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Abstract. Using NOAA’s Gridpoint Statistical Interpolation

(GSI) data assimilation system and NCAR’s Advanced Re-

search WRF (Weather Research and Forecasting) (ARW-

WRF) regional model, six experiments are designed by (1)

a control experiment (CTRL) and five data assimilation

(DA) experiments with different data sets, including (2) con-

ventional data only (CON); (3) microwave data (AMSU-

A+MHS) only (MW); (4) infrared data (IASI) only (IR);

(5) a combination of microwave and infrared data (MWIR);

and (6) a combination of conventional, microwave and in-

frared observation data (ALL). One-month experiments in

July 2012 and the impacts of the DA on temperature and

moisture forecasts at the surface and four vertical layers over

the western United States have been investigated. The four

layers include lower troposphere (LT) from 800 to 1000 hPa,

middle troposphere (MT) from 400 to 800 hPa, upper tro-

posphere (UT) from 200 to 400 hPa, and lower stratosphere

(LS) from 50 to 200 hPa. The results show that the regional

GSI–WRF system is underestimating the observed tempera-

ture in the LT and overestimating in the UT and LS. The MW

DA reduced the forecast bias from the MT to the LS within

30 h forecasts, and the CON DA kept a smaller forecast bias

in the LT for 2-day forecasts. The largest root mean square

error (RMSE) is observed in the LT and at the surface (SFC).

Compared to the CTRL, the MW DA produced the most pos-

itive contribution in the UT and LS, and the CON DA mainly

improved the temperature forecasts at the SFC. However, the

IR DA gave a negative contribution in the LT.

Most of the observed humidity in the different vertical lay-

ers is overestimated in the humidity forecasts except in the

UT. The smallest bias in the humidity forecast occurred at

the SFC and in the UT. The DA experiments apparently re-

duced the bias from the LT to UT, especially for the IR DA

experiment, but the RMSEs are not reduced in the humidity

forecasts. Compared to the CTRL, the IR DA experiment has

a larger RMSE in the moisture forecast, although the smallest

bias is found in the LT and MT.

1 Introduction

Instead of the random distribution and heterogeneous spa-

tial density in the traditional conventional radiosondes, satel-

lite observations provide a large amount of data covering

worldwide areas in order to improve the initialization of

the weather forecast models through a data assimilation

system. Many studies have demonstrated that the assimi-

lation of satellite data has significantly improved weather

forecasts (Eyre, 1992; Andersson et al., 1991; Derber and

Wu, 1998; Zhou et al., 2011), especially over some ar-

eas with sparse conventional observations (McNally et al.,

2000; Zapotocny et al., 2008; Liu et al., 2012). For ex-

ample, using the operational European Centre for Medium-
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Range Weather Forecasts (ECMWF) system, Andersson et

al. (1991) pointed out that the forecast shows a negative im-

pact of the satellite sounding data in the Northern Hemi-

sphere, and a strong positive impact in the Southern Hemi-

sphere. Based on the National Centers for Environmental

Prediction (NCEP) Global Data Assimilation/Forecast Sys-

tem (GDAS/GFS), Zapotocny et al. (2008) found a positive

forecast impact from both the conventional in situ and re-

motely sensed satellite data in both hemispheres. The posi-

tive forecast impacts from the conventional and satellite data

are of similar magnitude in the Northern Hemisphere; how-

ever, the contribution to forecast quality from satellite data is

considerably larger than the conventional data in the South-

ern Hemisphere. The importance of satellite data also gen-

erally increases at longer forecast times relative to conven-

tional data. It is clear that satellite data assimilation plays an

important role in the improvement of weather forecasts.

The Meteorological Operational satellite program

(MetOp) launched its first polar-orbiting satellite (MetOp-A)

on 19 October 2006. MetOp-A is in a sun-synchronous orbit,

carrying a payload of 10 scientific instruments, including

the Advanced Microwave Sounding Unit-A (AMSU-A), Mi-

crowave Humidity Sounder (MHS) and the new-generation

Infrared Atmospheric Sounding Interferometer (IASI) to

make atmospheric soundings at various altitudes. IASI

(Clerbaux, et al., 2009) measures the radiance emitted from

the Earth in 8461 channels covering the spectral interval

645–2760 cm−1 at a resolution of 0.5 cm−1 (apodized) and

with a spatial sampling of 18 km at nadir. Limited spectral

data are currently being transmitted, stored and assimilated.

Rabier et al. (2002) compared a number of techniques for

channel selection from high-spectral-resolution infrared

sounders and concluded that the channel-selection method

of Rodgers (1996, 2000) is the optimal one. Collard (2007)

applied his method to select a subset of 300 channels for

data assimilation, so that the total loss of information for

a typical numerical weather prediction (NWP) state vector

consisting of one or more of temperature and/or humidity is

minimized.

This study focuses on assessing the effects of hyperspec-

tral infrared and microwave radiance data assimilation on the

weather forecasts, especially on the different performance of

vertical structures, based on AMSU-A, MHS and IASI radi-

ance data. The model, data and methodology are presented

in Sects. 2 and 3, respectively. Section 4 describes the results

of experiments. The results are summarized and discussed in

Sect. 5.

2 Model

2.1 The GSI system for ARW-WRF regional model

The assimilation system used here is the Gridpoint Statistical

Interpolation (GSI) analysis system, which was developed

by United States National Centers for Environmental Pre-

diction (NCEP). The current GSI regional analysis system

accepts NCEP’s Nonhydrostatic Mesoscale Model (NMM)

WRF and NCAR’s Advanced Research WRF (Weather Re-

search and Forecasting) (ARW-WRF) regional model mass

core (Liu and Weng, 2006a; Xu and Powell, 2012; Wan and

Xu, 2011). The interfaces are specialized separately for the

WRF NMM core and the WRF ARW core. The analysis sys-

tem produces an analysis through the minimization of an ob-

jective function given by

J =
1

2
(x− xb)T B−1(x− xb)+

1

2
(H(x)− yo)T R−1(H(x)− yo),

where x is the analysis state; B is the background error co-

variance matrix; xb is the first guess that comes from GFS 6 h

forecast field in this study; H is the transformation operator

from the analysis variable to the form of the observations;

and yo is the observation, such as AMSU-A, MHS, IASI,

etc.

The minimization algorithm with two outer iterations pro-

posed in John Deber’s report (Deber, 2012) has been verified

and used in NOAA operational forecasts. Therefore, the min-

imization algorithm is used to account for weak nonlineari-

ties in the cost function. In the first external iteration the first

guess is a 6 h forecast, while in the second one it is the so-

lution from the previous outer iteration. In the cost function

B has been estimated from scaled differences between 24

and 48 h forecasts valid at the same time (Parrish and Derber,

1992). The observation error covariance matrix (R) contains

information on the observational error and errors in represen-

tativeness, which were calculated before running the GSI.

2.2 Radiative transfer model

The radiative transfer model incorporated into the GSI data

assimilation system at the NCEP is the Community Radia-

tive Transfer Model (CRTM). The CRTM was developed by

the United States Joint Center for Satellite Data Assimilation

(JCSDA) for rapid calculations of satellite radiances based

on radiative transfer (RT) theory (Han et al., 2006). The

forward model, tangent-linear, adjoint and K-matrix models

were also developed for the data assimilation of satellite data:

CRTM is always updated for new satellite data. It supports

a large number of sensors onboard geostationary and polar-

orbiting satellites, covering the microwave, infrared and vis-

ible frequency regions.

The CRTM comprises four major modules: (1) RT solution

module, (2) atmospheric transmittance module, (3) surface

emissivity/reflectivity module, and (4) particle-scattering

module. Six RT solution schemes were tested in the CRTM

(Weng et al., 2007). According to several performance fac-

tors, the advance doubling and adding scheme (ADA; Liu

and Weng, 2006a) was selected for the CRTM implementa-

tion. In CRTM, a fast and optimal spectral sampling (OSS)

absorption model (Moncet et al., 2004) is used to calculate

atmospheric transmittance.
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Table 1. The experiment design includes six simulations (EXP1–EXP6). All experiments are made from 30 June to 31 July 2012 and make

a 72 h forecast for each day.

Experiment Description Initial time

EXP1 CTRL Control experiment without data assimilation 18:00 UTC from 30 June to 31 July

EXP2 CON Conventional data assimilation 00:00 UTC from 1 to 31 July

EXP3 MW AMSU-A+MHS data assimilation 00:00 UTC from 1 to 31 July

EXP4 IR IASI data assimilation 00:00 UTC from 1 to 31 July

EXP5 MWIR (MW+ IR) AMSU-A+MHS+ IASI data assimilation 00:00 UTC from 1 to 31 July

EXP6 ALL (CON+MW+ IR) Conventional+AMSU-A+MHS+ IASI data assimilation 00:00 UTC from 1 to 31 July

Figure 1. Distribution of observations. (a) Conventional data on 1 July 2012 with the atmospheric temperature (yellow), moisture (dark

blue), surface pressure (light blue), and wind speed (orange). (b) Scan coverage of AMSU-A (light blue), MHS (dark blue) and IASI (red)

radiance at 18:00 UTC on 1 July 2012

2.3 Experiment design

The objective of this study is to explore the effect of satel-

lite data assimilation on the main atmospheric state forecast

by comparing the results from microwave (AMSU-A and

MHS), hyperspectral infrared radiance (IASI) and conven-

tional data assimilation. Over the contiguous United States

of America (USA), there are many conventional observation

stations, which can be used to validate the forecast results.

Therefore, the west coast region of the USA is selected as

the experimental region. There was more satellite data cov-

erage of the experimental region around 18:00 UTC than at

other times, such as 00:00, 06:00 and 12:00 UTC. The cov-

ered region at 18:00 UTC is 20–55◦ N and 85–155◦W, which

includes the western USA and sea area near the west coast

(Fig. 1).

The experiment design includes six simulations (Table 1).

The control (CTRL) experiment is first made with an ini-

tial time at 18:00 UTC from 30 June to 30 July and makes

6 h forecasts. The five data assimilation (DA) experiments

and the continued control experiment are made with initial

time at 00:00 UTC from 1 to 31 July 2012 and make a 72 h

forecast for each day. The initial condition in all six exper-

iments is obtained from the 6 h forecasts of the first control

experiment. The five DA experiments are made with differ-

ent data sets, including conventional data (CON); microwave

data (AMSU-A+MHS) (MW); infrared data (IASI) (IR); a

combination of microwave and infrared data (MWIR); and a

combination of conventional, microwave and infrared obser-

vation data (ALL). The initial condition and lateral boundary

conditions came from the operational GFS forecast at 6 h in-

tervals and 0.5◦× 0.5◦ resolution, which were downloaded

from the NCEP data inventory (ftp://ftp.ncep.noaa.gov/pub/

data/nccf/com/gfs/prod/).

In the ARW model, the physics of the model in-

cludes the Goddard Cumulus Ensemble (GCE) microphysics

scheme, Yonsei University planetary boundary layer (PBL)

scheme, Noah land surface model, Rapid Radiative Transfer

Model (RRTM) longwave radiation, and the Goddard short-

wave radiation scheme (Xu et al., 2009). The 15 km WRF

model forecast with a mesh size domain of 718× 373 (Fig. 1)

was used. Forty-three (43) vertical layers were selected for

use with a model top of 10 hPa.
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Figure 2. Vertical weighting functions for satellite observations as a function of height. (a) AMSUA , (b) MHS , (c) IASI.

Table 2. Listed below are the 279 channels in IASI corresponding

to atmospheric temperature and humidity. The numbers indicate the

order in which the channels were chosen in current data assimila-

tion.

16 135 226 356 566 1658 2993 3248 3509 5502

38 138 230 360 571 1671 3002 3252 3518 5507

49 141 232 366 573 1786 3008 3256 3527 5509

51 144 236 371 646 1805 3014 3263 3555 5517

55 146 239 373 662 1884 3027 3281 3575 5558

57 148 243 375 668 1991 3029 3303 3577 5988

59 151 246 377 756 2019 3036 3309 3580 5992

61 154 249 379 867 2094 3047 3312 3582 5994

63 157 252 381 906 2119 3049 3322 3586 6003

66 159 254 383 921 2213 3053 3375 3589

70 161 260 386 1027 2239 3058 3378 3599

72 163 262 389 1046 2271 3064 3411 3653

74 167 265 398 1121 2321 3069 3438 3658

79 170 267 401 1133 2398 3087 3440 3661

81 173 269 404 1191 2701 3093 3442 4032

83 176 275 407 1194 2741 3098 3444 5368

85 180 282 410 1271 2819 3105 3446 5371

87 185 294 414 1479 2889 3107 3448 5379

104 187 296 416 1509 2907 3110 3450 5381

106 193 299 426 1513 2910 3127 3452 5383

109 199 303 428 1521 2919 3136 3454 5397

111 205 306 432 1536 2939 3151 3458 5399

113 207 323 434 1574 2944 3160 3467 5401

116 210 327 439 1579 2948 3165 3476 5403

119 212 329 445 1585 2951 3168 3484 5405

122 214 335 457 1587 2958 3175 3491 5455

125 217 345 515 1626 2977 3178 3497 5480

128 219 347 546 1639 2985 3207 3499 5483

131 222 350 552 1643 2988 3228 3504 5485

133 224 354 559 1652 2991 3244 3506 5492

3 Data and methodology

3.1 Conventional and satellite data

In this study the conventional observation data include at-

mospheric temperature (T ), moisture (Q) and wind speed

(WSP) at various pressure levels and pressure data at the sur-

face that were downloaded from NCEP data inventory (ftp:

//ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/). Figure 1a

shows the distribution of the conventional data on 1 July

2012 where the atmospheric temperature, moisture and sur-

face pressure observations are rare. Most of atmospheric tem-

perature and moisture observations are conducted at the sur-

face level in the pressure range of 1000–1200 hPa. Most of

the WSP data are found over the sea close to the west coast

of the United States.

The satellite data include the AMSU-A, MHS and the

new-generation IASI. Figure 1b shows the distribution of

the AMSU-A, MHS and IASI data sets acquired at about

18:00 UTC on 1 July 2012. AMSU-A is a 15-channel cross-

track, stepped-line scanning, total power microwave ra-

diometer. In this study the channels from 4 to 14 are assim-

ilated, which were designed to detect atmospheric temper-

ature at 11 layers from the surface to around 45 km. Their

weighting function is illustrated in Fig. 2a. MHS on the

other hand probes at millimetric frequencies between 89 and

183 GHz; channels 2 to 5 are assimilated, which were de-

signed to detect atmospheric moisture at two layers from

surface to around 400 hPa. Their weighting function is il-

lustrated in Fig. 2b. Channel 4 of AMSU-A and channel 2

of MHS can detect the atmospheric temperature and humid-

ity at the lowest layer of the troposphere. Channels 5 and 6

of AMSU-A and channels 3, 4 and 5 of MHS can represent

the atmospheric temperature and humidity in the middle at-

mospheric layer of the troposphere. Channel 7 of AMSU-A

can indicate the atmospheric temperature in the highest layer

of troposphere. Channels 9 and 10 of AMSU-A can detect

the atmospheric temperature in the lower layer of the strato-

sphere.
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Figure 3. The scattering plot between observation minus background (OMB) and observation minus analysis (OMA) in the all-data

(CON+AMSU-A+MHS+ IASI ) experiment (a: surface pressure; b: atmospheric temperature at the height of 2 m; c: wind speed at

the height of 10 m) for 1 July 2012.

The IASI instrument covers the spectral range from

the thermal infrared at 3.62 µm (2760 cm−1) to 15.5 µm

(645 cm−1), covering the peak of the thermal infrared and

particularly the CO2 band with the humidity (Q) branch

around 666 cm−1. Within these bands, the selected 279 bands

(Table 2) correspond to atmospheric temperature and humid-

ity. A band number smaller than 515 represents atmospheric

temperature, and a band number larger than 2701 represents

atmospheric humidity. Their weighting function is illustrated

in Fig. 2c.

3.2 Radiance data quality control and bias correction

The radiance data have been preprocessed by NOAA’s

Satellite and Information Service (NESDIS) before becom-

ing available for usage. The data have been statistically

limb-corrected (adjusted to nadir) and surface-emissivity-

corrected in the microwave channels and cloud-cleared in

the tropospheric channels. Although the satellite data have

undergone preprocessing, they need further bias correction

before being ingested into the data assimilation system. The

source of the biases can be related to instrument calibra-

tion problems, and predictor and zenith angle bias. It has

been demonstrated that a successful bias correction scheme

must take into account the spatially varying and air-mass-

dependent nature of radiance biases (Kelly and Flobert, 1988;

McMillin et al., 1989; Uddstrom, 1991). Eyre (1992) and

Harris and Kelly (2001) categorized the bias into two types:

scan bias and air-mass bias, and they presented a bias cor-

rection scheme. GSI uses this bias correction scheme to

correct radiance bias. The radiance bias correction coeffi-

cients may be downloaded from the GDAS data directory

(ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/), and it

can be used to correct the radiance bias in GSI. For that pur-

pose in this study monthly regional mean innovations, e.g.,

observation minus background (OMB) and observation mi-

nus analysis (OMA), are calculated with or without bias cor-

rections. For example, Fig. 3 shows the scattering plots of

surface pressure (Fig. 3a), atmospheric temperature at the

height of 2 m (Fig. 3b) and wind speed at the height of 10 m

(Fig. 3c) between OMB and OMA in the ALL experiment.

The result shows that the slope of the simulated line is less

than 1, which indicates the analysis fields are closer to obser-

vation than background fields.

3.3 Methodology

In order to evaluate the effects of radiance data assimilation

on temperature and moisture at the different vertical layers,

the surface (SFC) and four atmospheric layers are examined.

The four layers include lower troposphere (LT) from 800 to

1000 hPa, middle troposphere (MT) from 400 to 800 hPa, up-

per troposphere (UT) from 200 to 400 hPa and lower strato-

sphere (LS) from 50 to 200 hPa. Similar to a previous study

(Xu, et al., 2009), two statistical variables – bias and root

mean square errors (RMSEs) – are investigated.
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Figure 4. Bias of the temperature (T ) forecasts at (a) surface (SFC), (b) lower troposphere (LT), (c) middle troposphere (MT), (d) upper

troposphere (UT), (e) lower stratosphere (LS). Unit: ◦C. CTRL , CON , MW, IR, MWIR and ALL are defined in Table 1.

If X represents any of the parameters under consideration

for a given time and vertical level, then the forecast error is

defined as X′ =Xf−Xo, where the subscripts f and o denote

forecast and observed quantities, respectively. Given N valid

pairs of forecasts and observations, the bias is computed as

bias=X′ =
1

N

N∑
i=1

X′i; (1)

the RMSE is computed as

RMSE=

√√√√ 1

N

N∑
i=1

(
X′i
)2

. (2)

The bias and RMSE at 00:00 and 12:00 UTC are calculated

because more than enough observational data and approxi-

mately 3000 sounding stations can be used at the two times.

4 Results

4.1 Impact of DA on temperature

At the SFC, the CON DA experiment shows (Fig. 4a) the

smallest bias value in all six experiments. The three in-

volved infrared satellite DA experiments (IR, IR+MW,

IR+MW+CON) show a larger bias than the CTRL exper-

iment. For the first 24 h, it seems that satellite radiance DA,

especially for the infrared IASI data, gives a negative contri-

bution to the temperature forecasts. In additon, the bias char-

acterized a diurnal cycle feature for the 72 h forecasts, with

the smaller bias appearing at 6, 30, 54 and 72 h, correspond-

ing to 16:00 LT, while the higher bias appeared at 18, 42 and

66 h, corresponding to 04:00 local time.

Compared to the SFC, the LT shows a more clear diurnal

variation (Fig. 4b), and all model forecasts underestimated

the observed temperature. The CTRL and CON experiments

obtained the smallest forecast bias.

Different from the SFC and LT, the diurnal variation of

bias disappeared in the MT (Fig. 4c). Compared to the CTRL

experiment, the bias is significantly reduced in all DA ex-

periments, especially for the two combination experiment

(MWRI and ALL); the bias is almost zero within the 30 h

forecast. It implies that both MW (AMUS-A and MHS) and

IR (IASI) DA experiments give a positive contribution to the

accuracy of temperature forecasts in the MT.

In the UT, the smaller bias appeared in the CON and MW

DA experiments (Fig. 4d), and the combination DA experi-

ments (MWIR and ALL) show a larger bias than the CTRL

experiment. The results indicate that the IR DA gave a neg-

ative contribution to the temperature forecasts and that the

MW experiment improved the forecast accuracy in the UT.

In contrast, the bias in the LS indicates an opposite pat-

tern to the SFC and LT, where all satellite DA experiments

reduced the forecast bias (Fig. 4e). The result demonstrated

Atmos. Meas. Tech., 8, 4231–4242, 2015 www.atmos-meas-tech.net/8/4231/2015/
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Figure 5. Bias profile of the temperature (T ) forecasts at (a) 6 h, (b) 30 h, (c) 54 h forecasts. Unit: ◦C. Other definitions are the same as in

Fig. 4.

that the conventional DA did not improve the forecasts be-

cause of the sparse observational data used in this layer. The

MW DA obtained the smallest bias in the LS.

In order to clearly understand the different performance

in the six experiments, the temperature forecast bias profile

at 6, 30 and 54 h has been examined. Figure 5 indicates a

similar pattern at the three forecast times, where the lower

bias can be found at the SFC and in the MT while the larger

bias appeared in the UT and LS. Generally, the model fore-

casts overestimated the observed temperature except in the

LT. Compared to the CTRL experiment, the four satellite DA

experiments (MW, IR, MWIR and ALL) show a smaller bias

from the MT through LS, but the forecasts did not improve in

the LT below 800 hPa. In contrast, the CON experiment has

better performance in the LT, especially at the SFC.

It is obvious that the larger bias in temperature forecast ap-

peared in the LT, UT and LS, but the model is underestimat-

ing the observed temperature in the LT and overestimating in

the UT and LS (Fig. 5). The satellite DA, especially for the

MW DA experiment using AMSU-A, reduced the forecast

bias at the levels from the MT to LS. Meanwhile, the CON

DA has a smaller forecast bias in the LT, especially at the

SFC. Note the IR experiment using the IASI data produced a

worse result in the LT.

The forecast RMSE demonstrated some different features

(Fig. 6). First, the RMSE reduced the diurnal variation and

significantly increased with the extended length of forecast

time at the SFC. The RMSE in the CON and MW experi-

ments is slightly less than that in the CTRL experiment and

the other three satellite DA experiments within 24 h forecasts

(Fig. 6a). Second, consistent with the larger negative bias in

all the satellite DA experiments (Fig. 4b) in the LT, larger

RMSEs are observed in these DA experiments (Fig. 6b) com-

pared to the CRTL. Third, different from the smaller bias in

the DA experiments, the larger RMSEs are maintained in the

DA experiments in the MT (Fig. 6c). Fourth, the CON and

MW experiments improved the temperature forecasts in the

UT (Fig. 6d). But in the LS, the microwave DA experiments

– including MW, MWIR and ALL – indicate smaller RM-

SEs than the CTRL experiment (Fig. 6e). It is apparent that

the CON DA gave a negative contribution to the temperature

forecast in the LS.

Corresponding to the bias profile (Fig. 5), the forecast

RMSE profile at 6, 30 and 54 h indicates (Fig. 7) that the

smallest RMSE is observed at the MT and the largest RMSE

appeared in the LT and SFC. Compared to the CTRL exper-

iment, the smaller RMSEs are only found in the MW exper-

iment in the UT and LS, and the CON DA gave a positive

contribution at the SFC and in the UT.

The results clearly show that the IR DA experiment gives

a negative contribution to the temperature forecast in the re-

gional system. But the MW DA experiment shows a positive

impact at the LS, and the CON experiment displays better

performance at the SFC and in the UT. It is worth noticing

that the RMSE is not always consistent with the bias in the

temperature forecasts; for example, the smaller bias appeared

at the SFC, while a larger RMSE is observed there.

4.2 Impact of DA on humidity

Similar to the temperature forecasts at the SFC, the diurnal

variation of the moisture bias is observed and the smallest

bias appeared in the CON and CTRL experiments within

the 42 h forecast (Fig. 8a), with largest bias occurring in the

MWIR experiment at 18 h. It is clear that all four satellite

DA experiments do not improve the moisture forecast com-

pared to the CTRL experiment. In contrast, the IR DA pro-

duced a larger bias significantly different from the other ex-

www.atmos-meas-tech.net/8/4231/2015/ Atmos. Meas. Tech., 8, 4231–4242, 2015
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Figure 6. RMSE of the temperature (T ) forecasts at (a) surface (SFC), (b) lower troposphere (LT), (c) middle troposphere (MT), (d) upper

troposphere, (e) lower stratosphere. Unit: ◦C. Other definitions can be found in Table 1.

Figure 7. The RMSE profile of the temperature forecasts at (a) 6 h , (b) 30 h, (c) 54 h forecasts. Unit: ◦C. Other definitions are the same as

in Fig. 4.

periments in the entire troposphere (Fig. 8b–d). It seems to

tell us that the IR DA significantly impacts the humidity fore-

casts in the troposphere. However, the impact disappeared in

the LS (Fig. 8e).

Compared to the bias profile of the temperature forecast

(Fig 4), all model runs overestimated the observed humidity

except for the UT. The smallest bias in the humidity forecast

occurred at the SFC and in the UT (Fig. 9). Most of the DA

experiments apparently reduced the bias from LT to UT, es-
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Figure 8. The bias of the specific humidity (Q) forecasts at (a) surface (SFC), (b) lower troposphere (LT), (c) middle troposphere (MT),

(d) upper troposphere, (e) lower stratosphere. Unit: g kg−1. Other definitions can be found in Table 1.

Figure 9. Bias profile of the specific humidity forecasts at (a) 6 h, (b) 30 h, (c) 54 h forecasts. Unit: g kg−1. Other definitions are the same as

in Fig. 4.

pecially for the IR experiment. But it is worth noting that the

MW DA has a larger bias than the CTRL experiment in the

whole troposphere.

However, the RMSE in the humidity forecasts (Fig. 10)

increases from the SFC to LS. The largest error in the UT and

LS is almost double the amount at the SFC. In addition, most

of the DA experiments demonstrated a larger RMSE than that

in the CTRL experiment. In other words, the DA experiments

gave a negative contribution to the humidity forecasts. The IR

DA experiment did not improve moisture forecast, although

its bias is very small at the LT and MT.
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Figure 10. The RMSE profile of the specific humidity forecasts at (a) 6 h , (b) 30 h, (c) 54 h forecasts. Unit: g kg−1. Other definitions are the

same as in Fig. 4.

5 Summary and discussion

5.1 Summary

In this study six experiments were designed to assess the ef-

fects of data assimilation on atmospheric temperature and

moisture forecasts over the western United States. The re-

sults are summarized as follows.

The regional model underestimates the observed temper-

ature in the LT and overestimates it in the UT and LS. The

MW experiment reduced the forecast bias from the MT to

LS, and the CON DA obtained a smaller forecast bias in the

LT, especially at the SFC. But the IR experiment using the

IASI data obtained the largest bias in the LT.

However, the RMSE is not always consistent with the bias

profile in the temperature forecasts: in fact, the RMSE pro-

file shows that the largest RMSE appeared in the LT and the

smallest error in the MT. Compared to the CTRL experiment,

the smaller RMSEs are only found in the MW experiment in

the UT and LS, and the CON DA gave a positive contribu-

tion at the SFC and in the UT. The IASI DA experiment has

a negative impact on the temperature forecast in the regional

forecast system.

In contrast, all model forecasts overestimated the observed

humidity except in the UT. The smallest bias in the humid-

ity forecast occurred at the SFC and in the UT. Most of the

DA experiments apparently reduced the bias in the LT to UT,

especially for the IR DA experiment. But the MW DA ob-

tained a larger bias than the CTRL experiment in the entire

troposphere.

The RMSE in the humidity forecasts increases from the

SFC to the LS, which is similar to the bias profile except in

the UT. The largest error in the UT and LS is almost double

the amount at the SFC. The DA experiments give a limited

contribution to the humidity forecasts. The IR DA experi-

ment does not improve the moisture forecast, although its

smallest bias is found in the LT and MT.

5.2 Discussion

This is a study using the WRF-ARW mesoscale model linked

to GSI data assimilation system to explore the impact of

AMSU-A–MHS and IASI radiance data assimilation on the

temperature and humidity forecasts in the different vertical

layers over the west coast of United States. Due to the com-

plexity of measurements for satellite instruments (such as the

IASI with 8461 channels) and lack of knowledge in the es-

timation of impacts of those data sets in this regional area,

forecasters should be aware of the limitations of this data as-

similation when forecasting in this region.

The results show that the bias and forecast error are sub-

stantially related to the vertical layer of the objective. For

example, the AMSU-A data assimilation reduced the tem-

perature forecast bias in the upper atmospheric layers, and

the conventional data assimilation indicates the best perfor-

mance in the lower layer, but the IASI data assimilation

shows worst performance in the lower layer. Compared to the

largest bias in the upper atmospheric layer, the largest RMSE

appeared in the lower atmospheric layer. For the humidity

forecast there is a different behavior: the IASI data assimila-

tion significantly reduced the bias in the troposphere, but the

RMSE tells us that the IASI data assimilation does not im-

prove the moisture forecast in this layer. The reason is very

complicated; it is partially attributed to the data selection in

the processes of data assimilation. IASI data have 8461 chan-

nels, but only 279 of those channels were used, based on pre-

Atmos. Meas. Tech., 8, 4231–4242, 2015 www.atmos-meas-tech.net/8/4231/2015/



Y. Bao et al.: Impacts of AMSU-A, MHS and IASI data assimilation 4241

vious studies. Until now, it is not clearly understood what the

main reason is for the different performances since many fac-

tors have contributed to the overall result. More experiments

are necessary as part of our future study to try to understand

the contributions from the various factors and components.

The results shown in this analysis demonstrate the partial im-

pact of satellite data on temperature and humidity forecasts

in this region, but the positive or negative impact depends on

the atmospheric layer and forecasts variables.

It is worth noting that the results presented here are based

on one month’s forecasts with three satellite instruments. The

model performance needs to be examined with longer ex-

periments and more data selection that extend to all avail-

able satellite data sets and more experiments from the dif-

ferent areas. As expressed by Manning and Davis (1997),

“These statistics would provide additional information to

model users and alert model developers to those research ar-

eas that need more attention.”
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