
Atmos. Meas. Tech., 8, 4645–4655, 2015

www.atmos-meas-tech.net/8/4645/2015/

doi:10.5194/amt-8-4645-2015

© Author(s) 2015. CC Attribution 3.0 License.

Evaluation of methods for gravity wave extraction from

middle-atmospheric lidar temperature measurements

B. Ehard, B. Kaifler, N. Kaifler, and M. Rapp

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Correspondence to: B. Ehard (benedikt.ehard@dlr.de)

Received: 12 August 2015 – Published in Atmos. Meas. Tech. Discuss.: 2 September 2015

Revised: 29 October 2015 – Accepted: 30 October 2015 – Published: 5 November 2015

Abstract. This study evaluates commonly used methods of

extracting gravity-wave-induced temperature perturbations

from lidar measurements. The spectral response of these

methods is characterized with the help of a synthetic data

set with known temperature perturbations added to a realistic

background temperature profile. The simulations are carried

out with the background temperature being either constant or

varying in time to evaluate the sensitivity to temperature per-

turbations not caused by gravity waves. The different meth-

ods are applied to lidar measurements over New Zealand, and

the performance of the algorithms is evaluated. We find that

the Butterworth filter performs best if gravity waves over a

wide range of periods are to be extracted from lidar temper-

ature measurements. The running mean method gives good

results if only gravity waves with short periods are to be an-

alyzed.

1 Introduction

Atmospheric gravity waves are well known to have a strong

impact on the middle-atmospheric circulation (e.g., Holton

and Alexander, 2000; Fritts and Alexander, 2003). By trans-

porting energy and momentum from the lower atmosphere

into the middle atmosphere, they are responsible for the for-

mation of the cold polar summer mesopause (e.g., Lindzen,

1981). Although some processes related to gravity waves are

believed to be well understood, there are still open questions.

For example, to what extent gravity wave excitation, propa-

gation and forcing is affected by a changing climate remains

an open question (cf. Fritts and Alexander, 2003; Plougonven

and Zhang, 2014).

Lidar technology has been used to study gravity waves in

the middle atmosphere for the last 3 decades (e.g., Chanin

and Hauchecorne, 1981; Gardner et al., 1989; Wilson et al.,

1991; Whiteway and Carswell, 1995; Duck et al., 2001;

Rauthe et al., 2008; Yamashita et al., 2009; Alexander et al.,

2011; Kaifler et al., 2015b). Hence, lidar studies can poten-

tially be used to infer long-term trends in gravity wave ac-

tivity. Furthermore, lidars have the advantage of providing

measurements throughout the entire middle atmosphere with

high temporal and vertical resolution of typically 1 h and

1 km. However, lidars generally provide one-dimensional

profiles, and no information on the horizontal structure and

the intrinsic properties of atmospheric waves can be re-

trieved. Exceptions are measurements from airborne lidars

and multi-beam lidars.

Gravity waves are usually determined from lidar measure-

ments by separating an estimated background temperature

(density) profile from the measured profiles in order to derive

temperature (density) perturbation profiles. Several methods

have been developed and used over the last decades. For ex-

ample Gardner et al. (1989), Rauthe et al. (2008) and Ehard

et al. (2014) calculate a nightly mean profile and subtract it

from the (time-resolved) individual profiles. Yamashita et al.

(2009) remove a background profile determined by a tempo-

ral running mean (in addition to vertical filtering). Perturba-

tion profiles obtained through a fit of polynomial functions

to the measured profiles are examined by, e.g., Whiteway

and Carswell (1995), Duck et al. (2001) and Alexander et al.

(2011). Mzé et al. (2014) apply a variance method in order

to determine perturbation profiles, while Chane-Ming et al.

(2000) use spectral filtering.
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All of these methods are most sensitive to different parts

of the gravity wave spectrum. Thus, results from different li-

dar studies become hardly comparable because one cannot

distinguish between variations that are caused by a different

methodology and variations that are geophysically induced.

Ehard et al. (2014) compared values of gravity wave poten-

tial energy density (GWPED) from different studies to their

results. Due to potential methodological biases it remained

unclear whether the differences were in fact of geophysical

origin. Hence, they expressed the need for a standardized

method to extract gravity wave amplitudes from lidar mea-

surements.

To our knowledge, no literature is yet available which

characterizes and evaluates the most commonly used meth-

ods to extract information on gravity waves from lidar pro-

files. Thus, we will evaluate and compare four methods in

detail: subtraction of the nightly mean profile, subtraction of

temporal running mean profiles, the sliding polynomial fit

method proposed by Duck et al. (2001) and the application

of a Butterworth filter. While the first two methods rely on

filtering in time, the latter two methods apply a filter in space

to determine wave-induced temperature perturbations.

This paper is structured as follows: the four methods are

described in detail in Sect. 2. The performance is studied in

terms of their spectral response to synthetic data in Sect. 3.

The results are then applied to measurement data in Sect. 4.

Finally, the characteristics of the four methods as well as

their suitability for extracting gravity-wave-induced temper-

ature perturbations are discussed in Sect. 5, and conclusions

are drawn in Sect. 6.

2 Methods

Lidar systems used for studies of the middle atmosphere

measure the Rayleigh backscatter signal which is propor-

tional to atmospheric density after range correction. The tem-

perature is commonly retrieved by integration assuming hy-

drostatic equilibrium (Hauchecorne and Chanin, 1980). Re-

cently Sica and Haefele (2015) proposed a temperature re-

trieval using optimal estimation methods. The derived tem-

perature profiles typically range between 30 and 80–90 km

altitude depending on signal-to-noise ratio. At the upper

boundary, the temperature retrieval is commonly initialized

with satellite data (e.g., Alexander et al., 2011) or resonance

lidar measurements (e.g., Rauthe et al., 2008).

The combination with a resonance lidar system extends the

altitude range of temperature measurements up to ≈ 105 km.

Temperatures below 30 km altitude can be retrieved by using

a stratospheric Raman channel (e.g., Alpers et al., 2004). The

large altitude range allows for studies of gravity wave prop-

agation from the troposphere to the mesosphere. Hence, we

discuss the extraction of gravity waves from temperature data

rather than atmospheric density, although most of the results

can be applied to density measurements as well. For different

methods of extracting gravity waves from density measure-

ments see, e.g., Sica and Russell (1999), Thurairajah et al.

(2010) and Mzé et al. (2014).

Lidar studies usually determine wave-induced temperature

perturbations T ′(z, t) (which are a function of altitude z and

time t) from the measured temperature profile T (z, t) by sub-

tracting a background temperature profile T0(z, t):

T ′(z, t)= T (z, t)− T0(z, t). (1)

T0(z, t) ideally contains all contribution from radiative and

chemical heating and other large-scale effects such as plan-

etary waves and tides. Hence, the temperature perturbations

T ′(z, t) should be solely caused by gravity waves. Estima-

tion of T0(z, t) is challenging due to the specific shape of the

temperature profile with its changes in vertical temperature

gradient, e.g., at the stratopause or mesopause.

The frequency range of gravity waves which may be

present in T ′(z, t) can be inferred from the gravity wave dis-

persion relation which states that the relation

N > |ω̂|> f (2)

between the intrinsic frequency ω̂, the Brunt–Väisälä fre-

quency N and the Coriolis parameter f must be fulfilled at

all times. Using a typical stratospheric value of N = 0.02 s−1

and a Coriolis parameter for midlatitudes of f = 10−4 s−1,

the intrinsic period τ̂ = 2π
ω̂

ranges between 5 min and 17 h. It

is important to note that the lidar only detects the observed

period τ which can be Doppler-shifted to larger or smaller

values, depending on local wind conditions. Typical vertical

wavelengths of gravity waves measured by ground-based in-

struments vary between 1 and 17 km (see Chane-Ming et al.,

2000, their Table 2). The spatial scales combined with the

temporal scales define the spectral requirements on the meth-

ods of extracting gravity-wave-induced temperature pertur-

bations.

2.1 Time-averaged background profiles

A widely applied method is the use of the nightly mean tem-

perature profile as a background temperature profile (e.g.,

Gardner et al., 1989; Rauthe et al., 2008; Ehard et al., 2014).

It is then assumed that the timescales of phenomena other

than gravity waves affecting the temperature profile are con-

siderably larger and the timescales of gravity waves are

smaller than the measurement period, which is typically in

the range of 3–12 h.

Another common method is to determine background tem-

perature profiles by means of a running mean over a time

window which is typically on the order of 3 h (e.g., Ya-

mashita et al., 2009). Temperature variations with timescales

larger than the window width are attributed to the back-

ground temperature profiles and are therefore not included

in the extracted gravity wave spectrum.
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2.2 Sliding polynomial fit

Duck et al. (2001) proposed a method of extracting tem-

perature perturbations based on a sliding polynomial fit in

the spatial domain. The method is sensitive to small verti-

cal scales and ignores the temporal evolution of waves. The

method is based on the assumption that temperature varia-

tions with large vertical scales can be attributed to the clima-

tological thermal structure of the atmosphere (i.e., the differ-

ent vertical temperature gradients in the troposphere, strato-

sphere and mesosphere), to the advection of colder or warmer

air masses, or to tides and planetary waves. Only variations

with a spatial scale smaller than a certain threshold are iden-

tified as gravity waves.

The sliding polynomial fit method was designed to pro-

duce a background temperature profile which contains all

perturbations with vertical scales larger than 15 km. For each

measured temperature profile Duck et al. (2001) applied a se-

ries of overlapping cubic polynomial fits to each range gate.

Each fit was applied to an altitude window with a width of

Lf= 25 km. A weighted average was computed to recon-

struct the background temperature profile from the individual

polynomial fits using the weighting function

w(z)i =


exp

(
z−(zc,i−δ)

γ

)
if z ≤ zc,i− δ

1 if zc,i− δ < z < zc,i+ δ

exp
(
−
z−(zc,i+δ)

γ

)
if z ≥ zc,i+ δ

. (3)

Here δ= 0.5Lf−Lw, Lw is the width of the weighting

window, zc,i the center altitude of the individual fit and γ the

e-folding width which defines how fast the weighting func-

tion decreases. Duck et al. (2001) used a weighting window

length Lw=
Lf

3
and γ = 3 km.

Duck et al. (2001) smoothed the resulting background

temperature profiles with a 1.5 km boxcar mean. These pro-

files were then subtracted from the corresponding measured

temperature profiles according to Eq. (1), yielding the tem-

perature perturbation profiles.

In this study the following set of parameters is used: a fit

length Lf= 20 km, a weighting window length Lw= 3 km

and an e-folding width γ = 9 km. These parameters are cho-

sen because they yield the flattest spectral response for the

altitude resolution used in this study (see Sect. 5.2 for further

details). The boxcar smoothing proved to have a negligible

effect. Hence, it is not applied in this study.

2.3 Spectral filter

Another method which can be applied to vertical profiles is

spectral filtering (e.g., Chane-Ming et al., 2000). By applying

a high-pass filter to individual temperature profiles, temper-

ature perturbations can be retrieved. In order to yield pertur-

bations caused by gravity waves, a filtering function has to

be chosen which has an adequate spectral response.

In this study we use a 5th-order Butterworth high-pass

filter with a cutoff wavelength λc= 15 km and the transfer

function

H (λz)=

(
1+

(
λz

λc

)2n
)− 1

2

, (4)

where n is the order of the filter and λz is the vertical wave-

length. The Butterworth filter is chosen due to its flat fre-

quency response in the passband. The filter itself is applied

in Fourier space. As the Fourier transformation assumes a

cyclic data set, the upper and lower end of the measured

temperature profile are internally connected. This creates

an artificial discontinuity which introduces a broad range

of frequencies including frequency components that are in

the passband of the filter. These frequency components con-

tribute to temperature perturbations at the upper and lower

end of the analyzed altitude window and thus artificially en-

hance gravity wave signatures. In order to mitigate this effect,

the data set is mirrored at the lowest altitude bin and attached

to the original data set before the filtering process. The data

set can be cyclically extended without discontinuities at the

lower end, where temperature perturbations are smallest and

therefore artificial enhancements produce the largest relative

errors. After the filtering only the original half of the result-

ing perturbation profile is retained.

3 Application to synthetic data

In order to characterize the different methods regarding their

ability to extract temperature perturbations from middle-

atmospheric temperature profiles, we apply them to a syn-

thetic data set with known temperature perturbations. These

perturbations are added to a fixed, realistic background tem-

perature profile T0(z). The latter is derived from the mean

temperature profile above Lauder, New Zealand, (45.0◦ S,

169.7◦ E) measured with the Temperature Lidar for Middle

Atmosphere research (TELMA) from July until the end of

September (black line in Fig. 1a). The particular choice of

the background temperature profile does not affect the re-

sults as long as the background temperature profile is realis-

tic, is smooth and does not contain contributions from gravity

waves. For example, with a climatological or a model tem-

perature profile, similar results can be derived.

Sinusoidal temperature perturbations with exponentially

increasing amplitude were added to the background temper-

ature profile according to

Ts(z, t)= T0(z)+ T
′
s (z, t), with (5)

T ′s (z, t)= Acos

(
2πz

λz
+

2πt

τ

)
exp

(
z− z0

2H

)
, (6)

with the amplitude A, the vertical wavelength λz, the ob-

served period τ , the scale heightH and the lowest altitude of
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Figure 1. (a) Background temperature profile T0 used for the sim-

ulations (black) and perturbed temperature profile T (red). (b) The

temperature perturbations T ′ added to T0. Temperature perturba-

tions in both panels were constructed using Eq. (6) with the fol-

lowing set of parameters: t = 4 h, A= 1.2 K, λz= 6 km, τ = 1.9 h,

H = 12 km.

the analyzed altitude range z0. An example of the perturbed

background profile Ts can be seen in Fig. 1a (red line), and

the corresponding temperature perturbations T ′s in Fig. 1b.

For each method, the spectral response Rm(z) was cal-

culated from the ratio between the time averaged absolute

values of the determined temperature perturbations |T ′m(z, t)|

and the synthetic temperature perturbations |T ′s (z, t)| as

Rm(z)=
|T ′m(z, t)|

|T ′s (z, t)|
· 100%. (7)

A spectral response larger than 100 % indicates an overesti-

mation of gravity wave amplitude, while a value below 100 %

indicates an underestimation of gravity wave amplitude.

All simulations conducted for this study use the realistic

set of parameters A= 1.2 K, H = 12 km and z0= 25 km. A

height resolution of 1z= 0.1 km was used, while the alti-

tude interval ranged from 25 to 90 km. A time interval of 8 h,

corresponding to the length of an average nighttime mea-

surement period, with a resolution of 1t = 0.5 h was used.

For each simulation either λz or τ was kept constant, while

the other was varied. The vertical wavelength λz was varied

from 0.6 to 20 km in steps of 0.2 km, while τ was varied from

0.15 to 14.95 h in steps of 0.1 h.

3.1 Constant background temperature

As a first step, simulations were carried out with a constant

background temperature profile T0(z). In order to reduce

aliasing effects caused by even multiples of the analyzed time

window (8 h), the period of simulated gravity waves was set

to τ = 1.9 h while the vertical wavelength λz was varied. Fig-

ure 2 depicts the spectral response of the different methods

as a function of vertical wavelength.

The nightly mean method (Fig. 2a) and the 3 h running

mean method (Fig. 2b) both exhibit an almost uniform spec-

tral response at all altitudes and wavelengths. However, the

running mean slightly overestimates the extracted tempera-

ture perturbations, which is due to the choice of a specific
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Figure 2. Spectral response of different methods of determining

temperature perturbations as a function of vertical wavelength λz:

nightly mean (a), 3 h running mean (b), sliding polynomial fit (c)

and Butterworth filter (d). (e) and (f) depict mean extracted tem-

perature perturbations in the ranges 30–40 km (e) and 50–60 km (f)

as well as the simulated temperature perturbations (blue line). The

different methods are color-coded as follows: nightly mean – green;

3 h running mean – orange; sliding polynomial fit – red; Butterworth

filter – black. Please note that the blue line in this case lies exactly

underneath the green line. All simulations were carried out with

τ = 1.9 h and a background temperature profile constant in time.

period of τ = 1.9 h (cf. Fig. 3e). The sliding polynomial fit

method (Fig. 2c) shows a reduced spectral response for ver-

tical wavelengths larger than ≈ 13 km. For shorter vertical

wavelengths the spectral response is close to 100 % at most

altitudes. Vertical wavelengths of ≈ 9 km show a slight re-

duction in spectral response over the entire altitude range. At

the upper and lower 5 km of the analyzed altitude window,

vertical wavelengths larger than 5 km are strongly damped.

The spectral response of the Butterworth filter (Fig. 2d) is

very similar to the sliding polynomial fit. The main differ-

ence is that the Butterworth filter exhibits no underestimation

of temperature perturbations at 9 km vertical wavelength.

Figure 2e and f show mean extracted temperature per-

turbations. The blue line (here underneath the green line)

depicts the original temperature perturbations added to the

background temperature profile. As evident from Fig. 2e,

the sliding polynomial fit method underestimates tempera-

ture perturbations at vertical wavelengths around 9 km. In

agreement with the filter design both vertical filtering meth-

ods, the sliding polynomial fit and the Butterworth filter,
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Figure 3. Same as Fig. 2 but as a function of period τ . All simula-

tions were carried out with a fixed vertical wavelength of 6 km and a

background temperature profile constant in time. Note that the blue

and black lines in (e) and (f) are lying on top of each other.

show a decrease in extracted temperature perturbations for

vertical wavelengths larger than 13 km. This decrease is al-

most linear with increasing vertical wavelength. As a conse-

quence, amplitudes are effectively reduced by a factor of 3 at

λz= 20 km.

In the first simulation setup the vertical wavelength λz was

varied, while the period τ was kept constant. We now pro-

ceed by varying the period τ with a fixed λz= 6 km (Fig. 3).

The spectral response of the nightly mean method (Fig. 3a)

is close to 100 % at all altitudes. Temperature perturbations

with periods larger than 10 h are damped, and periods around

6 h are slightly underestimated. For τ = 15 h the reduction in

amplitude is ≈ 20 % (green line in Fig. 3e and f). Like the

nightly mean method, the 3 h running mean (Fig. 3b) exhibits

a uniform spectral response at all altitudes. However, waves

with periods longer than 3.5 h are strongly damped. At a pe-

riod of 6 h temperature perturbations are underestimated by a

factor of 2, and for τ = 2.5 h amplitudes are overestimated by

≈ 20 % (orange line in Fig. 3e and f). The spectral response

of the filter for waves with shorter periods oscillates between

over- and underestimation as τ approaches zero. In contrast,

the sliding polynomial fit method (Fig. 3c) and the Butter-

worth filter (Fig. 3d) both exhibit an almost uniform spectral

response for most periods. Only for very long periods do the

spectral response oscillate between over- and underestima-

tion with increasing altitude, indicating a slight phase delay

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20
Wavelength λz (km)

0.0

0.5

1.0

1.5

2.0

M
e

a
n

T
′(

K
)

0 5 10 15 20
Wavelength λz (km)

0

1

2

3

4

0 5 10 15 20

30

40

50

60

70

80

90

A
lt
it
u

d
e

 z
 (

k
m

)

0 5 10 15 20

30

40

50

60

70

80

90

80

90

100

110

120

R
e

s
p

o
n

s
e

 R
 (

%
)

0 5 10 15 20

30

40

50

60

70

80

90

A
lt
it
u

d
e

 z
 (

k
m

)

0 5 10 15 20

30

40

50

60

70

80

90

80

90

100

110

120

R
e

s
p

o
n

s
e

 R
 (

%
)

a) b)

c) d)

e) f)

Figure 4. Same as Fig. 2 but with a varying background temperature

(see Sect. 3.2 for details).

between simulated and extracted temperature perturbations.

This oscillation is not seen in Fig. 3e and f due to the vertical

averaging over 10 km.

3.2 Varying background temperature

While in the previous section the simulated background tem-

perature was kept constant, we now examine the influence of

a time-dependent variation of the background temperature on

the different methods. Slow variations of the form

T ′0(z, t)= αt sin

(
2π (z− z0)

60km

)
exp

(
z− z0

H0

)
(8)

were added to Eq. (5), where α= 0.5 K h−1 is the heat-

ing/cooling rate and H0= 65 km is the scale height of the

background temperature variation. This results in a warm-

ing of the stratosphere and a cooling of the mesosphere over

time, representing a very simplified effect of a propagating

planetary wave with a vertical wavelength of 60 km. All other

parameters are the same as before.

Filter characteristics are shown for a varying vertical

wavelength in Fig. 4. Compared to the steady background

simulations (e.g., Fig. 2), the nightly mean method exhibits

an enhanced spectral response around 35 and 65 km alti-

tude (Fig. 4a). From Fig. 4e it can be determined that the

nightly mean method overestimates temperature perturba-

tions by roughly 25 % between 30 and 40 km altitude. No

change in spectral response is detected for the 3 h running

www.atmos-meas-tech.net/8/4645/2015/ Atmos. Meas. Tech., 8, 4645–4655, 2015



4650 B. Ehard et al.: GW extraction from lidar measurements

mean method (Fig. 4b), the sliding polynomial fit method

(Fig. 4c) and the Butterworth filter (Fig. 4d).

The filters exhibit similar characteristics if the gravity

wave period is varied instead of the vertical wavelength. The

nightly mean method (Fig. 5a) overestimates temperature

perturbations in the same altitude bands as shown for the

simulations with varying vertical wavelength (cf. Fig. 4a).

The filter characteristics of the 3 h running mean method

(Fig. 5b), the sliding polynomial fit method (Fig. 5c) and the

Butterworth filter (Fig. 5d) are not affected by the varying

background temperature.

4 Application to measurement data

Rayleigh lidar measurements at Lauder, New Zealand,

(45.0◦ S, 169.7◦ E) were obtained with the TELMA instru-

ment from mid-June to mid-November 2014 (Kaifler et al.,

2015a). We use temperature data with a temporal resolution

of 10 min and a vertical resolution of 100 m. The effective

vertical resolution of the temperature data is 900 m due to

smoothing of the raw data before processing. Measurement

uncertainties are typically on the order of 2–3 K at 70 km al-

titude and generally lower than 1 K below 60 km altitude.

4.1 Case study: 23 July 2014

A detailed analysis with the four different methods of ex-

tracting temperature perturbations is shown for the data set

obtained on 23 July 2014 in Fig. 6. This case was chosen

because the gravity wave analysis depicts many previously

noted characteristics of the four methods.

The main features of the mean temperature profile

(Fig. 6b) are the stratopause between 45 and 55 km alti-

tude with T ≈ 245 K and the temperature minimum of ap-

proximately 200 K at 73 km altitude below a mesospheric in-

version layer. The time evolution of the temperature mea-

surements (Fig. 6a) shows an increase of the temperature

at the stratopause and a jump in stratopause height around

08:00 UTC. Afterwards, the stratopause descends slowly.

The structure of the mesospheric inversion layer varies also

over time, with the minimum temperature below the inver-

sion layer reaching ≈ 175 K around 14:00 UTC.

The temperature perturbations as determined by the

nightly mean method (Fig. 6c) exhibit a vertically broad

maximum descending from about 80 km altitude down to

50 km altitude over the 12 h measurement period. Temper-

ature perturbations within this descending maximum reach

values of up to±20 K. Below 50 km altitude temperature per-

turbations are generally on the order of ±5 K.

The 3 h running mean method on the other hand (Fig. 6d)

shows strongly tilted patterns. Below 50 km altitude the

phase lines tend to be steeper than above. The magnitude of

the temperature perturbations generally increases with alti-
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Figure 5. Same as Fig. 3 but with a varying background temperature

(see Sect. 3.2 for details).

tude from approximately ±5 K below 60 km altitude to ap-

proximately ±15 K above 60 km altitude.

The sliding polynomial fit method (Fig. 6e) and the Butter-

worth filter (Fig. 6f) extract almost identical patterns of tem-

perature perturbations, with the Butterworth filter inferring

slightly larger amplitudes. The phase lines in Fig. 6e and f

decrease more slowly in altitude compared to the 3 h running

mean method. Below 60 km altitude temperature perturba-

tions are below ±10 K for both filters and increase to ±15 K

above 60 km altitude.

4.2 Statistical performance

A quantity often used as a proxy for gravity wave activity is

the GWPED per mass:

Ep =
1

2

g2

N2

(
T ′

T0

)2

, with (9)

N2
=
g

T0

(
dT0

dz
+
g

cp

)
, (10)

where g denotes the acceleration due to gravity and cp the

heat capacity of dry air under constant pressure, in addition

to the previously defined variables. The mean GWPED is de-

termined as the average over one measurement period – typ-

ically 5–12 h in our case – which is denoted by the overline

in Eq. (9). Due to the decrease in density with altitude, GW-

PED per mass increases exponentially with altitude in the
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Figure 6. Temperature (a), mean temperature profile (b) and derived temperature perturbations obtained by different methods (c–f) over

Lauder, New Zealand, (45.0◦ S, 169.7◦ E) on 23 July 2014. The following methods were used for the different panels: nightly mean (c), 3 h

running mean (d), sliding polynomial fit (e), and Butterworth filter (f). Time is given in UTC.

case of conservative wave propagation. For a more detailed

description and physical interpretation of the GWPED see,

e.g., Rauthe et al. (2008) and Ehard et al. (2014).

From TELMA observations above New Zealand over the

period 1 July to 30 September 2014 we determined the mean

GWPED per mass using the four methods of gravity wave

extraction discussed in this study (Fig. 7). Relative uncer-

tainties of the GWPED for all methods are on the order of

0.5 % in the stratosphere and increase to approximately 5 %

at 80 km altitude, which is considerably smaller than the vari-

ations of the GWPED due to the geophysical variability. The

absolute value of the GWPED varies by as much as 1 or-

der of magnitude depending on which method is used. The

largest relative deviations appear in the lower stratosphere

between the 3 h running mean method and the Butterworth

filter. Above 65 km altitude all methods produce similar re-

sults. A distinct feature of Fig. 7 is the larger growth of

GWPED with altitude if the running mean method is used

instead of the vertical filtering methods. Additionally, the

3 h running mean method yields the lowest GWPED values.

If a 4 h running mean is used instead, the GWPED profile

is shifted towards slightly larger values. Below 45 km al-

titude the nightly mean method produces values compara-

ble to the sliding polynomial fit and the Butterworth filter.

Above 45 km altitude the nightly mean method shows the

largest values of all methods. The sliding polynomial fit and

the Butterworth filter produce generally similar results, with

the Butterworth filter yielding a slightly larger GWPED. An-

other striking feature in Fig. 7 is the enhanced GWPED be-

low 35 km altitude which is detected by both vertical filtering

www.atmos-meas-tech.net/8/4645/2015/ Atmos. Meas. Tech., 8, 4645–4655, 2015
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Figure 7. Mean gravity wave potential energy density (GWPED)

per mass over Lauder, New Zealand, (45.0◦ S, 169.7◦ E) between

1 July and 30 September 2014. The methods used to determine the

GWPED are color-coded. The profiles were smoothed by a vertical

running mean with a window width of 3 km.

methods. This enhancement is not detected by the running

mean method.

5 Discussion

5.1 Temporal filters

The nightly mean method has been applied in many studies

(e.g., Gardner et al., 1989; Blum et al., 2004; Rauthe et al.,

2008; Ehard et al., 2014). The major disadvantage is that a

varying length of measurement periods results in a variation

of the sensitivity to different timescales. This effect is clearly

demonstrated in Fig. 3e, showing that gravity waves with pe-

riods larger than 10 h are significantly underestimated if an

8 h long time series is used. If the time series is shortened,

the cutoff period is smaller as well (not shown) and the spec-

tral response for long-period waves is reduced even further.

Strictly speaking, this implies that gravity wave analyses of

time series of different length cannot be compared.

In practice measurement periods vary typically in length

between a few hours up to a whole night as weather con-

ditions can change rapidly during an observational period.

Moreover, there is a seasonal dependency because most

middle-atmospheric lidars are capable of measuring in dark-

ness only. This results in shorter measurement periods in

summer and longer measurement periods in winter. Hence,

the nightly mean method is sensitive to different parts of the

gravity wave spectrum depending on weather conditions as

well as season. For example, Rauthe et al. (2006) compared

winter and summer measurements of gravity wave activity

determined by the nightly mean method. They resolved grav-

ity waves with periods of 1.5–12 h during winter and 1.5–

3.5 h during summer. Hence, Rauthe et al. (2006) limited

their analysis to 3–5 h long measurement periods in order to

reduce the variation of the spectral response.

The use of the nightly mean method in gravity wave anal-

ysis is further complicated by the fact that there are processes

besides gravity waves which occur on similar timescales. For

example tides with periods of 8, 12 and 24 h are within the

sensitivity range of this method. In the analysis of radar data,

the removal of tidal signals is a standard procedure (e.g.,

Hoffmann et al., 2010). With lidar data, however, this is prob-

lematic due to generally shorter and often intermitted mea-

surement periods. Figure 6c shows an example of a tidal sig-

nal extracted with the nightly mean method. The broad de-

scending maximum in temperature perturbations is caused

by the semidiurnal tide, which was confirmed by a composite

analysis over several days (not shown). Note that the nightly

mean method is not a suitable method for tidal analysis. Tidal

signals are generally extracted from lidar measurements by

means of the previously mentioned composite analysis (e.g.,

Lübken et al., 2011).

The running mean method (e.g., Yamashita et al., 2009)

tries to compensate for some of the shortcomings of the

nightly mean method. The spectral response is limited to

timescales on the order of the window width of the running

mean – which is typically 3 h – resulting in the suppression

of tides and planetary waves. However, due to this limita-

tion, only a very small part of the gravity wave spectrum is

retained in the analysis (e.g., Fig. 3e). As stated previously,

gravity wave periods can range from about 5 min to 17 h.

Thus the limitation to short timescales excludes a major part

of the gravity wave spectrum. Figure 7 shows that, as the

length of the running mean window increases, the GWPED

increases as well. Still, gravity waves with long periods are

suppressed. Additionally, the running mean method overesti-

mates periods slightly shorter than the chosen window width

(Fig. 3e). The strongly oscillating spectral response of the

running mean method for short periods (Fig. 3e) arises due

to the coarse temporal resolution of 0.5 h used in the simu-

lations, which is a typical temporal resolution of lidar mea-

surements. If the temporal resolution of the simulations is in-

creased, these sharp peaks for periods shorter than 1 h vanish

(not shown).

The beginning and the end of the measurement period pose

an additional problem for the application of the running mean

method. At the beginning of the measurement period, a cen-

tered running mean of 3 h lacks the first 1.5 h of observa-

tions necessary for determining the background temperature.

Thus, if in the beginning of the measurement only 1.5 h of

data are available for averaging, the spectral response dif-

fers at the beginning of the measurement period compared

to later times when 3 h of measurements are available. The

same is true at the end of the measurement period as well as

in the presence of measurement gaps. Thus, when requiring

the same spectral response at all times, the “spin-up” time of

the running mean method would have to be discarded. How-

ever, this would result in a significantly reduced data set be-
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cause one window width of data would have to be discarded

from each measurement period, in addition to another win-

dow width for each measurement gap.

Note that the resolved high-frequency range of the grav-

ity wave spectrum is limited by the sampling frequency of

the lidar system which ranges typically between 10 min and

1 h, depending on lidar performance. This is a fundamental

limitation to the extractable part of the gravity wave spectrum

which affects all methods of extracting gravity-wave-induced

temperature perturbations in the same way. The same holds

true for the effective vertical resolution of the temperature

profiles.

5.2 Spatial filters

Filtering in the spatial domain, by using either the sliding

polynomial fit or the Butterworth filter, has the advantage that

the spectral response in the time domain is independent of the

length of the measurement period and the presence of mea-

surement gaps. This makes it possible to derive temperature

perturbations associated with gravity waves from observa-

tional periods which are too short to yield meaningful results

if temporal filtering methods are applied. In addition, both

spatial filtering methods are capable of detecting waves with

periods larger than 12 h (Fig. 3c and d). One disadvantage

of both spatial filtering methods is the dampening of vertical

wavelengths larger than 5 km at the upper and lower edge of

the analyzed altitude window due to edge effects.

The sliding polynomial fit has been applied in several stud-

ies (e.g., Duck et al., 2001; Alexander et al., 2011; Kaifler

et al., 2015b). Different authors use temperature data with

different altitude resolutions and slightly different parameter

setups for Lf, Lw and γ . The fit length Lf determines the cut-

off wavelength of the spectral response. The weighting win-

dow length Lw and the e-folding width γ must be adapted to

the altitude resolution of the data used. For example, the pa-

rameter setup γ = 3 km and Lw=Lf/3 used by Duck et al.

(2001) results in a flat spectral response for their altitude res-

olution of1z= 2 km and fit length Lf= 25 km. If a different

altitude resolution is chosen, a different set of parameters is

needed in order to achieve a flat spectral response in the pass-

band. For the altitude resolution of 1z= 0.1 km used in this

study, a flat spectral response was found for γ = 9 km and

Lw= 3 km. However, vertical wavelengths of≈ 9 km are still

slightly underestimated with this parameter set. The fit length

of Lf= 20 km was chosen following Kaifler et al. (2015b).

Additional high-pass filtering, as applied by Alexander et al.

(2011) or Kaifler et al. (2015b), was found to be unnecessary

because the long vertical wavelengths are already strongly

suppressed by the sliding polynomial fit itself.

The sliding polynomial fit method is sensitive to large

changes of the temperature gradient and may falsely over-

estimate temperature perturbations for example in the pres-

ence of mesospheric inversion layers (not shown). The But-

terworth filter tends to overestimate sudden changes in the

temperature gradient of the measured temperature profile as

well. However, the magnitude of the overestimation is gen-

erally lower than for the sliding polynomial fit method. Fur-

thermore, the Butterworth filter has the advantage that it can

be easily adjusted if a different cutoff wavelength is desired.

5.3 Application to measurement data

All the previously discussed characteristics influence the

gravity wave spectrum which is extracted from lidar temper-

ature measurements. This becomes visible if the mean GW-

PED of a set of measurements is computed using different

methods as shown in Fig. 7. The running mean method ex-

tracts only a small part of the gravity wave spectrum and thus

shows the lowest GWPED values. The GWPED increases

if the window width of the running mean is increased. The

nightly mean method yields the largest GWPED values at

higher altitudes. This can be attributed to the insufficient

suppression of tides and other processes unrelated to grav-

ity waves which happen on longer timescales. In the lower

stratosphere the sliding polynomial fit method and the But-

terworth filter yield the largest GWPED values. This is most

likely caused by the inclusion of long-period waves such

as quasi-stationary mountain waves. These waves have the

largest impact on GWPED in the lower stratosphere above

Lauder during winter (Kaifler et al., 2015a). Above 30 km al-

titude GWPED values are reduced. A possible mechanism is

that mountain waves with very large amplitudes become un-

stable at these altitudes and break. This has for example been

observed by Ehard et al. (2015), who detected a self-induced

critical layer around 30 km altitude caused by a strong moun-

tain wave event above northern Scandinavia.

The fact that the Butterworth filter exhibits a lower growth

rate of GWPED compared to the running mean method

(Fig. 7) may be evidence that short-period gravity waves can

propagate more easily to higher altitudes than gravity waves

with long periods. This complicates the comparison and in-

terpretation of GWPED growth rates (generally expressed

in terms of scale heights) of different studies. For example

Rauthe et al. (2006) deduced a GWPED scale height of 9–

11 km with the nightly mean method for a midlatitude site.

On the other hand, Kaifler et al. (2015b) reported a GWPED

scale height of approximately 7 km determined with the slid-

ing polynomial fit method for measurements conducted at

Antarctica. A large part of the difference in retrieved scale

height can be attributed to different wave propagation condi-

tions at the two sites. However, it remains an open question

to what extent the results are affected by the use of different

methods to extract gravity waves.
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6 Conclusions

We evaluated four commonly used methods of extracting

gravity-wave-induced temperature perturbations from lidar

measurements. A widely used method – the nightly mean

method – relies on filtering in time by subtraction of the

nightly mean temperature. Thus, it is sensitive to all tem-

perature changes occurring on the timescale of the measure-

ment period, including temperature changes induced by plan-

etary waves and tides. Because measurement periods can

vary substantially in length and the spectral response of the

nightly mean method depends on the length of the mea-

surement period, the extracted gravity wave spectrum can

vary from observation to observation. This makes the nightly

mean method an improper choice for compiling gravity wave

statistics if a data set with a varying length of observational

periods is analyzed.

The second method which relies on filtering in time, the

running mean method, provides a more stable spectral re-

sponse with regard to a varying length of the measurement

period. However, it extracts only a small fraction of the grav-

ity wave spectrum, with long-period waves being strongly

suppressed. Moreover, the running mean method exhibits a

variation in the spectral response at the beginning and end of

a measurement period as well as in the presence of measure-

ment gaps.

The sliding polynomial fit method is not only capable of

extracting waves over a broad range of temporal scales but

also suppresses tides and planetary waves due to their large

vertical wavelengths. In addition, it is unaffected by mea-

surement gaps. However, the parameters used for the sliding

polynomial fit need to be adjusted to the altitude resolution

of the measured temperature profiles in order to provide a flat

spectral response in the passband.

The Butterworth filter provides an alternative to the slid-

ing polynomial fit method which is not only easy to im-

plement but also easily adjustable to a desired cutoff wave-

length. Also, the filter is largely independent of the altitude

resolution while providing all the advantages of the sliding

polynomial fit method. Furthermore, sudden changes in the

background temperature gradient affect the Butterworth filter

less than the sliding polynomial fit method.

Based on the results presented here, two methods are rec-

ommended for gravity wave extraction from lidar tempera-

ture measurements covering a large altitude range: the run-

ning mean method is the most suitable method if the analysis

is focused on short-period gravity waves with large vertical

wavelengths. On the other hand, if a broad passband is de-

sired which covers a large part of the gravity wave spectrum,

the Butterworth filter is the method of choice. Additional ad-

vantages are the insensitivity to measurement gaps, a varying

length of observational periods and the altitude resolution of

the measured temperature profile.
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