

Supplement of

Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

L.-W. A. Chen et al.

Correspondence to: L.-W. A. Chen (antony.chen@unlv.edu)

Abbreviations/Acronyms	Descriptions
А	Filter sampling area
ATN, ATN $_{\lambda}$	Transmittance attenuation (general, at wavelength λ)
BC, BC _d	Black carbon (general, diesel elemental carbon equivalent)
BrC	Brown carbon
CV-RMSR	Coefficient of variance of root mean square residual
EC, ECR, ECR $_{\lambda}$, ECT,	Elemental carbon (general, reflectance adjusted, reflectance
ECT_{λ} , [EC]	adjusted at wavelength λ , transmittance adjusted, transmittance
	adjusted at wavelength λ , areal concentration on filter)
Не	Helium
IMPROVE	Interagency Monitoring of Protected Visual Environments
MAE, MAE _{λ} , MAE _{λ-EC}	Mass absorption efficiency (general, at wavelength λ , of
	elemental carbon at wavelength λ)
M_{λ}	Multiple scattering effect coefficient at wavelength λ
Ne	Neon
OC, OCR, OCT, OCR $_{\lambda}$,	Organic carbon (general, reflectance adjusted, reflectance
OCT_{λ}	adjusted at wavelength λ , transmittance adjusted, transmittance
	adjusted at wavelength λ)
PM, PM _{2.5}	Particulate matter (general, less 2.5 µm aerodynamic diameter)
POC	Pyrolyzed organic carbon
R, LR, LR _{λ} , FR, FR _{λ}	Reflectance (general, laser relative, laser relative at wavelength λ ,
	filter absolute, filter absolute at wavelength λ)
RD	Relative difference
T, LT, LT_{λ} , FT, FT_{λ} ,	Transmittance (general, laser relative, laser relative at wavelength
$FT_{\lambda,i}, FT_{\lambda,f}$	λ , filter absolute, filter absolute at wavelength λ , filter absolute at
	wavelength λ before thermal analysis, filter absolute at
	wavelength λ after thermal analysis)
TC	Total carbon
ТОА	Thermal/optical analysis
TSA	Thermal/spectral analysis
V	Filter sampling volume
$\alpha, \alpha(\lambda), \alpha_{\rm BC}, \alpha_{\rm BrC}$	Absorption Angström exponent (general, at wavelength λ , of
	black carbon, of brown carbon)
b	Regression intercept
b _{abs}	Absorption coefficient
m	Regression slope
р	T-test p value
β_{λ}	Shadowing effect coefficient at wavelength λ
λ	Wavelength
$ au_{a}, au_{a,\lambda}, au_{a,\lambda,BC}, au_{a,\lambda,BrC}$	Absorption optical depth (general, at wavelength λ , at wavelength
	λ due to black carbon, at wavelength λ due to brown carbon)

Table S1. List of abbreviations and acronyms used in the paper.

Figure S1. Configuration of (a) the multi-wavelength module and (b) interface to a thermal/optical carbon Analyzer. Example of typical thermal/spectral analysis (TSA) thermogram for: (c) Fresno ambient and (d) diesel exhaust samples. Laser reflectance (LR_{λ}, solid lines) and transmittance (LT_{λ}, dashed lines) at 7 wavelengths (405, 450, 532, 635, 780, 808, and 980 nm) are reported in millivolts (mV) as detected by the photodiodes. Absolute filter reflectance and transmittance (FR_{λ}/FT_{λ}) for (c) and (d) are shown in (e) and (f), respectively, after calibrating LR_{λ} and LT_{λ} against reflectance and transmittance measurements by the Lambda 35 integrating-sphere spectrometer. FR_{λ} is between 0.1 and 1 (i.e., 100%) while FT_{λ} is generally <0.1 (10%). The temperature steps follow the IMPROVE_A protocol: OC1 (140°C), OC2 (280°C), OC3 (480°C), OC4 (580°C), EC1 (580°C), EC2 (740°C), and EC3 (840°C) with oxygen introduced at the beginning of EC1. The last carbon peak corresponds to the internal methane standard.

Figure S2. (a) Fresno Supersite $PM_{2.5}$ samples acquired from year 2003 serving as transfer standards for calibrating the reflectance and transmittance measurement of a multi-wavelength carbon analyzer. Also shown are the spectral (b) reflectance and (c) transmittance of these samples as quantified by an integrating-sphere spectrometer (Lambda 35, Perkin Elmer, Massachusetts, USA). Dashed lines correspond to wavelengths of the thermal/spectral analysis by the multi-wavelength carbon analyzer.

Figure S3. Calibration of ATN_{λ} of the 7-wavelength carbon analyzer with EC loading ([EC]) measured during the EC2 step of IMPROVE_A analysis of a diesel exhaust sample (CIFQ074, acquired from the Gasoline/Diesel Split Study). Regressions are based on Eq. (6).

Figure S4. Measured $\tau_{a,\lambda}$ (450, 635, and 808 nm are shown) compared with $\tau_{a,\lambda}$ fitted from Eq. (7) assuming a two-component model. All samples in this study are included.

Figure S5. Decomposition of measured absorption optical depth $(\tau_{a,\lambda})$ from (a) Fresno ambient and (b) Reno wildfire samples into the BC and BrC contributions based on their distinct spectral dependence of light absorption. See text for details.