms presented in Sect. 2.1. The first panel presents

the probability density function of the Monte Carlo using the data

directly. In the second panel the results are for data smoothed with

a window of three points instead. The algorithms were applied to

the synthetic profile of Fig. 1 after application of random noise. The

number of runs performed is 1 000 000. The probability density is

presented on a logarithmic scale to allow the view of results far

from the expected MH. The expected MH is presented as a black

horizontal line.

noise is the main source of erroneous and multiple detections,

especially for non-monotonic signals.

As an algorithm for applying the parcel method, we de-

cided to use the location of the last data point (starting from

the bottom) that is still smaller than θv(0). We think that this

is the closest way to apply the method as described by Holz-

worth (1964).

From the more physical point of view, the parcel method

can be implemented as the simple parcel method introduced

by Holzworth (1964) or by considering an excess tempera-

ture at the ground as calculated by Troen and Mahrt (1986).

One advantage of using a synthetic profile is that we control

the excess temperature, so that we do not need to estimate it.

Referring to the synthetic profile of Fig. 1, we can ap-

ply the algorithm and evaluate the performances and see the

probability distribution of the results. So we created 106 pro-

files, applying to the synthetic profile Gaussian random noise

with a standard deviation (SD) of 0.125 K. In Fig. 2, we

see how the estimated MHs are distributed. Where θv(h) is

close to θv(0), the algorithm has a high probability of re-

trieving results. In order to reduce the chance of retrieving

MH very close to the ground in conditions closed to neutral-

ity, we added a constraint to the algorithm in this example:

only consider data above 200 m. In general Holzworth (1964)

www.atmos-meas-tech.net/8/4215/2015/ Atmos. Meas. Tech., 8, 4215–4230, 2015
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suggests using the parcel method in the case of vigorous con-

vection. Instead, the example introduced here presents weak

convection or almost neutral conditions. We decided to use

this as an example for better illustrating the uncertainty in

the localization, i.e., in the determination of the MH. How-

ever, when applying the algorithms on smoothed data with

a three-point window, the mode of the distribution of the re-

sults is closer to the expected MH (670 m). The smoothed

profiles had reduced noise, which reduced the probability of

a false detection.

We must point out that the parcel method as it is imple-

mented can be considered just an algorithm for threshold de-

tection in a signal. So all the considerations that we made

could be applied to other methods, for example the bulk

Richardson number explained in Sect. 4.

3 Calculating the localization error

So far, we have used a simple Monte Carlo (MC) simulation

to illustrate the impact of measurement noise on the error

in the retrieved MH. However, for application to large data

sets this is too expensive to perform, and a more analytical

method is needed.

In a continuous signal, a property can be defined as lo-

cal when it occurs in an arbitrarily small neighborhood of

points. However, real signals are not continuous but rather

discrete data series of ordered points. For such discrete data

series, the neighborhood concept must be adapted since it is

not possible to consider arbitrarily small neighborhoods. In-

stead, a neighborhood would be a set of contiguous points. It

contains a reference data point and some other points in its

vicinity.

Two measurements can be considered equivalent when

their difference is smaller than their errors. The degree of

equivalence is commonly called confidence. Confidence is

rigorously defined in several textbooks. It is used to verify

a hypothesis or, in other words, to see if an estimated value

agrees with a theoretical expectation. The most general case

is presented in Eq. (2), where the concept is used to check if

two estimated values can refer to the same quantity.

A local property on an ordered data series can be shared

between data points. This is due to the fact that data have

errors, which has the consequence that different data values

at different points can be differentiated from each other only

within a certain degree of confidence. This sharing of proper-

ties by contiguous data points is the key to defining a rigorous

concept of localization error.

To give an example, a data point located at 400 m (see

Fig. 1) is located in a region of uniform and constant θv. For

such a point, a local property is almost impossible to define,

given the uncertainty of the data. On the other hand, at 700 m

altitude the difference of consecutive values is such that the

localization can be easily performed.

The formal description of the method requires the intro-

duction of some symbols. An ordered data series yi where

i ∈ {1, . . .,N} is associated with a series of locations xi and

with a series of errors εyi .

When a local property in a signal can be defined, there

are two choices to define its location: the local property can

be located exactly at a data point or between two data points.

The second possibility will not be discussed. Instead, for sim-

plicity, we assume that the localization is located at the first

data point that defines the interval where the property is de-

tected.

The general assumption of the method is that the measure-

ment errors are known, and they are normally distributed and

uncorrelated. We focus on data points that have neighbors on

both sides – not the end points of a series.

3.1 Definitions

The method relies on one main idea: (a) the results of an

algorithm are expected to fall in a neighborhood of the true

location, and (b) this neighborhood can be seen as a set of

data points that have similar values within the errors of the

measurements. The similarity of values is measured with the

quantity commonly called confidence.

3.1.1 Confidence

The confidence ζ of two values yi and yj with errors εyi and

εyj , respectively. It is expressed as

ζ(fi,fj )=
|yi − yj |√
ε2
yi
+ ε2

yj

. (2)

Equation (2) is a modification of Welch’s t test (Welch, 1947;

their Eq. 25). Instead of the errors of the estimated mean used

by Welch (1947), we used the measurement errors.

Welch’s t test and other similar tests are typically used to

evaluate hypotheses. In this particular case, we try to verify

the null hypothesis that two estimations yi and yj are equal

by taking their difference.

For a normal distribution, confidence intervals are typi-

cally defined as a distance in units of the SD σ : 68.27 % for

±1σ , 95.45 % ±2σ , and 99.73 % for ±3σ . If yi and yj are

normally distributed, the denominator of Eq. (2) is equivalent

to the SD of the distribution yi − yj . The function ζ(yi,yj )

can then be interpreted as an absolute distance in units of√
ε2
yi
+ ε2

yj
. This provides a natural scale for accepting or re-

jecting the hypothesis:

1. optimal confidence: ζ(yi,yj )≤ 1;

2. good confidence: 1< ζ(yi,yj )≤ 2;

3. acceptable confidence: 2< ζ(yi,yj )≤ 3;

4. bad confidence: ζ(yi,yj ) > 3.

Atmos. Meas. Tech., 8, 4215–4230, 2015 www.atmos-meas-tech.net/8/4215/2015/
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Figure 3. All plots are obtained starting from the synthetic profile θs(z) introduced in Fig. 1 and calculated with spatial resolution of 3 m. The

first panel presents confidence neighborhoods as from Eq. (4) for various thresholds γ ; second panel presents the confidence neighborhoods

for the smoothed profile θs(z); third panel: strict confidence neighborhoods as from Eq. (5); forth panel: strict confidence neighborhoods as

from Eq. (5) for the smoothed profile θs(z); fifth panel: probability density function of the Mote Carlo results for the algorithm introduced in

Sect. 2.1 for raw data (red) and smoothed (blue). The confidence neighborhoods are depicted as green areas, following the color scale on the

right. The horizontal black line represent the location on the MH= hm = 669 m for this spatial resolution.

3.1.2 Discrete neighborhoods

Given a series of locations xi where i ∈ {1, . . .,N} N ∈ N,

a discrete neighborhood or simply a neighborhood of a point

xm of the series is defined as the set Vxm that respects the

following relation:

Vxm = {xm−l1 , . . .,xm+l2 : m− l1 ≥ 1, m+ l2 ≤N ∈ N}. (3)

This reflects the idea that the neighborhood Vxm of a point

xm extends from a point xm−l1 to the left of xm to a point

xm+l2 to the right of xm. The neighborhood must include at

least one point in each direction, so l1, l2ge1.

To estimate a local property in an ordered data series yi ,

we consider the value ym at a specific data point xm and the

values at data points in a neighborhood around the specific

point {ym−l1 , . . .,ym+l2}.

3.1.3 Confidence neighborhood

By merging the concept of the discrete neighborhood ex-

pressed in Eq. (3) with the one of confidence expressed in

Eq. (2), we can define the key tool for our methodology: the

confidence neighborhood.

To refer to confidence neighborhoods, we use the follow-

ing notation: Uγ,y(xm) is the confidence neighborhood of the

data point located at xm, with the respective data series yi of

the property y and the confidence threshold γ .

We take a monotonic series of locations xi ∈ R with an

associated ordered data series of values yi ∈ R and corre-

sponding errors εyi with i ∈ {1, . . .,N}. Given a real constant

γ > 0, we define the confidence neighborhood of xm as the

neighborhood of data points Uγ,y(xm) that respects the fol-

lowing relation:

Uγ,y(xm)=
{
xm−1,xm,xm+1

}
∪

{
xj : ζ(ym,yj )≤ γ

}
, (4)

where confidence ζ is defined by Eq. (2). Uγ (xm) is the con-

tiguous set of locations surrounding the point xm that share

the relation of confidence to the specific point ym with re-

spect to the constant γ . The confidence neighborhood is de-

fined as a neighborhood (Eq. 3). So a confidence neighbor-

hood must respect both Eq. (3) and Eq. (4). In this way con-

tiguity and confidence relation are achieved together.

Referring to the test function presented in Fig. 1, we can

estimate Uγ,θv(hi )(hm). According to the algorithms defined

in Sect. 2.1, the MH is hm = 670 m. In the first panel of

Fig. 3, U3,θv(hi )(hm) extends downward to an altitude of 0 m

above ground. The confidence intervals are larger for larger

values of γ . From the example, we can also see that they are

not symmetric with respect to hm. This asymmetric behavior

arises from the fact that θv(h) is nonlinear.

In Fig. 3, the different amplitudes of the confidence neigh-

borhoods reflect the idea that the algorithm could provide

www.atmos-meas-tech.net/8/4215/2015/ Atmos. Meas. Tech., 8, 4215–4230, 2015
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Figure 4. This diagram shows the difference between confidence

neighborhood (above) and strict confidence neighborhood (below).

The lines connecting the points represent where the relation of con-

fidence Eq. (2) must be met for a fixed γ . The red points are in-

cluded within the confidence neighborhood of every kind even if

they do not respect the relation of confidence with xm.

MH at any altitude below the true one. This is expected when

considering the probability density function for the raw data

in Fig. 2.

This definition of confidence neighborhood is more than

a mathematical abstraction. From the physical point of view

it reflects the idea of probability to obtain an estimation of

a local property starting from a signal which has its own un-

certainties. Qualitatively, some properties of the distributions

of results can also be inferred. In particular, the skewness or

asymmetry of the distributions is captured by differences be-

tween the leftward l1 and rightward l2.

Smoothing the data with a window of three points pro-

duces a profile whose error is σθs(z)
≈ 0.072k. It is 1/

√
3

times the error of the original profile σθs(z) = 0.125k. The

effect of noise reduction by smoothing can be clearly seen

in the first and second panel of Fig. 3. In this example, the

skewness of the distribution of the results can still be seen

from the confidence neighborhoods at various values of γ . It

is also clear that in signals with smaller errors the localization

of a property is more precise.

3.1.4 Strict confidence neighborhood

When an algorithm defines a location xm, we already know

that other nearby points could have been chosen if the ran-

dom noise had manifested differently. The points that have

higher probability to be chosen would all share the property

that caused the choice. In the given definition of confidence

neighborhood, we looked only at the points that respect the

equivalence relation Eq. (2) with the single data point ym.

Because of this simple definition, the confidence neighbor-

hood in the first panel of Fig. 3 tends to grow also to points

with a rather low probability – at least for higher values of

γ . However, if we assume that the selected location xm has

a confidence neighborhood in which the true value is located,

in this neighborhood all the points can be considered candi-

dates. This leads to the definition of strict confidence neigh-

borhood: a neighborhood where all points must respect the

equivalence relation Eq. (2) between each other (not only

with ym). The strict confidence neighborhood Usγ,y(xm) is

the neighborhood of xm that satisfies Eq. (2) for all of its

points:

USγ,y(xm)=
{
xm−1,xm,xm+1

}
∪{

xi : ζ(yi ,yj )≤ γ∀i,j ∈ [m− l1, . . .,m+ l2]
}
. (5)

According to the definition in Eq. (4), the confidence neigh-

borhood has to include the point itself as well as its direct

neighbors. Therefore, l1 and l2 have to be greater or equal

to 1 – even if there is no confidence between ym−1, ym, and

ym+1.

Comparing the confidence neighborhoods and the strict

confidence neighborhoods in Fig. 3, USγy(hm) is much more

symmetric than Uγy(hm) also for larger values of γ . This is

due to the stronger constraint for the strict confidence neigh-

borhood, as can bee seen in Fig. 4.

3.1.5 Practical determination of the strict confidence

neighborhood

Despite the definition of confidence neighborhood, the strict

confidence neighborhood is not always unique. This can be

understood by examining the process that is used to estimate

it.

We start from the first three points xm−1, xm, and xm+1.

If they do not match the confidence relation for the chosen

γ , the strict confidence neighborhood contains only these

three points. Otherwise, if they do match the confidence rela-

tion, an iterative process can be used to see if other contigu-

ous points can be added to the neighborhood. This can be

achieved by checking for couples of points directly left and

right of the borders of the neighborhood. These are checked

to see if they match the confidence relation with the neigh-

borhood. Each element of the couple can agree with the

already-defined confidence neighborhood. However, it can

also be the case that the two points do not agree with each

other.

When checking for couples of points that agree with all

the other points, but not with each other, a choice must be

made and one of the two points must be rejected. Rejecting

a point means that the confidence neighborhood stops grow-

ing in that direction. For the other direction, one can still add

points as long as the confidence relation remains satisfied.

A practical way to determine which one of two conflicting

data points should be kept is to select the one that has a bet-

ter confidence with ym. This is the criterion that we adopted.

Atmos. Meas. Tech., 8, 4215–4230, 2015 www.atmos-meas-tech.net/8/4215/2015/
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Figure 5. Left panel: the strict confidence neighborhoods

USγ θs (xm) and the true MH as a horizontal black line. For color

scales for different γ values see Fig. 3. Right panel: the distribution

of the Monte Carlo output as a probability density function (pdf).

The blue line is the median of the distribution, the dashed lines de-

fine the localization error of the median as from Eq. (7), and the

solid lines represent the square root of the second-order moment

about the median of the distribution.

3.2 From confidence neighborhood to localization

error

The width of the confidence neighborhood is a measure for

the quality of a localization. In particular, the introduced left

width l1 and the right width l2 give quantitative information

about the range of possible results of an algorithm. Moreover,

l1 and l2 provide a qualitative estimation of the skewness of

the distribution of possible results.

In Fig. 3, we showed the confidence neighborhood for the

true MH. That was possible because we know the true MH

for the synthetic profile that we used. Now we want to focus

on the confidence neighborhood of the results retrieved from

a localization algorithm working on noisy data. We expect

that the result should fall into the confidence neighborhood

of the true MH.

One way to measure localization error would be to use the

SD of the output distribution of a Monte Carlo. However, the

Monte Carlo distribution overlaps well with the confidence

neighborhoods for different values of γ in Fig. 3. Because

the output distributions are not necessarily normal, the mean

result of the Monte Carlo is not the most likely one. By defi-

nition, the mode (maximum value) of the distribution has the

maximum probability.

As a measure for uncertainty we used the square root of

the second moment about the mode. For normal distributions

this is also called SD. So we can calculate the square root of

the second-order moment about the mode of the distribution

of the results.

3.2.1 Localization error

The second-order moment expresses clearly the uncertainty

of the localization. However, its calculation requires per-

forming a Monte Carlo experiment. Moreover, it depends

strongly on the algorithm used. If the data have reasonably

small errors and the algorithms provide a useful estimate of

the target quantity, the results will have good confidence with

respect to the true target quantity.

The confidence neighborhoods as from Eq. (4) for γ ≈ 2

and the second-order moment of the distribution correspond

at least qualitatively. Therefore, we could use the second-

order moment about a retrieved location xm to give a first

definition of the localization error σxm :

σxm =

√√√√ 1

l1+ l2

∑
xk∈Uγ,y (xm)

(xm− xk)2, (6)

where l1 and l2 are respectively the left and right extensions

of the confidence neighborhood Uγ,y(xm) defined in Eq. (4).

We found that Eq. (6 is a good choice for the definition of

localization error because for uniformly sampled data series,

in the case of the smallest confidence neighborhood Uγ,y =

(xm−1,xm,xm+1), the localization error is just the amplitude

of the sampling, which in common practice is often used as

uncertainty.

This definition of σxm is subject to the choice of the con-

fidence threshold γ . From studying many cases of Monte

Carlo results, we found that for practical purposes the use

of γ = 2 will provide reasonable uncertainties (Kretschmer

et al., 2014). For arguments supporting the use of γ = 2 see

the Supplement. Note that here we use the strict confidence

neighborhood for the localization error, which is less subject

to the choice of γ (Fig. 3).

For our final definition of localization error, we take

Eq. (6) and substitute Uγy(xm) with the strict definition

USγy(xm). Then we consider which value of γ is most rep-

resentative of the distribution of the results. Clearly γ = 3

captures most of the results as we can see in Fig. 5. This is

true for the example: in particular, 97 % of the results are

captured.

With γ = 3 and the strict confidence neighborhood our fi-

nal definition of the localization error σxm is

σxm =

√√√√ 1

l1+ l2

∑
xk∈US3,y (xm)

(xm− xk)2. (7)

The strict confidence neighborhood USγy(xm) is in gen-

eral more symmetric than the simple confidence neighbor-

hood. However, it can still be unbalanced in the case of very
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Figure 6. Probability density functions of five MCs performed 100 000 times each. From left to right we created θs(z) with the following

resolutions: dz= 0.1, 1, 10, 30, and 100 m. On each plot, the median of the distribution xm and its localization error as defined in Eq. (7) are

printed.

poor localization, for example when the property is located in

a region where the signal is uniform within the uncertainties.

3.2.2 Symmetry of the localization error

In general, a confidence neighborhood can be asymmetric if

the signal does not depend on the location in a linear way. Es-

pecially if there is no change in signal towards one side of xm,

the confidence neighborhood will extend into that region. In-

stead, a confidence neighborhood estimated on a linear trend

extends almost equally into both directions.

The localization error as defined in Eq. (7) has two distinct

contributions: e1 from the points before xm and e2 from the

points after.

σ 2
xm
=

1

l1+ l2

∑
xk∈[xm−l1 ,...,xm]

(xm− xk)
2

+
1

l1+ l2

∑
xk∈[xm,...,xm+l2 ]

(xm− xk)
2
= e2

1 + e
2
2 (8)

In the example shown in Fig. 5, the localization error σxm
is 10.9 m, while the contributions from either side are e1 =

8.6 m and e2 = 6.7 m.

3.3 Localization depending on multiple data series

Often a local property can be defined as a location where

more than one condition must be fulfilled. The localization

might depend on different data series defined in the same se-

ries of locations xi . In this case, we define the confidence

neighborhood as the intersection of the respective confidence

neighborhoods of each data series. So in the end, the confi-

dence neighborhood for multiple data series is identical to

the smallest confidence neighborhood of xm for these data

series. This definition also holds for strict confidence neigh-

borhoods.

3.4 Effects of signal resolution and smoothing

The location vector xi can be unevenly spaced. In the previ-

ous examples, we used a fixed resolution of 3 m. However,

the resolution of a radiosonde profile usually varies with al-

titude. To assess how the resolution affects the localization

error, MC simulations were performed on signals at various

spatial resolutions dz.

The results clearly show that the resolution has an impact

(Fig. 6). In particular, for higher resolutions the chosen algo-

rithm underestimates MH. The skewness of the distribution

is kept for different resolutions. Reducing the resolution in-

creases the localization error. This is true for all resolutions
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Figure 7. Probability density functions of six MCs performed 100 000 times each. For this example we used a fixed spatial resolution of

0.1 m. The different smoothing window with size N is indicated at the top of each panel, and the median of the distribution xm and its

localization error as defined in Eq. (7) are printed.

starting from 1 to 100 m. The localization error for 0.1 m is

larger because the mode in this case is located closer to the

region of an almost constant signal.

Note that in Sect. 2.1 we decided to use the first location xi
that satisfies the algorithm, not an intermediate point. There-

fore, for the coarse resolution of 100 m most of the probable

MHs are located within 600 to 700 m, although xm = 600 m

was chosen.

From the example of the rightmost panel of Fig. 3, we

have already seen some of the effect of smoothing. It dras-

tically reduces the size of the confidence neighborhoods and

the spread of the possible results. This is because smoothed

profiles have smaller errors as can be easily inferred from

standard error propagation (Eq. A1). If the signal has an un-

correlated and constant error σy0
and the running average is

performed onN samples, the resulting error for the smoothed

signal is σy0
/
√
N .

There are two main effects when running averages are

used before an algorithm is applied:

– the increased window size reduces the localization error,

– the median of the results changes.

Both effects can be seen in Fig. 7. To better appreciate the

effects of smoothing, we have chosen a very high resolution

synthetic profile with dz= 0.1 m. It is clear that the smooth-

ing affects the median like the reduction of resolution. Simul-

taneously, it reduces the localization error of the median.

From Fig. 7, we can see that this reduction of localization

error is limited. Increasing the window size beyondN > 501,

which corresponds to a smoothing interval of ±25 m, does

not reduce the localization error any further. When exceeding

reasonable limits, the smoothing affects the algorithm output

negatively. This is because it modifies the signal and corrupts

it for large windows.

An interesting effect of increasing resolution can be seen

in Fig. 6. Increasing the resolution provides results with a

mode lower than the expected result. This is a combined ef-

fect of the choice of the algorithm described in Sect.2.1 and

of increasing the resolution. The algorithm points to the first

point that satisfies the threshold relation. When increasing

the number of points before the true one, we also increase

the probability to have outliers before the true value. When

choosing a different algorithm, e.g., the last point that is

lower than the threshold, we will end with a distribution of

results that will overestimate the true value.

4 Application to mixing height retrievals

The estimation of MH comes with many dubious aspects.

The first problem is the choice of a method to detect MH. The

second problem is the choice of an algorithm to apply the
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method. It is well known (Vogelezang and Holtslag, 1996;

Seibert et al., 2000; Beyrich and Leps, 2012) that different

methods produce different results in most cases. There are

a few exceptions, like when the vertical profiles look like ex-

amples from a textbook (Beyrich and Leps, 2012).

In this context, we do not want to evaluate the uncertainties

that MH has due to the choice of a method. This was done

successfully by Beyrich and Leps (2012) by comparing the

results of various methods to detect MH. We just estimate the

uncertainty on an individual retrieval.

The retrieved uncertainty can be used for several purposes,

e.g., to compare two different methods to see the degree of

confidence by using Eq. (2).

Kretschmer et al. (2014) successfully used the qualitative

localization error (Eq. 6) to filter data. The observations of

the symmetry of Uγ (xx) were used to reject the worst MH

estimates performed on the Integrated Global Radiosonde

Archive (IGRA) (Durre Imke et al., 2006) over Europe. The

retrieved MH errors were then used to propagate the errors in

a geostatistical interpolation that extended the observations

to a grid over the domain.

As a practical application, we used the described meth-

ods to retrieve the uncertainties of MH from radiosonde data.

Together with the already-introduced parcel method, we ap-

plied two variants of the bulk Richardson number method as

described by Vogelezang and Holtslag (1996).

4.1 Bulk Richardson number methods

Vogelezang and Holtslag (1996) analyzed three methods for

stable and neutral conditions. All of them imply the use of

different dimensionless profiles. However, in this work we

use only the first two methods proposed by Vogelezang and

Holtslag (1996). The third method they propose is not appli-

cable in this work because it requires additional data sources

not available from the radiosonde data themselves. The di-

mensionless profiles we analyzed are defined by the symbols

Rib and Rig .

The first definition Rib should be used under stable condi-

tions when wind is weak:

Rib(θv0,θvh,h,Vh)=
gh

θv0

θvh− θv0

V 2
h

, (9)

where θv0 and θvh are the virtual potential temperatures at

the surface and at the top, respectively; g is the gravitational

acceleration; and Vh is the wind speed. The variable h is the

altitude above the ground, which is about 112 m a.s.l. for Lin-

denberg.

The second definition Rig is more appropriate for stable

conditions with high winds:

Rig = Rig(θvs,θvh,h,uh,vh,us,vs,zs)

=
g(h− zs)

θvs

θvh− θvs

(uh− us)2+ (vh− vs)2
, (10)

where the subscript s denotes a reference level. The variables

v and u are the two horizontal wind components.

The reference level as used by Vogelezang and Holtslag

(1996) is located on a meteorological tower, not on the ra-

diosonde itself. They studied the effects of using different

reference levels but observed no larger changes as long as

the chosen reference level is close to 20 m. In this work, we

did not have tower data available, so we used the second data

point of each radiosonde profile as the reference level, which

was located at approximately 20 m above ground.

To locate the MH, an appropriate critical or threshold value

for Ri has to be selected. The MH is located where this

threshold value is reached. A typical value for the threshold

for the first method Rib is 0.25 (Seibert et al., 2000). For Rig ,

we used a critical value of 0.28, taken from Vogelezang and

Holtslag (1996, their Table 1).

The critical number for Rig was taken from Vogelezang

and Holtslag (1996, their Table 1), considering a general case

with a reference level of 20 m. We followed Vogelezang and

Holtslag (1996) using as reference layer the data taken clos-

est to 20 m above the ground.

Examples of the profiles of Rib and Rig are plotted in

Figs. 8 and 9.

4.2 Localization error for a data set of high-resolution

radiosonde profiles

As introduced in Sect. 2, we applied our methodology to

a subset of a well-known data set (Beyrich and Leps, 2012):

the month of June 2010 at the Lindenberg Meteorological

Observatory in Germany. During this time period, the pres-

ence of many different meteorological conditions allowed us

to see the behavior of the localization error.

Using the radiosonde data, we calculated θvz, Rib(z), and

Rig as defined by Eqs. (1), (9), and (10), respectively.

The following steps were taken to describe the process that

we used to estimate σxm :

1. propagate the errors using Eqs. (A4), (A9), and (A10);

2. use the algorithm presented in Sect. 2.1 for threshold

detection;

3. estimate the US3,y(xm) as defined in Sect. 3.1.5 for the

retrieved MHs;

4. use Eq. (7) to calculate σxm .

The result of such an analysis are presented in Fig. 10.
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Figure 8. Profiles used for estimating MH on 24 June 2010,

12:00 UTC. The θv, Rib and Rig are depicted surrounded by a blue

region that represents the error of the profile. The vertical dashed

lines represent the threshold that locates the MH. The estimated MH

with localization error is shown in red.

5 Discussion

The methodologies for retrieving MH should be applied

in proper meteorological conditions. The use of a wrong

methodology directly results in a large localization error.

This is clear from the time series of results in Fig. 10. For

the radiosonde data collected at 18:00 UTC, the error bars

are clearly larger than for other times of the day. Usually at

18:00 UTC at the Lindenberg station, the atmospheric pro-

files experience a transition from convective via neutral to

stable conditions. This makes the parcel method unusable

and also affects the Richardson number methods. The prob-

lems related to the 18:00 UTC MH retrieval are well known

at this site. In particular, Beyrich and Leps (2012) found the

largest differences between different MH retrieval methods

for that time of the day.

Another reason for high uncertainties is that the wind

speed might not be strong enough to justify the use of either

Rib or Rig . Low wind speed combined with uncertainties in

wind speed translates into large uncertainties in Rib and Rig ,

as wind speed appears with large exponents in the denomi-

nators of Eqs. (A9) and (A10). This can be clearly seen in

Figs. 11 and 12. If the virtual potential temperature has only

small changes with altitude, the parcel method will not pro-

duce a good localization.

We consider the points with small error bars in Figs. 8 and

9. Here the error is similar to the one encountered studying

the effects of resolution in Sect. 3.4. In particular, our data set

has a varying resolution with a mean of about 30 m. Looking

at Fig. 6, we see that the expected error (47 m) for a good

Figure 9. Profiles used for estimating MH on 3 June 2010,

06:00 UTC. The plot is analogous to Fig. 8.

localization is very similar to what we obtained for the well-

developed convective case in Fig. 8. The uncertainty for well-

localized points in our data set is generally around 40 m.

In the examples for bad localization (Figs. 11 and 12), both

wind speed and temperature contribute to the large localiza-

tion error (red error bar). However, we must distinguish be-

tween the cases of Figs. 11 and 12 because the large result-

ing errors are of a different nature. The case of Fig. 11 shows

a strongly asymmetric confidence neighborhood, while the

one presented in Fig. 12 is fairly symmetric.

The values of e1 and e2 are plotted in Figs. 11 and 12 as

black error bars. In the asymmetric example of 20 June 2010

at 18:00 UTC, the contribution to σxm comes mostly from the

e1 component. So if we repeated the measurement, we would

expect most of the values from below the retrieved MH and

only few from above. For the symmetric example of 6 June

2010 at 18:00 UTC, the components e1 and e2 are much more

similar in magnitude for all the retrieval methods.

In fact, a more symmetric error or confidence neighbor-

hood can allow us to use the localization error like an ordi-

nary Gaussian error. However, when the distribution of the

results is not Gaussian, the retrieved localization errors must

be used with care. In particular, the e1 and e2 contributions

should be considered separately.

6 Conclusions

We defined a rigorous method for evaluating uncertainties in

estimated quantities where standard error propagation cannot

be used. It is particularly useful when a complex algorithm

is necessary to find the location of a certain property and

a Monte Carlo approach is too expensive. We call this un-
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Figure 10. Time series of MHs calculated with three methods: blue is the parcel method (PM), green the Rib, and red the Rig . It presents the

results obtained from the raw data without smoothing. The error bars represent the localization error calculated with Eq. (7).

Figure 11. Potential temperature, Rib and Rig profiles at the Lin-

denberg Meteorological Observatory on 20 June 2010, 18:00 UT.

The propagated errors are depicted as light blue areas around the

profiles. On each plot, the localization error σxm is depicted as a red

error bar. Black bars represent the distinct contributions e1 and e2

to σxm .

Figure 12. Potential temperature, Rib and Rig profiles at the Lin-

denberg Meteorological Observatory on 6 June 2010, 18:00 UTC.

The propagated errors are depicted as light blue areas around the

profiles. On each plot, the localization error σxm is depicted as a red

error bar. Black bars represent the distinct contributions e1 and e2

to σxm .
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certainty of a localization the localization error σxm . Its def-

inition descends from the statistical concept of confidence

(Eq. 2), which is considered in this work as a relation of

equivalence of data points. To reach the mathematical defi-

nition of localization error in Eq. (7), we defined the strict

confidence neighborhood in Eq. (5) as a contiguous set of

equivalent data points.

Our work has proved to be a useful tool for qualitative

analyses, and in particular for filtering data by quality of

the retrieval (Kretschmer et al., 2014). When the confidence

neighborhood is symmetric, the localization error can be con-

sidered analogous to the SD. Like the SD, the interval defined

by the localization error will include the largest part of pos-

sible results if the measurements are repeated.

Depending on the actual signal, the interval defined by

the localization error may be strongly asymmetric. In such

a case, the expected distribution of possible results is not

Gaussian, and the distribution will have non-negligible skew-

ness. The correct use of the localization error then requires

considering the left and right contributions to σxm separately.

Our methodology was applied to compare different meth-

ods for retrieving mixing height from radiosonde data. This

was not done to provide a better algorithm, nor to perform

a general study on the best way to estimate mixing height.

We rather provided a tool that can be used to better and more

quantitatively compare different algorithms.

All the methodologies described in the literature provide

values of MH without a specific error estimate. Instead, the

uncertainty was estimated on the basis of the spatial and tem-

poral variability of large data sets or by comparing results of

different methods. Our goal was to estimate a reasonable un-

certainty for one singular estimate of MH that depends only

on the signals used and their uncertainties. The uncertainties

that we retrieve this way are consistent with the climatologi-

cal results of Beyrich and Leps (2012).

Our method is not limited to mixing height retrieval or at-

mospheric science at all. It can be applied to many problems

where data points in a signal have to be localized: for ex-

ample to find minima or maxima, or values exceeding a cer-

tain threshold. The localization error provided by our method

can be used for error propagation in almost the same way

as SD. It opens the possibility to check hypotheses by use

of Welch’s t test (Welch, 1947) or similar methods also for

small data sets.
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Appendix

The errors of meteorological quantities retrieved by mea-

sured ones like potential temperature, virtual potential tem-

perature and the different bulk Richardson number profile

formulations are displayed here.

A1 Error propagation

When combining different measurements yk where K ∈

1, . . .,M into a derived quantity f (y1, . . .yM), the proper way

to calculate the error of the retrieved quantity εf is the fol-

lowing:

εf =

√√√√ ∑
k∈{1,...,M}

ε2
yk

(
∂f

∂yk

)2

, (A1)

where εyk is the error of the measurement of yk .

A2 Potential temperature

Potential temperature represents the temperature that an air

parcel would have if adiabatically translated from a certain

pressure level P to a reference level P0.

θ(z)= T (z)

[
P0

P(z)

]γ
, (A2)

where γ is the adiabatic lapse rate

σ 2
θ (z)= σT (z)

2

[
P0

P(z)

]2γ

+ σ 2
P (z)

γ 2P 2
0 T (z)

2
(
P0

P(z)

)2γ−2

P(z)4

+ σ 2
P0

γ 2T (z)2
[
P0

P(z)

]2γ−2

P(z)2
. (A3)

In this error formulation we are considering that the adiabatic

lapse rate has no error. The value P0 and its error σP0
are

provided for sake of generalities, but in general P0 is fixed to

1000 hPa and has no error.

A3 Virtual potential temperature

Virtual potential temperature represents the temperature that

an air parcel would have if adiabatically translated from

a certain pressure level P to a reference level P0 and if all

the water vapor condensed, so that the all condensation la-

tent heat is released. If no liquid water content is considered,

follow the definition below.

In order to retrieve the error propagation formula in this

case we can use Eq. (A3), substituting the temperature and

its error with Te and its error:

σ 2
Te
(z)= σ 2

T (z)+ σ
2
MR(z)b

2. (A4)

Before we give a formulation on the error on the MR, we

have to point out that the coefficient b is not really a con-

stant, being dependent on the water vapor’s latent heat of

condensation temperature, but in this context we are keep-

ing it constant and neglecting any error associated with its

value.

Radiosondes are measuring relative humidity, so MR must

be calculated from this quantity. This task can be performed

by calculating the water vapor pressure directly from RH and

pressure after the estimation of water vapor saturation pres-

sure.

MR(z)=
e(z)

P (z)− e(z)
=

RHesat(z)

P (z)−RHesat(z)
, (A5)

where e(z) is the water vapor pressure at the altitude z. The

relative humidity in this expression and in the following is

intended to be divided by 100, and esat(z) is the saturation

pressure of water vapor. For this last quantity many empirical

formulations can be found as a function of temperature. Due

to the large number of expressions we have chosen to refer

to Bolton’s approximation (Bolton, 1980):

esat = 6.112e17.67T/(T+243.5), (A6)

where T is expressed in ◦C and pressure in hPa. For this ex-

pression the error propagation is

σ 2
esat
= σ 2

T 37.357

[
17.67

T + 243.5
−

17.67T

(T + 243.5)2

]2

e
35.34T
T+243.5 . (A7)

Propagating the errors on the MR expression, we obtain

σ 2
MR(z)= σ

2
esat

[
RH

P −RHesat

+
RH2esat

(P −RHesat)2

]2

+ σ 2
RH

[
esat

P −RHesat

+
RHe2

sat

(P −RHesat)2

]2

+ σ 2
P

RH2e2
sat

(P −RHesat)4
. (A8)

Substituting Eq. (A7) in this last expression, we obtain an ex-

pression on the error of MR that consider only the quantities

directly measured by the RS92-SGPD.

A4 Error propagation on bulk Richardson number

methods

Equation (9) gives us the following expression for the errors:

σ 2
Rib
= σ 2

θv0
g2h2

(
1

θv0V
2
h

−
θv0− θv

θ2
v0V

2
h

)2

+ σ 2
θv

g2h2

θ2
v0V

4
h

+ σ 2
hg

2 (θv0− θv)
2

θ2
v0V

4
h

+ 4σ 2
V g

2h2 (θv0− θv)
2

θ2
v0V

6
h

. (A9)

It must be noted that the variable h is defined as the differ-

ence between the measured altitude over mean sea level and
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the altitude of the balloon release area; for this reason, on

a nonuniform terrain the uncertainty of this quantity can be

relevant. Propagation of the Rig adds to Eq. (A9) also the

dependence on the wind direction used to calculate the wind

components, as well the errors in the reference levels.

σ 2
Rig
= σ 2

θvs
g2

{
h− zs

θvs

[
(uh− us)2+ (vh− vs)2

]
+

(h− zs)(θvh− θvs)

θ2
vs

[
(uh− us)2+ (vh− vs)2

]}2

+ σ 2
θvh
g2 (h− zs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]2
+ σ 2

hg
2 (θvh− θvs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]2
+ σ 2

zs
g2 (θvh− θvs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]2
+ σ 2

uh
g2 (2uh− 2us)

2(h− zs)
2(θvh− θvs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]4
+ σ 2

vh
g2 (2vh− 2vs)

2(h− zs)
2(θvh− θvs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]4
+ σ 2

us
g2 (2uh− 2us)

2(h− zs)
2(θvh− θvs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]4
+ σ 2

vs
g2 (2vh− 2vs)

2(h− zs)
2(θvh− θvs)

2

θ2
vs

[
(uh− us)2+ (vh− vs)2

]4 (A10)
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