A new method of measuring aerosol optical properties from digital twilight photographs
Abstract. An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse–fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.